ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-27
    Description: Author(s): M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida Interband optical transitions in graphene are subject to pseudospin selection rules. Impulsive excitation with linearly polarized light generates an anisotropic photocarrier occupation in momentum space that evolves at time scales shorter than 100 fs. Here, we investigate the evolution of nonequilib… [Phys. Rev. B 92, 165429] Published Mon Oct 26, 2015
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-13
    Description: Author(s): Y. Kim, Y. Ma, A. Imambekov, N. G. Kalugin, A. Lombardo, A. C. Ferrari, J. Kono, and D. Smirnov We perform Raman scattering experiments on natural graphite in magnetic fields up to 45 T, observing a series of peaks due to interband electronic excitations over a much broader magnetic field range than previously reported. We also explore electron-phonon coupling in graphite via magnetophonon res... [Phys. Rev. B 85, 121403] Published Mon Mar 12, 2012
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-25
    Description: Graphene field-effect transistors as room-temperature terahertz detectors Nature Materials 11, 865 (2012). doi:10.1038/nmat3417 Authors: L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini & A. Tredicucci The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.
    Print ISSN: 1476-1122
    Electronic ISSN: 1476-4660
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-24
    Description: Author(s): M. R. Connolly, K. L. Chiu, A. Lombardo, A. Fasoli, A. C. Ferrari, D. Anderson, G. A. C. Jones, and C. G. Smith We use the charged tip of a low-temperature scanning probe microscope to perturb the transport through a graphene nanoconstriction. Maps of the conductance as a function of tip position display concentric halos and, by following the expansion of the halos with back-gate voltage, we are able to ident... [Phys. Rev. B 83, 115441] Published Wed Mar 23, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-06
    Description: Author(s): Y. Ma, Y. Kim, N. G. Kalugin, A. Lombardo, A. C. Ferrari, J. Kono, A. Imambekov, and D. Smirnov We report the observation of strongly temperature (T)-dependent spectral lines in electronic Raman-scattering spectra of graphite in a high magnetic field up to 45 T applied along the c axis. The magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively re... [Phys. Rev. B 89, 121402] Published Wed Mar 05, 2014
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Platinum thin films are deposited on open-cell nickel foam with porosity of 95% via spontaneous galvanic displacement. Ni foams with different morphologies and pore size are compared and characterized by electrochemical and structural analysis techniques. The effect of Pt coating on the electrochemical activity is studied by using the Pt coated foam as electrode material for hydrogen evolution reaction in an aqueous alkaline electrolyte. The electrocatalytic activity of the electrodes is evaluated using linear sweep voltammetry curves and Tafel plots as a function of deposition time. The comparison with scanning electron microscopy analyses demonstrates that the catalytic activity has a maximum when the platinum film completely covers the Ni surface. The further increase of the Pt thickness leads to mechanical instability with crack formation and delamination. The effect of the foam morphology on the Pt deposition rate has been evaluated and discussed, determining the minimum Pt amount required to achieve the maximum electrochemical activity, as well as the maximum thickness in order to assure stable characteristics before delamination occurs.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-17
    Description: Author(s): S. Dal Conte, F. Bottegoni, E. A. A. Pogna, D. De Fazio, S. Ambrogio, I. Bargigia, C. D'Andrea, A. Lombardo, M. Bruna, F. Ciccacci, A. C. Ferrari, G. Cerullo, and M. Finazzi We study the exciton valley relaxation dynamics in single-layer MoS 2 by a combination of two nonequilibrium optical techniques: time-resolved Faraday rotation and time-resolved circular dichroism. The depolarization dynamics, measured at 77 K, exhibits a peculiar biexponential decay, characterized b… [Phys. Rev. B 92, 235425] Published Mon Dec 14, 2015
