ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-15
    Description: Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-29
    Description: The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study the interaction between climate variability and soil organic carbon. Equivalent ECHAM5/JSBACH simulations were conducted using both soil carbon models, with freely varying atmospheric CO2 for the last 30 years (1977–2006). In this study, anthropogenic CO2 emissions and ocean carbon cycle were excluded. The new model formulation produced soil carbon stock estimates that were much closer to measured values. It also captured better the seasonal cycle of the direct CO2 exchange measurements at the three grassland sites considered (RMS error reduced by 12%), while for the five forest sites also analyzed, the results were ambiguous and the RMS error was 12% larger for Yasso07 than for CBALANCE. As a response to climatic changes, Yasso07 showed greater release of soil carbon to the atmosphere than the original model formulation during the years 1977–2006. This emphasizes the need for better understanding the processes affecting soil carbon stocks and their turnover rates to predict the climatic feedbacks.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-02
    Description: The maximum light use efficiency (LUE = gross primary production (GPP)/absorbed photosynthetic photon flux density (aPPFD)) of plant canopies has been reported to vary spatially and some of this variation has previously been attributed to plant species differences. The canopy nitrogen concentration [N] can potentially explain some of this spatial variation. However, the current paradigm of the N-effect on photosynthesis is largely based on the relationship between photosynthetic capacity ( A max ) and [N], i.e., the effects of [N] on photosynthesis rates appear under high PPFD. A maximum LUE–[N] relationship, if it existed, would influence photosynthesis in the whole range of PPFD. We estimated maximum LUE for 14 eddy-covariance forest sites, examined its [N] dependency and investigated how the [N]–maximum LUE dependency could be incorporated into a GPP model. In the model, maximum LUE corresponds to LUE under optimal environmental conditions before light saturation takes place (the slope of GPP vs. PPFD under low PPFD). Maximum LUE was higher in deciduous/mixed than in coniferous sites, and correlated significantly with canopy mean [N]. Correlations between maximum LUE and canopy [N] existed regardless of daily PPFD, although we expected the correlation to disappear under low PPFD when LUE was also highest. Despite these correlations, including [N] in the model of GPP only marginally decreased the root mean squared error. Our results suggest that maximum LUE correlates linearly with canopy [N], but that a larger body of data is required before we can include this relationship into a GPP model. Gross primary production will therefore positively correlate with [N] already at low PPFD, and not only at high PPFD as is suggested by the prevailing paradigm of leaf-level A max –[N] relationships. This finding has consequences for modelling GPP driven by temporal changes or spatial variation in canopy [N].
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-01-04
    Description: The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C(-1), offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Piao, Shilong -- Ciais, Philippe -- Friedlingstein, Pierre -- Peylin, Philippe -- Reichstein, Markus -- Luyssaert, Sebastiaan -- Margolis, Hank -- Fang, Jingyun -- Barr, Alan -- Chen, Anping -- Grelle, Achim -- Hollinger, David Y -- Laurila, Tuomas -- Lindroth, Anders -- Richardson, Andrew D -- Vesala, Timo -- England -- Nature. 2008 Jan 3;451(7174):49-52. doi: 10.1038/nature06444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉LSCE, UMR CEA-CNRS, Batiment 709, CE, L'Orme des Merisiers, F-91191 Gif-sur-Yvette, France. slpiao@lsce.ipsl.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172494" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Biomass ; Carbon Dioxide/analysis/*metabolism ; Cell Respiration ; *Ecosystem ; Fossil Fuels ; Geography ; Greenhouse Effect ; History, 20th Century ; History, 21st Century ; Oceans and Seas ; Photosynthesis ; Plant Transpiration ; Plants/metabolism ; Rain ; *Seasons ; Soil/analysis ; *Temperature ; Water/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-28
    Description: Accurate predictions of net ecosystem productivity (NEP c ) of forest ecosystems are essential for climate change decisions and requirements in the context of national forest growth and greenhouse gas inventories. However, drivers and underlying mechanisms determining NEP c (e.g. climate, nutrients) are not entirely understood yet, particularly when considering the influence of past periods. Here we explored the explanatory power of the compensation day (cDOY) —defined as the day of year when winter net carbon losses are compensated by spring assimilation— for NEP c in 26 forests in Europe, North America, and Australia, using different NEP c integration methods. We found cDOY to be a particularly powerful predictor for NEP c of temperate evergreen needle-leaf forests (R 2  = 0.58) and deciduous broadleaf forests (R 2  = 0.68). In general, the latest cDOY correlated with the lowest NEP c . The explanatory power of cDOY depended on the integration method for NEP c , forest type, and whether the site had a distinct winter net respiratory carbon loss or not. The integration methods starting in autumn led to better predictions of NEP c from cDOY then the classical calendar method starting at January 1. Limited explanatory power of cDOY for NEP c was found for warmer sites with no distinct winter respiratory loss period. Our findings highlight the importance of the influence of winter processes and the delayed responses of previous seasons’ climatic conditions on current year's NEP c . Such carry-over effects may contain information from climatic conditions, carbon storage levels and hydraulic traits of several years back in time.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-01
    Description: Leaf area index (LAI) is an important parameter in natural ecosystems, representing the seasonal development of vegetation and photosynthetic potential. However, direct measurement techniques require labor-intensive field campaigns that are usually limited in time, while remote sensing approaches often do not yield reliable estimates. Here, we propose that the bulk LAI of sedges (LAI s ) can be estimated alternatively from a micrometeorological parameter, the aerodynamic roughness length for momentum ( z 0 ). z 0 can be readily calculated from high-response turbulence and other meteorological data, typically measured continuously and routinely available at ecosystem research sites. The regressions of LAI versus z 0 were obtained using the data from two Finnish natural sites representative of boreal fen and bog ecosystems. LAI s was found to be well-correlated with z 0 and sedge canopy height. Superior method performance was demonstrated in the fen ecosystem where the sedges make a bigger contribution to overall surface roughness than in bogs.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-06
