ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,947)
  • Animals  (3,947)
  • Chemical Engineering
  • 2010-2014  (3,947)
  • Nature. 498(7455): 408.  (2)
  • 328
Collection
  • Articles  (3,947)
Years
Year
  • 1
    Publication Date: 2014-06-17
    Description: Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bessede, Alban -- Gargaro, Marco -- Pallotta, Maria T -- Matino, Davide -- Servillo, Giuseppe -- Brunacci, Cinzia -- Bicciato, Silvio -- Mazza, Emilia M C -- Macchiarulo, Antonio -- Vacca, Carmine -- Iannitti, Rossana -- Tissi, Luciana -- Volpi, Claudia -- Belladonna, Maria L -- Orabona, Ciriana -- Bianchi, Roberta -- Lanz, Tobias V -- Platten, Michael -- Della Fazia, Maria A -- Piobbico, Danilo -- Zelante, Teresa -- Funakoshi, Hiroshi -- Nakamura, Toshikazu -- Gilot, David -- Denison, Michael S -- Guillemin, Gilles J -- DuHadaway, James B -- Prendergast, George C -- Metz, Richard -- Geffard, Michel -- Boon, Louis -- Pirro, Matteo -- Iorio, Alfonso -- Veyret, Bernard -- Romani, Luigina -- Grohmann, Ursula -- Fallarino, Francesca -- Puccetti, Paolo -- P30 CA056036/CA/NCI NIH HHS/ -- R01 CA109542/CA/NCI NIH HHS/ -- R01 ES007685/ES/NIEHS NIH HHS/ -- R01ES007685/ES/NIEHS NIH HHS/ -- England -- Nature. 2014 Jul 10;511(7508):184-90. doi: 10.1038/nature13323.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy [2] IMS Laboratory, University of Bordeaux, 33607 Pessac, France [3]. ; 1] Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy [2]. ; Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy. ; Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy. ; Department of Chemistry and Technology of Drugs, University of Perugia, 06123 Perugia, Italy. ; 1] Experimental Neuroimmunology Unit, German Cancer Research Center, 69120 Heidelberg, Germany [2] Department of Neurooncology, University Hospital, 69120 Heidelberg, Germany. ; Center for Advanced Research and Education, Asahikawa Medical University, 078-8510 Asahikawa, Japan. ; Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 565-0871 Osaka, Japan. ; CNRS UMR6290, Institut de Genetique et Developpement de Rennes, Universite de Rennes 1, 35043 Rennes, France. ; Department of Environmental Toxicology, University of California, Davis, 95616 California, USA. ; Australian School of Advanced Medicine (ASAM), Macquarie University, 2109 New South Wales, Australia. ; Lankenau Institute for Medical Research, Wynnewood, 19096 Pennsylvania, USA. ; New Link Genetics Corporation, Ames, 50010 Iowa, USA. ; IMS Laboratory, University of Bordeaux, 33607 Pessac, France. ; Bioceros, 3584 Utrecht, The Netherlands. ; Department of Medicine, University of Perugia, 06132 Perugia, Italy. ; Department of Clinical Epidemiology & Biostatistics, McMaster University, Ontario L8S 4K1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24930766" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Infections/immunology/metabolism ; Disease Resistance/drug effects/*genetics/*immunology ; Endotoxemia/genetics/immunology/metabolism ; Enzyme Activation/drug effects ; Gene Expression Regulation/drug effects ; Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism ; Inflammation/enzymology/genetics/metabolism ; Kynurenine/metabolism ; Lipopolysaccharides/pharmacology ; Mice ; Phosphorylation ; Receptors, Aryl Hydrocarbon/genetics/*metabolism ; Signal Transduction ; Tryptophan Oxygenase/metabolism ; src-Family Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-15
    Description: The balance between stem cell self-renewal and differentiation is controlled by intrinsic factors and niche signals. In the Drosophila melanogaster ovary, some intrinsic factors promote germline stem cell (GSC) self-renewal, whereas others stimulate differentiation. However, it remains poorly understood how the balance between self-renewal and differentiation is controlled. Here we use D. melanogaster ovarian GSCs to demonstrate that the differentiation factor Bam controls the functional switch of the COP9 complex from self-renewal to differentiation via protein competition. The COP9 complex is composed of eight Csn subunits, Csn1-8, and removes Nedd8 modifications from target proteins. Genetic results indicated that the COP9 complex is required intrinsically for GSC self-renewal, whereas other Csn proteins, with the exception of Csn4, were also required for GSC progeny differentiation. Bam-mediated Csn4 sequestration from the COP9 complex via protein competition inactivated the self-renewing function of COP9 and allowed other Csn proteins to promote GSC differentiation. Therefore, this study reveals a protein-competition-based mechanism for controlling the balance between stem cell self-renewal and differentiation. Because numerous self-renewal factors are ubiquitously expressed throughout the stem cell lineage in various systems, protein competition may function as an important mechanism for controlling the self-renewal-to-differentiation switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Lei -- Wang, Su -- Lu, Tinglin -- Weng, Changjiang -- Song, Xiaoqing -- Park, Joseph K -- Sun, Jin -- Yang, Zhi-Hao -- Yu, Junjing -- Tang, Hong -- McKearin, Dennis M -- Chamovitz, Daniel A -- Ni, Jianquan -- Xie, Ting -- GM64428/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):233-6. doi: 10.1038/nature13562.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China [3]. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Department of Cell Biology and Anatomy, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA [3]. ; 1] Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [2]. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA. ; 1] Department of Molecular Biology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA. ; Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China. ; Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China. ; Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Department of Cell Biology and Anatomy, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Binding, Competitive ; *Cell Differentiation ; Cell Proliferation ; DNA Helicases/metabolism ; Drosophila Proteins/metabolism ; Drosophila melanogaster/*cytology/*metabolism ; Female ; Intracellular Signaling Peptides and Proteins/metabolism ; Male ; Multiprotein Complexes/*chemistry/*metabolism ; Ovary/cytology ; Peptide Hydrolases/*chemistry/*metabolism ; Protein Binding ; Stem Cells/*cytology/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-30
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469351/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469351/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geisbert, Thomas W -- UC7 AI070083/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):41-3. doi: 10.1038/nature13746. Epub 2014 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Texas Medical Branch at Galveston, Galveston National Laboratory, Galveston, Texas 77550-0610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25171470" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/*therapeutic use ; Antibodies, Viral/*therapeutic use ; Female ; Hemorrhagic Fever, Ebola/*drug therapy ; *Immunization, Passive ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-02-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cressey, Daniel -- England -- Nature. 2014 Feb 27;506(7489):419-20. doi: 10.1038/506419a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572404" target="_blank"〉PubMed〈/a〉
    Keywords: Aminobenzoates/administration & dosage/*poisoning ; Anesthesia/ethics/methods ; Anesthetics/administration & dosage/*poisoning ; *Animal Welfare/ethics ; Animals ; Animals, Laboratory/*physiology ; Avoidance Learning/drug effects ; Escape Reaction/drug effects ; Euthanasia, Animal/*ethics/*methods ; Zebrafish/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-22
    Description: During cap-dependent eukaryotic translation initiation, ribosomes scan messenger RNA from the 5' end to the first AUG start codon with favourable sequence context. For many mRNAs this AUG belongs to a short upstream open reading frame (uORF), and translation of the main downstream ORF requires re-initiation, an incompletely understood process. Re-initiation is thought to involve the same factors as standard initiation. It is unknown whether any factors specifically affect translation re-initiation without affecting standard cap-dependent translation. Here we uncover the non-canonical initiation factors density regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT-1; also called MCTS1 in humans) as the first selective regulators of eukaryotic re-initiation. mRNAs containing upstream ORFs with strong Kozak sequences selectively require DENR-MCT-1 for their proper translation, yielding a novel class of mRNAs that can be co-regulated and that is enriched for regulatory proteins such as oncogenic kinases. Collectively, our data reveal that cells have a previously unappreciated translational control system with a key role in supporting proliferation and tissue growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schleich, Sibylle -- Strassburger, Katrin -- Janiesch, Philipp Christoph -- Koledachkina, Tatyana -- Miller, Katharine K -- Haneke, Katharina -- Cheng, Yong-Sheng -- Kuchler, Katrin -- Stoecklin, Georg -- Duncan, Kent E -- Teleman, Aurelio A -- 260602/European Research Council/International -- England -- Nature. 2014 Aug 14;512(7513):208-12. doi: 10.1038/nature13401. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany. ; 1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2]. ; 1] Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany [2]. ; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany. ; 1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Zentrum fur Molekulare Biologie der Universitat Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany. ; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Cells, Cultured ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/cytology/genetics/growth & development ; Eukaryotic Initiation Factors/genetics/*metabolism ; Gene Expression Regulation/*genetics ; Open Reading Frames ; Protein Biosynthesis/*genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 Oct 9;514(7521):140. doi: 10.1038/514140a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25297398" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Animals ; Arctic Regions ; Female ; *Global Warming ; Male ; Pacific Ocean ; Walruses/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-30
    Description: Targeted genome editing by artificial nucleases has brought the goal of site-specific transgene integration and gene correction within the reach of gene therapy. However, its application to long-term repopulating haematopoietic stem cells (HSCs) has remained elusive. Here we show that poor permissiveness to gene transfer and limited proficiency of the homology-directed DNA repair pathway constrain gene targeting in human HSCs. By tailoring delivery platforms and culture conditions we overcame these barriers and provide stringent evidence of targeted integration in human HSCs by long-term multilineage repopulation of transplanted mice. We demonstrate the therapeutic potential of our strategy by targeting a corrective complementary DNA into the IL2RG gene of HSCs from healthy donors and a subject with X-linked severe combined immunodeficiency (SCID-X1). Gene-edited HSCs sustained normal haematopoiesis and gave rise to functional lymphoid cells that possess a selective growth advantage over those carrying disruptive IL2RG mutations. These results open up new avenues for treating SCID-X1 and other diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082311/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082311/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Genovese, Pietro -- Schiroli, Giulia -- Escobar, Giulia -- Di Tomaso, Tiziano -- Firrito, Claudia -- Calabria, Andrea -- Moi, Davide -- Mazzieri, Roberta -- Bonini, Chiara -- Holmes, Michael C -- Gregory, Philip D -- van der Burg, Mirjam -- Gentner, Bernhard -- Montini, Eugenio -- Lombardo, Angelo -- Naldini, Luigi -- 249845/European Research Council/International -- TGT11D02/Telethon/Italy -- England -- Nature. 2014 Jun 12;510(7504):235-40. doi: 10.1038/nature13420. Epub 2014 May 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy. ; 1] TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy [2] Vita Salute San Raffaele University, 20132 Milan, Italy. ; 1] TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy [2] The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia. ; Experimental Hematology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Sangamo BioSciences Inc., Richmond, California 94804, USA. ; Department of Immunology Erasmus MC, University Medical Center, 3015 Rotterdam, The Netherlands. ; 1] TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy [2] Vita Salute San Raffaele University, 20132 Milan, Italy [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870228" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/metabolism ; DNA, Complementary/genetics ; Endonucleases/metabolism ; Fetal Blood/cytology/metabolism/transplantation ; Gene Targeting/*methods ; Genome, Human/*genetics ; Hematopoiesis/genetics ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/*metabolism ; Humans ; Interleukin Receptor Common gamma Subunit/genetics ; Male ; Mice ; Mutation/genetics ; Targeted Gene Repair/*methods ; X-Linked Combined Immunodeficiency Diseases/*genetics/therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-04
    Description: The TRIM37 (also known as MUL) gene is located in the 17q23 chromosomal region, which is amplified in up to approximately 40% of breast cancers. TRIM37 contains a RING finger domain, a hallmark of E3 ubiquitin ligases, but its protein substrate(s) is unknown. Here we report that TRIM37 mono-ubiquitinates histone H2A, a chromatin modification associated with transcriptional repression. We find that in human breast cancer cell lines containing amplified 17q23, TRIM37 is upregulated and, reciprocally, the major H2A ubiquitin ligase RNF2 (also known as RING1B) is downregulated. Genome-wide chromatin immunoprecipitation (ChIP)-chip experiments in 17q23-amplified breast cancer cells identified many genes, including multiple tumour suppressors, whose promoters were bound by TRIM37 and enriched for ubiquitinated H2A. However, unlike RNF2, which is a subunit of polycomb repressive complex 1 (PRC1), we find that TRIM37 associates with polycomb repressive complex 2 (PRC2). TRIM37, PRC2 and PRC1 are co-bound to specific target genes, resulting in their transcriptional silencing. RNA-interference-mediated knockdown of TRIM37 results in loss of ubiquitinated H2A, dissociation of PRC1 and PRC2 from target promoters, and transcriptional reactivation of silenced genes. Knockdown of TRIM37 in human breast cancer cells containing amplified 17q23 substantially decreases tumour growth in mouse xenografts. Conversely, ectopic expression of TRIM37 renders non-transformed cells tumorigenic. Collectively, our results reveal TRIM37 as an oncogenic H2A ubiquitin ligase that is overexpressed in a subset of breast cancers and promotes transformation by facilitating silencing of tumour suppressors and other genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269325/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269325/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhatnagar, Sanchita -- Gazin, Claude -- Chamberlain, Lynn -- Ou, Jianhong -- Zhu, Xiaochun -- Tushir, Jogender S -- Virbasius, Ching-Man -- Lin, Ling -- Zhu, Lihua J -- Wajapeyee, Narendra -- Green, Michael R -- R01 GM033977/GM/NIGMS NIH HHS/ -- R01GM033977/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):116-20. doi: 10.1038/nature13955. Epub 2014 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; CEA/DSV/iRCM/LEFG, Genopole G2, and Universite Paris Diderot, 91057 Evry, France. ; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, USA. ; 1] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470042" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*enzymology/*genetics ; Female ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Gene Silencing ; Heterografts ; Histones/metabolism ; Humans ; MCF-7 Cells ; Mice ; NIH 3T3 Cells ; Nuclear Proteins/*genetics/*metabolism ; Oncogene Proteins/*genetics/metabolism ; Polycomb Repressive Complex 1/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-10-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 Oct 2;514(7520):6. doi: 10.1038/514006a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25279880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biotechnology/economics/*trends ; *Brain/physiology ; Callithrix ; Humans ; National Institutes of Health (U.S.)/organization & administration ; Neurosciences/economics/*trends ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-16
    Description: A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Hugo J -- Bronner, Marianne E -- Krumlauf, Robb -- R01 DE017911/DE/NIDCR NIH HHS/ -- R01 NS086907/NS/NINDS NIH HHS/ -- R01DE017911/DE/NIDCR NIH HHS/ -- R01NS086907/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):490-3. doi: 10.1038/nature13723. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; 1] Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA [2] Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Body Patterning/genetics ; Conserved Sequence/*genetics ; Enhancer Elements, Genetic/genetics ; *Evolution, Molecular ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks/*genetics ; Genes, Homeobox/*genetics ; Lampreys/embryology/genetics ; Molecular Sequence Data ; Phylogeny ; Rhombencephalon/*embryology/*metabolism ; Vertebrates/*embryology/genetics ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crooks, Richard M -- England -- Nature. 2014 Jan 9;505(7482):165-6. doi: 10.1038/505165a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402276" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aptamers, Nucleotide ; Biosensing Techniques/*methods ; Humans ; Male ; Microfluidics/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-09-12
    Description: The phylogeny of Allotheria, including Multituberculata and Haramiyida, remains unsolved and has generated contentious views on the origin and earliest evolution of mammals. Here we report three new species of a new clade, Euharamiyida, based on six well-preserved fossils from the Jurassic period of China. These fossils reveal many craniodental and postcranial features of euharamiyidans and clarify several ambiguous structures that are currently the topic of debate. Our phylogenetic analyses recognize Euharamiyida as the sister group of Multituberculata, and place Allotheria within the Mammalia. The phylogeny suggests that allotherian mammals evolved from a Late Triassic (approximately 208 million years ago) Haramiyavia-like ancestor and diversified into euharamiyidans and multituberculates with a cosmopolitan distribution, implying homologous acquisition of many craniodental and postcranial features in the two groups. Our findings also favour a Late Triassic origin of mammals in Laurasia and two independent detachment events of the middle ear bones during mammalian evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bi, Shundong -- Wang, Yuanqing -- Guan, Jian -- Sheng, Xia -- Meng, Jin -- England -- Nature. 2014 Oct 30;514(7524):579-84. doi: 10.1038/nature13718. Epub 2014 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China [2] Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA. ; Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. ; Beijing Natural History Museum, 126 Tianqiao Street, Dongcheng District, Beijing 100050, China. ; Paleontological Museum of Liaoning, Shenyang Normal University, Shenyang, Liaoning 110034, China. ; Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209669" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; China ; *Fossils ; Mammals/*anatomy & histology/*classification ; Mandible/anatomy & histology ; *Phylogeny ; Skeleton ; Skull/anatomy & histology ; Tooth/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-08-28
