ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-19
    Description: Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn(2+)-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn(2+) and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 A and 2.7 A resolution, respectively. The structures reveal a similar fold to Cu(+)-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2.Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn(2+) release as a built-in counter ion, as has been proposed for H(+)-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn(2+)-ATPases and PIII-type H(+)-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+), K(+)-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259247/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259247/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kaituo -- Sitsel, Oleg -- Meloni, Gabriele -- Autzen, Henriette Elisabeth -- Andersson, Magnus -- Klymchuk, Tetyana -- Nielsen, Anna Marie -- Rees, Douglas C -- Nissen, Poul -- Gourdon, Pontus -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 23;514(7523):518-22. doi: 10.1038/nature13618. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Solvegatan 19, SE-221 84 Lund, Sweden (P.G.). [3]. ; 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2]. ; Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. ; Science for Life Laboratory, Department of Theoretical Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, SE-171 21 Solna, Sweden. ; Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. ; 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Solvegatan 19, SE-221 84 Lund, Sweden (P.G.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132545" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Binding Sites ; Cadmium/metabolism ; Calcium-Transporting ATPases/chemistry ; Conserved Sequence ; Crystallography, X-Ray ; Lead/metabolism ; Models, Molecular ; Phosphorylation ; Proteolipids/chemistry/metabolism ; Proton-Translocating ATPases/chemistry/metabolism ; Shigella/*enzymology ; Sodium-Potassium-Exchanging ATPase/chemistry ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...