ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Structure, Tertiary  (376)
  • Nature Publishing Group (NPG)  (376)
  • Blackwell Publishing Ltd
Collection
Publisher
Years
  • 1
    Publication Date: 2016-01-21
    Description: RNA polymerase (Pol) II produces messenger RNA during transcription of protein-coding genes in all eukaryotic cells. The Pol II structure is known at high resolution from X-ray crystallography for two yeast species. Structural studies of mammalian Pol II, however, remain limited to low-resolution electron microscopy analysis of human Pol II and its complexes with various proteins. Here we report the 3.4 A resolution cryo-electron microscopy structure of mammalian Pol II in the form of a transcribing complex comprising DNA template and RNA transcript. We use bovine Pol II, which is identical to the human enzyme except for seven amino-acid residues. The obtained atomic model closely resembles its yeast counterpart, but also reveals unknown features. Binding of nucleic acids to the polymerase involves 'induced fit' of the mobile Pol II clamp and active centre region. DNA downstream of the transcription bubble contacts a conserved 'TPSA motif' in the jaw domain of the Pol II subunit RPB5, an interaction that is apparently already established during transcription initiation. Upstream DNA emanates from the active centre cleft at an angle of approximately 105 degrees with respect to downstream DNA. This position of upstream DNA allows for binding of the general transcription elongation factor DSIF (SPT4-SPT5) that we localize over the active centre cleft in a conserved position on the clamp domain of Pol II. Our results define the structure of mammalian Pol II in its functional state, indicate that previous crystallographic analysis of yeast Pol II is relevant for understanding gene transcription in all eukaryotes, and provide a starting point for a mechanistic analysis of human transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernecky, Carrie -- Herzog, Franz -- Baumeister, Wolfgang -- Plitzko, Jurgen M -- Cramer, Patrick -- England -- Nature. 2016 Jan 28;529(7587):551-4. doi: 10.1038/nature16482. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Gottingen, Germany. ; Gene Center Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. ; Max Planck Institute for Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789250" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Animals ; Catalytic Domain ; Cattle ; *Cryoelectron Microscopy ; DNA/genetics/metabolism/ultrastructure ; Humans ; Models, Molecular ; Nucleic Acids/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase II/chemistry/*metabolism/*ultrastructure ; RNA, Messenger/biosynthesis/genetics/ultrastructure ; Saccharomyces cerevisiae/enzymology ; Templates, Genetic ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-24
    Description: All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the beta-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane beta-barrel of BamA to induce movement of the beta-strands of the barrel and promote insertion of the nascent OMP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Yinghong -- Li, Huanyu -- Dong, Haohao -- Zeng, Yi -- Zhang, Zhengyu -- Paterson, Neil G -- Stansfeld, Phillip J -- Wang, Zhongshan -- Zhang, Yizheng -- Wang, Wenjian -- Dong, Changjiang -- G1100110/1/Medical Research Council/United Kingdom -- WT106121MA/Wellcome Trust/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):64-9. doi: 10.1038/nature17199. Epub 2016 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. ; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, China. ; Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China. ; Laboratory of Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26901871" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Movement ; Multiprotein Complexes/*chemistry/*metabolism ; Periplasm/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-05
    Description: HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 A resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirchdoerfer, Robert N -- Cottrell, Christopher A -- Wang, Nianshuang -- Pallesen, Jesper -- Yassine, Hadi M -- Turner, Hannah L -- Corbett, Kizzmekia S -- Graham, Barney S -- McLellan, Jason S -- Ward, Andrew B -- R56 AI118016/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):118-21. doi: 10.1038/nature17200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA. ; Viral Pathogenesis Laboratory, National Institute of Allergy and Infectious Diseases, Building 40, Room 2502, 40 Convent Drive, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26935699" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Coronavirus/*chemistry/*ultrastructure ; Cryoelectron Microscopy ; Humans ; Membrane Fusion ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Proteolysis ; Receptors, Virus/metabolism ; Spike Glycoprotein, Coronavirus/*chemistry/metabolism/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-15
    Description: Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reimer, Janice M -- Aloise, Martin N -- Harrison, Paul M -- Schmeing, T Martin -- 106615/Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 14;529(7585):239-42. doi: 10.1038/nature16503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montreal, Quebec H3G 0B1, Canada. ; Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26762462" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/chemistry/metabolism ; Anti-Bacterial Agents/biosynthesis ; Binding Sites ; *Biocatalysis ; Brevibacillus/*enzymology ; Carbohydrate Metabolism ; Carrier Proteins/chemistry/metabolism ; Catalytic Domain ; Coenzymes/metabolism ; Crystallography, X-Ray ; Gramicidin/*biosynthesis ; Hydroxymethyl and Formyl Transferases/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/chemistry/metabolism ; Pantetheine/analogs & derivatives/metabolism ; Peptide Synthases/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Transfer/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-09
    Description: The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a mouse coronavirus S trimer ectodomain determined at 4.0 A resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walls, Alexandra C -- Tortorici, M Alejandra -- Bosch, Berend-Jan -- Frenz, Brandon -- Rottier, Peter J M -- DiMaio, Frank -- Rey, Felix A -- Veesler, David -- GM103310/GM/NIGMS NIH HHS/ -- T32GM008268/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):114-7. doi: 10.1038/nature16988. Epub 2016 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institut Pasteur, Unite de Virologie Structurale, 75015 Paris, France. ; CNRS UMR 3569 Virologie, 75015 Paris, France. ; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26855426" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Cell Line ; Coronavirus Infections/immunology/virology ; *Cryoelectron Microscopy ; Drosophila melanogaster ; Mice ; Models, Molecular ; Molecular Sequence Data ; Murine hepatitis virus/*chemistry/immunology/*ultrastructure ; Protein Multimerization ; Protein Structure, Tertiary ; Spike Glycoprotein, Coronavirus/*chemistry/immunology/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-15
    Description: Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs). During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drake, Eric J -- Miller, Bradley R -- Shi, Ce -- Tarrasch, Jeffrey T -- Sundlov, Jesse A -- Allen, C Leigh -- Skiniotis, Georgios -- Aldrich, Courtney C -- Gulick, Andrew M -- GM-068440/GM/NIGMS NIH HHS/ -- GM-115601/GM/NIGMS NIH HHS/ -- R01 GM068440/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Jan 14;529(7585):235-8. doi: 10.1038/nature16163.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA. ; Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, USA. ; Center for Drug Design and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26762461" target="_blank"〉PubMed〈/a〉
    Keywords: Acinetobacter baumannii/*enzymology ; Biocatalysis ; Carrier Proteins/metabolism ; Coenzymes/metabolism ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Holoenzymes/*chemistry/metabolism ; Models, Molecular ; Pantetheine/analogs & derivatives/metabolism ; Peptide Synthases/*chemistry/metabolism ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-21
    Description: The CRISPR-Cas systems, as exemplified by CRISPR-Cas9, are RNA-guided adaptive immune systems used by bacteria and archaea to defend against viral infection. The CRISPR-Cpf1 system, a new class 2 CRISPR-Cas system, mediates robust DNA interference in human cells. Although functionally conserved, Cpf1 and Cas9 differ in many aspects including their guide RNAs and substrate specificity. Here we report the 2.38 A crystal structure of the CRISPR RNA (crRNA)-bound Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1). LbCpf1 has a triangle-shaped architecture with a large positively charged channel at the centre. Recognized by the oligonucleotide-binding domain of LbCpf1, the crRNA adopts a highly distorted conformation stabilized by extensive intramolecular interactions and the (Mg(H2O)6)(2+) ion. The oligonucleotide-binding domain also harbours a looped-out helical domain that is important for LbCpf1 substrate binding. Binding of crRNA or crRNA lacking the guide sequence induces marked conformational changes but no oligomerization of LbCpf1. Our study reveals the crRNA recognition mechanism and provides insight into crRNA-guided substrate binding of LbCpf1, establishing a framework for engineering LbCpf1 to improve its efficiency and specificity for genome editing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, De -- Ren, Kuan -- Qiu, Xiaolin -- Zheng, Jianlin -- Guo, Minghui -- Guan, Xiaoyu -- Liu, Hongnan -- Li, Ningning -- Zhang, Bailing -- Yang, Daijun -- Ma, Chuang -- Wang, Shuo -- Wu, Dan -- Ma, Yunfeng -- Fan, Shilong -- Wang, Jiawei -- Gao, Ning -- Huang, Zhiwei -- England -- Nature. 2016 Apr 28;532(7600):522-6. doi: 10.1038/nature17944. Epub 2016 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27096363" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; CRISPR-Associated Proteins/*chemistry/*metabolism ; CRISPR-Cas Systems ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Crystallography, X-Ray ; Firmicutes/*enzymology ; Genetic Engineering ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Structure, Tertiary ; RNA Stability ; RNA, Bacterial/*chemistry/genetics/*metabolism ; RNA, Guide/chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-05
    Description: The human sigma1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the sigma1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the sigma1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human sigma1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like beta-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Hayden R -- Zheng, Sanduo -- Gurpinar, Esin -- Koehl, Antoine -- Manglik, Aashish -- Kruse, Andrew C -- T32GM007226/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):527-30. doi: 10.1038/nature17391. Epub 2016 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27042935" target="_blank"〉PubMed〈/a〉
    Keywords: Benzamides/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endoplasmic Reticulum/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/metabolism ; Isoxazoles/chemistry/metabolism ; Ligands ; Models, Molecular ; Piperidines/chemistry/metabolism ; Protein Structure, Tertiary ; Pyridines/chemistry/metabolism ; Receptors, sigma/*chemistry/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-05-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Andrew R -- England -- Nature. 2016 May 11;533(7602):S60-1. doi: 10.1038/533S60a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27167393" target="_blank"〉PubMed〈/a〉