    Description: Sensory regions of the brain integrate environmental cues with copies of motor-related signals important for imminent and ongoing movements. In mammals, signals propagating from the motor cortex to the auditory cortex are thought to have a critical role in normal hearing and behaviour, yet the synaptic and circuit mechanisms by which these motor-related signals influence auditory cortical activity remain poorly understood. Using in vivo intracellular recordings in behaving mice, we find that excitatory neurons in the auditory cortex are suppressed before and during movement, owing in part to increased activity of local parvalbumin-positive interneurons. Electrophysiology and optogenetic gain- and loss-of-function experiments reveal that motor-related changes in auditory cortical dynamics are driven by a subset of neurons in the secondary motor cortex that innervate the auditory cortex and are active during movement. These findings provide a synaptic and circuit basis for the motor-related corollary discharge hypothesized to facilitate hearing and auditory-guided behaviours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, David M -- Nelson, Anders -- Mooney, Richard -- NS079929/NS/NINDS NIH HHS/ -- R01 DC013826/DC/NIDCD NIH HHS/ -- R21 NS079929/NS/NINDS NIH HHS/ -- T32 GM008441/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 11;513(7517):189-94. doi: 10.1038/nature13724. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA [2]. ; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Auditory Cortex/*physiology ; Electrical Synapses/*physiology ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Motor Activity/*physiology ; Optogenetics ; Sensory Receptor Cells/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-04-18
    Description: Fertilization occurs when sperm and egg recognize each other and fuse to form a new, genetically distinct organism. The molecular basis of sperm-egg recognition is unknown, but is likely to require interactions between receptor proteins displayed on their surface. Izumo1 is an essential sperm cell-surface protein, but its receptor on the egg has not been described. Here we identify folate receptor 4 (Folr4) as the receptor for Izumo1 on the mouse egg, and propose to rename it Juno. We show that the Izumo1-Juno interaction is conserved within several mammalian species, including humans. Female mice lacking Juno are infertile and Juno-deficient eggs do not fuse with normal sperm. Rapid shedding of Juno from the oolemma after fertilization suggests a mechanism for the membrane block to polyspermy, ensuring eggs normally fuse with just a single sperm. Our discovery of an essential receptor pair at the nexus of conception provides opportunities for the rational development of new fertility treatments and contraceptives.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bianchi, Enrica -- Doe, Brendan -- Goulding, David -- Wright, Gavin J -- 098051/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Apr 24;508(7497):483-7. doi: 10.1038/nature13203. Epub 2014 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK. ; Mouse Production Team, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK. ; Electron and Advanced Light Microscopy Suite, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739963" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conserved Sequence ; Evolution, Molecular ; Female ; Fertility/genetics ; Fertilization/genetics/*physiology ; Genes, Essential ; Glycosylphosphatidylinositols/metabolism ; Humans ; Immunoglobulins/*metabolism ; Infertility, Female/genetics ; Male ; Mammals ; Membrane Proteins/*metabolism ; Mice ; Oocytes/cytology/metabolism ; Ovum/cytology/*metabolism ; Parthenogenesis ; Receptors, Cell Surface/deficiency/genetics/*metabolism ; Sperm Injections, Intracytoplasmic ; Spermatozoa/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-03-29
    Description: Huntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine gamma-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington's disease tissues, which may mediate Huntington's disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington's disease tissues and in intact mouse models of Huntington's disease, suggesting therapeutic potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349202/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349202/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paul, Bindu D -- Sbodio, Juan I -- Xu, Risheng -- Vandiver, M Scott -- Cha, Jiyoung Y -- Snowman, Adele M -- Snyder, Solomon H -- MH18501/MH/NIMH NIH HHS/ -- R01 MH018501/MH/NIMH NIH HHS/ -- T32 GM007309/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 May 1;509(7498):96-100. doi: 10.1038/nature13136. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; 1] The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; 1] The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670645" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/enzymology ; Corpus Striatum/drug effects/enzymology/metabolism/pathology ; Cystathionine gamma-Lyase/*deficiency/genetics ; Cysteine/administration & dosage/biosynthesis/pharmacology/therapeutic use ; Dietary Supplements ; Disease Models, Animal ; Drinking Water/chemistry ; Gene Deletion ; Gene Expression Regulation, Enzymologic/genetics ; Huntington Disease/drug therapy/*enzymology/genetics/*pathology ; Male ; Mice ; Mutant Proteins/genetics/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; Neuroprotective Agents/administration & ; dosage/metabolism/pharmacology/therapeutic use ; Oxidative Stress/drug effects ; Sp1 Transcription Factor/antagonists & inhibitors/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-12-04
    Description: Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 A. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended alpha-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the alpha-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zalk, Ran -- Clarke, Oliver B -- des Georges, Amedee -- Grassucci, Robert A -- Reiken, Steven -- Mancia, Filippo -- Hendrickson, Wayne A -- Frank, Joachim -- Marks, Andrew R -- P01 HL081172/HL/NHLBI NIH HHS/ -- R01 AR060037/AR/NIAMS NIH HHS/ -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 HL061503/HL/NHLBI NIH HHS/ -- R01 HL083418/HL/NHLBI NIH HHS/ -- R01AR060037/AR/NIAMS NIH HHS/ -- R01GM29169/GM/NIGMS NIH HHS/ -- R01HL061503/HL/NHLBI NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 1;517(7532):44-9. doi: 10.1038/nature13950. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2] Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA. ; 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2] Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA [3] Department of Biological Sciences, Columbia University, New York, New York 10027, USA. ; 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2] Department of Medicine, Columbia University, New York, New York 10032, USA [3] Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470061" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/deficiency/metabolism/pharmacology ; Cell Membrane/metabolism ; Cryoelectron Microscopy ; Cytosol/metabolism ; Ion Channel Gating/drug effects ; Muscle, Skeletal/chemistry ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/metabolism/*ultrastructure ; Tacrolimus Binding Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-12-04
    Description: T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORgammat, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORgammat in response to TGF-beta signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rutz, Sascha -- Kayagaki, Nobuhiko -- Phung, Qui T -- Eidenschenk, Celine -- Noubade, Rajkumar -- Wang, Xiaoting -- Lesch, Justin -- Lu, Rongze -- Newton, Kim -- Huang, Oscar W -- Cochran, Andrea G -- Vasser, Mark -- Fauber, Benjamin P -- DeVoss, Jason -- Webster, Joshua -- Diehl, Lauri -- Modrusan, Zora -- Kirkpatrick, Donald S -- Lill, Jennie R -- Ouyang, Wenjun -- Dixit, Vishva M -- England -- Nature. 2015 Feb 19;518(7539):417-21. doi: 10.1038/nature13979. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470037" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Stability ; Female ; Inflammation/genetics/pathology ; Interleukin-17/*biosynthesis ; Intestine, Small/metabolism/pathology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; *Protein Biosynthesis ; Signal Transduction ; Substrate Specificity ; Th17 Cells/*metabolism ; Transforming Growth Factor beta/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitin-Specific Proteases/biosynthesis/deficiency/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-11-20
    Description: Emerging evidence suggests that the ribosome has a regulatory function in directing how the genome is translated in time and space. However, how this regulation is encoded in the messenger RNA sequence remains largely unknown. Here we uncover unique RNA regulons embedded in homeobox (Hox) 5' untranslated regions (UTRs) that confer ribosome-mediated control of gene expression. These structured RNA elements, resembling viral internal ribosome entry sites (IRESs), are found in subsets of Hox mRNAs. They facilitate ribosome recruitment and require the ribosomal protein RPL38 for their activity. Despite numerous layers of Hox gene regulation, these IRES elements are essential for converting Hox transcripts into proteins to pattern the mammalian body plan. This specialized mode of IRES-dependent translation is enabled by an additional regulatory element that we term the translation inhibitory element (TIE), which blocks cap-dependent translation of transcripts. Together, these data uncover a new paradigm for ribosome-mediated control of gene expression and organismal development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353651/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353651/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Shifeng -- Tian, Siqi -- Fujii, Kotaro -- Kladwang, Wipapat -- Das, Rhiju -- Barna, Maria -- 7DP2OD00850902/OD/NIH HHS/ -- DP2 OD008509/OD/NIH HHS/ -- R01 GM102519/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 1;517(7532):33-8. doi: 10.1038/nature14010. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Developmental Biology, Stanford University, Stanford, California 94305, USA [2] Department of Genetics, Stanford University, Stanford, California 94305, USA [3] Tetrad Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA. ; Department of Biochemistry, Stanford University, Stanford, California 94305, USA. ; 1] Department of Developmental Biology, Stanford University, Stanford, California 94305, USA [2] Department of Genetics, Stanford University, Stanford, California 94305, USA. ; 1] Department of Biochemistry, Stanford University, Stanford, California 94305, USA [2] Department of Physics, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409156" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/*genetics ; Animals ; Bone and Bones/embryology/metabolism ; Cell Line ; Conserved Sequence ; Evolution, Molecular ; Gene Expression Regulation/*genetics ; Genes, Homeobox/*genetics ; Mice ; Molecular Sequence Data ; Protein Biosynthesis/genetics ; RNA Caps/metabolism ; Regulatory Sequences, Ribonucleic Acid/*genetics ; Ribosomal Proteins/metabolism ; Ribosomes/chemistry/*metabolism ; Substrate Specificity ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-12-04
    Description: The manufacture of geometric engravings is generally interpreted as indicative of modern cognition and behaviour. Key questions in the debate on the origin of such behaviour are whether this innovation is restricted to Homo sapiens, and whether it has a uniquely African origin. Here we report on a fossil freshwater shell assemblage from the Hauptknochenschicht ('main bone layer') of Trinil (Java, Indonesia), the type locality of Homo erectus discovered by Eugene Dubois in 1891 (refs 2 and 3). In the Dubois collection (in the Naturalis museum, Leiden, The Netherlands) we found evidence for freshwater shellfish consumption by hominins, one unambiguous shell tool, and a shell with a geometric engraving. We dated sediment contained in the shells with (40)Ar/(39)Ar and luminescence dating methods, obtaining a maximum age of 0.54 +/- 0.10 million years and a minimum age of 0.43 +/- 0.05 million years. This implies that the Trinil Hauptknochenschicht is younger than previously estimated. Together, our data indicate that the engraving was made by Homo erectus, and that it is considerably older than the oldest geometric engravings described so far. Although it is at present not possible to assess the function or meaning of the engraved shell, this discovery suggests that engraving abstract patterns was in the realm of Asian Homo erectus cognition and neuromotor control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joordens, Josephine C A -- d'Errico, Francesco -- Wesselingh, Frank P -- Munro, Stephen -- de Vos, John -- Wallinga, Jakob -- Ankjaergaard, Christina -- Reimann, Tony -- Wijbrans, Jan R -- Kuiper, Klaudia F -- Mucher, Herman J -- Coqueugniot, Helene -- Prie, Vincent -- Joosten, Ineke -- van Os, Bertil -- Schulp, Anne S -- Panuel, Michel -- van der Haas, Victoria -- Lustenhouwer, Wim -- Reijmer, John J G -- Roebroeks, Wil -- England -- Nature. 2015 Feb 12;518(7538):228-31. doi: 10.1038/nature13962. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Faculty of Archaeology, Leiden University, PO Box 9515, 2300RA, Leiden, The Netherlands [2] Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands. ; 1] Universite de Bordeaux, CNRS UMR 5199, Allee Geoffroy Saint-Hilaire, 33615 Pessac, France [2] Institute of Archaeology, History, Cultural Studies and Religion, University of Bergen, Oysteinsgate 3PO Box 7805, Bergen, Norway. ; Naturalis Biodiversity Center, Darwinweg 2, PO Box 9517, 2300RA, Leiden, The Netherlands. ; 1] School of Archaeology and Anthropology, Australian National University, Australian Capital Territory, 0200 Canberra, Australia [2] National Museum of Australia, Australian Capital Territory 2601, Canberra, Australia. ; 1] Wageningen University, Soil Geography and Landscape Group &Netherlands Centre for Luminescence Dating, PO Box 47, 6700AA, Wageningen, The Netherlands [2] Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629JB, Delft, The Netherlands. ; Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands. ; 1] Faculty of Archaeology, Leiden University, PO Box 9515, 2300RA, Leiden, The Netherlands [2] Prinses Beatrixsingel 21, 6301VK, Valkenburg, The Netherlands. ; Universite de Bordeaux, CNRS UMR 5199, Allee Geoffroy Saint-Hilaire, 33615 Pessac, France. ; 1] Museum National d'Histoire Naturelle, UMR 7205, Institut de Systematique, Evolution, Biodiversite, CP51, 55 Rue Buffon, 75005 Paris, France [2] Biotope Recherche et Developpement, 22 Boulevard Marechal Foch, 34140 Meze, France. ; Cultural Heritage Agency of the Netherlands, PO Box 1600, 3800BP, Amersfoort, The Netherlands. ; 1] Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands [2] Naturalis Biodiversity Center, Darwinweg 2, PO Box 9517, 2300RA, Leiden, The Netherlands [3] Natuurhistorisch Museum Maastricht, De Bosquetplein 7, 6211KJ, Maastricht, The Netherlands. ; 1] Faculte de Medecine, Universite d'Aix-Marseille, EFS, CNRS UMR 7268, Boulevard Pierre Dramard, 13344 Marseille, France [2] Department of Medical Imaging Hopital Nord, Assistance Publique - Hopitaux de Marseille, Chemin de Bourrellys, 13915 Marseille, France. ; Faculty of Archaeology, Leiden University, PO Box 9515, 2300RA, Leiden, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470048" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Shells ; Animals ; Engraving and Engravings/*history ; Fossils ; History, Ancient ; *Hominidae ; Indonesia ; Mollusca ; *Tool Use Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-24
    Description: The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jihye -- Ishiguro, Kei-ichiro -- Nambu, Aya -- Akiyoshi, Bungo -- Yokobayashi, Shihori -- Kagami, Ayano -- Ishiguro, Tadashi -- Pendas, Alberto M -- Takeda, Naoki -- Sakakibara, Yogo -- Kitajima, Tomoya S -- Tanno, Yuji -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan. ; Instituto de Biologia Molecular y Celular del Cancer (CSIC-USAL), 37007 Salamanca, Spain. ; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan. ; Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/deficiency/genetics/*metabolism ; *Conserved Sequence ; Female ; Humans ; Infertility/genetics/metabolism ; Kinetochores/*metabolism ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces pombe Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-10-23
    Description: The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7alpha-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buffie, Charlie G -- Bucci, Vanni -- Stein, Richard R -- McKenney, Peter T -- Ling, Lilan -- Gobourne, Asia -- No, Daniel -- Liu, Hui -- Kinnebrew, Melissa -- Viale, Agnes -- Littmann, Eric -- van den Brink, Marcel R M -- Jenq, Robert R -- Taur, Ying -- Sander, Chris -- Cross, Justin R -- Toussaint, Nora C -- Xavier, Joao B -- Pamer, Eric G -- AI95706/AI/NIAID NIH HHS/ -- DP2 OD008440/OD/NIH HHS/ -- DP2OD008440/OD/NIH HHS/ -- K23 AI095398/AI/NIAID NIH HHS/ -- P01 CA023766/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI042135/AI/NIAID NIH HHS/ -- R01 AI095706/AI/NIAID NIH HHS/ -- R01 AI42135/AI/NIAID NIH HHS/ -- T32 CA009149/CA/NCI NIH HHS/ -- T32 GM007739/GM/NIGMS NIH HHS/ -- T32GM07739/GM/NIGMS NIH HHS/ -- U54 CA148967/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):205-8. doi: 10.1038/nature13828. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA [2] Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA. ; Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan-Kettering Institute, New York, New York 10065, USA. ; Genomics Core Laboratory, Sloan-Kettering Institute, New York, New York 10065, USA. ; 1] Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; 1] Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [3] Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337874" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Bile Acids and Salts/*metabolism ; Biological Evolution ; Clostridium/metabolism ; Clostridium difficile/drug effects/*physiology ; Colitis/metabolism/microbiology/prevention & control/therapy ; Disease Susceptibility/*microbiology ; Feces/microbiology ; Female ; Humans ; Intestines/drug effects/*metabolism/*microbiology ; Metagenome/genetics ; Mice ; Mice, Inbred C57BL ; Microbiota/drug effects/genetics/*physiology ; Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-11-20
