ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-08-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crowder, L B -- Osherenko, G -- Young, O R -- Airame, S -- Norse, E A -- Baron, N -- Day, J C -- Douvere, F -- Ehler, C N -- Halpern, B S -- Langdon, S J -- McLeod, K L -- Ogden, J C -- Peach, R E -- Rosenberg, A A -- Wilson, J A -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):617-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Marine Conservation, Nicholas School of the Environment and Earth Sciences, Duke University Marine Laboratory, Beaufort, NC 28516, USA. lcrowder@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16888124" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Conservation of Natural Resources ; *Ecosystem ; Environment ; Fisheries ; Fishes ; *Government Regulation ; *Marine Biology ; Oceans and Seas ; Population Dynamics ; Seawater ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-16
    Description: The management and conservation of the world's oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halpern, Benjamin S -- Walbridge, Shaun -- Selkoe, Kimberly A -- Kappel, Carrie V -- Micheli, Fiorenza -- D'Agrosa, Caterina -- Bruno, John F -- Casey, Kenneth S -- Ebert, Colin -- Fox, Helen E -- Fujita, Rod -- Heinemann, Dennis -- Lenihan, Hunter S -- Madin, Elizabeth M P -- Perry, Matthew T -- Selig, Elizabeth R -- Spalding, Mark -- Steneck, Robert -- Watson, Reg -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):948-52. doi: 10.1126/science.1149345.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Ecological Analysis and Synthesis, 735 State Street, Santa Barbara, CA 93101, USA. halpern@nceas.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276889" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Climate ; Conservation of Natural Resources ; *Ecosystem ; Fisheries ; *Human Activities ; Humans ; Mathematics ; Models, Theoretical ; Oceans and Seas
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-05
    Description: Climate change challenges organisms to adapt or move to track changes in environments in space and time. We used two measures of thermal shifts from analyses of global temperatures over the past 50 years to describe the pace of climate change that species should track: the velocity of climate change (geographic shifts of isotherms over time) and the shift in seasonal timing of temperatures. Both measures are higher in the ocean than on land at some latitudes, despite slower ocean warming. These indices give a complex mosaic of predicted range shifts and phenology changes that deviate from simple poleward migration and earlier springs or later falls. They also emphasize potential conservation concerns, because areas of high marine biodiversity often have greater velocities of climate change and seasonal shifts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burrows, Michael T -- Schoeman, David S -- Buckley, Lauren B -- Moore, Pippa -- Poloczanska, Elvira S -- Brander, Keith M -- Brown, Chris -- Bruno, John F -- Duarte, Carlos M -- Halpern, Benjamin S -- Holding, Johnna -- Kappel, Carrie V -- Kiessling, Wolfgang -- O'Connor, Mary I -- Pandolfi, John M -- Parmesan, Camille -- Schwing, Franklin B -- Sydeman, William J -- Richardson, Anthony J -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):652-5. doi: 10.1126/science.1210288.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK. michael.burrows@sams.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053045" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; *Climate Change ; *Ecosystem ; Oceans and Seas ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly, R P -- Foley, M M -- Fisher, W S -- Feely, R A -- Halpern, B S -- Waldbusser, G G -- Caldwell, M R -- New York, N.Y. -- Science. 2011 May 27;332(6033):1036-7. doi: 10.1126/science.1203815.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Ocean Solutions, Stanford University, Stanford, CA 94305, USA. rpk@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617060" target="_blank"〉PubMed〈/a〉
    Keywords: Conservation of Natural Resources/*legislation & jurisprudence ; Ecosystem ; Hydrogen-Ion Concentration ; Oceans and Seas ; Seawater/*chemistry ; United States ; Water Pollution/legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-11