    Keywords: *Access to Information ; Animals ; *Azepines/classification/economics/pharmacology/therapeutic use ; Clinical Trials as Topic ; Drug Discovery/economics/*methods ; Histones/metabolism ; Humans ; *Information Dissemination ; Male ; Mice ; Neoplasms/drug therapy ; Patents as Topic/statistics & numerical data ; Protein Binding ; Protein Structure, Tertiary ; *Triazoles/classification/economics/pharmacology/therapeutic use ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-08
    Description: Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61alpha, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 A) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855518/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855518/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Park, Eunyong -- Ling, JingJing -- Ingram, Jessica -- Ploegh, Hidde -- Rapoport, Tom A -- GM052586/GM/NIGMS NIH HHS/ -- R01 GM052586/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 17;531(7594):395-9. doi: 10.1038/nature17163. Epub 2016 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26950603" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Protein Sorting Signals ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-04-28
    Description: Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gautam, Rajeev -- Nishimura, Yoshiaki -- Pegu, Amarendra -- Nason, Martha C -- Klein, Florian -- Gazumyan, Anna -- Golijanin, Jovana -- Buckler-White, Alicia -- Sadjadpour, Reza -- Wang, Keyun -- Mankoff, Zachary -- Schmidt, Stephen D -- Lifson, Jeffrey D -- Mascola, John R -- Nussenzweig, Michel C -- Martin, Malcolm A -- AI-100148/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- UM1 AI100663-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):105-9. doi: 10.1038/nature17677. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. ; Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120156" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/administration & dosage/immunology ; Animals ; Antibodies, Monoclonal/administration & dosage/blood/genetics/immunology ; Antibodies, Neutralizing/administration & dosage/blood/genetics/immunology ; Female ; HIV Antibodies/*administration & dosage/blood/genetics/*immunology ; HIV Infections/immunology/prevention & control/transmission ; Half-Life ; Immunoglobulin Fc Fragments/chemistry/genetics/immunology ; Macaca mulatta/immunology/virology ; Male ; Mutation/genetics ; Protein Structure, Tertiary ; SAIDS Vaccines/administration & dosage/immunology ; Simian Acquired Immunodeficiency Syndrome/blood/*immunology/*prevention & control ; Simian Immunodeficiency Virus/*immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-03-11
    Description: Directional control of tip-growing cells is essential for proper tissue organization and cell-to-cell communication in animals and plants. In the sexual reproduction of flowering plants, the tip growth of the male gametophyte, the pollen tube, is precisely guided by female cues to achieve fertilization. Several female-secreted peptides have recently been identified as species-specific attractants that directly control the direction of pollen tube growth. However, the method by which pollen tubes precisely and promptly respond to the guidance signal from their own species is unknown. Here we show that tip-localized pollen-specific receptor-like kinase 6 (PRK6) with an extracellular leucine-rich repeat domain is an essential receptor for sensing of the LURE1 attractant peptide in Arabidopsis thaliana under semi-in-vivo conditions, and is important for ovule targeting in the pistil. PRK6 interacted with pollen-expressed ROPGEFs (Rho of plant guanine nucleotide-exchange factors), which are important for pollen tube growth through activation of the signalling switch Rho GTPase ROP1 (refs 7, 8). PRK6 conferred responsiveness to AtLURE1 in pollen tubes of the related species Capsella rubella. Furthermore, our genetic and physiological data suggest that PRK6 signalling through ROPGEFs and sensing of AtLURE1 are achieved in cooperation with the other PRK family receptors, PRK1, PRK3 and PRK8. Notably, the tip-focused PRK6 accumulated asymmetrically towards an external AtLURE1 source before reorientation of pollen tube tip growth. These results demonstrate that PRK6 acts as a key membrane receptor for external AtLURE1 attractants, and recruits the core tip-growth machinery, including ROP signalling proteins. This work provides insights into the orchestration of efficient pollen tube growth and species-specific pollen tube attraction by multiple receptors during male-female communication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeuchi, Hidenori -- Higashiyama, Tetsuya -- England -- Nature. 2016 Mar 10;531(7593):245-8. doi: 10.1038/nature17413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. ; JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. ; 3Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961657" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Capsella/genetics/metabolism/physiology ; GTP-Binding Proteins/metabolism ; Mutation ; Ovule/metabolism ; Phenotype ; Phosphotransferases/chemistry/genetics/*metabolism ; Pollen Tube/genetics/*growth & development/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Reproduction ; *Signal Transduction ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-01-21
    Description: The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by 'high-risk' mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Zapien, Denise -- Ruiz, Francesc Xavier -- Poirson, Juline -- Mitschler, Andre -- Ramirez, Juan -- Forster, Anne -- Cousido-Siah, Alexandra -- Masson, Murielle -- Vande Pol, Scott -- Podjarny, Alberto -- Trave, Gilles -- Zanier, Katia -- R01CA134737/CA/NCI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):541-5. doi: 10.1038/nature16481. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Equipe labellisee Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch, France. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France. ; Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Human papillomavirus 16/chemistry/*metabolism/pathogenicity ; Humans ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Oncogene Proteins, Viral/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; *Proteolysis ; Repressor Proteins/*chemistry/genetics/*metabolism ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitin-Protein Ligases/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-02-26
    Description: Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoued, Abdelrahim -- Durand, Eric -- Brunet, Yannick R -- Spinelli, Silvia -- Douzi, Badreddine -- Guzzo, Mathilde -- Flaugnatti, Nicolas -- Legrand, Pierre -- Journet, Laure -- Fronzes, Remi -- Mignot, Tam -- Cambillau, Christian -- Cascales, Eric -- England -- Nature. 2016 Mar 3;531(7592):59-63. doi: 10.1038/nature17182. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Ingenierie des Systemes Macromoleculaires, Institut de Microbiologie de la Mediterranee, CNRS UMR7255, Aix-Marseille Universite, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; Architecture et Fonction des Macromolecules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Universite, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; Laboratoire de Chimie Bacterienne, Institut de Microbiologie de la Mediterranee, CNRS UMR7283, Aix-Marseille Universite, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; Synchrotron Soleil, L'Orme des merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909579" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry/ultrastructure ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Microscopy, Fluorescence ; Models, Molecular ; *Polymerization ; Protein Structure, Tertiary ; Type VI Secretion Systems/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-03-16
    Description: Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herbst, Dominik A -- Jakob, Roman P -- Zahringer, Franziska -- Maier, Timm -- England -- Nature. 2016 Mar 24;531(7595):533-7. doi: 10.1038/nature16993. Epub 2016 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26976449" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*chemistry/*metabolism ; Crystallography, X-Ray ; Fatty Acid Synthases/metabolism ; Models, Molecular ; Mycobacterium smegmatis/enzymology ; Oxidation-Reduction ; Polyketide Synthases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Virulence Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-02-11
    Description: Sexual reproduction requires recognition between the male and female gametes. In flowering plants, the immobile sperms are delivered to the ovule-enclosed female gametophyte by guided pollen tube growth. Although the female gametophyte-secreted peptides have been identified to be the chemotactic attractant to the pollen tube, the male receptor(s) is still unknown. Here we identify a cell-surface receptor heteromer, MDIS1-MIK, on the pollen tube that perceives female attractant LURE1 in Arabidopsis thaliana. MDIS1, MIK1 and MIK2 are plasma-membrane-localized receptor-like kinases with extracellular leucine-rich repeats and an intracellular kinase domain. LURE1 specifically binds the extracellular domains of MDIS1, MIK1 and MIK2, whereas mdis1 and mik1 mik2 mutant pollen tubes respond less sensitively to LURE1. Furthermore, LURE1 triggers dimerization of the receptors and activates the kinase activity of MIK1. Importantly, transformation of AtMDIS1 to the sister species Capsella rubella can partially break down the reproductive isolation barrier. Our findings reveal a new mechanism of the male perception of the female attracting signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tong -- Liang, Liang -- Xue, Yong -- Jia, Peng-Fei -- Chen, Wei -- Zhang, Meng-Xia -- Wang, Ying-Chun -- Li, Hong-Ju -- Yang, Wei-Cai -- England -- Nature. 2016 Mar 10;531(7593):241-4. doi: 10.1038/nature16975. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; University of Chinese Academy of Sciences, Beijing 100049, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863186" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Capsella/genetics/metabolism/physiology ; Cell Membrane/metabolism ; Mutation ; Ovule/metabolism ; Phenotype ; Phosphotransferases/chemistry/genetics/*metabolism ; Pollen Tube/genetics/growth & development/metabolism ; Protein Kinases/genetics/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Reproduction ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-03-31
    Description: Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847710/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847710/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Zhonghui -- Luo, Xuelian -- Yu, Hongtao -- GM107415/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Apr 7;532(7597):131-4. doi: 10.1038/nature17402. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA. ; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA. ; Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding, Competitive/drug effects ; Cell Cycle Proteins/chemistry/*metabolism ; Chaetomium/*enzymology ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; Chromosome Segregation ; Crystallography, X-Ray ; Models, Molecular ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Proteolysis ; Proto-Oncogene Proteins/metabolism ; Securin/chemistry/genetics/metabolism/pharmacology ; Separase/antagonists & inhibitors/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-09-22