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358788/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358788/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dinman, Jonathan D -- R01 HL119439/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Jan 1;517(7532):24-5. doi: 10.1038/nature14069. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409148" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/*genetics ; Animals ; Gene Expression Regulation/*genetics ; Genes, Homeobox/*genetics ; Regulatory Sequences, Ribonucleic Acid/*genetics ; Ribosomes/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-12-24
    Description: Broadly, tissue regeneration is achieved in two ways: by proliferation of common differentiated cells and/or by deployment of specialized stem/progenitor cells. Which of these pathways applies is both organ- and injury-specific. Current models in the lung posit that epithelial repair can be attributed to cells expressing mature lineage markers. By contrast, here we define the regenerative role of previously uncharacterized, rare lineage-negative epithelial stem/progenitor (LNEP) cells present within normal distal lung. Quiescent LNEPs activate a DeltaNp63 (a p63 splice variant) and cytokeratin 5 remodelling program after influenza or bleomycin injury in mice. Activated cells proliferate and migrate widely to occupy heavily injured areas depleted of mature lineages, at which point they differentiate towards mature epithelium. Lineage tracing revealed scant contribution of pre-existing mature epithelial cells in such repair, whereas orthotopic transplantation of LNEPs, isolated by a definitive surface profile identified through single-cell sequencing, directly demonstrated the proliferative capacity and multipotency of this population. LNEPs require Notch signalling to activate the DeltaNp63 and cytokeratin 5 program, and subsequent Notch blockade promotes an alveolar cell fate. Persistent Notch signalling after injury led to parenchymal 'micro-honeycombing' (alveolar cysts), indicative of failed regeneration. Lungs from patients with fibrosis show analogous honeycomb cysts with evidence of hyperactive Notch signalling. Our findings indicate that distinct stem/progenitor cell pools repopulate injured tissue depending on the extent of the injury, and the outcomes of regeneration or fibrosis may depend in part on the dynamics of LNEP Notch signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vaughan, Andrew E -- Brumwell, Alexis N -- Xi, Ying -- Gotts, Jeffrey E -- Brownfield, Doug G -- Treutlein, Barbara -- Tan, Kevin -- Tan, Victor -- Liu, Feng Chun -- Looney, Mark R -- Matthay, Michael A -- Rock, Jason R -- Chapman, Harold A -- F32 HL117600-01/HL/NHLBI NIH HHS/ -- R01 HL44712/HL/NHLBI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- U01 HL111054/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 29;517(7536):621-5. doi: 10.1038/nature14112. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, California 94143, USA. ; Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305, USA. ; Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Anatomy, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bleomycin ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Cysts/metabolism/pathology ; Epithelial Cells/*cytology/metabolism/*pathology ; Female ; Humans ; Keratin-5/metabolism ; Lung/*cytology/*pathology/physiology ; Lung Injury/chemically induced/*pathology/virology ; Male ; Mice ; Orthomyxoviridae Infections/pathology/virology ; Phosphoproteins/genetics/metabolism ; *Re-Epithelialization ; Receptors, Notch/metabolism ; Signal Transduction ; Stem Cell Transplantation ; Stem Cells/*cytology/metabolism ; Trans-Activators/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-12-24
    Description: Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deciphering Developmental Disorders Study -- 098395/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- CZD/16/6/Chief Scientist Office/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Department of Health/United Kingdom -- England -- Nature. 2015 Mar 12;519(7542):223-8. doi: 10.1038/nature14135. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533962" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Carrier Proteins/genetics ; Child ; Child, Preschool ; Chromosomal Proteins, Non-Histone/genetics ; Chromosome Aberrations ; DEAD-box RNA Helicases/genetics ; DNA-Binding Proteins/genetics ; Developmental Disabilities/*diagnosis/*genetics ; Dynamin I/genetics ; Exome/genetics ; Female ; Gene Expression Regulation, Developmental ; Genes, Dominant/genetics ; Genome, Human/genetics ; Great Britain ; Guanine Nucleotide Exchange Factors/genetics ; Homeodomain Proteins/genetics ; Humans ; Infant ; Infant, Newborn ; Male ; Mutation, Missense/genetics ; Nerve Tissue Proteins/genetics ; Nuclear Proteins/genetics ; Parents ; Phosphoproteins/genetics ; Polycomb Repressive Complex 1/genetics ; Protein Phosphatase 2/genetics ; Protein-Serine-Threonine Kinases/genetics ; Rare Diseases/genetics ; Transcription Factors/genetics ; Transposases/genetics ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-11-20
    Description: TP53 is commonly altered in human cancer, and Tp53 reactivation suppresses tumours in vivo in mice (TP53 and Tp53 are also known as p53). This strategy has proven difficult to implement therapeutically, and here we examine an alternative strategy by manipulating the p53 family members, Tp63 and Tp73 (also known as p63 and p73, respectively). The acidic transactivation-domain-bearing (TA) isoforms of p63 and p73 structurally and functionally resemble p53, whereas the DeltaN isoforms (lacking the acidic transactivation domain) of p63 and p73 are frequently overexpressed in cancer and act primarily in a dominant-negative fashion against p53, TAp63 and TAp73 to inhibit their tumour-suppressive functions. The p53 family interacts extensively in cellular processes that promote tumour suppression, such as apoptosis and autophagy, thus a clear understanding of this interplay in cancer is needed to treat tumours with alterations in the p53 pathway. Here we show that deletion of the DeltaN isoforms of p63 or p73 leads to metabolic reprogramming and regression of p53-deficient tumours through upregulation of IAPP, the gene that encodes amylin, a 37-amino-acid peptide co-secreted with insulin by the beta cells of the pancreas. We found that IAPP is causally involved in this tumour regression and that amylin functions through the calcitonin receptor (CalcR) and receptor activity modifying protein 3 (RAMP3) to inhibit glycolysis and induce reactive oxygen species and apoptosis. Pramlintide, a synthetic analogue of amylin that is currently used to treat type 1 and type 2 diabetes, caused rapid tumour regression in p53-deficient thymic lymphomas, representing a novel strategy to target p53-deficient cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatanarayan, Avinashnarayan -- Raulji, Payal -- Norton, William -- Chakravarti, Deepavali -- Coarfa, Cristian -- Su, Xiaohua -- Sandur, Santosh K -- Ramirez, Marc S -- Lee, Jaehuk -- Kingsley, Charles V -- Sananikone, Eliot F -- Rajapakshe, Kimal -- Naff, Katherine -- Parker-Thornburg, Jan -- Bankson, James A -- Tsai, Kenneth Y -- Gunaratne, Preethi H -- Flores, Elsa R -- CA-16672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50CA136411/CA/NCI NIH HHS/ -- R01 CA134796/CA/NCI NIH HHS/ -- R01 CA160394/CA/NCI NIH HHS/ -- R01CA134796/CA/NCI NIH HHS/ -- R01CA160394/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jan 29;517(7536):626-30. doi: 10.1038/nature13910. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [3] Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [4] Metastasis Research Center, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; Department of Veterinary Medicine and Surgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [3] Metastasis Research Center, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [3] Metastasis Research Center, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [4] Radiation Biology &Health Sciences Division, Bhabha Atomic Research Center, Mumbai 400085, India. ; Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; Department of Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; 1] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Dermatology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/pathology ; DNA-Binding Proteins/genetics/metabolism ; Female ; Genes, Tumor Suppressor ; Humans ; Islet Amyloid Polypeptide/*metabolism/pharmacology/secretion/therapeutic use ; Lymphoma/drug therapy/genetics/*metabolism/*pathology ; Male ; Mice ; Nuclear Proteins/genetics/metabolism ; Phosphoproteins/genetics/metabolism ; Receptor Activity-Modifying Protein 3/metabolism ; Receptors, Calcitonin/metabolism ; Thymus Gland/metabolism/pathology ; Trans-Activators/genetics/metabolism ; Tumor Suppressor Protein p53/*deficiency/genetics ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-11-11
    Description: Lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis involve the progressive and inexorable destruction of oxygen exchange surfaces and airways, and have emerged as a leading cause of death worldwide. Mitigating therapies, aside from impractical organ transplantation, remain limited and the possibility of regenerative medicine has lacked empirical support. However, it is clinically known that patients who survive sudden, massive loss of lung tissue from necrotizing pneumonia or acute respiratory distress syndrome often recover full pulmonary function within six months. Correspondingly, we recently demonstrated lung regeneration in mice following H1N1 influenza virus infection, and linked distal airway stem cells expressing Trp63 (p63) and keratin 5, called DASC(p63/Krt5), to this process. Here we show that pre-existing, intrinsically committed DASC(p63/Krt5) undergo a proliferative expansion in response to influenza-induced lung damage, and assemble into nascent alveoli at sites of interstitial lung inflammation. We also show that the selective ablation of DASC(p63/Krt5) in vivo prevents this regeneration, leading to pre-fibrotic lesions and deficient oxygen exchange. Finally, we demonstrate that single DASC(p63/Krt5)-derived pedigrees differentiate to type I and type II pneumocytes as well as bronchiolar secretory cells following transplantation to infected lung and also minimize the structural consequences of endogenous stem cell loss on this process. The ability to propagate these cells in culture while maintaining their intrinsic lineage commitment suggests their potential in stem cell-based therapies for acute and chronic lung diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuo, Wei -- Zhang, Ting -- Wu, Daniel Zheng'An -- Guan, Shou Ping -- Liew, Audrey-Ann -- Yamamoto, Yusuke -- Wang, Xia -- Lim, Siew Joo -- Vincent, Matthew -- Lessard, Mark -- Crum, Christopher P -- Xian, Wa -- McKeon, Frank -- England -- Nature. 2015 Jan 29;517(7536):616-20. doi: 10.1038/nature13903. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Institute of Singapore, A-STAR, 138672 Singapore. ; The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA. ; Advanced Cell Technologies, Marlborough, Massachusetts 01752, USA. ; The Jackson Laboratory, Bar Harbor, Maine 04609, USA. ; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Genome Institute of Singapore, A-STAR, 138672 Singapore [2] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [3] Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [4] Department of Medicine, National University Health System, 119228 Singapore [5] Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. ; 1] Genome Institute of Singapore, A-STAR, 138672 Singapore [2] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [3] Department of Medicine, National University Health System, 119228 Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchioles/cytology/virology ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Dogs ; Humans ; Influenza A Virus, H1N1 Subtype/pathogenicity ; Keratin-5/*metabolism ; Lung/*cytology/pathology/*physiology/virology ; Madin Darby Canine Kidney Cells ; Mice ; Orthomyxoviridae Infections/metabolism/pathology/virology ; Oxygen/metabolism ; Pedigree ; Phosphoproteins/*metabolism ; Pneumonia/metabolism/pathology/virology ; Pulmonary Alveoli/cytology/pathology/virology ; Re-Epithelialization ; *Regeneration ; Stem Cell Transplantation ; Stem Cells/*cytology/*metabolism ; Trans-Activators/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-11-11
    Description: DNA methylation is an important epigenetic modification that is essential for various developmental processes through regulating gene expression, genomic imprinting, and epigenetic inheritance. Mammalian genomic DNA methylation is established during embryogenesis by de novo DNA methyltransferases, DNMT3A and DNMT3B, and the methylation patterns vary with developmental stages and cell types. DNA methyltransferase 3-like protein (DNMT3L) is a catalytically inactive paralogue of DNMT3 enzymes, which stimulates the enzymatic activity of Dnmt3a. Recent studies have established a connection between DNA methylation and histone modifications, and revealed a histone-guided mechanism for the establishment of DNA methylation. The ATRX-DNMT3-DNMT3L (ADD) domain of Dnmt3a recognizes unmethylated histone H3 (H3K4me0). The histone H3 tail stimulates the enzymatic activity of Dnmt3a in vitro, whereas the molecular mechanism remains elusive. Here we show that DNMT3A exists in an autoinhibitory form and that the histone H3 tail stimulates its activity in a DNMT3L-independent manner. We determine the crystal structures of DNMT3A-DNMT3L (autoinhibitory form) and DNMT3A-DNMT3L-H3 (active form) complexes at 3.82 and 2.90 A resolution, respectively. Structural and biochemical analyses indicate that the ADD domain of DNMT3A interacts with and inhibits enzymatic activity of the catalytic domain (CD) through blocking its DNA-binding affinity. Histone H3 (but not H3K4me3) disrupts ADD-CD interaction, induces a large movement of the ADD domain, and thus releases the autoinhibition of DNMT3A. The finding adds another layer of regulation of DNA methylation to ensure that the enzyme is mainly activated at proper targeting loci when unmethylated H3K4 is present, and strongly supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome. Our study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Xue -- Wang, Ling -- Li, Jie -- Ding, Zhanyu -- Xiao, Jianxiong -- Yin, Xiaotong -- He, Shuang -- Shi, Pan -- Dong, Liping -- Li, Guohong -- Tian, Changlin -- Wang, Jiawei -- Cong, Yao -- Xu, Yanhui -- England -- Nature. 2015 Jan 29;517(7536):640-4. doi: 10.1038/nature13899. Epub 2014 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China [2] State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; 1] High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China [2] National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China [3] School of Life Sciences, University of Science and Technology of China, Hefei 230026, China. ; 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China [2] University of Chinese Academy of Science, Beijing 100049, China. ; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China. ; State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*antagonists & ; inhibitors/*chemistry/*metabolism ; DNA Methylation ; Enzyme Activation ; Histones/*chemistry/*metabolism ; Humans ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-12-04
    Description: Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss, familial thoracic aortic aneurysms and dissections, and multiple variations of myopathies. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin. Although crystal structures for monomeric actin (G-actin) are available, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 A in complex with tropomyosin at a resolution of 6.5 A, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify map density corresponding to ADP and Mg(2+) and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin-tropomyosin with its position in our previously determined F-actin-tropomyosin-myosin structure reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted development of drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477711/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477711/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von der Ecken, Julian -- Muller, Mirco -- Lehman, William -- Manstein, Dietmar J -- Penczek, Pawel A -- Raunser, Stefan -- R01 60635/PHS HHS/ -- R01 GM060635/GM/NIGMS NIH HHS/ -- R37HL036153/HL/NHLBI NIH HHS/ -- U54 094598/PHS HHS/ -- U54 GM094598/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 5;519(7541):114-7. doi: 10.1038/nature14033. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. ; Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany. ; Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA. ; Department of Biochemistry and Molecular Biology, The University of Texas, Houston Medical School, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470062" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/genetics/*metabolism ; Adenosine Diphosphate/metabolism ; Animals ; Cryoelectron Microscopy ; Magnesium/metabolism ; Mice ; Models, Molecular ; Mutation/genetics ; Protein Conformation ; Rabbits ; Static Electricity ; Tropomyosin/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-11-05
    Description: Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheffield, Mark E J -- Dombeck, Daniel A -- 1R01MH101297/MH/NIMH NIH HHS/ -- R01 MH101297/MH/NIMH NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):200-4. doi: 10.1038/nature13871. Epub 2014 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363782" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/metabolism ; Calcium/*metabolism ; *Calcium Signaling ; Dendrites/*metabolism ; Hippocampus/*cytology/*physiology ; Male ; Memory, Long-Term/physiology ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity/physiology ; Space Perception/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-12-04