    Description: The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burrows, Michael T -- Schoeman, David S -- Richardson, Anthony J -- Molinos, Jorge Garcia -- Hoffmann, Ary -- Buckley, Lauren B -- Moore, Pippa J -- Brown, Christopher J -- Bruno, John F -- Duarte, Carlos M -- Halpern, Benjamin S -- Hoegh-Guldberg, Ove -- Kappel, Carrie V -- Kiessling, Wolfgang -- O'Connor, Mary I -- Pandolfi, John M -- Parmesan, Camille -- Sydeman, William J -- Ferrier, Simon -- Williams, Kristen J -- Poloczanska, Elvira S -- England -- Nature. 2014 Mar 27;507(7493):492-5. doi: 10.1038/nature12976. Epub 2014 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK. ; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Queensland QLD 4558, Australia. ; 1] Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, Ecosciences Precinct, GPO Box 2583, Brisbane, Queensland 4001, Australia [2] Centre for Applications in Natural Resource Mathematics (CARM), School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Department of Genetics, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia. ; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA. ; 1] Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK [2] Centre for Marine Ecosystems Research, Edith Cowan University, Perth 6027, Australia. ; The Global Change Institute, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] The UWA Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia [2] Department of Global Change Research, IMEDEA (UIB-CSIC), Instituto Mediterraneo de Estudios Avanzados, Esporles 07190, Spain [3] Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia. ; 1] Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, USA [2] Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. ; Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, USA. ; 1] GeoZentrum Nordbayern, Palaoumwelt, Universitat Erlangen-Nurnberg, Loewenichstrasse 28, 91054 Erlangen, Germany [2] Museum fur Naturkunde, Invalidenstr asse 43, 10115 Berlin, Germany. ; Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, Canada. ; School of Biological Sciences, Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Integrative Biology, University of Texas, Austin, Texas 78712, USA [2] Marine Institute, Drake Circus, University of Plymouth, Devon PL4 8AA, UK. ; Farallon Institute for Advanced Ecosystem Research, 101 H Street, Suite Q, Petaluma, California 94952, USA. ; Climate Adaptation Flagship, CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia. ; Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, Ecosciences Precinct, GPO Box 2583, Brisbane, Queensland 4001, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24509712" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Australia ; Biodiversity ; *Climate ; *Climate Change ; *Ecosystem ; *Geographic Mapping ; *Geography ; Models, Theoretical ; Population Dynamics ; Seawater ; Temperature ; Time Factors ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-08-17
    Description: The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human-ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human-ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36-86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halpern, Benjamin S -- Longo, Catherine -- Hardy, Darren -- McLeod, Karen L -- Samhouri, Jameal F -- Katona, Steven K -- Kleisner, Kristin -- Lester, Sarah E -- O'Leary, Jennifer -- Ranelletti, Marla -- Rosenberg, Andrew A -- Scarborough, Courtney -- Selig, Elizabeth R -- Best, Benjamin D -- Brumbaugh, Daniel R -- Chapin, F Stuart -- Crowder, Larry B -- Daly, Kendra L -- Doney, Scott C -- Elfes, Cristiane -- Fogarty, Michael J -- Gaines, Steven D -- Jacobsen, Kelsey I -- Karrer, Leah Bunce -- Leslie, Heather M -- Neeley, Elizabeth -- Pauly, Daniel -- Polasky, Stephen -- Ris, Bud -- St Martin, Kevin -- Stone, Gregory S -- Sumaila, U Rashid -- Zeller, Dirk -- England -- Nature. 2012 Aug 30;488(7413):615-20. doi: 10.1038/nature11397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Ecological Analysis and Synthesis, 735 State St Suite 300, Santa Barbara, California 93101, USA. halpern@nceas.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22895186" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*statistics & numerical data ; *Ecosystem ; Environmental Monitoring/*methods ; Environmental Policy ; Fisheries ; Geography ; Human Activities/standards/statistics & numerical data ; *Internationality ; Marine Biology/*methods ; Oceanography/*methods ; Oceans and Seas ; Recreation ; *Seawater ; Water Pollution/analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-02-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rochman, Chelsea M -- Browne, Mark Anthony -- Halpern, Benjamin S -- Hentschel, Brian T -- Hoh, Eunha -- Karapanagioti, Hrissi K -- Rios-Mendoza, Lorena M -- Takada, Hideshige -- Teh, Swee -- Thompson, Richard C -- England -- Nature. 