    Description: Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 A. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Jingpeng -- Li, Wanqiu -- Zhao, Qiancheng -- Li, Ningning -- Chen, Maofei -- Zhi, Peng -- Li, Ruochong -- Gao, Ning -- Xiao, Bailong -- Yang, Maojun -- England -- Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences or Medicine, Tsinghua University, Beijing 100084, China. ; Ministry of Education, Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26390154" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism ; *Cryoelectron Microscopy ; Electric Conductivity ; Ion Channel Gating ; Ion Channels/*chemistry/metabolism/*ultrastructure ; Mice ; Models, Molecular ; Pliability ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-07-24
    Description: Bacteria secrete peptides and proteins to communicate, to poison competitors, and to manipulate host cells. Among the various protein-translocation machineries, the peptidase-containing ATP-binding cassette transporters (PCATs) are appealingly simple. Each PCAT contains two peptidase domains that cleave the secretion signal from the substrate, two transmembrane domains that form a translocation pathway, and two nucleotide-binding domains that hydrolyse ATP. In Gram-positive bacteria, PCATs function both as maturation proteases and exporters for quorum-sensing or antimicrobial polypeptides. In Gram-negative bacteria, PCATs interact with two other membrane proteins to form the type 1 secretion system. Here we present crystal structures of PCAT1 from Clostridium thermocellum in two different conformations. These structures, accompanied by biochemical data, show that the translocation pathway is a large alpha-helical barrel sufficient to accommodate small folded proteins. ATP binding alternates access to the transmembrane pathway and also regulates the protease activity, thereby coupling substrate processing to translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, David Yin-wei -- Huang, Shuo -- Chen, Jue -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 23;523(7561):425-30. doi: 10.1038/nature14623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Membrane Biology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201595" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/deficiency/metabolism ; Clostridium thermocellum/*chemistry ; Crystallography, X-Ray ; Models, Molecular ; Peptides/*metabolism/secretion ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-07-15
    Description: Surface polysaccharides are important for bacterial interactions with multicellular organisms, and some are virulence factors in pathogens. In the legume-rhizobium symbiosis, bacterial exopolysaccharides (EPS) are essential for the development of infected root nodules. We have identified a gene in Lotus japonicus, Epr3, encoding a receptor-like kinase that controls this infection. We show that epr3 mutants are defective in perception of purified EPS, and that EPR3 binds EPS directly and distinguishes compatible and incompatible EPS in bacterial competition studies. Expression of Epr3 in epidermal cells within the susceptible root zone shows that the protein is involved in bacterial entry, while rhizobial and plant mutant studies suggest that Epr3 regulates bacterial passage through the plant's epidermal cell layer. Finally, we show that Epr3 expression is inducible and dependent on host perception of bacterial nodulation (Nod) factors. Plant-bacterial compatibility and bacterial access to legume roots is thus regulated by a two-stage mechanism involving sequential receptor-mediated recognition of Nod factor and EPS signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawaharada, Y -- Kelly, S -- Nielsen, M Wibroe -- Hjuler, C T -- Gysel, K -- Muszynski, A -- Carlson, R W -- Thygesen, M B -- Sandal, N -- Asmussen, M H -- Vinther, M -- Andersen, S U -- Krusell, L -- Thirup, S -- Jensen, K J -- Ronson, C W -- Blaise, M -- Radutoiu, S -- Stougaard, J -- England -- Nature. 2015 Jul 16;523(7560):308-12. doi: 10.1038/nature14611. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark [3] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Chemistry, University of Copenhagen, Frederiksberg 1871 C, Denmark. ; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153863" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carbohydrate Sequence ; Lipopolysaccharides/chemistry/*metabolism ; Lotus/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation/genetics ; Phenotype ; Plant Epidermis/metabolism/microbiology ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Root Nodulation ; Protein Kinases/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Rhizobium/*metabolism ; Root Nodules, Plant/metabolism/microbiology ; Signal Transduction ; Species Specificity ; Suppression, Genetic/genetics ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-06-23
    Description: Although the adult mammalian heart is incapable of meaningful functional recovery following substantial cardiomyocyte loss, it is now clear that modest cardiomyocyte turnover occurs in adult mouse and human hearts, mediated primarily by proliferation of pre-existing cardiomyocytes. However, fate mapping of these cycling cardiomyocytes has not been possible thus far owing to the lack of identifiable genetic markers. In several organs, stem or progenitor cells reside in relatively hypoxic microenvironments where the stabilization of the hypoxia-inducible factor 1 alpha (Hif-1alpha) subunit is critical for their maintenance and function. Here we report fate mapping of hypoxic cells and their progenies by generating a transgenic mouse expressing a chimaeric protein in which the oxygen-dependent degradation (ODD) domain of Hif-1alpha is fused to the tamoxifen-inducible CreERT2 recombinase. In mice bearing the creERT2-ODD transgene driven by either the ubiquitous CAG promoter or the cardiomyocyte-specific alpha myosin heavy chain promoter, we identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal cardiomyocytes, such as smaller size, mononucleation and lower oxidative DNA damage. Notably, these hypoxic cardiomyocytes contributed widely to new cardiomyocyte formation in the adult heart. These results indicate that hypoxia signalling is an important hallmark of cycling cardiomyocytes, and suggest that hypoxia fate mapping can be a powerful tool for identifying cycling cells in adult mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, Wataru -- Xiao, Feng -- Canseco, Diana C -- Muralidhar, Shalini -- Thet, SuWannee -- Zhang, Helen M -- Abderrahman, Yezan -- Chen, Rui -- Garcia, Joseph A -- Shelton, John M -- Richardson, James A -- Ashour, Abdelrahman M -- Asaithamby, Aroumougame -- Liang, Hanquan -- Xing, Chao -- Lu, Zhigang -- Zhang, Cheng Cheng -- Sadek, Hesham A -- I01 BX000446/BX/BLRD VA/ -- R01 HL108104/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Jul 9;523(7559):226-30. doi: 10.1038/nature14582. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan. ; Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Departments of Physiology and Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Medicine, VA North Texas Health Care System, 4600 South Lancaster Road, Dallas, Texas 75216, USA. ; 1] Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098368" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Hypoxia ; Cell Proliferation/genetics ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit/genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Myocardium/*cytology ; Myocytes, Cardiac/*cytology/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/genetics/*metabolism ; Recombinases/genetics/metabolism ; Signal Transduction ; Stem Cells/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-01-13
    Description: Evolutionarily conserved SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) proteins form a complex that drives membrane fusion in eukaryotes. The ATPase NSF (N-ethylmaleimide sensitive factor), together with SNAPs (soluble NSF attachment protein), disassembles the SNARE complex into its protein components, making individual SNAREs available for subsequent rounds of fusion. Here we report structures of ATP- and ADP-bound NSF, and the NSF/SNAP/SNARE (20S) supercomplex determined by single-particle electron cryomicroscopy at near-atomic to sub-nanometre resolution without imposing symmetry. Large, potentially force-generating, conformational differences exist between ATP- and ADP-bound NSF. The 20S supercomplex exhibits broken symmetry, transitioning from six-fold symmetry of the NSF ATPase domains to pseudo four-fold symmetry of the SNARE complex. SNAPs interact with the SNARE complex with an opposite structural twist, suggesting an unwinding mechanism. The interfaces between NSF, SNAPs, and SNAREs exhibit characteristic electrostatic patterns, suggesting how one NSF/SNAP species can act on many different SNARE complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320033/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320033/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Minglei -- Wu, Shenping -- Zhou, Qiangjun -- Vivona, Sandro -- Cipriano, Daniel J -- Cheng, Yifan -- Brunger, Axel T -- 5-U01AI082051-05/AI/NIAID NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50GM082250/GM/NIGMS NIH HHS/ -- R01 GM082893/GM/NIGMS NIH HHS/ -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01GM082893/GM/NIGMS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R37 MH063105/MH/NIMH NIH HHS/ -- R37MH63105/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 5;518(7537):61-7. doi: 10.1038/nature14148. Epub 2015 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA. ; 1] Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25581794" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cricetulus ; Cryoelectron Microscopy ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism/ultrastructure ; N-Ethylmaleimide-Sensitive Proteins/chemistry/metabolism/ultrastructure ; Protein Binding ; Protein Structure, Tertiary ; Rats ; SNARE Proteins/*chemistry/*metabolism/ultrastructure ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment ; Proteins/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-02-18
    Description: Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442024/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442024/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diao, Jiajie -- Liu, Rong -- Rong, Yueguang -- Zhao, Minglei -- Zhang, Jing -- Lai, Ying -- Zhou, Qiangjun -- Wilz, Livia M -- Li, Jianxu -- Vivona, Sandro -- Pfuetzner, Richard A -- Brunger, Axel T -- Zhong, Qing -- 5P30CA142543/CA/NCI NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 CA133228/CA/NCI NIH HHS/ -- R01 R37-MH63105/MH/NIMH NIH HHS/ -- R37 MH063105/MH/NIMH NIH HHS/ -- T32 GM007232/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 23;520(7548):563-6. doi: 10.1038/nature14147. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [3] College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China. ; 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686604" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/*chemistry/*metabolism ; *Autophagy ; Endosomes/*metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Lysosomes/*metabolism ; *Membrane Fusion ; Phagosomes/chemistry/*metabolism ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Qa-SNARE Proteins/metabolism ; Qb-SNARE Proteins/metabolism ; Qc-SNARE Proteins/metabolism ; R-SNARE Proteins/metabolism ; SNARE Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-03-25