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: The aim of this work is to evaluate the possible use of Nexar™ polymer, a sulfonated pentablock copolymer (s-PBC), whose structure is formed by tert-butyl styrene, hydrogenated isoprene, sulfonated styrene, hydrogenated isoprene, and tert-butyl styrene (tBS-HI-SS-HI-tBS), as a more economical and efficient alternative to Nafion® membrane for proton exchange membrane (PEM) electrolysis cells. Furthermore, we have studied a new methodology for modification of gas diffusion layers (GDL) by depositing Pt and TiO2 nanoparticles at the cathode and anode side, respectively, and a protective polymeric layer on their surface, allowing the improvement of the contact with the membrane. Morphological, structural, and electrical characterization were performed on the Nexar™ membrane and on the modified GDLs. The use of modified GDLs positively affects the efficiency of the water electrolysis process. Furthermore, Nexar™ showed higher water uptake and conductivity with respect to Nafion®, resulting in an increased amount of current generated during water electrolysis. In conclusion, we show that Nexar™ is an efficient and cheaper alternative to Nafion® as the proton exchange membrane in water splitting applications and we suggest a possible methodology for improving GDLs’ properties. These results meet the urgent need for low-cost materials and processes for hydrogen production.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-21
    Description: Article Ultrathin layers that can confine electron motion to just two dimensions exhibit a wide range of unusual electronic properties. Gamucci et al . combine two very different examples of such systems—graphene and a gallium arsenide quantum well—and demonstrate interlayer coupling effects. Nature Communications doi: 10.1038/ncomms6824 Authors: A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna, L. N. Pfeiffer, K. W. West, A. C. Ferrari, M. Polini, V. Pellegrini
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-30
    Description: Targeted genome editing by artificial nucleases has brought the goal of site-specific transgene integration and gene correction within the reach of gene therapy. However, its application to long-term repopulating haematopoietic stem cells (HSCs) has remained elusive. Here we show that poor permissiveness to gene transfer and limited proficiency of the homology-directed DNA repair pathway constrain gene targeting in human HSCs. By tailoring delivery platforms and culture conditions we overcame these barriers and provide stringent evidence of targeted integration in human HSCs by long-term multilineage repopulation of transplanted mice. We demonstrate the therapeutic potential of our strategy by targeting a corrective complementary DNA into the IL2RG gene of HSCs from healthy donors and a subject with X-linked severe combined immunodeficiency (SCID-X1). Gene-edited HSCs sustained normal haematopoiesis and gave rise to functional lymphoid cells that possess a selective growth advantage over those carrying disruptive IL2RG mutations. These results open up new avenues for treating SCID-X1 and other diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082311/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082311/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Genovese, Pietro -- Schiroli, Giulia -- Escobar, Giulia -- Di Tomaso, Tiziano -- Firrito, Claudia -- Calabria, Andrea -- Moi, Davide -- Mazzieri, Roberta -- Bonini, Chiara -- Holmes, Michael C -- Gregory, Philip D -- van der Burg, Mirjam -- Gentner, Bernhard -- Montini, Eugenio -- Lombardo, Angelo -- Naldini, Luigi -- 249845/European Research Council/International -- TGT11D02/Telethon/Italy -- England -- Nature. 2014 Jun 12;510(7504):235-40. doi: 10.1038/nature13420. Epub 2014 May 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy. ; 1] TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy [2] Vita Salute San Raffaele University, 20132 Milan, Italy. ; 1] TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy [2] The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia. ; Experimental Hematology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Sangamo BioSciences Inc., Richmond, California 94804, USA. ; Department of Immunology Erasmus MC, University Medical Center, 3015 Rotterdam, The Netherlands. ; 1] TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy [2] Vita Salute San Raffaele University, 20132 Milan, Italy [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870228" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/metabolism ; DNA, Complementary/genetics ; Endonucleases/metabolism ; Fetal Blood/cytology/metabolism/transplantation ; Gene Targeting/*methods ; Genome, Human/*genetics ; Hematopoiesis/genetics ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/*metabolism ; Humans ; Interleukin Receptor Common gamma Subunit/genetics ; Male ; Mice ; Mutation/genetics ; Targeted Gene Repair/*methods ; X-Linked Combined Immunodeficiency Diseases/*genetics/therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...