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The drag coefficient, Stanton number and Dalton number are of particular importance for estimating the surface turbulent fluxes of momentum, heat and water vapor using bulk parameterization. Although these bulk transfer coefficients have been extensively studied over the past several decades in marine and large‐lake environments, there are no studies analyzing their variability for smaller lakes. Here, we evaluated these coefficients through directly measured surface fluxes using the eddy‐covariance technique over more than 30 lakes and reservoirs of different sizes and depths. Our analysis showed that the transfer coefficients (adjusted to neutral atmospheric stability) were generally within the range reported in previous studies for large lakes and oceans. All transfer coefficients exhibit a substantial increase at low wind speeds (〈3 m s〈sup〉−1〈/sup〉), which was found to be associated with the presence of gusts and capillary waves (except Dalton number). Stanton number was found to be on average a factor of 1.3 higher than Dalton number, likely affecting the Bowen ratio method. At high wind speeds, the transfer coefficients remained relatively constant at values of 1.6·10〈sup〉−3〈/sup〉, 1.4·10〈sup〉−3〈/sup〉, 1.0·10〈sup〉−3〈/sup〉, respectively. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended to consider variations in the drag coefficient and Stanton number due to wind gustiness and capillary wave roughness while Dalton number could be considered as constant at all wind speeds.〈/p〉
    Description: Plain Language Summary: In our study, we investigate the bulk transfer coefficients, which are of particular importance for estimation the turbulent fluxes of momentum, heat and water vapor in the atmospheric surface layer, above lakes and reservoirs. The incorrect representation of the surface fluxes above inland waters can potentially lead to errors in weather and climate prediction models. For the first time we made this synthesis using a compiled data set consisting of existing eddy‐covariance flux measurements over 23 lakes and 8 reservoirs. Our results revealed substantial increase of the transfer coefficients at low wind speeds, which is often not taken into account in models. The observed increase in the drag coefficient (momentum transfer coefficient) and Stanton number (heat transfer coefficient) could be associated with the presence of wind gusts and capillary waves. In flux parameterizations at lake surface, it is recommended to consider them for accurate flux representation. Although the bulk transfer coefficients were relatively constant at high wind speeds, we found that the Stanton number systematically exceeds the Dalton number (water vapor transfer coefficient), despite the fact they are typically considered to be equal. This difference may affect the Bowen ratio method and result in biased estimates of lake evaporation.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Bulk transfer coefficients exhibit a substantial increase at low wind speed〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The increase is explained by wind gustiness and capillary wave roughness〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉At higher wind speed, drag coefficient and Stanton number decrease with lake surface area〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: SHESF, Sao Francisco Hydroelectric Company
    Description: DOE Ameriflux Network Management Project
    Description: NSF North Temperate Lakes LTER
    Description: U.S. Department of Energy Office of Science
    Description: Japan Society for the Promotion of Science KAKENHI
    Description: Swedish Research Council
    Description: ÚNKP‐21‐3 New National Excellence Program of the Ministry for Innovation and Technology, Hungary
    Description: Russian Science Foundation http://dx.doi.org/10.13039/501100006769
    Description: Helmholtz Young Investigators Grant
    Description: Helmholtz Association of German Research Centers
    Description: Austrian Academy of Sciences
    Description: Autonome Provinz Bozen‐Südtirol
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Russian Ministry of Science and Higher Education
    Description: National Research, Development and Innovation Office
    Description: ICOS‐Finland, University of Helsinki
    Description: https://doi.org/10.5281/zenodo.6597828
    Keywords: ddc:551.5 ; bulk transfer coefficients ; eddy‐covariance ; lakes ; reservoirs
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica A: Statistical Mechanics and its Applications 192 (1993), S. 107-123 
    ISSN: 0378-4371
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Observations of ecosystem net carbon dioxide exchange obtained with eddy covariance techniques over a 4-year period at spruce, beech and pine forest sites were used to derive time series data for gross primary production (GPP) and ecosystem respiration (Reco). A detailed canopy gas exchange model (PROXELNEE) was inverted at half-hour time step to estimate seasonal changes in carboxylation capacity and light utilization efficiency of the forest canopies. The parameter estimates were then used further to develop a time-dependent modifier of physiological activity in the daily time step gas exchange model of Chen et al. (1999), previously used for regional simulations in BOREAS. The daily model was run under a variety of assumptions and the results emphasize the need in future analyses: (1) to focus on time-dependent seasonal changes in canopy physiology as well as in leaf area index, (2) to compare time courses of physiological change in different habitats in terms of recognizable cardinal points in the seasonal course, and (3) to develop methods for utilizing information on seasonal changes in physiology in regional and continental carbon budget simulations. The results suggest that the daily model with appropriate seasonal adjustments for physiological process regulation should be an efficient tool for use in conjunction with remote sensing for regional evaluation of global change scenarios.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...