    Description: Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4-moesin-talin-beta1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration. Loss of MAP4K4 decreased membrane dynamics, slowed endothelial cell migration, and impaired angiogenesis in vitro and in vivo. In migrating endothelial cells, MAP4K4 phosphorylates moesin in retracting membranes at sites of focal adhesion disassembly. Epistasis analyses indicated that moesin functions downstream of MAP4K4 to inactivate integrin by competing with talin for binding to beta1-integrin intracellular domain. Consequently, loss of moesin (encoded by the MSN gene) or MAP4K4 reduced adhesion disassembly rate in endothelial cells. Additionally, alpha5beta1-integrin blockade reversed the membrane retraction defects associated with loss of Map4k4 in vitro and in vivo. Our study uncovers a novel aspect of endothelial cell migration. Finally, loss of MAP4K4 function suppressed pathological angiogenesis in disease models, identifying MAP4K4 as a potential therapeutic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vitorino, Philip -- Yeung, Stacey -- Crow, Ailey -- Bakke, Jesse -- Smyczek, Tanya -- West, Kristina -- McNamara, Erin -- Eastham-Anderson, Jeffrey -- Gould, Stephen -- Harris, Seth F -- Ndubaku, Chudi -- Ye, Weilan -- England -- Nature. 2015 Mar 26;519(7544):425-30. doi: 10.1038/nature14323. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Chemical Biology and Therapeutics Department, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Pathology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Structural Biology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Discovery Chemistry Department, Genentech, Inc., South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799996" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antigens, CD29/chemistry/drug effects/metabolism ; Cell Membrane/drug effects/metabolism ; *Cell Movement ; Cell Shape/drug effects ; Endothelial Cells/*cytology/drug effects/*metabolism ; Epistasis, Genetic ; Focal Adhesions/metabolism ; Humans ; Integrin alpha1/drug effects/metabolism ; Integrins/drug effects/*metabolism ; Intracellular Signaling Peptides and Proteins/antagonists & ; inhibitors/deficiency/genetics/*metabolism ; Male ; Mice ; Microfilament Proteins/deficiency/genetics/metabolism ; Neovascularization, Pathologic ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/deficiency/genetics/*metabolism ; Talin/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-19
    Description: Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C-P lyase core complex (PhnG-PhnH-PhnI-PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seweryn, Paulina -- Van, Lan Bich -- Kjeldgaard, Morten -- Russo, Christopher J -- Passmore, Lori A -- Hove-Jensen, Bjarne -- Jochimsen, Bjarne -- Brodersen, Ditlev E -- MC_U105192715/Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 3;525(7567):68-72. doi: 10.1038/nature14683. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280334" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Biocatalysis ; Carbon/chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Hydrolysis ; Iron/chemistry/metabolism ; Lyases/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Organophosphonates/metabolism ; Phosphorus/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sulfur/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-07-30
    Description: DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior beta-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ningning -- Zhai, Yuanliang -- Zhang, Yixiao -- Li, Wanqiu -- Yang, Maojun -- Lei, Jianlin -- Tye, Bik-Kwoon -- Gao, Ning -- England -- Nature. 2015 Aug 13;524(7564):186-91. doi: 10.1038/nature14685. Epub 2015 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Division of Life Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China [2] Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. ; 1] Division of Life Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China [2] Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26222030" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/chemistry/metabolism/ultrastructure ; Chromatin/chemistry ; Conserved Sequence ; *Cryoelectron Microscopy ; DNA/chemistry/metabolism/ultrastructure ; DNA-Directed DNA Polymerase/chemistry/ultrastructure ; G1 Phase ; Minichromosome Maintenance Proteins/*chemistry/metabolism/*ultrastructure ; Models, Biological ; Models, Molecular ; Multienzyme Complexes/chemistry/ultrastructure ; Nucleic Acid Denaturation ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/metabolism ; Replication Origin ; Saccharomyces cerevisiae/*chemistry/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-02-25
    Description: Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385744/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385744/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heler, Robert -- Samai, Poulami -- Modell, Joshua W -- Weiner, Catherine -- Goldberg, Gregory W -- Bikard, David -- Marraffini, Luciano A -- 1DP2AI104556-01/AI/NIAID NIH HHS/ -- DP2 AI104556/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; 1] Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Synthetic Biology Group, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707807" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CRISPR-Associated Proteins/*metabolism ; *CRISPR-Cas Systems/immunology ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics/immunology ; DNA, Viral/*genetics/immunology/metabolism ; Molecular Sequence Data ; Nucleotide Motifs ; Protein Binding ; Protein Structure, Tertiary ; Staphylococcus aureus ; Streptococcus pyogenes/*enzymology/*genetics/immunology/virology ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-19
    Description: Dysfunction of the intramembrane protease gamma-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human gamma-secretase at 3.4 A resolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of gamma-secretase function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Xiao-chen -- Yan, Chuangye -- Yang, Guanghui -- Lu, Peilong -- Ma, Dan -- Sun, Linfeng -- Zhou, Rui -- Scheres, Sjors H W -- Shi, Yigong -- MC_UP_A025_101/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 10;525(7568):212-7. doi: 10.1038/nature14892. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280335" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics ; Amyloid Precursor Protein ; Secretases/*chemistry/genetics/metabolism/*ultrastructure ; Binding Sites ; *Cryoelectron Microscopy ; Humans ; Membrane Glycoproteins/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Mutation ; Presenilin-1/*chemistry/genetics/*ultrastructure ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-06-23
    Description: Stearoyl-CoA desaturase (SCD) is conserved in all eukaryotes and introduces the first double bond into saturated fatty acyl-CoAs. Because the monounsaturated products of SCD are key precursors of membrane phospholipids, cholesterol esters and triglycerides, SCD is pivotal in fatty acid metabolism. Humans have two SCD homologues (SCD1 and SCD5), while mice have four (SCD1-SCD4). SCD1-deficient mice do not become obese or diabetic when fed a high-fat diet because of improved lipid metabolic profiles and insulin sensitivity. Thus, SCD1 is a pharmacological target in the treatment of obesity, diabetes and other metabolic diseases. SCD1 is an integral membrane protein located in the endoplasmic reticulum, and catalyses the formation of a cis-double bond between the ninth and tenth carbons of stearoyl- or palmitoyl-CoA. The reaction requires molecular oxygen, which is activated by a di-iron centre, and cytochrome b5, which regenerates the di-iron centre. To understand better the structural basis of these characteristics of SCD function, here we crystallize and solve the structure of mouse SCD1 bound to stearoyl-CoA at 2.6 A resolution. The structure shows a novel fold comprising four transmembrane helices capped by a cytosolic domain, and a plausible pathway for lateral substrate access and product egress. The acyl chain of the bound stearoyl-CoA is enclosed in a tunnel buried in the cytosolic domain, and the geometry of the tunnel and the conformation of the bound acyl chain provide a structural basis for the regioselectivity and stereospecificity of the desaturation reaction. The dimetal centre is coordinated by a unique spacial arrangement of nine conserved histidine residues that implies a potentially novel mechanism for oxygen activation. The structure also illustrates a possible route for electron transfer from cytochrome b5 to the di-iron centre.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689147/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689147/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Yonghong -- McCoy, Jason G -- Levin, Elena J -- Sobrado, Pablo -- Rajashankar, Kanagalaghatta R -- Fox, Brian G -- Zhou, Ming -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41GM103403/GM/NIGMS NIH HHS/ -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 GM098878/GM/NIGMS NIH HHS/ -- R01 HL086392/HL/NHLBI NIH HHS/ -- R01DK088057/DK/NIDDK NIH HHS/ -- R01GM050853/GM/NIGMS NIH HHS/ -- R01GM098878/GM/NIGMS NIH HHS/ -- R01HL086392/HL/NHLBI NIH HHS/ -- U54 GM094584/GM/NIGMS NIH HHS/ -- U54GM094584/GM/NIGMS NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 13;524(7564):252-6. doi: 10.1038/nature14549. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ; NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098370" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Coenzyme A/chemistry/metabolism ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cytochromes b5/chemistry/metabolism ; Electron Transport ; Histidine/chemistry/metabolism ; Iron/metabolism ; Mice ; Models, Molecular ; Oxygen/metabolism ; Protein Structure, Tertiary ; Static Electricity ; Stearoyl-CoA Desaturase/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-10-06
    Description: Na(+)-activated K(+) channels are members of the Slo family of large conductance K(+) channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels fulfil a number of biological roles and have intriguing biophysical properties, including conductance levels that are ten times those of most other K(+) channels and gating sensitivity to intracellular Na(+). Here we present the structure of a complete Na(+)-activated K(+) channel, chicken Slo2.2, in the Na(+)-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 angstroms. The channel is composed of a large cytoplasmic gating ring, in which resides the Na(+)-binding site and a transmembrane domain that closely resembles voltage-gated K(+) channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure reveals features that can explain the unusually high conductance of Slo channels and how contraction of the cytoplasmic gating ring closes the pore.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hite, Richard K -- Yuan, Peng -- Li, Zongli -- Hsuing, Yichun -- Walz, Thomas -- MacKinnon, Roderick -- GM43949/GM/NIGMS NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):198-203. doi: 10.1038/nature14958. Epub 2015 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26436452" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *Chickens ; *Cryoelectron Microscopy ; Cytoplasm/metabolism ; Electric Conductivity ; Ion Channel Gating ; Ion Transport ; Models, Molecular ; Potassium Channels/chemistry/metabolism/*ultrastructure ; Protein Structure, Tertiary ; Sodium/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-10-13