    Description: Cytotoxic chemotherapy is effective in debulking tumour masses initially; however, in some patients tumours become progressively unresponsive after multiple treatment cycles. Previous studies have demonstrated that cancer stem cells (CSCs) are selectively enriched after chemotherapy through enhanced survival. Here we reveal a new mechanism by which bladder CSCs actively contribute to therapeutic resistance via an unexpected proliferative response to repopulate residual tumours between chemotherapy cycles, using human bladder cancer xenografts. Further analyses demonstrate the recruitment of a quiescent label-retaining pool of CSCs into cell division in response to chemotherapy-induced damages, similar to mobilization of normal stem cells during wound repair. While chemotherapy effectively induces apoptosis, associated prostaglandin E2 (PGE2) release paradoxically promotes neighbouring CSC repopulation. This repopulation can be abrogated by a PGE2-neutralizing antibody and celecoxib drug-mediated blockade of PGE2 signalling. In vivo administration of the cyclooxygenase-2 (COX2) inhibitor celecoxib effectively abolishes a PGE2- and COX2-mediated wound response gene signature, and attenuates progressive manifestation of chemoresistance in xenograft tumours, including primary xenografts derived from a patient who was resistant to chemotherapy. Collectively, these findings uncover a new underlying mechanism that models the progressive development of clinical chemoresistance, and implicate an adjunctive therapy to enhance chemotherapeutic response of bladder urothelial carcinomas by abrogating early tumour repopulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465385/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465385/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurtova, Antonina V -- Xiao, Jing -- Mo, Qianxing -- Pazhanisamy, Senthil -- Krasnow, Ross -- Lerner, Seth P -- Chen, Fengju -- Roh, Terrence T -- Lay, Erica -- Ho, Philip Levy -- Chan, Keith Syson -- AI036211/AI/NIAID NIH HHS/ -- CA125123/CA/NCI NIH HHS/ -- CA129640/CA/NCI NIH HHS/ -- CA175397/CA/NCI NIH HHS/ -- R00 CA129640/CA/NCI NIH HHS/ -- R01 CA175397/CA/NCI NIH HHS/ -- RR024574/RR/NCRR NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):209-13. doi: 10.1038/nature14034. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular &Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Department of Molecular &Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Dan L Duncan Cancer Center and Center for Cell Gene &Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Scott Department of Urology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Department of Molecular &Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Summer Medical and Research Training (SMART) Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Department of Molecular &Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [3] Dan L Duncan Cancer Center and Center for Cell Gene &Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [4] Scott Department of Urology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology/pharmacology ; Apoptosis/drug effects ; Celecoxib ; Cell Proliferation/drug effects ; Cyclooxygenase 2/metabolism ; Cyclooxygenase 2 Inhibitors/pharmacology ; Dinoprostone/*antagonists & inhibitors/immunology/metabolism/secretion ; Drug Resistance, Neoplasm/*drug effects ; Female ; Humans ; Male ; Mice ; Neoplastic Stem Cells/*drug effects/metabolism/*pathology ; Pyrazoles/pharmacology ; Signal Transduction/drug effects ; Sulfonamides/pharmacology ; Urinary Bladder Neoplasms/*drug therapy/*pathology ; Wound Healing/genetics ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-12-04
    Description: Muscle contraction is initiated by the release of calcium (Ca(2+)) from the sarcoplasmic reticulum into the cytoplasm of myocytes through ryanodine receptors (RyRs). RyRs are homotetrameric channels with a molecular mass of more than 2.2 megadaltons that are regulated by several factors, including ions, small molecules and proteins. Numerous mutations in RyRs have been associated with human diseases. The molecular mechanism underlying the complex regulation of RyRs is poorly understood. Using electron cryomicroscopy, here we determine the architecture of rabbit RyR1 at a resolution of 6.1 A. We show that the cytoplasmic moiety of RyR1 contains two large alpha-solenoid domains and several smaller domains, with folds suggestive of participation in protein-protein interactions. The transmembrane domain represents a chimaera of voltage-gated sodium and pH-activated ion channels. We identify the calcium-binding EF-hand domain and show that it functions as a conformational switch allosterically gating the channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Efremov, Rouslan G -- Leitner, Alexander -- Aebersold, Ruedi -- Raunser, Stefan -- England -- Nature. 2015 Jan 1;517(7532):39-43. doi: 10.1038/nature13916. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium [3] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium. ; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland. ; 1] Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, 8057 Zurich, Switzerland. ; Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470059" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Animals ; Calcium/deficiency/metabolism/pharmacology ; Cryoelectron Microscopy ; Cytoplasm/metabolism ; Hydrogen-Ion Concentration ; Inositol 1,4,5-Trisphosphate Receptors/chemistry ; Ion Channel Gating/drug effects ; Models, Molecular ; Protein Binding ; Protein Structure, Tertiary/drug effects ; Rabbits ; Ryanodine Receptor Calcium Release Channel/chemistry/*metabolism/*ultrastructure ; Tacrolimus Binding Protein 1A/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tannock, Ian F -- England -- Nature. 2015 Jan 8;517(7533):152-3. doi: 10.1038/nature14075. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dinoprostone/*antagonists & inhibitors ; Drug Resistance, Neoplasm/*drug effects ; Female ; Humans ; Male ; Neoplastic Stem Cells/*drug effects/*pathology ; Urinary Bladder Neoplasms/*drug therapy/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yao -- Pfeiffer, Julie K -- R01 AI074668/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):42-3. doi: 10.1038/nature13938. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Physiological Phenomena/*immunology ; Enterovirus/*physiology ; Female ; Immunity, Mucosal/*immunology ; Intestinal Mucosa/*immunology/*virology ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Potter, Nicola E -- Greaves, Mel -- England -- Nature. 2014 Feb 20;506(7488):300-1. doi: 10.1038/nature13056. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Hematopoietic Stem Cells/*cytology ; Humans ; Leukemia, Myeloid, Acute/*pathology ; Neoplastic Stem Cells/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-05-16
    Description: During development, thalamocortical (TC) input has a critical role in the spatial delineation and patterning of cortical areas, yet the underlying cellular and molecular mechanisms that drive cortical neuron differentiation are poorly understood. In the primary (S1) and secondary (S2) somatosensory cortex, layer 4 (L4) neurons receive mutually exclusive input originating from two thalamic nuclei: the ventrobasalis (VB), which conveys tactile input, and the posterior nucleus (Po), which conveys modulatory and nociceptive input. Recently, we have shown that L4 neuron identity is not fully committed postnatally, implying a capacity for TC input to influence differentiation during cortical circuit assembly. Here we investigate whether the cell-type-specific molecular and functional identity of L4 neurons is instructed by the origin of their TC input. Genetic ablation of the VB at birth resulted in an anatomical and functional rewiring of Po projections onto L4 neurons in S1. This induced acquisition of Po input led to a respecification of postsynaptic L4 neurons, which developed functional molecular features of Po-target neurons while repressing VB-target traits. Respecified L4 neurons were able to respond both to touch and to noxious stimuli, in sharp contrast to the normal segregation of these sensory modalities in distinct cortical circuits. These findings reveal a behaviourally relevant TC-input-type-specific control over the molecular and functional differentiation of postsynaptic L4 neurons and cognate intracortical circuits, which instructs the development of modality-specific neuronal and circuit properties during corticogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pouchelon, Gabrielle -- Gambino, Frederic -- Bellone, Camilla -- Telley, Ludovic -- Vitali, Ilaria -- Luscher, Christian -- Holtmaat, Anthony -- Jabaudon, Denis -- England -- Nature. 2014 Jul 24;511(7510):471-4. doi: 10.1038/nature13390. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland. ; 1] Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland [2] Interdisciplinary Institute for NeuroScience, CNRS UMR 5297, 33077 Bordeaux, France. ; 1] Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland [2] Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland [3] Institute of Genetics & Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/drug effects/physiology ; Capsaicin/pharmacology ; *Cell Differentiation/drug effects ; Female ; Male ; Mice, Inbred C57BL ; Neural Pathways/drug effects/*physiology ; Neurons/*cytology/drug effects/*physiology ; Noxae/pharmacology ; Optogenetics ; Post-Synaptic Density/drug effects/*physiology ; Somatosensory Cortex/cytology/drug effects/*physiology ; Synaptic Potentials/drug effects ; Thalamic Nuclei/cytology/drug effects/*physiology ; Touch/physiology ; Vibrissae/drug effects/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-02-07
    Description: Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested that AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that, during development, AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 cells derive from rare, self-renewing, long-lived, mature AT2 cells that produce slowly expanding clonal foci of alveolar renewal. This stem-cell function is broadly activated by AT1 injury, and AT2 self-renewal is selectively induced by EGFR (epidermal growth factor receptor) ligands in vitro and oncogenic Kras(G12D) in vivo, efficiently generating multifocal, clonal adenomas. Thus, there is a switch after birth, when AT2 cells function as stem cells that contribute to alveolar renewal, repair and cancer. We propose that local signals regulate AT2 stem-cell activity: a signal transduced by EGFR-KRAS controls self-renewal and is hijacked during oncogenesis, whereas another signal controls reprogramming to AT1 fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desai, Tushar J -- Brownfield, Douglas G -- Krasnow, Mark A -- P30 CA124435/CA/NCI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):190-4. doi: 10.1038/nature12930. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA [2] Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, California 94305-5307, USA. ; Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Transformation, Neoplastic/metabolism/pathology ; Cells, Cultured ; Cellular Reprogramming ; Clone Cells/cytology ; Female ; Lung/*cytology/embryology/*growth & development/pathology ; Lung Neoplasms/metabolism/*pathology ; Male ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Pulmonary Alveoli/*cytology ; Receptor, Epidermal Growth Factor/metabolism ; *Regeneration ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wanger, Thomas C -- England -- Nature. 2014 Jul 10;511(7508):155. doi: 10.1038/511155b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] University of Gottingen, Germany. [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008509" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; Cacao/*physiology ; *Climate Change ; *Pollination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonald, Robbie A -- England -- Nature. 2014 Jul 10;511(7508):158-9. doi: 10.1038/nature13514. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008514" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Computer Simulation ; Tuberculosis, Bovine/*prevention & control/*transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-03-29
    Description: Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152413/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152413/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, James B -- Boley, Nathan -- Eisman, Robert -- May, Gemma E -- Stoiber, Marcus H -- Duff, Michael O -- Booth, Ben W -- Wen, Jiayu -- Park, Soo -- Suzuki, Ana Maria -- Wan, Kenneth H -- Yu, Charles -- Zhang, Dayu -- Carlson, Joseph W -- Cherbas, Lucy -- Eads, Brian D -- Miller, David -- Mockaitis, Keithanne -- Roberts, Johnny -- Davis, Carrie A -- Frise, Erwin -- Hammonds, Ann S -- Olson, Sara -- Shenker, Sol -- Sturgill, David -- Samsonova, Anastasia A -- Weiszmann, Richard -- Robinson, Garret -- Hernandez, Juan -- Andrews, Justen -- Bickel, Peter J -- Carninci, Piero -- Cherbas, Peter -- Gingeras, Thomas R -- Hoskins, Roger A -- Kaufman, Thomas C -- Lai, Eric C -- Oliver, Brian -- Perrimon, Norbert -- Graveley, Brenton R -- Celniker, Susan E -- 1U01HG007031-01/HG/NHGRI NIH HHS/ -- 5U01HG004695-04/HG/NHGRI NIH HHS/ -- K99 HG006698/HG/NHGRI NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- R01 GM076655/GM/NIGMS NIH HHS/ -- R01 GM083300/GM/NIGMS NIH HHS/ -- R01 GM097231/GM/NIGMS NIH HHS/ -- RC2-HG005639/HG/NHGRI NIH HHS/ -- U01 HG004271/HG/NHGRI NIH HHS/ -- U01 HG007031/HG/NHGRI NIH HHS/ -- U01-HG004261/HG/NHGRI NIH HHS/ -- U54 HG006944/HG/NHGRI NIH HHS/ -- ZIA DK015600-18/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 28;512(7515):393-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670639" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/genetics ; Animals ; Drosophila melanogaster/anatomy & histology/cytology/*genetics ; Female ; *Gene Expression Profiling ; Male ; Molecular Sequence Annotation ; Nerve Tissue/metabolism ; Organ Specificity ; Poly A/genetics ; Polyadenylation ; Promoter Regions, Genetic/genetics ; RNA, Long Noncoding/genetics ; RNA, Messenger/genetics/metabolism ; Sex Characteristics ; Stress, Physiological/genetics ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-07-22
    Description: Cachexia is a wasting disorder of adipose and skeletal muscle tissues that leads to profound weight loss and frailty. About half of all cancer patients suffer from cachexia, which impairs quality of life, limits cancer therapy and decreases survival. One key characteristic of cachexia is higher resting energy expenditure levels than in healthy individuals, which has been linked to greater thermogenesis by brown fat. How tumours induce brown fat activity is unknown. Here, using a Lewis lung carcinoma model of cancer cachexia, we show that tumour-derived parathyroid-hormone-related protein (PTHrP) has an important role in wasting, through driving the expression of genes involved in thermogenesis in adipose tissues. Neutralization of PTHrP in tumour-bearing mice blocked adipose tissue browning and the loss of muscle mass and strength. Our results demonstrate that PTHrP mediates energy wasting in fat tissues and contributes to the broader aspects of cancer cachexia. Thus, neutralization of PTHrP might hold promise for ameliorating cancer cachexia and improving patient survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kir, Serkan -- White, James P -- Kleiner, Sandra -- Kazak, Lawrence -- Cohen, Paul -- Baracos, Vickie E -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Sep 4;513(7516):100-4. doi: 10.1038/nature13528. Epub 2014 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Department of Oncology, Division of Palliative Care Medicine, University of Alberta, Edmonton T6G 1Z2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043053" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/cytology/drug effects/*metabolism/pathology ; Animals ; Cachexia/*metabolism/pathology ; Carcinoma, Lewis Lung/genetics/*metabolism/*pathology ; Culture Media, Conditioned/pharmacology ; Energy Metabolism/drug effects ; Gene Expression Regulation, Neoplastic/drug effects ; Humans ; Male ; Mice ; Muscle, Skeletal/metabolism/pathology ; Organ Size/drug effects ; Parathyroid Hormone-Related Protein/antagonists & inhibitors/*metabolism ; Thermogenesis/drug effects/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-05-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250228/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250228/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deuker, Marian M -- McMahon, Martin -- R01 CA131261/CA/NCI NIH HHS/ -- R01 CA176839/CA/NCI NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 12;510(7504):225-6. doi: 10.1038/nature13343. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Helen Diller Family Comprehensive Cancer Center and the Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847879" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Transformation, Neoplastic/*metabolism ; Histone-Lysine N-Methyltransferase/*metabolism ; Humans ; Lysine/*metabolism ; MAP Kinase Kinase Kinase 2/*metabolism ; MAP Kinase Kinase Kinases/*metabolism ; Oncogene Protein p21(ras)/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Steve -- U42 OD011175/OD/NIH HHS/ -- U54 HG006364/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 17;508(7496):319. doi: 10.1038/508319d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Mouse Phenotyping Consortium; MRC Harwell, Didcot, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24740057" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Disease Models, Animal ; Drug Evaluation, Preclinical/*methods/*standards ; Humans ; *Research Design ; Translational Medical Research/*methods/*standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 May 15;509(7500):259-60.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24834513" target="_blank"〉PubMed〈/a〉
    Keywords: Advertising as Topic ; Animal Experimentation/ethics/*standards ; Animal Welfare/ethics/*standards ; Animals ; *Animals, Laboratory ; *Communication ; Ethics, Research ; Germany ; Great Britain ; *Models, Animal ; *Public Opinion ; Research/education/*standards ; Research Personnel/ethics/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-08-15
    Description: The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Jianjin -- Zhao, Yue -- Wang, Yupeng -- Gao, Wenqing -- Ding, Jingjin -- Li, Peng -- Hu, Liyan -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):187-92. doi: 10.1038/nature13683. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing 102206, China [2] National Institute of Biological Sciences, Beijing 102206, China [3]. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2]. ; National Institute of Biological Sciences, Beijing 102206, China. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; 1] Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing 102206, China [2] National Institute of Biological Sciences, Beijing 102206, China [3] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [4] National Institute of Biological Sciences, Beijing, Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119034" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspases/chemistry/genetics/immunology/*metabolism ; Caspases, Initiator/chemistry/genetics/immunology/*metabolism ; Cell Death/drug effects ; Cells, Cultured ; Enzyme Activation/drug effects/genetics ; Epithelial Cells/cytology/metabolism ; Genetic Complementation Test ; Humans ; *Immunity, Innate ; Inflammation/enzymology ; Keratinocytes/cytology/metabolism ; Lipid A/metabolism ; Lipopolysaccharides/immunology/*metabolism/pharmacology ; Macrophages/cytology/drug effects/metabolism ; Mice ; Mutant Proteins/chemistry/metabolism ; Necrosis/chemically induced ; Protein Binding ; Protein Multimerization/drug effects/genetics ; Rhodobacter sphaeroides/chemistry/immunology ; Substrate Specificity ; Surface Plasmon Resonance
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klug, Hope -- England -- Nature. 2014 Nov 20;515(7527):343. doi: 10.1038/515343a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Tennessee, Chattanooga, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409817" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Developmental Biology ; *Gene-Environment Interaction ; *Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-08-27
