ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-16
    Description: Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO 2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect the effect of diffuse light on CO 2 uptake to sky conditions. We mechanistically link and quantify effects of cloud optical thickness ( τ c ) to surface light and plant canopy CO 2 uptake by comparing satellite retrievals of τ c to ground-based measurements of diffuse and total photosynthetically active radiation (PAR; 400–700 nm) and gross primary production (GPP) in forests and croplands. Overall, total PAR decreased with τ c , while diffuse PAR increased until an average τ c of 6.8 and decreased with larger τ c . When diffuse PAR increased with τ c , 7-24% of variation in diffuse PAR was explained by τ c . Light use efficiency (LUE) in this range increased 0.001-0.002 per unit increase in τ c . Although τ c explained 10-20% of the variation in LUE, there was no significant relationship between τ c and GPP ( p  〉 0.05) when diffuse PAR increased. We conclude that diffuse PAR increases under a narrow range of optically thin clouds and the dominant effect of clouds is to reduce total plant-available PAR. This decrease in total PAR offsets the increase in LUE under increasing diffuse PAR, providing evidence that changes within this range of low cloud optical thickness are unlikely to alter the magnitude of terrestrial CO 2 fluxes.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-01-04
    Description: The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C(-1), offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Piao, Shilong -- Ciais, Philippe -- Friedlingstein, Pierre -- Peylin, Philippe -- Reichstein, Markus -- Luyssaert, Sebastiaan -- Margolis, Hank -- Fang, Jingyun -- Barr, Alan -- Chen, Anping -- Grelle, Achim -- Hollinger, David Y -- Laurila, Tuomas -- Lindroth, Anders -- Richardson, Andrew D -- Vesala, Timo -- England -- Nature. 2008 Jan 3;451(7174):49-52. doi: 10.1038/nature06444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉LSCE, UMR CEA-CNRS, Batiment 709, CE, L'Orme des Merisiers, F-91191 Gif-sur-Yvette, France. slpiao@lsce.ipsl.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172494" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Biomass ; Carbon Dioxide/analysis/*metabolism ; Cell Respiration ; *Ecosystem ; Fossil Fuels ; Geography ; Greenhouse Effect ; History, 20th Century ; History, 21st Century ; Oceans and Seas ; Photosynthesis ; Plant Transpiration ; Plants/metabolism ; Rain ; *Seasons ; Soil/analysis ; *Temperature ; Water/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-19
    Description: Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 +/- 0.44 K (mean +/- one standard deviation) northwards of 45 degrees N and 0.21 +/- 0.53 K southwards. Below 35 degrees N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Xuhui -- Goulden, Michael L -- Hollinger, David Y -- Barr, Alan -- Black, T Andrew -- Bohrer, Gil -- Bracho, Rosvel -- Drake, Bert -- Goldstein, Allen -- Gu, Lianhong -- Katul, Gabriel -- Kolb, Thomas -- Law, Beverly E -- Margolis, Hank -- Meyers, Tilden -- Monson, Russell -- Munger, William -- Oren, Ram -- Paw U, Kyaw Tha -- Richardson, Andrew D -- Schmid, Hans Peter -- Staebler, Ralf -- Wofsy, Steven -- Zhao, Lei -- England -- Nature. 2011 Nov 16;479(7373):384-7. doi: 10.1038/nature10588.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA. xuhui.lee@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22094699" target="_blank"〉PubMed〈/a〉
    Keywords: Air/analysis ; *Altitude ; Atmosphere/analysis ; Biophysical Processes ; Canada ; Climate ; Conservation of Natural Resources ; Forestry ; Seasons ; *Temperature ; Trees/*growth & development ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-12
    Description: Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata-small pores on the leaf surface that regulate gas exchange-to maintain a near-constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keenan, Trevor F -- Hollinger, David Y -- Bohrer, Gil -- Dragoni, Danilo -- Munger, J William -- Schmid, Hans Peter -- Richardson, Andrew D -- England -- Nature. 2013 Jul 18;499(7458):324-7. doi: 10.1038/nature12291. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. tkeenan@oeb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842499" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Carbon Dioxide/*analysis ; *Ecosystem ; Plant Leaves/chemistry ; Trees/*chemistry ; Water/*analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keenan, Trevor F -- Hollinger, David Y -- Bohrer, Gil -- Dragoni, Danilo -- Munger, J William -- Schmid, Hans Peter -- Richardson, Andrew D -- England -- Nature. 2014 Mar 13;507(7491):E2-3. doi: 10.1038/nature13114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia. ; USDA Forest Service, Northern Research Station, Durham, New Hamphire 03824, USA. ; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, USA. ; Department of Geography, Indiana University, Bloomington, Indiana 47405, USA. ; School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. ; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen 82467, Germany. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24622207" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/*analysis ; *Ecosystem ; Trees/*chemistry ; Water/*analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Carbon dioxide, water vapour, and sensible heat fluxes were measured above and within a spruce dominated forest near the southern ecotone of the boreal forest in Maine, USA. Summer, mid-day carbon dioxide uptake was higher than at other boreal coniferous forests, averaging about – 13 μmol CO2 m–2 s–1. Nocturnal summer ecosystem respiration averaged ≈ 6 μmol CO2 m–2 s–1 at a mean temperature of ≈ 15 °C. Significant ecosystem C uptake began with the thawing of the soil in early April and was abruptly reduced by the first autumn frost in early October. Half-hourly forest CO2 exchange was regulated mostly by the incident photosynthetically active photon flux density (PPFD). In addition to the threshold effects of freezing temperatures, there were seasonal effects on the inferred photosynthetic parameters of the forest canopy. The functional response of this forest to environmental variation was similar to that of other spruce forests. In contrast to reports of carbon loss from northerly boreal forest sites, in 1996 the Howland forest was a strong carbon sink, storing about 2.1 t C ha–1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The δ13C values of atmospheric carbon dioxide (CO2) can be used to partition global patterns of CO2 source/sink relationships among terrestrial and oceanic ecosystems using the inversion technique. This approach is very sensitive to estimates of photosynthetic 13C discrimination by terrestrial vegetation (ΔA), and depends on δ13C values of respired CO2 fluxes (δ13CR). Here we show that by combining two independent data streams – the stable isotope ratios of atmospheric CO2 and eddy-covariance CO2 flux measurements – canopy scale estimates of ΔA can be successfully derived in terrestrial ecosystems. We also present the first weekly dataset of seasonal variations in δ13CR from dominant forest ecosystems in the United States between 2001 and 2003. Our observations indicate considerable summer-time variation in the weekly value of δ13CR within coniferous forests (4.0‰ and 5.4‰ at Wind River Canopy Crane Research Facility and Howland Forest, respectively, between May and September). The monthly mean values of δ13CR showed a smaller range (2–3‰), which appeared to significantly correlate with soil water availability. Values of δ13CR were less variable during the growing season at the deciduous forest (Harvard Forest). We suggest that the negative correlation between δ13CR and soil moisture content observed in the two coniferous forests should represent a general ecosystem response to the changes in the distribution of water resources because of climate change. Shifts in δ13CR and ΔA could be of sufficient magnitude globally to impact partitioning calculations of CO2 sinks between oceanic and terrestrial compartments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Seven years of carbon dioxide flux measurements indicate that a ∼90-year-old spruce dominated forest in Maine, USA, has been sequestering 174±46 g C m−2 yr−1 (mean±1 standard deviation, nocturnal friction velocity (u*) threshold 〉0.25 m s−1). An analysis of monthly flux anomalies showed that above-average spring and fall temperatures were significantly correlated with greater monthly C uptake while above-average summer temperatures were correlated with decreased net C uptake. Summer months with significantly drier or wetter soils than normal were also characterized by lower rates of C uptake. Years with above-average C storage were thus typically characterized by warmer than average spring and fall temperatures and adequate summer soil moisture.Environmental and forest–atmosphere flux data recorded from a second tower surrounded by similar forest, but sufficiently distant that flux source regions (‘footprints’), did not overlap significantly showed almost identical temperature and solar radiation conditions, but some differences in energy partitioning could be seen. Half-hourly as well as integrated (annual) C exchange values recorded at the separate towers were very similar, with average annual net C uptake differing between the two towers by 〈6%. Interannual variability in net C exchange was found to be much greater than between tower variability. Simultaneous measurements from two towers were used to estimate flux data uncertainty from a single tower. Carbon-flux model parameters derived independently from each flux tower data set were not significantly different, demonstrating that flux towers can provide a robust method for establishing C exchange model parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1435-0629
    Keywords: Key words: biosphere metabolism; carbon cycle; carbon fluxes; global change; terrestrial ecosystems.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Understanding terrestrial carbon metabolism is critical because terrestrial ecosystems play a major role in the global carbon cycle. Furthermore, humans have severely disrupted the carbon cycle in ways that will alter the climate system and directly affect terrestrial metabolism. Changes in terrestrial metabolism may well be as important an indicator of global change as the changing temperature signal. Improving our understanding of the carbon cycle at various spatial and temporal scales will require the integration of multiple, complementary and independent methods that are used by different research communities. Tools such as air sampling networks, inverse numerical methods, and satellite data (top-down approaches) allow us to study the strength and location of the global- and continental-scale carbon sources and sinks. Bottom-up studies provide estimates of carbon fluxes at finer spatial scales and examine the mechanisms that control fluxes at the ecosystem, landscape, and regional scales. Bottom-up approaches include comparative and process studies (for example, ecosystem manipulative experiments) that provide the necessary mechanistic information to develop and validate terrestrial biospheric models. An iteration and reiteration of top-down and bottom-up approaches will be necessary to help constrain measurements at various scales. We propose a major international effort to coordinate and lead research programs of global scope of the carbon cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 371 (1994), S. 60-62 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Plant water use (transpiration, E) is regulated by the available energy (Rn) and air saturation deficit (D) above the canopy (Fig. \a}. The relative importance of these two factors in regulating plant or ecosystem water use is theoretically summarized in a decoupling coefficient, Q, (OQ 1) derived ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...