    Description: Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 A) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously approximately 85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed alpha-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, Guizhen -- Baker, Matthew L -- Wang, Zhao -- Baker, Mariah R -- Sinyagovskiy, Pavel A -- Chiu, Wah -- Ludtke, Steven J -- Serysheva, Irina I -- P41 GM103832/GM/NIGMS NIH HHS/ -- P41GM103832/GM/NIGMS NIH HHS/ -- R01 GM072804/GM/NIGMS NIH HHS/ -- R01 GM079429/GM/NIGMS NIH HHS/ -- R01 GM080139/GM/NIGMS NIH HHS/ -- R01GM072804/GM/NIGMS NIH HHS/ -- R01GM079429/GM/NIGMS NIH HHS/ -- R01GM080139/GM/NIGMS NIH HHS/ -- R21 AR063255/AR/NIAMS NIH HHS/ -- R21 GM100229/GM/NIGMS NIH HHS/ -- R21AR063255/AR/NIAMS NIH HHS/ -- R21GM100229/GM/NIGMS NIH HHS/ -- S10 OD016279/OD/NIH HHS/ -- S10OD016279/OD/NIH HHS/ -- England -- Nature. 2015 Nov 19;527(7578):336-41. doi: 10.1038/nature15249. Epub 2015 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA. ; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26458101" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Apoproteins/chemistry/metabolism/ultrastructure ; Calcium/metabolism ; Calcium Signaling ; *Cryoelectron Microscopy ; Cytosol/chemistry/metabolism ; Inositol 1,4,5-Trisphosphate Receptors/chemistry/*metabolism/*ultrastructure ; Ion Channel Gating ; Models, Molecular ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rats ; Ryanodine Receptor Calcium Release Channel/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-10-28
    Description: Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 A, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hengrung, Narin -- El Omari, Kamel -- Serna Martin, Itziar -- Vreede, Frank T -- Cusack, Stephen -- Rambo, Robert P -- Vonrhein, Clemens -- Bricogne, Gerard -- Stuart, David I -- Grimes, Jonathan M -- Fodor, Ervin -- 075491/Z/04/Wellcome Trust/United Kingdom -- 092931/Z/10/Z/Wellcome Trust/United Kingdom -- G1000099/Medical Research Council/United Kingdom -- G1100138/Medical Research Council/United Kingdom -- MR/K000241/1/Medical Research Council/United Kingdom -- England -- Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. ; Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK. ; European Molecular Biology Laboratory, Grenoble Outstation and University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France. ; Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK. ; Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503046" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endonucleases/chemistry/metabolism ; Enzyme Activation ; Influenzavirus C/*enzymology ; Models, Molecular ; Peptide Chain Initiation, Translational ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Caps/metabolism ; RNA Replicase/*chemistry/metabolism ; RNA, Viral/biosynthesis/metabolism ; Ribonucleoproteins/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-11-26
    Description: Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 A resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 A resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82-C34-C31 heterotrimer in close proximity to the stalk. The C53-C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681132/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681132/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffmann, Niklas A -- Jakobi, Arjen J -- Moreno-Morcillo, Maria -- Glatt, Sebastian -- Kosinski, Jan -- Hagen, Wim J H -- Sachse, Carsten -- Muller, Christoph W -- England -- Nature. 2015 Dec 10;528(7581):231-6. doi: 10.1038/nature16143. Epub 2015 Nov 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26605533" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; *Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; RNA Polymerase III/*chemistry ; Saccharomyces cerevisiae/*enzymology ; Saccharomyces cerevisiae Proteins/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-08-08
    Description: Activation of the mu-opioid receptor (muOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for muOR activation, here we report a 2.1 A X-ray crystal structure of the murine muOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the muOR binding pocket are subtle and differ from those observed for agonist-bound structures of the beta2-adrenergic receptor (beta2AR) and the M2 muscarinic receptor. Comparison with active beta2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the muOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Weijiao -- Manglik, Aashish -- Venkatakrishnan, A J -- Laeremans, Toon -- Feinberg, Evan N -- Sanborn, Adrian L -- Kato, Hideaki E -- Livingston, Kathryn E -- Thorsen, Thor S -- Kling, Ralf C -- Granier, Sebastien -- Gmeiner, Peter -- Husbands, Stephen M -- Traynor, John R -- Weis, William I -- Steyaert, Jan -- Dror, Ron O -- Kobilka, Brian K -- R01GM083118/GM/NIGMS NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- R37DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA. ; Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA. ; Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany. ; Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. ; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245379" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Crystallography, X-Ray ; Heterotrimeric GTP-Binding Proteins/chemistry/metabolism ; Mice ; Models, Molecular ; Molecular Dynamics Simulation ; Morphinans/chemistry/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Structure, Tertiary ; Pyrroles/chemistry/metabolism/pharmacology ; Receptor, Muscarinic M2/chemistry ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/agonists/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-07-15
    Description: The E3 ubiquitin ligase PARKIN (encoded by PARK2) and the protein kinase PINK1 (encoded by PARK6) are mutated in autosomal-recessive juvenile Parkinsonism (AR-JP) and work together in the disposal of damaged mitochondria by mitophagy. PINK1 is stabilized on the outside of depolarized mitochondria and phosphorylates polyubiquitin as well as the PARKIN ubiquitin-like (Ubl) domain. These phosphorylation events lead to PARKIN recruitment to mitochondria, and activation by an unknown allosteric mechanism. Here we present the crystal structure of Pediculus humanus PARKIN in complex with Ser65-phosphorylated ubiquitin (phosphoUb), revealing the molecular basis for PARKIN recruitment and activation. The phosphoUb binding site on PARKIN comprises a conserved phosphate pocket and harbours residues mutated in patients with AR-JP. PhosphoUb binding leads to straightening of a helix in the RING1 domain, and the resulting conformational changes release the Ubl domain from the PARKIN core; this activates PARKIN. Moreover, phosphoUb-mediated Ubl release enhances Ubl phosphorylation by PINK1, leading to conformational changes within the Ubl domain and stabilization of an open, active conformation of PARKIN. We redefine the role of the Ubl domain not only as an inhibitory but also as an activating element that is restrained in inactive PARKIN and released by phosphoUb. Our work opens up new avenues to identify small-molecule PARKIN activators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wauer, Tobias -- Simicek, Michal -- Schubert, Alexander -- Komander, David -- U105192732/Medical Research Council/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):370-4. doi: 10.1038/nature14879. Epub 2015 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26161729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites/genetics ; Conserved Sequence/genetics ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Models, Molecular ; Mutation/genetics ; Parkinsonian Disorders/genetics ; Pediculus/*chemistry ; Phosphates/metabolism ; Phosphoproteins/chemistry/metabolism ; Phosphorylation ; Protein Binding ; Protein Kinases/metabolism ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Ubiquitin/*chemistry/*metabolism ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-05-20
    Description: Phosphofructokinase-1 (PFK1), the 'gatekeeper' of glycolysis, catalyses the committed step of the glycolytic pathway by converting fructose-6-phosphate to fructose-1,6-bisphosphate. Allosteric activation and inhibition of PFK1 by over ten metabolites and in response to hormonal signalling fine-tune glycolytic flux to meet energy requirements. Mutations inhibiting PFK1 activity cause glycogen storage disease type VII, also known as Tarui disease, and mice deficient in muscle PFK1 have decreased fat stores. Additionally, PFK1 is proposed to have important roles in metabolic reprogramming in cancer. Despite its critical role in glucose flux, the biologically relevant crystal structure of the mammalian PFK1 tetramer has not been determined. Here we report the first structures of the mammalian PFK1 tetramer, for the human platelet isoform (PFKP), in complex with ATP-Mg(2+) and ADP at 3.1 and 3.4 A, respectively. The structures reveal substantial conformational changes in the enzyme upon nucleotide hydrolysis as well as a unique tetramer interface. Mutations of residues in this interface can affect tetramer formation, enzyme catalysis and regulation, indicating the functional importance of the tetramer. With altered glycolytic flux being a hallmark of cancers, these new structures allow a molecular understanding of the functional consequences of somatic PFK1 mutations identified in human cancers. We characterize three of these mutations and show they have distinct effects on allosteric regulation of PFKP activity and lactate production. The PFKP structural blueprint for somatic mutations as well as the catalytic site can guide therapeutic targeting of PFK1 activity to control dysregulated glycolysis in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510984/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510984/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webb, Bradley A -- Forouhar, Farhad -- Szu, Fu-En -- Seetharaman, Jayaraman -- Tong, Liang -- Barber, Diane L -- P30 DK026743/DK/NIDDK NIH HHS/ -- R01 GM047413/GM/NIGMS NIH HHS/ -- U54 GM094597/GM/NIGMS NIH HHS/ -- U54-GM094597/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Jul 2;523(7558):111-4. doi: 10.1038/nature14405. Epub 2015 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA. ; Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25985179" target="_blank"〉PubMed〈/a〉
    Keywords: Enzyme Activation ; Humans ; Microscopy, Electron, Transmission ; *Models, Molecular ; Mutation/genetics ; Neoplasms/*enzymology/genetics ; Phosphofructokinase-1/*chemistry/*genetics/ultrastructure ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-01-22
    Description: DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baubec, Tuncay -- Colombo, Daniele F -- Wirbelauer, Christiane -- Schmidt, Juliane -- Burger, Lukas -- Krebs, Arnaud R -- Akalin, Altuna -- Schubeler, Dirk -- England -- Nature. 2015 Apr 9;520(7546):243-7. doi: 10.1038/nature14176. Epub 2015 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] Swiss Institute of Bioinformatics. Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] University of Basel, Faculty of Sciences, Petersplatz 1, CH-4001 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607372" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromatin/chemistry/genetics/metabolism ; CpG Islands/genetics ; DNA (Cytosine-5-)-Methyltransferase/chemistry/*metabolism ; DNA Methylation/*genetics ; Embryonic Stem Cells/enzymology/metabolism ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; Genome/*genetics ; Genomics ; Histone-Lysine N-Methyltransferase/deficiency/genetics/metabolism ; Histones/chemistry/metabolism ; Lysine/metabolism ; Mice ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-07-07