    Description: Aberrant activation of oncogenes or loss of tumour suppressor genes opposes malignant transformation by triggering a stable arrest in cell growth, which is termed cellular senescence. This process is finely tuned by both cell-autonomous and non-cell-autonomous mechanisms that regulate the entry of tumour cells to senescence. Whether tumour-infiltrating immune cells can oppose senescence is unknown. Here we show that at the onset of senescence, PTEN null prostate tumours in mice are massively infiltrated by a population of CD11b(+)Gr-1(+) myeloid cells that protect a fraction of proliferating tumour cells from senescence, thus sustaining tumour growth. Mechanistically, we found that Gr-1(+) cells antagonize senescence in a paracrine manner by interfering with the senescence-associated secretory phenotype of the tumour through the secretion of interleukin-1 receptor antagonist (IL-1RA). Strikingly, Pten-loss-induced cellular senescence was enhanced in vivo when Il1ra knockout myeloid cells were adoptively transferred to PTEN null mice. Therapeutically, docetaxel-induced senescence and efficacy were higher in PTEN null tumours when the percentage of tumour-infiltrating CD11b(+)Gr-1(+) myeloid cells was reduced using an antagonist of CXC chemokine receptor 2 (CXCR2). Taken together, our findings identify a novel non-cell-autonomous network, established by innate immunity, that controls senescence evasion and chemoresistance. Targeting this network provides novel opportunities for cancer therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Mitri, Diletta -- Toso, Alberto -- Chen, Jing Jing -- Sarti, Manuela -- Pinton, Sandra -- Jost, Tanja Rezzonico -- D'Antuono, Rocco -- Montani, Erica -- Garcia-Escudero, Ramon -- Guccini, Ilaria -- Da Silva-Alvarez, Sabela -- Collado, Manuel -- Eisenberger, Mario -- Zhang, Zhe -- Catapano, Carlo -- Grassi, Fabio -- Alimonti, Andrea -- England -- Nature. 2014 Nov 6;515(7525):134-7. doi: 10.1038/nature13638. Epub 2014 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2]. ; 1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2] Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne CH1011, Switzerland. ; Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland. ; Institute for Research in Biomedicine (IRB), Bellinzona CH6500, Switzerland. ; 1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2] Molecular Oncology Unit, CIEMAT, 28040 Madrid, Spain. ; Laboratory of Stem Cells in Cancer and Aging, (stemCHUS) Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), E15706 Santiago de Compostela, Spain. ; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231-1000, USA. ; Divisions of BioStatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231-1000, USA. ; 1] Institute for Research in Biomedicine (IRB), Bellinzona CH6500, Switzerland [2] Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20100, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25156255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Aging/drug effects ; *Cell Movement ; Disease Progression ; Drug Resistance, Neoplasm ; Humans ; Immunity, Innate ; Interleukin 1 Receptor Antagonist Protein/deficiency/metabolism/secretion ; Interleukin-1alpha/immunology/metabolism ; Male ; Mice ; Myeloid Cells/*cytology/*metabolism/transplantation ; PTEN Phosphohydrolase/deficiency/genetics/metabolism ; Prostatic Neoplasms/drug therapy/immunology/metabolism/*pathology ; Receptors, Chemokine/*metabolism ; Receptors, Interleukin-8B/antagonists & inhibitors ; Taxoids/pharmacology ; Tumor Escape ; Tumor Microenvironment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-10-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McInerney, James O -- O'Connell, Mary J -- England -- Nature. 2014 Oct 30;514(7524):570-1. doi: 10.1038/514570a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland. ; School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25355355" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Genes, Homeobox/*genetics ; Porifera/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibney, Elizabeth -- England -- Nature. 2014 Sep 4;513(7516):129-30. doi: 10.1038/513129a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25186906" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Artificial Intelligence/utilization ; *Bibliography as Topic ; Data Mining/*utilization ; Drosophila melanogaster ; Electronic Mail/utilization ; Entrepreneurship/trends ; *Internet/utilization ; Models, Statistical ; *PubMed/utilization ; *Research ; Search Engine/*utilization ; *Social Networking ; Web Browser/utilization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-11-07
    Description: Originally conceived to conserve iconic landscapes and wildlife, protected areas are now expected to achieve an increasingly diverse set of conservation, social and economic objectives. The amount of land and sea designated as formally protected has markedly increased over the past century, but there is still a major shortfall in political commitments to enhance the coverage and effectiveness of protected areas. Financial support for protected areas is dwarfed by the benefits that they provide, but these returns depend on effective management. A step change involving increased recognition, funding, planning and enforcement is urgently needed if protected areas are going to fulfil their potential.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watson, James E M -- Dudley, Nigel -- Segan, Daniel B -- Hockings, Marc -- England -- Nature. 2014 Nov 6;515(7525):67-73. doi: 10.1038/nature13947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Geography, Planning and Environmental Management, University of Queensland, St Lucia, Queensland 4072, Australia. [2] Wildlife Conservation Society, Global Conservation Program, Bronx, New York 10460, USA. [3] School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] School of Geography, Planning and Environmental Management, University of Queensland, St Lucia, Queensland 4072, Australia. [2] Equilibrium Research, 47 The Quays, Cumberland Road, Spike Island, Bristol BS1 6UQ, UK. ; 1] Wildlife Conservation Society, Global Conservation Program, Bronx, New York 10460, USA. [2] School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] School of Geography, Planning and Environmental Management, University of Queensland, St Lucia, Queensland 4072, Australia. [2] UNEP-World Conservation Monitoring Centre, Cambridge CD3 0DL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; Conservation of Natural Resources/economics/legislation & ; jurisprudence/*statistics & numerical data ; Ecology/economics/legislation & jurisprudence/statistics & numerical data ; *Ecosystem ; Federal Government ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dijkstra, Johannes M -- England -- Nature. 2014 Jul 10;511(7508):E7-9. doi: 10.1038/nature13446.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Comprehensive Medical Science, Fujita Health University, Dengaku-gakubo 1-98, 470-1192 Toyoake, Aichi, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008534" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evolution, Molecular ; Genome/*genetics ; Sharks/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McMahon, Clive R -- Harcourt, Robert -- England -- Nature. 2014 Sep 4;513(7516):33. doi: 10.1038/513033e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sydney Institute of Marine Science, New South Wales, Australia. ; Macquarie University, Sydney, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25186889" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antarctic Regions ; Environmental Monitoring/*methods ; Ice Cover ; *Oceans and Seas ; *Seals, Earless ; Seasons
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-05-13
    Description: The global shortening of messenger RNAs through alternative polyadenylation (APA) that occurs during enhanced cellular proliferation represents an important, yet poorly understood mechanism of regulated gene expression. The 3' untranslated region (UTR) truncation of growth-promoting mRNA transcripts that relieves intrinsic microRNA- and AU-rich-element-mediated repression has been observed to correlate with cellular transformation; however, the importance to tumorigenicity of RNA 3'-end-processing factors that potentially govern APA is unknown. Here we identify CFIm25 as a broad repressor of proximal poly(A) site usage that, when depleted, increases cell proliferation. Applying a regression model on standard RNA-sequencing data for novel APA events, we identified at least 1,450 genes with shortened 3' UTRs after CFIm25 knockdown, representing 11% of significantly expressed mRNAs in human cells. Marked increases in the expression of several known oncogenes, including cyclin D1, are observed as a consequence of CFIm25 depletion. Importantly, we identified a subset of CFIm25-regulated APA genes with shortened 3' UTRs in glioblastoma tumours that have reduced CFIm25 expression. Downregulation of CFIm25 expression in glioblastoma cells enhances their tumorigenic properties and increases tumour size, whereas CFIm25 overexpression reduces these properties and inhibits tumour growth. These findings identify a pivotal role of CFIm25 in governing APA and reveal a previously unknown connection between CFIm25 and glioblastoma tumorigenicity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128630/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128630/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masamha, Chioniso P -- Xia, Zheng -- Yang, Jingxuan -- Albrecht, Todd R -- Li, Min -- Shyu, Ann-Bin -- Li, Wei -- Wagner, Eric J -- CA166274/CA/NCI NIH HHS/ -- CA167752/CA/NCI NIH HHS/ -- GM046454/GM/NIGMS NIH HHS/ -- R01 GM046454/GM/NIGMS NIH HHS/ -- R01 HG007538/HG/NHGRI NIH HHS/ -- R01HG007538/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Jun 19;510(7505):412-6. doi: 10.1038/nature13261. Epub 2014 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA [2]. ; 1] Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, 77030 Texas, USA [2]. ; The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas 77030, USA. ; Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA. ; Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, 77030 Texas, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24814343" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Carcinogenesis/*genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Glioblastoma/*physiopathology ; HeLa Cells ; Heterografts ; Humans ; Male ; Mice ; *Polyadenylation ; RNA, Messenger/*metabolism ; Regression Analysis ; mRNA Cleavage and Polyadenylation Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-06-12
    Description: Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a BRAF(V600E) mouse model. In mice expressing BRAF(V600E) in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. Here we show that sunscreen (UVA superior, UVB sun protection factor (SPF) 50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours showed increased numbers of single nucleotide variants and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in approximately 40% of cases. TP53 is an accepted UVR target in human non-melanoma skin cancer, but is not thought to have a major role in melanoma. However, we show that, in mice, mutant Trp53 accelerated BRAF(V600E)-driven melanomagenesis, and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans. Furthermore, we identify TP53/Trp53 as a UVR-target gene that cooperates with BRAF(V600E) to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viros, Amaya -- Sanchez-Laorden, Berta -- Pedersen, Malin -- Furney, Simon J -- Rae, Joel -- Hogan, Kate -- Ejiama, Sarah -- Girotti, Maria Romina -- Cook, Martin -- Dhomen, Nathalie -- Marais, Richard -- A12738/Cancer Research UK/United Kingdom -- A13540/Cancer Research UK/United Kingdom -- A17240/Cancer Research UK/United Kingdom -- A7091/Cancer Research UK/United Kingdom -- A7192/Cancer Research UK/United Kingdom -- C107/A10433/Cancer Research UK/United Kingdom -- C5759/A12328/Cancer Research UK/United Kingdom -- England -- Nature. 2014 Jul 24;511(7510):478-82. doi: 10.1038/nature13298. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2]. ; 1] Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2]. ; Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. ; Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; 1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2] Histopathology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK. ; 1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2] Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Transformation, Neoplastic/*genetics/*radiation effects ; DNA Damage/genetics ; Disease Models, Animal ; Female ; Humans ; Melanocytes/metabolism/pathology/radiation effects ; Melanoma/etiology/*genetics/metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Mutagenesis/genetics/*radiation effects ; Mutation/genetics/radiation effects ; Nevus/etiology/genetics/metabolism/pathology ; Proto-Oncogene Proteins B-raf/*genetics/metabolism ; Skin Neoplasms/etiology/genetics/metabolism/pathology ; Sunburn/complications/etiology/genetics ; Sunscreening Agents/pharmacology ; Tumor Suppressor Protein p53/*genetics/metabolism ; Ultraviolet Rays/*adverse effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-08-21
    Description: Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550673/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550673/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bos, Kirsten I -- Harkins, Kelly M -- Herbig, Alexander -- Coscolla, Mireia -- Weber, Nico -- Comas, Inaki -- Forrest, Stephen A -- Bryant, Josephine M -- Harris, Simon R -- Schuenemann, Verena J -- Campbell, Tessa J -- Majander, Kerttu -- Wilbur, Alicia K -- Guichon, Ricardo A -- Wolfe Steadman, Dawnie L -- Cook, Della Collins -- Niemann, Stefan -- Behr, Marcel A -- Zumarraga, Martin -- Bastida, Ricardo -- Huson, Daniel -- Nieselt, Kay -- Young, Douglas -- Parkhill, Julian -- Buikstra, Jane E -- Gagneux, Sebastien -- Stone, Anne C -- Krause, Johannes -- 098051/Wellcome Trust/United Kingdom -- AI090928/AI/NIAID NIH HHS/ -- MC_U117581288/Medical Research Council/United Kingdom -- R01 AI090928/AI/NIAID NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Oct 23;514(7523):494-7. doi: 10.1038/nature13591. Epub 2014 Aug 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Archaeological Sciences, University of Tubingen, Ruemelinstrasse 23, 72070 Tubingen, Germany [2]. ; 1] School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, Arizona 85287-2402, USA [2]. ; 1] Department of Archaeological Sciences, University of Tubingen, Ruemelinstrasse 23, 72070 Tubingen, Germany [2] Center for Bioinformatics, University of Tubingen, Sand 14, 72076 Tubingen, Germany [3]. ; 1] Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland [2] University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland [3]. ; Center for Bioinformatics, University of Tubingen, Sand 14, 72076 Tubingen, Germany. ; 1] Genomics and Health Unit, FISABIO-Public Health, Avenida Cataluna 21, 46020 Valencia, Spain [2] CIBER (Centros de Investigacion Biomedica en Red) in Epidemiology and Public Health, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellon 11, Planta 0, 28029 Madrid, Spain. ; Department of Archaeological Sciences, University of Tubingen, Ruemelinstrasse 23, 72070 Tubingen, Germany. ; Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ; Department of Archaeology, University of Cape Town, Private Bag X1, Rondebosch, 7701, South Africa. ; School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, Arizona 85287-2402, USA. ; CONICET, Laboratorio de Ecologia Evolutiva Humana (FACSO, UNCPBA), Departamento de Biologia (FCEyN, UNMDP), Calle 508 No. 881 (7631), Quequen, Argentina. ; Department of Anthropology, University of Tennessee, 250 South Stadium Hall, Knoxville, Tennessee 37996, USA. ; Department of Anthropology, Indiana University, 701 East Kirkwood Avenue, Bloomington, Indiana 47405-7100, USA. ; 1] Molecular Mycobacteriology, Forschungszentrum Borstel, Parkallee 1, 23845 Borstel, Germany [2] German Center for Infection Research, Forschungszentrum Borstel, Parkallee 1, 23845 Borstel, Germany. ; McGill International TB Centre, McGill University, 1650 Cedar Avenue, Montreal H3G 1A4, Canada. ; Biotechnology Institute, CICVyA-INTA Castelar, Dr. Nicolas Repetto y De Los Reseros S/N, (B1686IGC) Hurlingham, Buenos Aires, Argentina. ; Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, San Luis 1722, Mar del Plata 7600, Argentina. ; 1] Department of Medicine, Imperial College, London W2 1PG, UK [2] Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. ; 1] Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland [2] University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland. ; 1] Department of Archaeological Sciences, University of Tubingen, Ruemelinstrasse 23, 72070 Tubingen, Germany [2] Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tubingen, Tubingen 72070, Germany [3] Max Planck Institute for Science and History, Khalaische Strasse 10, 07745 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25141181" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone and Bones/microbiology ; Europe/ethnology ; Genome, Bacterial/*genetics ; Genomics ; History, Ancient ; Human Migration/history ; Humans ; Mycobacterium tuberculosis/*genetics ; Peru ; Phylogeny ; Pinnipedia/*microbiology ; Tuberculosis/*history/*microbiology/transmission ; Zoonoses/*history/*microbiology/transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vitule, Jean R S -- Sampaio, Flavia D F -- Magalhaes, Andre L B -- England -- Nature. 2014 Sep 18;513(7518):315. doi: 10.1038/513315d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Federal University of Parana, Curitiba, Brazil. ; Federal Institute of Parana, Curitiba, Brazil. ; Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25230646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquaculture/*economics ; Biodiversity ; Brazil ; Commerce/*economics ; Conservation of Natural Resources/trends ; *Environmental Monitoring ; *Fishes ; Introduced Species
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Vivien -- England -- Nature. 2014 Jan 16;505(7483):437-41. doi: 10.1038/505437a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nature and Nature Methods.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24429638" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Automation/instrumentation ; Containment of Biohazards/*instrumentation/*methods ; Device Approval ; Humans ; *Laboratories ; Maryland ; Microbial Sensitivity Tests ; Microbiology/*instrumentation ; National Institute of Allergy and Infectious Diseases (U.S.) ; Robotics/instrumentation ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sejdic, Ervin -- England -- Nature. 2014 Mar 20;507(7492):306. doi: 10.1038/507306a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Pittsburgh, Pennsylvania, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24646986" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biology/*methods ; Data Mining/*trends ; Humans ; Information Dissemination/*methods ; Information Management/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perrin, Steve -- England -- Nature. 2014 Mar 27;507(7493):423-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24678540" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/genetics/pathology/therapy ; Animals ; Cause of Death ; Clinical Trials as Topic/economics/standards ; *Disease Models, Animal ; Disease Progression ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical/economics/*methods/*standards ; False Positive Reactions ; Guidelines as Topic ; Half-Life ; Humans ; Mice ; Organ Specificity ; Reproducibility of Results ; *Research Design ; Superoxide Dismutase/deficiency/genetics/metabolism ; Survival Analysis ; Translational Medical Research/economics/*methods/*standards ; Treatment Failure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-07-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Chi V -- England -- Nature. 2014 Jul 24;511(7510):417-8. doi: 10.1038/nature13518. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Proliferation ; Cell Transformation, Neoplastic/*genetics ; Down-Regulation/*genetics ; Female ; Gene Expression Regulation, Neoplastic/*genetics ; Genes, myc/*genetics ; Humans ; Lymphoma, B-Cell/*genetics/*pathology ; Male ; Neoplasms/*genetics ; Proto-Oncogene Proteins c-myc/*metabolism ; *Transcription, Genetic ; *Transcriptome ; Up-Regulation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-03-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, Peter R -- Grant, B Rosemary -- England -- Nature. 2014 Mar 13;507(7491):178-9. doi: 10.1038/507178b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24622197" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; *Hybridization, Genetic ; Male ; *Mating Preference, Animal ; Songbirds/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-02-11