2013 Feb 14;494(7436):169-71. doi: 10.1038/494169a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Veterinary Medicine, University of California, Davis, USA. cmrochman@ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23407523" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Environmental Monitoring ; *Environmental Policy/economics ; Hazardous Waste/*adverse effects/analysis/classification/*prevention & control ; Humans ; Plastics/*adverse effects/analysis/chemistry/*classification ; Recycling/trends ; Refuse Disposal/economics/*legislation & jurisprudence/*statistics & numerical ; data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halpern, Benjamin S -- England -- Nature. 2014 Feb 13;506(7487):167-8. doi: 10.1038/nature13053. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California 93106, USA, and in the Faculty of Natural Sciences, Imperial College London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499821" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*statistics & numerical data ; Ecology/*statistics & numerical data ; *Ecosystem ; Fisheries/*statistics & numerical data ; Fishes/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-11-04
    Description: Human-dominated marine ecosystems are experiencing accelerating loss of populations and species, with largely unknown consequences. We analyzed local experiments, long-term regional time series, and global fisheries data to test how biodiversity loss affects marine ecosystem services across temporal and spatial scales. Overall, rates of resource collapse increased and recovery potential, stability, and water quality decreased exponentially with declining diversity. Restoration of biodiversity, in contrast, increased productivity fourfold and decreased variability by 21%, on average. We conclude that marine biodiversity loss is increasingly impairing the ocean's capacity to provide food, maintain water quality, and recover from perturbations. Yet available data suggest that at this point, these trends are still reversible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worm, Boris -- Barbier, Edward B -- Beaumont, Nicola -- Duffy, J Emmett -- Folke, Carl -- Halpern, Benjamin S -- Jackson, Jeremy B C -- Lotze, Heike K -- Micheli, Fiorenza -- Palumbi, Stephen R -- Sala, Enric -- Selkoe, Kimberley A -- Stachowicz, John J -- Watson, Reg -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):787-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1. bworm@dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources ; Databases, Factual ; *Ecosystem ; Eukaryota ; *Fisheries ; *Fishes ; Forecasting ; Invertebrates ; Oceans and Seas ; Plants ; Population Dynamics ; Seafood ; Seawater ; Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-05-27
    Description: Global-scale changes in anthropogenic nutrient input into marine ecosystems via terrestrial runoff, coupled with widespread predator removal via fishing, have created greater urgency for understanding the relative role of top-down versus bottom-up control of food web dynamics. Yet recent large-scale studies of community regulation in marine ecosystems have shown dramatically different results that leave this issue largely unresolved. We combined a multiyear, large-scale data set of species abundances for 46 species in kelp forests from the California Channel Islands with satellite-derived primary production and found that top-down control explains 7- to 10-fold more of the variance in abundance of bottom and mid-trophic levels than does bottom-up control. This top-down control was propagated via a variety of species-level direct and indirect responses to predator abundance. Management of top-down influences such as fishing may be more important in coastal marine ecosystems, particularly in kelp forest systems, than is commonly thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halpern, Benjamin S -- Cottenie, Karl -- Broitman, Bernardo R -- New York, N.Y. -- Science. 2006 May 26;312(5777):1230-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Ecological Analysis and Synthesis, 735 State Street, Santa Barbara, CA 93101, USA. halpern@nceas.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16728644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; California ; Conservation of Natural Resources ; *Ecosystem ; Environment ; Eukaryota ; Fishes ; Food Chain ; Geography ; Invertebrates ; *Kelp ; Pacific Ocean ; Population Density ; Predatory Behavior ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...