    Description: G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are approximately 800 human GPCRs and 16 different Galpha genes, this raises the question of whether a universal allosteric mechanism governs Galpha activation. Here we show that different GPCRs interact with and activate Galpha proteins through a highly conserved mechanism. Comparison of Galpha with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Galpha system diversified rapidly, while conserving the allosteric activation mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flock, Tilman -- Ravarani, Charles N J -- Sun, Dawei -- Venkatakrishnan, A J -- Kayikci, Melis -- Tate, Christopher G -- Veprintsev, Dmitry B -- Babu, M Madan -- MC_U105185859/Medical Research Council/United Kingdom -- MC_U105197215/Medical Research Council/United Kingdom -- England -- Nature. 2015 Aug 13;524(7564):173-9. doi: 10.1038/nature14663. Epub 2015 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; 1] Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland [2] Department of Biology, ETH Zurich, 8039 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26147082" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Animals ; Binding Sites ; Computational Biology ; Conserved Sequence ; Enzyme Activation ; *Evolution, Molecular ; GTP-Binding Protein alpha Subunits/chemistry/genetics/*metabolism ; Genetic Engineering ; Guanosine Diphosphate/metabolism ; Humans ; Models, Molecular ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity ; ras Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-12-25
    Description: The carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) subunit POLR2A is a platform for modifications specifying the recruitment of factors that regulate transcription, mRNA processing, and chromatin remodelling. Here we show that a CTD arginine residue (R1810 in human) that is conserved across vertebrates is symmetrically dimethylated (me2s). This R1810me2s modification requires protein arginine methyltransferase 5 (PRMT5) and recruits the Tudor domain of the survival of motor neuron (SMN, also known as GEMIN1) protein, which is mutated in spinal muscular atrophy. SMN interacts with senataxin, which is sometimes mutated in ataxia oculomotor apraxia type 2 and amyotrophic lateral sclerosis. Because POLR2A R1810me2s and SMN, like senataxin, are required for resolving RNA-DNA hybrids created by RNA polymerase II that form R-loops in transcription termination regions, we propose that R1810me2s, SMN, and senataxin are components of an R-loop resolution pathway. Defects in this pathway can influence transcription termination and may contribute to neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Dorothy Yanling -- Gish, Gerald -- Braunschweig, Ulrich -- Li, Yue -- Ni, Zuyao -- Schmitges, Frank W -- Zhong, Guoqing -- Liu, Ke -- Li, Weiguo -- Moffat, Jason -- Vedadi, Masoud -- Min, Jinrong -- Pawson, Tony J -- Blencowe, Benjamin J -- Greenblatt, Jack F -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 7;529(7584):48-53. doi: 10.1038/nature16469. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada. ; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700805" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/*metabolism ; Cell Line ; DNA Damage ; Humans ; Methylation ; Neurodegenerative Diseases/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/genetics/metabolism ; RNA Helicases/genetics/metabolism ; RNA Polymerase II/*chemistry/*metabolism ; Survival of Motor Neuron 1 Protein/genetics/*metabolism ; Transcription Elongation, Genetic ; *Transcription Termination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-08-08
    Description: Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nillegoda, Nadinath B -- Kirstein, Janine -- Szlachcic, Anna -- Berynskyy, Mykhaylo -- Stank, Antonia -- Stengel, Florian -- Arnsburg, Kristin -- Gao, Xuechao -- Scior, Annika -- Aebersold, Ruedi -- Guilbride, D Lys -- Wade, Rebecca C -- Morimoto, Richard I -- Mayer, Matthias P -- Bukau, Bernd -- England -- Nature. 2015 Aug 13;524(7564):247-51. doi: 10.1038/nature14884. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany. ; Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany. ; Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany. ; 1] Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany [2] Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, 69120 Heidelberg, Germany. ; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland. ; 1] Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, 8057 Zurich, Switzerland. ; 1] Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany [2] Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany [3] Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany. ; Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245380" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*metabolism ; HSP110 Heat-Shock Proteins/metabolism ; HSP70 Heat-Shock Proteins/chemistry/*metabolism ; Humans ; Models, Molecular ; *Protein Aggregates ; Protein Aggregation, Pathological/metabolism/prevention & control ; Protein Binding ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-05-07
    Description: Fundamental to all living organisms is the capacity to coordinate cell division and cell differentiation to generate appropriate numbers of specialized cells. Whereas eukaryotes use cyclins and cyclin-dependent kinases to balance division with cell fate decisions, equivalent regulatory systems have not been described in bacteria. Moreover, the mechanisms used by bacteria to tune division in line with developmental programs are poorly understood. Here we show that Caulobacter crescentus, a bacterium with an asymmetric division cycle, uses oscillating levels of the second messenger cyclic diguanylate (c-di-GMP) to drive its cell cycle. We demonstrate that c-di-GMP directly binds to the essential cell cycle kinase CckA to inhibit kinase activity and stimulate phosphatase activity. An upshift of c-di-GMP during the G1-S transition switches CckA from the kinase to the phosphatase mode, thereby allowing replication initiation and cell cycle progression. Finally, we show that during division, c-di-GMP imposes spatial control on CckA to install the replication asymmetry of future daughter cells. These studies reveal c-di-GMP to be a cyclin-like molecule in bacteria that coordinates chromosome replication with cell morphogenesis in Caulobacter. The observation that c-di-GMP-mediated control is conserved in the plant pathogen Agrobacterium tumefaciens suggests a general mechanism through which this global regulator of bacterial virulence and persistence coordinates behaviour and cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lori, C -- Ozaki, S -- Steiner, S -- Bohm, R -- Abel, S -- Dubey, B N -- Schirmer, T -- Hiller, S -- Jenal, U -- England -- Nature. 2015 Jul 9;523(7559):236-9. doi: 10.1038/nature14473. Epub 2015 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Focal area of Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland. ; Focal area of Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25945741" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/genetics ; Bacterial Proteins/metabolism ; Catalytic Domain ; Caulobacter crescentus/cytology ; Cell Cycle/genetics/*physiology ; Cell Division/genetics/physiology ; Chromosomes/*genetics ; Conserved Sequence ; Cyclic GMP/*analogs & derivatives/metabolism ; Cyclins/metabolism ; DNA Replication/*genetics ; Models, Molecular ; Phosphoric Monoester Hydrolases/metabolism ; Phosphotransferases/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-10-28
    Description: DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions that trigger non-proteolytic ubiquitylation of adjacent chromatin areas to generate binding sites for DNA repair factors. This depends on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 (refs 1-6), and UBC13 (also known as UBE2N), an E2 ubiquitin-conjugating enzyme that specifically generates K63-linked ubiquitin chains. Whereas RNF168 is known to catalyse ubiquitylation of H2A-type histones, leading to the recruitment of repair factors such as 53BP1 (refs 8-10), the critical substrates of RNF8 and K63-linked ubiquitylation remain elusive. Here we elucidate how RNF8 and UBC13 promote recruitment of RNF168 and downstream factors to DSB sites in human cells. We establish that UBC13-dependent K63-linked ubiquitylation at DSB sites is predominantly mediated by RNF8 but not RNF168, and that H1-type linker histones, but not core histones, represent major chromatin-associated targets of this modification. The RNF168 module (UDM1) recognizing RNF8-generated ubiquitylations is a high-affinity reader of K63-ubiquitylated H1, mechanistically explaining the essential roles of RNF8 and UBC13 in recruiting RNF168 to DSBs. Consistently, reduced expression or chromatin association of linker histones impair accumulation of K63-linked ubiquitin conjugates and repair factors at DSB-flanking chromatin. These results identify histone H1 as a key target of RNF8-UBC13 in DSB signalling and expand the concept of the histone code by showing that posttranslational modifications of linker histones can serve as important marks for recognition by factors involved in genome stability maintenance, and possibly beyond.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thorslund, Tina -- Ripplinger, Anita -- Hoffmann, Saskia -- Wild, Thomas -- Uckelmann, Michael -- Villumsen, Bine -- Narita, Takeo -- Sixma, Titia K -- Choudhary, Chunaram -- Bekker-Jensen, Simon -- Mailand, Niels -- England -- Nature. 2015 Nov 19;527(7578):389-93. doi: 10.1038/nature15401. Epub 2015 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark. ; Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark. ; Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503038" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/metabolism ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA Repair ; DNA-Binding Proteins/metabolism ; Histones/chemistry/*metabolism ; Humans ; Lysine/metabolism ; Protein Structure, Tertiary ; *Signal Transduction ; Ubiquitin/*metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/chemistry/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-08-08
    Description: The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1beta) subunits. Here we describe crystal structures for each of mouse HIF-2alpha-ARNT and HIF-1alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2alpha-ARNT and HIF-1alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Dalei -- Potluri, Nalini -- Lu, Jingping -- Kim, Youngchang -- Rastinejad, Fraydoon -- England -- Nature. 2015 Aug 20;524(7565):303-8. doi: 10.1038/nature14883. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolic Disease Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA. ; Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245371" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/chemistry/metabolism ; Animals ; Aryl Hydrocarbon Receptor Nuclear Translocator/*chemistry/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*chemistry/metabolism ; Binding Sites ; CLOCK Proteins/chemistry/metabolism ; Cell Hypoxia/genetics ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit/*chemistry/metabolism ; Mice ; Models, Molecular ; Mutation/genetics ; Neoplasms/genetics ; Phosphorylation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Response Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-03-13