    Description: The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burrows, Michael T -- Schoeman, David S -- Richardson, Anthony J -- Molinos, Jorge Garcia -- Hoffmann, Ary -- Buckley, Lauren B -- Moore, Pippa J -- Brown, Christopher J -- Bruno, John F -- Duarte, Carlos M -- Halpern, Benjamin S -- Hoegh-Guldberg, Ove -- Kappel, Carrie V -- Kiessling, Wolfgang -- O'Connor, Mary I -- Pandolfi, John M -- Parmesan, Camille -- Sydeman, William J -- Ferrier, Simon -- Williams, Kristen J -- Poloczanska, Elvira S -- England -- Nature. 2014 Mar 27;507(7493):492-5. doi: 10.1038/nature12976. Epub 2014 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK. ; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Queensland QLD 4558, Australia. ; 1] Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, Ecosciences Precinct, GPO Box 2583, Brisbane, Queensland 4001, Australia [2] Centre for Applications in Natural Resource Mathematics (CARM), School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Department of Genetics, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia. ; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA. ; 1] Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK [2] Centre for Marine Ecosystems Research, Edith Cowan University, Perth 6027, Australia. ; The Global Change Institute, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] The UWA Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia [2] Department of Global Change Research, IMEDEA (UIB-CSIC), Instituto Mediterraneo de Estudios Avanzados, Esporles 07190, Spain [3] Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia. ; 1] Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, USA [2] Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. ; Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, USA. ; 1] GeoZentrum Nordbayern, Palaoumwelt, Universitat Erlangen-Nurnberg, Loewenichstrasse 28, 91054 Erlangen, Germany [2] Museum fur Naturkunde, Invalidenstr asse 43, 10115 Berlin, Germany. ; Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, Canada. ; School of Biological Sciences, Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Integrative Biology, University of Texas, Austin, Texas 78712, USA [2] Marine Institute, Drake Circus, University of Plymouth, Devon PL4 8AA, UK. ; Farallon Institute for Advanced Ecosystem Research, 101 H Street, Suite Q, Petaluma, California 94952, USA. ; Climate Adaptation Flagship, CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia. ; Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, Ecosciences Precinct, GPO Box 2583, Brisbane, Queensland 4001, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24509712" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Australia ; Biodiversity ; *Climate ; *Climate Change ; *Ecosystem ; *Geographic Mapping ; *Geography ; Models, Theoretical ; Population Dynamics ; Seawater ; Temperature ; Time Factors ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mecke, Sven -- England -- Nature. 2014 Jul 31;511(7511):534. doi: 10.1038/511534c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Philipps-Universitat Marburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Bufonidae/*physiology ; *Conservation of Natural Resources ; Humans ; *Introduced Species
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perz, Stephen G -- England -- Nature. 2014 Sep 11;513(7517):178-9. doi: 10.1038/nature13744. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Sociology and Criminology &Law, University of Florida, Gainesville, Florida 32611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162532" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Environmental Policy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sen, Taner Z -- England -- Nature. 2014 Sep 18;513(7518):315. doi: 10.1038/513315f.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ames, Iowa, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25230644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biology/history ; Female ; History, Ancient ; Humans ; Male ; *Observation ; Research Design ; Statistics as Topic ; Tooth/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-08-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davies, William -- England -- Nature. 2014 Aug 21;512(7514):260-1. doi: 10.1038/512260a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Archaeology of Human Origins, Faculty of Humanities, University of Southampton, Southampton SO17 1BF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25143108" target="_blank"〉PubMed〈/a〉
    Keywords: Acculturation/*history ; Animals ; *Extinction, Biological ; *Geography ; Humans ; *Neanderthals ; *Spatio-Temporal Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-09-26
    Description: Billions of organisms, from bacteria to humans, migrate each year and research on their migration biology is expanding rapidly through ever more sophisticated remote sensing technologies. However, little is known about how migratory performance develops through life for any organism. To date, age variation has been almost systematically simplified into a dichotomous comparison between recently born juveniles at their first migration versus adults of unknown age. These comparisons have regularly highlighted better migratory performance by adults compared with juveniles, but it is unknown whether such variation is gradual or abrupt and whether it is driven by improvements within the individual, by selective mortality of poor performers, or both. Here we exploit the opportunity offered by long-term monitoring of individuals through Global Positioning System (GPS) satellite tracking to combine within-individual and cross-sectional data on 364 migration episodes from 92 individuals of a raptorial bird, aged 1-27 years old. We show that the development of migratory behaviour follows a consistent trajectory, more gradual and prolonged than previously appreciated, and that this is promoted by both individual improvements and selective mortality, mainly operating in early life and during the pre-breeding migration. Individuals of different age used different travelling tactics and varied in their ability to exploit tailwinds or to cope with wind drift. All individuals seemed aligned along a race with their contemporary peers, whose outcome was largely determined by the ability to depart early, affecting their subsequent recruitment, reproduction and survival. Understanding how climate change and human action can affect the migration of younger animals may be the key to managing and forecasting the declines of many threatened migrants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sergio, Fabrizio -- Tanferna, Alessandro -- De Stephanis, Renaud -- Jimenez, Lidia Lopez -- Blas, Julio -- Tavecchia, Giacomo -- Preatoni, Damiano -- Hiraldo, Fernando -- England -- Nature. 2014 Nov 20;515(7527):410-3. doi: 10.1038/nature13696. Epub 2014 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Conservation Biology, Estacion Biologica de Donana-CSIC, Avenida Americo Vespucio, 41092 Seville, Spain. ; Population Ecology Group, Institute for Mediterranean Studies (IMEDEA), CSIC-UIB, 07190 Esporles, Spain. ; Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252973" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Age Factors ; Aging/*physiology ; Animal Migration/*physiology ; Animals ; Conservation of Natural Resources ; Geographic Information Systems ; Global Warming ; Human Activities ; Raptors/*physiology ; Reproduction/physiology ; Spain ; Survival Rate ; Time Factors ; Wind
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-04-18
    Description: The equilibrium theory of island biogeography is the basis for estimating extinction rates and a pillar of conservation science. The default strategy for conserving biodiversity is the designation of nature reserves, treated as islands in an inhospitable sea of human activity. Despite the profound influence of islands on conservation theory and practice, their mainland analogues, forest fragments in human-dominated landscapes, consistently defy expected biodiversity patterns based on island biogeography theory. Countryside biogeography is an alternative framework, which recognizes that the fate of the world's wildlife will be decided largely by the hospitality of agricultural or countryside ecosystems. Here we directly test these biogeographic theories by comparing a Neotropical countryside ecosystem with a nearby island ecosystem, and show that each supports similar bat biodiversity in fundamentally different ways. The island ecosystem conforms to island biogeographic predictions of bat species loss, in which the water matrix is not habitat. In contrast, the countryside ecosystem has high species richness and evenness across forest reserves and smaller forest fragments. Relative to forest reserves and fragments, deforested countryside habitat supports a less species-rich, yet equally even, bat assemblage. Moreover, the bat assemblage associated with deforested habitat is compositionally novel because of predictable changes in abundances by many species using human-made habitat. Finally, we perform a global meta-analysis of bat biogeographic studies, spanning more than 700 species. It generalizes our findings, showing that separate biogeographic theories for countryside and island ecosystems are necessary. A theory of countryside biogeography is essential to conservation strategy in the agricultural ecosystems that comprise roughly half of the global land surface and are likely to increase even further.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mendenhall, Chase D -- Karp, Daniel S -- Meyer, Christoph F J -- Hadly, Elizabeth A -- Daily, Gretchen C -- England -- Nature. 2014 May 8;509(7499):213-7. doi: 10.1038/nature13139. Epub 2014 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Conservation Biology, Stanford University, Stanford, California 94305, USA [2] Department of Biology, Stanford University, Stanford, California 94305, USA. ; 1] Center for Conservation Biology, Stanford University, Stanford, California 94305, USA [2] Department of Biology, Stanford University, Stanford, California 94305, USA [3] Department of Environmental Science, Policy & Management, University of California, Berkeley, California 94720, USA [4] The Nature Conservancy, Berkeley, California 94705, USA. ; 1] Institute of Experimental Ecology, University of Ulm, 89069 Ulm, Germany [2] Centre for Environmental Biology, University of Lisbon, 1749-016 Lisbon, Portugal. ; Department of Biology, Stanford University, Stanford, California 94305, USA. ; 1] Center for Conservation Biology, Stanford University, Stanford, California 94305, USA [2] Department of Biology, Stanford University, Stanford, California 94305, USA [3] Woods Institute for the Environment, Stanford University, Stanford, California 94305, USA [4] Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, SE-104 05, Sweden [5] Stockholm Resilience Centre, University of Stockholm, Stockholm, SE-106 91, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739971" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture/methods ; Animals ; *Biodiversity ; Chiroptera/physiology ; *Conservation of Natural Resources ; Costa Rica ; Extinction, Biological ; *Geography ; Islands ; Lakes ; Models, Biological ; Population Dynamics ; Trees/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-01-28
    Description: The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca(2+) waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca(2+)-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westphalen, Kristin -- Gusarova, Galina A -- Islam, Mohammad N -- Subramanian, Manikandan -- Cohen, Taylor S -- Prince, Alice S -- Bhattacharya, Jahar -- HL57556/HL/NHLBI NIH HHS/ -- HL64896/HL/NHLBI NIH HHS/ -- HL73989/HL/NHLBI NIH HHS/ -- HL78645/HL/NHLBI NIH HHS/ -- R01 HL057556/HL/NHLBI NIH HHS/ -- R01 HL064896/HL/NHLBI NIH HHS/ -- R01 HL073989/HL/NHLBI NIH HHS/ -- R01 HL078645/HL/NHLBI NIH HHS/ -- R01 HL079395/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):503-6. doi: 10.1038/nature12902. Epub 2014 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Columbia University Medical Center, New York, New York 10032, USA. ; Department of Medicine, Division of Molecular Medicine, Columbia University Medical Center, New York, New York 10032, USA. ; Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Columbia University Medical Center, New York, New York 10032, USA [2] Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463523" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchoalveolar Lavage Fluid/immunology ; Calcium/metabolism ; Cell Adhesion ; *Cell Communication ; Connexin 43/deficiency/genetics/metabolism ; Cytokines/immunology/secretion ; Female ; Gap Junctions/metabolism ; Lipopolysaccharides/pharmacology ; Macrophages, Alveolar/*cytology/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neutrophil Infiltration ; Neutrophils/immunology ; Pneumonia/chemically induced/immunology/pathology ; Pulmonary Alveoli/*cytology/*immunology ; Respiratory Mucosa/*cytology/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-10-03
    Description: Systemic infection induces conserved physiological responses that include both resistance and 'tolerance of infection' mechanisms. Temporary anorexia associated with an infection is often beneficial, reallocating energy from food foraging towards resistance to infection or depriving pathogens of nutrients. However, it imposes a stress on intestinal commensals, as they also experience reduced substrate availability; this affects host fitness owing to the loss of caloric intake and colonization resistance (protection from additional infections). We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid alpha(1,2)-fucosylation of small intestine epithelial cells (IECs) in mice, which requires the sensing of TLR agonists, as well as the production of interleukin (IL)-23 by dendritic cells, activation of innate lymphoid cells and expression of fucosyltransferase 2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host's resources to maintain host-microbial interactions during pathogen-induced stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pickard, Joseph M -- Maurice, Corinne F -- Kinnebrew, Melissa A -- Abt, Michael C -- Schenten, Dominik -- Golovkina, Tatyana V -- Bogatyrev, Said R -- Ismagilov, Rustem F -- Pamer, Eric G -- Turnbaugh, Peter J -- Chervonsky, Alexander V -- AI42135/AI/NIAID NIH HHS/ -- AI96706/AI/NIAID NIH HHS/ -- DK42086/DK/NIDDK NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30 DK042086/DK/NIDDK NIH HHS/ -- P50 GM068763/GM/NIGMS NIH HHS/ -- R01 AI090084/AI/NIAID NIH HHS/ -- R01 AI095706/AI/NIAID NIH HHS/ -- T32 AI007090/AI/NIAID NIH HHS/ -- T32 AI065382/AI/NIAID NIH HHS/ -- T32 GM007739/GM/NIGMS NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Oct 30;514(7524):638-41. doi: 10.1038/nature13823. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, Illinois 60637, USA. ; FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; The University of Arizona, Tucson, Arizona 85721, USA. ; Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA. ; California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274297" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anorexia/complications/microbiology ; Bacteria/genetics/metabolism/pathogenicity ; Citrobacter rodentium/immunology ; Dendritic Cells/immunology/metabolism ; *Disease ; Eating ; Epithelium/*metabolism/*microbiology ; Fatty Acids/chemistry/metabolism ; Female ; Fucose/*metabolism ; Fucosyltransferases/metabolism ; Gene Expression Regulation, Bacterial ; Glycosylation ; Immune Tolerance ; Immunity, Innate ; Interleukins/biosynthesis/immunology ; Intestine, Small/*metabolism/*microbiology ; Ligands ; Male ; Metabolic Networks and Pathways/genetics ; Mice ; Microbiota/physiology ; Protective Factors ; *Symbiosis ; Toll-Like Receptors/agonists/immunology/metabolism ; Virulence Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-06-06
    Description: Advances in our understanding of the mechanisms that bring about the resolution of acute inflammation have uncovered a new genus of pro-resolving lipid mediators that include the lipoxin, resolvin, protectin and maresin families, collectively called specialized pro-resolving mediators. Synthetic versions of these mediators have potent bioactions when administered in vivo. In animal experiments, the mediators evoke anti-inflammatory and novel pro-resolving mechanisms, and enhance microbial clearance. Although they have been identified in inflammation resolution, specialized pro-resolving mediators are conserved structures that also function in host defence, pain, organ protection and tissue remodelling. This Review covers the mechanisms of specialized pro-resolving mediators and omega-3 essential fatty acid pathways that could help us to understand their physiological functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263681/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263681/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Serhan, Charles N -- P01 GM095467/GM/NIGMS NIH HHS/ -- P01GM095467/GM/NIGMS NIH HHS/ -- R01 GM038765/GM/NIGMS NIH HHS/ -- R01GM038765/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 5;510(7503):92-101. doi: 10.1038/nature13479.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24899309" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chronic Disease ; Docosahexaenoic Acids/metabolism ; Fatty Acids, Omega-3/*metabolism ; Fatty Acids, Unsaturated/metabolism ; Humans ; Immunity ; Infection/metabolism ; Inflammation/drug therapy/*metabolism/pathology ; Inflammation Mediators/*metabolism/therapeutic use ; Models, Biological ; Pain/metabolism ; Regeneration ; Translational Medical Research ; Wound Healing
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-08-29
