ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-30
    Description: The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Neil P -- Bale, Jacob B -- Sheffler, William -- McNamara, Dan E -- Gonen, Shane -- Gonen, Tamir -- Yeates, Todd O -- Baker, David -- T32 GM067555/GM/NIGMS NIH HHS/ -- T32GM067555/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):103-8. doi: 10.1038/nature13404. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2]. ; UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; 1] UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA [2] UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, USA [3] UCLA Molecular Biology Institute, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870237" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; Crystallography, X-Ray ; Drug Design ; Models, Molecular ; Nanostructures/*chemistry/ultrastructure ; Protein Subunits/chemistry ; Proteins/*chemistry/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-03
    Description: The conserved Ndc80 complex is an essential microtubule-binding component of the kinetochore. Recent findings suggest that the Ndc80 complex influences microtubule dynamics at kinetochores in vivo. However, it was unclear if the Ndc80 complex mediates these effects directly, or by affecting other factors localized at the kinetochore. Using a reconstituted...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-20
    Description: We describe a general approach to designing two-dimensional (2D) protein arrays mediated by noncovalent protein-protein interfaces. Protein homo-oligomers are placed into one of the seventeen 2D layer groups, the degrees of freedom of the lattice are sampled to identify configurations with shape-complementary interacting surfaces, and the interaction energy is minimized using sequence design calculations. We used the method to design proteins that self-assemble into layer groups P 3 2 1, P 4 2(1) 2, and P 6. Projection maps of micrometer-scale arrays, assembled both in vitro and in vivo, are consistent with the design models and display the target layer group symmetry. Such programmable 2D protein lattices should enable new approaches to structure determination, sensing, and nanomaterial engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonen, Shane -- DiMaio, Frank -- Gonen, Tamir -- Baker, David -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1365-8. doi: 10.1126/science.aaa9897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. ; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. gonent@janelia.hhmi.org dabaker@uw.edu. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA. gonent@janelia.hhmi.org dabaker@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089516" target="_blank"〉PubMed〈/a〉
    Keywords: *Computer-Aided Design ; Cryoelectron Microscopy ; *Protein Array Analysis ; Protein Engineering/*methods ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-21
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-18
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...