    Description: Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. Here we describe the crystal structure of Drosophila ORC at 3.5 A resolution, showing that the 270 kilodalton initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ (ATPases associated with a variety of cellular activities) folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident. These include highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighbouring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate an approximately 20 A wide channel in the centre of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the mini-chromosome maintenance 2-7 (MCM2-7) complex during replicative helicase loading; however, an observed out-of-plane rotation of more than 90 degrees for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bleichert, Franziska -- Botchan, Michael R -- Berger, James M -- CA R37-30490/CA/NCI NIH HHS/ -- GM071747/GM/NIGMS NIH HHS/ -- R01 GM071747/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 19;519(7543):321-6. doi: 10.1038/nature14239. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762138" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeal Proteins/chemistry/metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Replication ; Drosophila melanogaster/*chemistry ; Eukaryotic Cells/*chemistry ; Minichromosome Maintenance Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Origin Recognition Complex/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-02-18
    Description: Innate immunity serves as the first line of defence against invading pathogens such as bacteria and viruses. Toll-like receptors (TLRs) are examples of innate immune receptors, which sense specific molecular patterns from pathogens and activate immune responses. TLR9 recognizes bacterial and viral DNA containing the cytosine-phosphate-guanine (CpG) dideoxynucleotide motif. The molecular basis by which CpG-containing DNA (CpG-DNA) elicits immunostimulatory activity via TLR9 remains to be elucidated. Here we show the crystal structures of three forms of TLR9: unliganded, bound to agonistic CpG-DNA, and bound to inhibitory DNA (iDNA). Agonistic-CpG-DNA-bound TLR9 formed a symmetric TLR9-CpG-DNA complex with 2:2 stoichiometry, whereas iDNA-bound TLR9 was a monomer. CpG-DNA was recognized by both protomers in the dimer, in particular by the amino-terminal fragment (LRRNT-LRR10) from one protomer and the carboxy-terminal fragment (LRR20-LRR22) from the other. The iDNA, which formed a stem-loop structure suitable for binding by intramolecular base pairing, bound to the concave surface from LRR2-LRR10. This structure serves as an important basis for improving our understanding of the functional mechanisms of TLR9.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohto, Umeharu -- Shibata, Takuma -- Tanji, Hiromi -- Ishida, Hanako -- Krayukhina, Elena -- Uchiyama, Susumu -- Miyake, Kensuke -- Shimizu, Toshiyuki -- England -- Nature. 2015 Apr 30;520(7549):702-5. doi: 10.1038/nature14138. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; 1] Division of Innate Immunity, Department of Microbiology and Immunology, Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan [2] Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan. ; 1] Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan [2] U-Medico Corporation, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. ; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. ; Division of Innate Immunity, Department of Microbiology and Immunology, Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. ; 1] Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686612" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CpG Islands/*immunology ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*immunology/metabolism ; Humans ; Ligands ; Models, Molecular ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Toll-Like Receptor 9/agonists/antagonists & inhibitors/*chemistry/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-02-06
    Description: Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signalling and preventing glutamate-mediated excitotoxicity. Crystallographic studies of a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here we report direct observations of these 'elevator-like' transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two mutations introduced to impart characteristics of the human transporter exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motion and substrate uptake. Crystallographic and computational investigations corroborated these findings by revealing that the 'humanizing' mutations favour structurally 'unlocked' intermediate states in the transport cycle exhibiting increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akyuz, Nurunisa -- Georgieva, Elka R -- Zhou, Zhou -- Stolzenberg, Sebastian -- Cuendet, Michel A -- Khelashvili, George -- Altman, Roger B -- Terry, Daniel S -- Freed, Jack H -- Weinstein, Harel -- Boudker, Olga -- Blanchard, Scott C -- 5U54GM087519/GM/NIGMS NIH HHS/ -- P01DA012408/DA/NIDA NIH HHS/ -- P41 GM103521/GM/NIGMS NIH HHS/ -- P41GM103521/GM/NIGMS NIH HHS/ -- R01 EB003150/EB/NIBIB NIH HHS/ -- R01 GM025862/GM/NIGMS NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R010EB003150/EB/NIBIB NIH HHS/ -- R01GM098859/GM/NIGMS NIH HHS/ -- R21MH099491/MH/NIMH NIH HHS/ -- R37 NS085318/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Feb 5;518(7537):68-73. doi: 10.1038/nature14158.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; 1] National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, USA [2] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA. ; 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne, Switzerland. ; 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, 1305 York Avenue, New York, New York 10065, USA. ; 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] Tri-Institutional Training Program in Chemical Biology, 445 East 69th Street, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652997" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems, Acidic/*chemistry/genetics/*metabolism ; Aspartic Acid/*metabolism ; Biological Transport ; Crystallography, X-Ray ; Detergents ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Ligands ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Movement ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation/genetics ; Protein Stability ; Protein Structure, Tertiary ; Proteolipids/metabolism ; Pyrococcus horikoshii/*chemistry ; Sodium/metabolism ; Solvents ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-09-10
    Description: The protein alpha-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human alpha-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 A resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face beta-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length alpha-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length alpha-synuclein fibril, presenting opportunities for the design of inhibitors of alpha-synuclein fibrils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, Jose A -- Ivanova, Magdalena I -- Sawaya, Michael R -- Cascio, Duilio -- Reyes, Francis E -- Shi, Dan -- Sangwan, Smriti -- Guenther, Elizabeth L -- Johnson, Lisa M -- Zhang, Meng -- Jiang, Lin -- Arbing, Mark A -- Nannenga, Brent L -- Hattne, Johan -- Whitelegge, Julian -- Brewster, Aaron S -- Messerschmidt, Marc -- Boutet, Sebastien -- Sauter, Nicholas K -- Gonen, Tamir -- Eisenberg, David S -- 1R01-AG029430/AG/NIA NIH HHS/ -- AG016570/AG/NIA NIH HHS/ -- GM095887/GM/NIGMS NIH HHS/ -- GM102520/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM095887/GM/NIGMS NIH HHS/ -- R01 GM102520/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 24;525(7570):486-90. doi: 10.1038/nature15368. Epub 2015 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, UCLA-DOE Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Box 951570, UCLA, Los Angeles, California 90095-1570, USA. ; Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; Box 42, NPI-Semel Institute, 760 Westwood Plaza, UCLA, Los Angeles, California 90024, USA. ; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26352473" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/chemistry ; Cryoelectron Microscopy ; Electrons ; Humans ; Lewy Bodies/chemistry ; Models, Molecular ; Nanoparticles/*chemistry/*toxicity ; Parkinson Disease ; Protein Structure, Tertiary ; Scattering, Radiation ; alpha-Synuclein/*chemistry/*toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-02-06
    Description: The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 A resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plaschka, C -- Lariviere, L -- Wenzeck, L -- Seizl, M -- Hemann, M -- Tegunov, D -- Petrotchenko, E V -- Borchers, C H -- Baumeister, W -- Herzog, F -- Villa, E -- Cramer, P -- England -- Nature. 2015 Feb 19;518(7539):376-80. doi: 10.1038/nature14229. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Gottingen, Germany. ; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. ; Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany. ; Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, 3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada. ; 1] Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany [2] Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652824" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Binding Sites ; *Cryoelectron Microscopy ; DNA/chemistry/metabolism ; Enzyme Activation ; Mediator Complex/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Phosphorylation ; Protein Stability ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism/*ultrastructure ; Saccharomyces cerevisiae/*chemistry/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/ultrastructure ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Factor TFIIH/chemistry/metabolism ; Transcription Initiation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dance, Amber -- England -- Nature. 2015 Dec 10;528(7581):291-4. doi: 10.1038/528291a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659189" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement ; Cytological Techniques/*methods ; Light ; *Optogenetics ; Protein Engineering ; Protein Structure, Tertiary ; Proteins/metabolism/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-07-23