    Description: Despite the large evolutionary distances between metazoan species, they can show remarkable commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology. Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. Here we map the genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors, generating a total of 1,019 data sets from diverse cell types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous regulatory factor families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding of the regulatory underpinnings of model organism biology and how these relate to human biology, development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyle, Alan P -- Araya, Carlos L -- Brdlik, Cathleen -- Cayting, Philip -- Cheng, Chao -- Cheng, Yong -- Gardner, Kathryn -- Hillier, LaDeana W -- Janette, Judith -- Jiang, Lixia -- Kasper, Dionna -- Kawli, Trupti -- Kheradpour, Pouya -- Kundaje, Anshul -- Li, Jingyi Jessica -- Ma, Lijia -- Niu, Wei -- Rehm, E Jay -- Rozowsky, Joel -- Slattery, Matthew -- Spokony, Rebecca -- Terrell, Robert -- Vafeados, Dionne -- Wang, Daifeng -- Weisdepp, Peter -- Wu, Yi-Chieh -- Xie, Dan -- Yan, Koon-Kiu -- Feingold, Elise A -- Good, Peter J -- Pazin, Michael J -- Huang, Haiyan -- Bickel, Peter J -- Brenner, Steven E -- Reinke, Valerie -- Waterston, Robert H -- Gerstein, Mark -- White, Kevin P -- Kellis, Manolis -- Snyder, Michael -- F32GM101778/GM/NIGMS NIH HHS/ -- P50GM081892/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- RC2HG005679/HG/NHGRI NIH HHS/ -- U01 HG004267/HG/NHGRI NIH HHS/ -- U01HG004264/HG/NHGRI NIH HHS/ -- U01HG004267/HG/NHGRI NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- U54 HG006996/HG/NHGRI NIH HHS/ -- U54HG004558/HG/NHGRI NIH HHS/ -- U54HG006996/HG/NHGRI NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Aug 28;512(7515):453-6. doi: 10.1038/nature13668.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Computer Science, Stanford University, Stanford, California 94305, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Statistics, University of California, Berkeley, California 94720, USA [2] Department of Statistics, University of California, Los Angeles, California 90095, USA. ; Institute for Genomics and Systems Biology, University of Chicago, Chicago, Ilinois 60637, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA. ; Department of Statistics, University of California, Berkeley, California 94720, USA. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [2] Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans/*genetics/growth & development ; Chromatin Immunoprecipitation ; Conserved Sequence/genetics ; Drosophila melanogaster/*genetics/growth & development ; *Evolution, Molecular ; Gene Expression Regulation/*genetics ; Gene Expression Regulation, Developmental/genetics ; Gene Regulatory Networks/*genetics ; Genome/genetics ; Humans ; Molecular Sequence Annotation ; Nucleotide Motifs/genetics ; Organ Specificity/genetics ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-03-29
    Description: Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giering, Sarah L C -- Sanders, Richard -- Lampitt, Richard S -- Anderson, Thomas R -- Tamburini, Christian -- Boutrif, Mehdi -- Zubkov, Mikhail V -- Marsay, Chris M -- Henson, Stephanie A -- Saw, Kevin -- Cook, Kathryn -- Mayor, Daniel J -- England -- Nature. 2014 Mar 27;507(7493):480-3. doi: 10.1038/nature13123. Epub 2014 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK [2] Ocean and Earth Sciences, University of Southampton, European Way, Southampton SO14 3ZH, UK [3] Institute of Biological and Environmental Sciences, Oceanlab, University of Aberdeen, Newburgh AB41 6AA, UK. ; National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK. ; Aix-Marseille Universite, Universite de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288 Marseille Cedex 09, France. ; 1] Ocean and Earth Sciences, University of Southampton, European Way, Southampton SO14 3ZH, UK [2] Department of Earth and Ocean Sciences, University of South Carolina, Columbia, South Carolina 29208, USA. ; Marine Laboratory, Marine Scotland Science, Scottish Government, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK. ; Institute of Biological and Environmental Sciences, Oceanlab, University of Aberdeen, Newburgh AB41 6AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670767" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*metabolism ; Atlantic Ocean ; Biota ; Carbon/*metabolism ; *Carbon Cycle ; Carbon Dioxide/metabolism ; Carbon Sequestration ; Cell Respiration ; Food Chain ; Observation ; *Seawater/chemistry/microbiology ; Uncertainty ; Zooplankton/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-04-11
    Description: The BRAF kinase is mutated, typically Val 600--〉Glu (V600E), to induce an active oncogenic state in a large fraction of melanomas, thyroid cancers, hairy cell leukaemias and, to a smaller extent, a wide spectrum of other cancers. BRAF(V600E) phosphorylates and activates the MEK1 and MEK2 kinases, which in turn phosphorylate and activate the ERK1 and ERK2 kinases, stimulating the mitogen-activated protein kinase (MAPK) pathway to promote cancer. Targeting MEK1/2 is proving to be an important therapeutic strategy, given that a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma, an effect that is increased when administered together with a BRAF(V600E) inhibitor. We previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction. Here we show decreasing the levels of CTR1 (Cu transporter 1), or mutations in MEK1 that disrupt Cu binding, decreased BRAF(V600E)-driven signalling and tumorigenesis in mice and human cell settings. Conversely, a MEK1-MEK5 chimaera that phosphorylated ERK1/2 independently of Cu or an active ERK2 restored the tumour growth of murine cells lacking Ctr1. Cu chelators used in the treatment of Wilson disease decreased tumour growth of human or murine cells transformed by BRAF(V600E) or engineered to be resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat cancers containing the BRAF(V600E) mutation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138975/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138975/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brady, Donita C -- Crowe, Matthew S -- Turski, Michelle L -- Hobbs, G Aaron -- Yao, Xiaojie -- Chaikuad, Apirat -- Knapp, Stefan -- Xiao, Kunhong -- Campbell, Sharon L -- Thiele, Dennis J -- Counter, Christopher M -- 092809/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- CA094184/CA/NCI NIH HHS/ -- CA172104/CA/NCI NIH HHS/ -- CA178145/CA/NCI NIH HHS/ -- DK074192/DK/NIDDK NIH HHS/ -- HL075443/HL/NHLBI NIH HHS/ -- K01 CA178145/CA/NCI NIH HHS/ -- P01 HL075443/HL/NHLBI NIH HHS/ -- P30 CA014236/CA/NCI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 CA089614/CA/NCI NIH HHS/ -- R01 CA094184/CA/NCI NIH HHS/ -- R01 DK074192/DK/NIDDK NIH HHS/ -- R21 CA172104/CA/NCI NIH HHS/ -- T32 GM007184/GM/NIGMS NIH HHS/ -- T32 GM008570/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 May 22;509(7501):492-6. doi: 10.1038/nature13180. Epub 2014 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Nuffield Department of Clinical Medicine, Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. ; 1] Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717435" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cation Transport Proteins/deficiency/genetics ; Cell Line, Tumor ; *Cell Transformation, Neoplastic/drug effects ; Chelating Agents/pharmacology/therapeutic use ; Copper/*metabolism/pharmacology ; Disease Models, Animal ; Drug Repositioning ; Drug Resistance, Neoplasm/drug effects ; Female ; Hepatolenticular Degeneration/drug therapy ; Humans ; Indoles/pharmacology ; Lung Neoplasms/drug therapy/genetics/metabolism/pathology ; *MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3/metabolism ; Mitogen-Activated Protein Kinase Kinases/antagonists & ; inhibitors/genetics/metabolism ; Phosphorylation/drug effects ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/*metabolism ; Sulfonamides/pharmacology ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-05-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuzaki, Shigenobu -- Uchiyama, Jumpei -- Takemura-Uchiyama, Iyo -- Daibata, Masanori -- England -- Nature. 2014 May 1;509(7498):S9. doi: 10.1038/509S9a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kochi University Medical School in Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784429" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*virology ; Bacterial Infections/microbiology/*therapy ; Bacteriophages/immunology/pathogenicity/*physiology ; Bombyx/microbiology ; Drug Resistance, Bacterial ; Host Specificity ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pitnick, Scott -- Pfennig, David W -- England -- Nature. 2014 Jan 30;505(7485):626-7. doi: 10.1038/nature12853. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Syracuse University, Syracuse, New York 13244, USA. ; Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cooperative Behavior ; Drosophila melanogaster/*physiology ; Female ; Male ; Sexual Behavior, Animal/*physiology ; *Siblings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Settembre, Carmine -- Ballabio, Andrea -- England -- Nature. 2014 Dec 4;516(7529):40-1. doi: 10.1038/nature13939. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Telethon Institute of Genetics and Medicine, Naples 80078, Italy; in the Department of Translational Medicine, Federico II University, Naples; and in the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383529" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/*genetics ; Cyclic AMP Response Element-Binding Protein/metabolism ; Fatty Acids/metabolism ; *Gene Expression Regulation ; Liver/cytology/*metabolism ; PPAR alpha/metabolism ; Promoter Regions, Genetic ; Protein Binding ; Receptors, Cytoplasmic and Nuclear/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, Natasha -- England -- Nature. 2014 Nov 20;515(7527):322. doi: 10.1038/nature.2014.16350.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources/*methods ; Coral Reefs ; Goals ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-01-17
    Description: Understanding brain circuits begins with an appreciation of their component parts - the cells. Although GABAergic interneurons are a minority population within the brain, they are crucial for the control of inhibition. Determining the diversity of these interneurons has been a central goal of neurobiologists, but this amazing cell type has so far defied a generalized classification system. Interneuron complexity within the telencephalon could be simplified by viewing them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature. Our perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kepecs, Adam -- Fishell, Gordon -- MH071679/MH/NIMH NIH HHS/ -- MH095147/MH/NIMH NIH HHS/ -- NS074972/NS/NINDS NIH HHS/ -- NS081297/NS/NINDS NIH HHS/ -- R01 NS075531/NS/NINDS NIH HHS/ -- R01NS075531/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Jan 16;505(7483):318-26. doi: 10.1038/nature12983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Marks Building, New York 11724, USA. ; NYU Langone Medical Center, First Avenue, Smilow Research Building, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24429630" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior/physiology ; Cell Lineage ; Cell Proliferation ; Humans ; Interneurons/*classification/cytology/*physiology ; Mental Processes/physiology ; Models, Neurological ; Neural Pathways
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-06-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, Natasha -- England -- Nature. 2014 Jun 26;510(7506):455. doi: 10.1038/510455a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24965631" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/physiology ; *Biodiversity ; Congresses as Topic ; *Conservation of Natural Resources ; Earth (Planet) ; Ecology/*organization & administration ; *Environmental Policy ; *International Cooperation ; Life ; Pollination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-11-20
    Description: Intestinal microbial communities have profound effects on host physiology. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined. Here we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germ-free or antibiotic-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signalling. Consistent with this observation, the IFN-alpha receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of treatment with antibiotics in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity, similarly to commensal bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kernbauer, Elisabeth -- Ding, Yi -- Cadwell, Ken -- J 3435/Austrian Science Fund FWF/Austria -- P30CA016087/CA/NCI NIH HHS/ -- R01 DK093668/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):94-8. doi: 10.1038/nature13960. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA [2] Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA. ; 1] New York Presbyterian Hospital, New York, New York 10065, USA [2] Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Bacterial Physiological Phenomena/*immunology ; Citrobacter rodentium/physiology ; Enterobacteriaceae Infections/immunology ; Enterovirus/immunology/*physiology ; Female ; Gene Expression Profiling ; Gene Expression Regulation/immunology ; Immunity, Innate/immunology ; Immunity, Mucosal/*immunology ; Interferon Type I/immunology ; Intestinal Mucosa/cytology/drug effects/*immunology/*virology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Norovirus/immunology/physiology ; Signal Transduction/immunology ; Specific Pathogen-Free Organisms
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-06-12
    Description: High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193940/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193940/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shalek, Alex K -- Satija, Rahul -- Shuga, Joe -- Trombetta, John J -- Gennert, Dave -- Lu, Diana -- Chen, Peilin -- Gertner, Rona S -- Gaublomme, Jellert T -- Yosef, Nir -- Schwartz, Schraga -- Fowler, Brian -- Weaver, Suzanne -- Wang, Jing -- Wang, Xiaohui -- Ding, Ruihua -- Raychowdhury, Raktima -- Friedman, Nir -- Hacohen, Nir -- Park, Hongkun -- May, Andrew P -- Regev, Aviv -- 1F32HD075541-01/HD/NICHD NIH HHS/ -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 19;510(7505):363-9. doi: 10.1038/nature13437. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA [3] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [4]. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2]. ; 1] Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, California 94080, USA [2]. ; Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, California 94080, USA. ; 1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA. ; School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Center for Immunology and Inflammatory Diseases & Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA [3] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919153" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Viral/pharmacology ; Base Sequence ; Cell Communication ; Dendritic Cells/drug effects/*immunology ; Gene Expression Profiling ; Gene Expression Regulation/*immunology ; Immunity/*genetics ; Interferon-beta/genetics ; Mice ; Microfluidic Analytical Techniques ; *Paracrine Communication ; Principal Component Analysis ; RNA, Messenger/chemistry/genetics ; Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-07-22
    Description: The viral reservoir represents a critical challenge for human immunodeficiency virus type 1 (HIV-1) eradication strategies. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded rapidly after mucosal simian immunodeficiency virus (SIV) infection of rhesus monkeys and before systemic viraemia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10 and 14 after intrarectal SIVMAC251 infection. Treatment with ART on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later time points. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, after discontinuation of ART following 24 weeks of fully suppressive therapy, virus rebounded in all animals, although the monkeys that were treated on day 3 exhibited a delayed viral rebound as compared with those treated on days 7, 10 and 14. The time to viral rebound correlated with total viraemia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded rapidly after intrarectal SIV infection of rhesus monkeys, during the 'eclipse' phase, and before detectable viraemia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126858/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126858/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitney, James B -- Hill, Alison L -- Sanisetty, Srisowmya -- Penaloza-MacMaster, Pablo -- Liu, Jinyan -- Shetty, Mayuri -- Parenteau, Lily -- Cabral, Crystal -- Shields, Jennifer -- Blackmore, Stephen -- Smith, Jeffrey Y -- Brinkman, Amanda L -- Peter, Lauren E -- Mathew, Sheeba I -- Smith, Kaitlin M -- Borducchi, Erica N -- Rosenbloom, Daniel I S -- Lewis, Mark G -- Hattersley, Jillian -- Li, Bei -- Hesselgesser, Joseph -- Geleziunas, Romas -- Robb, Merlin L -- Kim, Jerome H -- Michael, Nelson L -- Barouch, Dan H -- AI060354/AI/NIAID NIH HHS/ -- AI078526/AI/NIAID NIH HHS/ -- AI084794/AI/NIAID NIH HHS/ -- AI095985/AI/NIAID NIH HHS/ -- AI096040/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- R01 AI084794/AI/NIAID NIH HHS/ -- R56 AI091514/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- U19 AI078526/AI/NIAID NIH HHS/ -- U19 AI095985/AI/NIAID NIH HHS/ -- U19 AI096040/AI/NIAID NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Aug 7;512(7512):74-7. doi: 10.1038/nature13594. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138 USA. ; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Bioqual, Rockville, Maryland 20852, USA. ; Gilead Sciences, Foster City, California 94404, USA. ; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25042999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Retroviral Agents/administration & dosage/pharmacology/therapeutic use ; Carrier State/drug therapy/virology ; DNA, Viral/analysis/biosynthesis/blood ; Disease Models, Animal ; Female ; Kinetics ; Macaca mulatta/immunology/*virology ; Male ; Proviruses/genetics ; RNA, Viral/blood ; Rectum/virology ; Simian Acquired Immunodeficiency Syndrome/drug therapy/immunology/*virology ; Simian Immunodeficiency Virus/drug effects/*growth & ; development/immunology/physiology ; Time Factors ; Treatment Failure ; *Viral Load/drug effects ; Viremia/drug therapy/*virology ; Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carninci, Piero -- England -- Nature. 2014 Nov 20;515(7527):346-7. doi: 10.1038/515346a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, Yokohama, Kanagawa 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409821" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Datasets as Topic ; Genome/*genetics ; Genome, Human/genetics ; *Genomics ; Humans ; Mice/*genetics ; *Models, Animal ; *Molecular Sequence Annotation ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greif, Daniel M -- Eichmann, Anne -- England -- Nature. 2014 Apr 3;508(7494):50-1. doi: 10.1038/nature13217. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; 1] Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA. [2] Department of Cellular and Molecular Physiology, Yale University School of Medicine, and at the Center for Interdisciplinary Research in Biology, College de France, Paris.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670635" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capillaries/*cytology ; Cerebrovascular Circulation/*physiology ; *Disease ; Female ; *Health ; Male ; Pericytes/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whorton, Matt -- England -- Nature. 2014 Dec 11;516(7530):176-8. doi: 10.1038/nature13944. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239-3098, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383534" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism/pharmacology ; Chloride Channels/*chemistry/*metabolism ; Crystallography, X-Ray
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-08-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffith, Leslie C -- R01 GM054408/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Aug 14;512(7513):138-9. doi: 10.1038/512138a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Volen Center for Complex Systems and National Center for Behavioural Genomics, Brandeis University, Waltham, Massachusetts 02454-9110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Decision Making/physiology ; Drosophila melanogaster/*physiology ; Neurosciences ; Sexual Behavior, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-08-28
    Description: The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the malleability of emotional memory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redondo, Roger L -- Kim, Joshua -- Arons, Autumn L -- Ramirez, Steve -- Liu, Xu -- Tonegawa, Susumu -- P50 MH058880/MH/NIMH NIH HHS/ -- R01 MH078821/MH/NIMH NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 18;513(7518):426-30. doi: 10.1038/nature13725. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3]. ; 1] RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2]. ; 1] RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162525" target="_blank"〉PubMed〈/a〉
    Keywords: Affect ; Amygdala/physiology ; Animals ; Avoidance Learning ; Conditioning, Classical/physiology ; Cues ; Dentate Gyrus/physiology ; Fear ; Female ; Hippocampus/*physiology ; Male ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity/physiology ; Optogenetics ; Reward
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-04-11
    Description: How we sense touch remains fundamentally unknown. The Merkel cell-neurite complex is a gentle touch receptor in the skin that mediates slowly adapting responses of Abeta sensory fibres to encode fine details of objects. This mechanoreceptor complex was recognized to have an essential role in sensing gentle touch nearly 50 years ago. However, whether Merkel cells or afferent fibres themselves sense mechanical force is still debated, and the molecular mechanism of mechanotransduction is unknown. Synapse-like junctions are observed between Merkel cells and associated afferents, and yet it is unclear whether Merkel cells are inherently mechanosensitive or whether they can rapidly transmit such information to the neighbouring nerve. Here we show that Merkel cells produce touch-sensitive currents in vitro. Piezo2, a mechanically activated cation channel, is expressed in Merkel cells. We engineered mice deficient in Piezo2 in the skin, but not in sensory neurons, and show that Merkel-cell mechanosensitivity completely depends on Piezo2. In these mice, slowly adapting responses in vivo mediated by the Merkel cell-neurite complex show reduced static firing rates, and moreover, the mice display moderately decreased behavioural responses to gentle touch. Our results indicate that Piezo2 is the Merkel-cell mechanotransduction channel and provide the first line of evidence that Piezo channels have a physiological role in mechanosensation in mammals. Furthermore, our data present evidence for a two-receptor-site model, in which both Merkel cells and innervating afferents act together as mechanosensors. The two-receptor system could provide this mechanoreceptor complex with a tuning mechanism to achieve highly sophisticated responses to a given mechanical stimulus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woo, Seung-Hyun -- Ranade, Sanjeev -- Weyer, Andy D -- Dubin, Adrienne E -- Baba, Yoshichika -- Qiu, Zhaozhu -- Petrus, Matt -- Miyamoto, Takashi -- Reddy, Kritika -- Lumpkin, Ellen A -- Stucky, Cheryl L -- Patapoutian, Ardem -- P30 AR044535/AR/NIAMS NIH HHS/ -- R01 AR051219/AR/NIAMS NIH HHS/ -- R01 DE022358/DE/NIDCR NIH HHS/ -- R01 NS040538/NS/NINDS NIH HHS/ -- R01AR051219/AR/NIAMS NIH HHS/ -- R01DE022358/DE/NIDCR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 29;509(7502):622-6. doi: 10.1038/nature13251. Epub 2014 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA. ; Departments of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA. ; Departments of Dermatology & Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA [2] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA [2] Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717433" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Electric Conductivity ; Female ; In Vitro Techniques ; Ion Channels/deficiency/genetics/*metabolism ; Male ; *Mechanotransduction, Cellular/genetics ; Merkel Cells/*metabolism ; Mice ; Mice, Knockout ; Neurites/metabolism ; Neurons, Afferent/metabolism ; Skin/cytology/innervation ; Touch/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-07-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- Maher, Brendan -- England -- Nature. 2014 Jul 3;511(7507):13-4. doi: 10.1038/511013a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990722" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Genetic Engineering ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/*pathogenicity ; Influenza A Virus, H5N1 Subtype/genetics/pathogenicity ; Influenza, Human/transmission/*virology ; National Institute of Allergy and Infectious Diseases (U.S.)/legislation & ; jurisprudence ; Risk Assessment ; United States ; Universities
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grune, Barbara -- Hensel, Andreas -- Schonfelder, Gilbert -- England -- Nature. 2014 Aug 7;512(7512):28. doi: 10.1038/512028c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Federal Institute for Risk Assessment (BfR), Berlin, Germany. ; BfR; and Charite-Universitatsmedizin Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25100475" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Welfare/*legislation & jurisprudence ; Animals ; *Animals, Laboratory/genetics/physiology ; European Union ; Organisms, Genetically Modified/genetics/physiology ; Pain/diagnosis/genetics/physiopathology/*veterinary ; Pain Measurement/veterinary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krug, Robert M -- England -- Nature. 2014 Dec 18;516(7531):338-9. doi: 10.1038/516338a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences, Center for Infectious Disease, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519129" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Humans ; Influenza A virus/*enzymology ; Influenza B virus/*enzymology ; RNA/biosynthesis ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-07-22
    Description: The evolution of the placenta from a non-placental ancestor causes a shift of maternal investment from pre- to post-fertilization, creating a venue for parent-offspring conflicts during pregnancy. Theory predicts that the rise of these conflicts should drive a shift from a reliance on pre-copulatory female mate choice to polyandry in conjunction with post-zygotic mechanisms of sexual selection. This hypothesis has not yet been empirically tested. Here we apply comparative methods to test a key prediction of this hypothesis, which is that the evolution of placentation is associated with reduced pre-copulatory female mate choice. We exploit a unique quality of the livebearing fish family Poeciliidae: placentas have repeatedly evolved or been lost, creating diversity among closely related lineages in the presence or absence of placentation. We show that post-zygotic maternal provisioning by means of a placenta is associated with the absence of bright coloration, courtship behaviour and exaggerated ornamental display traits in males. Furthermore, we found that males of placental species have smaller bodies and longer genitalia, which facilitate sneak or coercive mating and, hence, circumvents female choice. Moreover, we demonstrate that post-zygotic maternal provisioning correlates with superfetation, a female reproductive adaptation that may result in polyandry through the formation of temporally overlapping, mixed-paternity litters. Our results suggest that the emergence of prenatal conflict during the evolution of the placenta correlates with a suite of phenotypic and behavioural male traits that is associated with a reduced reliance on pre-copulatory female mate choice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pollux, B J A -- Meredith, R W -- Springer, M S -- Garland, T -- Reznick, D N -- England -- Nature. 2014 Sep 11;513(7517):233-6. doi: 10.1038/nature13451. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biology, University of California, Riverside, California 92521, USA [2] Experimental Zoology Group, Wageningen University, 6708 WD Wageningen, the Netherlands. ; 1] Department of Biology, University of California, Riverside, California 92521, USA [2] Department of Biology and Molecular Biology, Montclair State University, Montclair, New Jersey 07043, USA. ; Department of Biology, University of California, Riverside, California 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Cyprinodontiformes/anatomy & histology/*classification/*physiology ; Female ; Genitalia, Male/anatomy & histology ; Male ; *Phylogeny ; Reproduction ; Sexual Behavior, Animal/*physiology ; Viviparity, Nonmammalian/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-06-12
    Description: Knowledge of the early evolution of fish largely depends on soft-bodied material from the Lower (Series 2) Cambrian period of South China. Owing to the rarity of some of these forms and a general lack of comparative material from other deposits, interpretations of various features remain controversial, as do their wider relationships amongst post-Cambrian early un-skeletonized jawless vertebrates. Here we redescribe Metaspriggina on the basis of new material from the Burgess Shale and exceptionally preserved material collected near Marble Canyon, British Columbia, and three other Cambrian Burgess Shale-type deposits from Laurentia. This primitive fish displays unambiguous vertebrate features: a notochord, a pair of prominent camera-type eyes, paired nasal sacs, possible cranium and arcualia, W-shaped myomeres, and a post-anal tail. A striking feature is the branchial area with an array of bipartite bars. Apart from the anterior-most bar, which appears to be slightly thicker, each is associated with externally located gills, possibly housed in pouches. Phylogenetic analysis places Metaspriggina as a basal vertebrate, apparently close to the Chengjiang taxa Haikouichthys and Myllokunmingia, demonstrating also that this primitive group of fish was cosmopolitan during Lower-Middle Cambrian times (Series 2-3). However, the arrangement of the branchial region in Metaspriggina has wider implications for reconstructing the morphology of the primitive vertebrate. Each bipartite bar is identified as being respectively equivalent to an epibranchial and ceratobranchial. This configuration suggests that a bipartite arrangement is primitive and reinforces the view that the branchial basket of lampreys is probably derived. Other features of Metaspriggina, including the external position of the gills and possible absence of a gill opposite the more robust anterior-most bar, are characteristic of gnathostomes and so may be primitive within vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, Simon Conway -- Caron, Jean-Bernard -- England -- Nature. 2014 Aug 28;512(7515):419-22. doi: 10.1038/nature13414. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. ; 1] Department of Natural History (Palaeobiology), Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada [2] University of Toronto, Department of Ecology and Evolutionary Biology, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919146" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; British Columbia ; Fishes/*anatomy & histology ; *Fossils ; Gills/anatomy & histology ; Museums ; Ontario ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stroebel, David -- Paoletti, Pierre -- England -- Nature. 2014 Jul 10;511(7508):162-3. doi: 10.1038/511162a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, Ecole Normale Superieure, CNRS UMR8197, INSERM U1024, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Models, Molecular ; Protein Structure, Tertiary ; Receptors, N-Methyl-D-Aspartate/*chemistry/metabolism/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-10-14
    Description: The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal duplication program and instead form more than a hundred centrioles that are required for the growth of motile cilia and the efficient propelling of physiological fluids. The majority of these new centrioles are thought to appear de novo, that is, independently from the centrosome, around electron-dense structures called deuterosomes. Their origin remains unknown. Using live imaging combined with correlative super-resolution light and electron microscopy, we show that all new centrioles derive from the pre-existing progenitor cell centrosome through multiple rounds of procentriole seeding. Moreover, we establish that only the daughter centrosomal centriole contributes to deuterosome formation, and thus to over ninety per cent of the final centriole population. This unexpected centriolar asymmetry grants new perspectives when studying cilia-related diseases and pathological centriole amplification observed in cycling cells and associated with microcephaly and cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Al Jord, Adel -- Lemaitre, Anne-Iris -- Delgehyr, Nathalie -- Faucourt, Marion -- Spassky, Nathalie -- Meunier, Alice -- England -- Nature. 2014 Dec 4;516(7529):104-7. doi: 10.1038/nature13770. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France [2] Inserm, U1024, F-75005 Paris, France [3] CNRS, UMR 8197, F-75005 Paris, France. ; 1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France [2] Inserm, U1024, F-75005 Paris, France [3] CNRS, UMR 8197, F-75005 Paris, France [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Centrioles/*physiology/ultrastructure ; Centrosome/*physiology/ultrastructure ; Cilia/*physiology/ultrastructure ; Mice ; Microscopy, Electron, Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-04-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Bernard -- England -- Nature. 2014 Apr 3;508(7494):31-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24707524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asia ; *Biological Evolution ; *Fossils ; History, 20th Century ; Hominidae/anatomy & histology/*classification ; Kenya ; Paleontology/*history ; Phylogeny ; Tanzania
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-08-15
    Description: The pluripotency factor Lin28 inhibits the biogenesis of the let-7 family of mammalian microRNAs. Lin28 is highly expressed in embryonic stem cells and has a fundamental role in regulation of development, glucose metabolism and tissue regeneration. Overexpression of Lin28 is correlated with the onset of numerous cancers, whereas let-7, a tumour suppressor, silences several human oncogenes. Lin28 binds to precursor let-7 (pre-let-7) hairpins, triggering the 3' oligo-uridylation activity of TUT4 and TUT7 (refs 10-12). The oligoU tail added to pre-let-7 serves as a decay signal, as it is rapidly degraded by Dis3l2 (refs 13, 14), a homologue of the catalytic subunit of the RNA exosome. The molecular basis of Lin28-mediated recruitment of TUT4 and TUT7 to pre-let-7 and its subsequent degradation by Dis3l2 is largely unknown. To examine the mechanism of Dis3l2 substrate recognition we determined the structure of mouse Dis3l2 in complex with an oligoU RNA to mimic the uridylated tail of pre-let-7. Three RNA-binding domains form an open funnel on one face of the catalytic domain that allows RNA to navigate a path to the active site different from that of its exosome counterpart. The resulting path reveals an extensive network of uracil-specific interactions spanning the first 12 nucleotides of an oligoU-tailed RNA. We identify three U-specificity zones that explain how Dis3l2 recognizes, binds and processes uridylated pre-let-7 in the final step of the Lin28-let-7 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192074/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192074/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faehnle, Christopher R -- Walleshauser, Jack -- Joshua-Tor, Leemor -- P30 CA045508/CA/NCI NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- T32 GM065094/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):252-6. doi: 10.1038/nature13553. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3]. ; 1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3] Watson School of Biological Science, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA [4]. ; 1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3] Watson School of Biological Science, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA [4] Howard Hughes Medical Institute, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Exoribonucleases/*chemistry/*metabolism ; Exosome Multienzyme Ribonuclease Complex/chemistry ; Mice ; MicroRNAs/chemistry/genetics/*metabolism ; Models, Molecular ; Oligoribonucleotides/chemistry/metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Schizosaccharomyces pombe Proteins/chemistry ; Substrate Specificity ; Uracil Nucleotides/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-06-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayden, Erika Check -- England -- Nature. 2014 Jun 5;510(7503):18. doi: 10.1038/510018a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24899284" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biotechnology/*economics/trends ; California ; Clinical Trials as Topic/*economics ; Embryonic Stem Cells/*transplantation ; Humans ; Models, Animal ; *Research Support as Topic ; Spinal Cord Injuries/pathology/*therapy ; *Stem Cell Transplantation/economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woolhouse, Mark -- Farrar, Jeremy -- England -- Nature. 2014 May 29;509(7502):555-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24877180" target="_blank"〉PubMed〈/a〉
    Keywords: Advisory Committees/*organization & administration ; Animals ; Anti-Bacterial Agents/administration & dosage/*pharmacology/*supply & ; distribution/therapeutic use ; Drug Discovery/*organization & administration/statistics & numerical data/trends ; *Drug Resistance, Microbial/drug effects ; Drug Resistance, Multiple, Bacterial/drug effects ; Epidemiological Monitoring ; Global Health/statistics & numerical data ; Goals ; *Health Policy/economics/trends ; Humans ; Inappropriate Prescribing/prevention & control/veterinary ; *International Cooperation ; Leadership ; Methicillin-Resistant Staphylococcus aureus ; United States ; United States Food and Drug Administration ; World Health Organization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-04-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ledford, Heidi -- England -- Nature. 2014 Apr 10;508(7495):158-9. doi: 10.1038/508158a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717486" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/therapeutic use ; Citric Acid Cycle/genetics ; Clinical Trials as Topic ; Glucose/metabolism ; Glutarates/metabolism ; Humans ; Isocitrate Dehydrogenase/antagonists & inhibitors/genetics/metabolism ; *Metabolic Networks and Pathways/genetics ; Mice ; Neoplasms/*drug therapy/enzymology/genetics/*metabolism ; Pyruvate Kinase/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...