    Description: Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine-glycine repeat protein G (VgrG) spike and punctures the prey's cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)-TssJ, TssM and TssL-and present a structure of the fully assembled complex at 11.6 A resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct-TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Durand, Eric -- Nguyen, Van Son -- Zoued, Abdelrahim -- Logger, Laureen -- Pehau-Arnaudet, Gerard -- Aschtgen, Marie-Stephanie -- Spinelli, Silvia -- Desmyter, Aline -- Bardiaux, Benjamin -- Dujeancourt, Annick -- Roussel, Alain -- Cambillau, Christian -- Cascales, Eric -- Fronzes, Remi -- England -- Nature. 2015 Jul 30;523(7562):555-60. doi: 10.1038/nature14667. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratoire d'Ingenierie des Systemes Macromoleculaires, Aix-Marseille Universite - CNRS, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France [2] Architecture et Fonction des Macromolecules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France [3] G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [4] UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [5] AFMB, Aix-Marseille Universite, IHU Mediterranee Infection, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; 1] Architecture et Fonction des Macromolecules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France [2] AFMB, Aix-Marseille Universite, IHU Mediterranee Infection, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; Laboratoire d'Ingenierie des Systemes Macromoleculaires, Aix-Marseille Universite - CNRS, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; 1] UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [2] Unite de Bioinformatique Structurale, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; 1] G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [2] UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200339" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Secretion Systems ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Cytoplasm/chemistry/metabolism ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/biosynthesis/*chemistry ; Lipopeptides/biosynthesis/*chemistry ; Membrane Proteins/biosynthesis/*chemistry ; Microscopy, Electron ; Models, Molecular ; Multiprotein Complexes/*biosynthesis/*chemistry ; Periplasm/chemistry/metabolism ; Porosity ; Protein Structure, Tertiary ; Protein Subunits/biosynthesis/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-10-09
    Description: The neutralizing antibody response to influenza virus is dominated by antibodies that bind to the globular head of haemagglutinin, which undergoes a continuous antigenic drift, necessitating the re-formulation of influenza vaccines on an annual basis. Recently, several laboratories have described a new class of rare influenza-neutralizing antibodies that target a conserved site in the haemagglutinin stem. Most of these antibodies use the heavy-chain variable region VH1-69 gene, and structural data demonstrate that they bind to the haemagglutinin stem through conserved heavy-chain complementarity determining region (HCDR) residues. However, the VH1-69 antibodies are highly mutated and are produced by some but not all individuals, suggesting that several somatic mutations may be required for their development. To address this, here we characterize 197 anti-stem antibodies from a single donor, reconstruct the developmental pathways of several VH1-69 clones and identify two key elements that are required for the initial development of most VH1-69 antibodies: a polymorphic germline-encoded phenylalanine at position 54 and a conserved tyrosine at position 98 in HCDR3. Strikingly, in most cases a single proline to alanine mutation at position 52a in HCDR2 is sufficient to confer high affinity binding to the selecting H1 antigen, consistent with rapid affinity maturation. Surprisingly, additional favourable mutations continue to accumulate, increasing the breadth of reactivity and making both the initial mutations and phenylalanine at position 54 functionally redundant. These results define VH1-69 allele polymorphism, rearrangement of the VDJ gene segments and single somatic mutations as the three requirements for generating broadly neutralizing VH1-69 antibodies and reveal an unexpected redundancy in the affinity maturation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pappas, Leontios -- Foglierini, Mathilde -- Piccoli, Luca -- Kallewaard, Nicole L -- Turrini, Filippo -- Silacci, Chiara -- Fernandez-Rodriguez, Blanca -- Agatic, Gloria -- Giacchetto-Sasselli, Isabella -- Pellicciotta, Gabriele -- Sallusto, Federica -- Zhu, Qing -- Vicenzi, Elisa -- Corti, Davide -- Lanzavecchia, Antonio -- U19 AI-057266/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):418-22. doi: 10.1038/nature13764. Epub 2014 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland. ; Department of Infectious Diseases and Vaccines MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland 20878, USA. ; Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland. ; Unit of Preventive Medicine, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland [3]. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Insitute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296253" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Antibodies, Neutralizing/*genetics ; Cells, Cultured ; Complementarity Determining Regions/chemistry/*genetics ; Female ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Humans ; Immunoglobulin Heavy Chains/genetics ; Influenza, Human/*immunology/virology ; Male ; Middle Aged ; Models, Molecular ; Mutation/*genetics ; Orthomyxoviridae/*immunology/metabolism ; Polymorphism, Genetic ; Protein Binding/genetics ; Protein Structure, Tertiary ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-12-04
    Description: Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 A. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended alpha-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the alpha-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zalk, Ran -- Clarke, Oliver B -- des Georges, Amedee -- Grassucci, Robert A -- Reiken, Steven -- Mancia, Filippo -- Hendrickson, Wayne A -- Frank, Joachim -- Marks, Andrew R -- P01 HL081172/HL/NHLBI NIH HHS/ -- R01 AR060037/AR/NIAMS NIH HHS/ -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 HL061503/HL/NHLBI NIH HHS/ -- R01 HL083418/HL/NHLBI NIH HHS/ -- R01AR060037/AR/NIAMS NIH HHS/ -- R01GM29169/GM/NIGMS NIH HHS/ -- R01HL061503/HL/NHLBI NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 1;517(7532):44-9. doi: 10.1038/nature13950. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2] Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA. ; 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2] Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA [3] Department of Biological Sciences, Columbia University, New York, New York 10027, USA. ; 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2] Department of Medicine, Columbia University, New York, New York 10032, USA [3] Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470061" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/deficiency/metabolism/pharmacology ; Cell Membrane/metabolism ; Cryoelectron Microscopy ; Cytosol/metabolism ; Ion Channel Gating/drug effects ; Muscle, Skeletal/chemistry ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/metabolism/*ultrastructure ; Tacrolimus Binding Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-11-05
    Description: ATP-binding cassette (ABC) transporters translocate substrates across cell membranes, using energy harnessed from ATP binding and hydrolysis at their nucleotide-binding domains. ABC exporters are present both in prokaryotes and eukaryotes, with examples implicated in multidrug resistance of pathogens and cancer cells, as well as in many human diseases. TmrAB is a heterodimeric ABC exporter from the thermophilic Gram-negative eubacterium Thermus thermophilus; it is homologous to various multidrug transporters and contains one degenerate site with a non-catalytic residue next to the Walker B motif. Here we report a subnanometre-resolution structure of detergent-solubilized TmrAB in a nucleotide-free, inward-facing conformation by single-particle electron cryomicroscopy. The reconstructions clearly resolve characteristic features of ABC transporters, including helices in the transmembrane domain and nucleotide-binding domains. A cavity in the transmembrane domain is accessible laterally from the cytoplasmic side of the membrane as well as from the cytoplasm, indicating that the transporter lies in an inward-facing open conformation. The two nucleotide-binding domains remain in contact via their carboxy-terminal helices. Furthermore, comparison between our structure and the crystal structures of other ABC transporters suggests a possible trajectory of conformational changes that involves a sliding and rotating motion between the two nucleotide-binding domains during the transition from the inward-facing to outward-facing conformations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372080/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372080/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, JungMin -- Wu, Shenping -- Tomasiak, Thomas M -- Mergel, Claudia -- Winter, Michael B -- Stiller, Sebastian B -- Robles-Colmanares, Yaneth -- Stroud, Robert M -- Tampe, Robert -- Craik, Charles S -- Cheng, Yifan -- 1P41CA196276-01/CA/NCI NIH HHS/ -- P41 CA196276/CA/NCI NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50GM073210/GM/NIGMS NIH HHS/ -- P50GM082250/GM/NIGMS NIH HHS/ -- R01 GM024485/GM/NIGMS NIH HHS/ -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R37 GM024485/GM/NIGMS NIH HHS/ -- R37GM024485/GM/NIGMS NIH HHS/ -- S10 RR026814/RR/NCRR NIH HHS/ -- S10RR026814/RR/NCRR NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):396-400. doi: 10.1038/nature13872. Epub 2014 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany. ; 1] Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA [2] Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; 1] Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany [2] Cluster of Excellence - Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363761" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/immunology/*ultrastructure ; Antigens/chemistry/immunology ; Binding Sites ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Models, Molecular ; Nucleotides/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rotation ; Thermus thermophilus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-11-11
    Description: DNA methylation is an important epigenetic modification that is essential for various developmental processes through regulating gene expression, genomic imprinting, and epigenetic inheritance. Mammalian genomic DNA methylation is established during embryogenesis by de novo DNA methyltransferases, DNMT3A and DNMT3B, and the methylation patterns vary with developmental stages and cell types. DNA methyltransferase 3-like protein (DNMT3L) is a catalytically inactive paralogue of DNMT3 enzymes, which stimulates the enzymatic activity of Dnmt3a. Recent studies have established a connection between DNA methylation and histone modifications, and revealed a histone-guided mechanism for the establishment of DNA methylation. The ATRX-DNMT3-DNMT3L (ADD) domain of Dnmt3a recognizes unmethylated histone H3 (H3K4me0). The histone H3 tail stimulates the enzymatic activity of Dnmt3a in vitro, whereas the molecular mechanism remains elusive. Here we show that DNMT3A exists in an autoinhibitory form and that the histone H3 tail stimulates its activity in a DNMT3L-independent manner. We determine the crystal structures of DNMT3A-DNMT3L (autoinhibitory form) and DNMT3A-DNMT3L-H3 (active form) complexes at 3.82 and 2.90 A resolution, respectively. Structural and biochemical analyses indicate that the ADD domain of DNMT3A interacts with and inhibits enzymatic activity of the catalytic domain (CD) through blocking its DNA-binding affinity. Histone H3 (but not H3K4me3) disrupts ADD-CD interaction, induces a large movement of the ADD domain, and thus releases the autoinhibition of DNMT3A. The finding adds another layer of regulation of DNA methylation to ensure that the enzyme is mainly activated at proper targeting loci when unmethylated H3K4 is present, and strongly supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome. Our study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Xue -- Wang, Ling -- Li, Jie -- Ding, Zhanyu -- Xiao, Jianxiong -- Yin, Xiaotong -- He, Shuang -- Shi, Pan -- Dong, Liping -- Li, Guohong -- Tian, Changlin -- Wang, Jiawei -- Cong, Yao -- Xu, Yanhui -- England -- Nature. 2015 Jan 29;517(7536):640-4. doi: 10.1038/nature13899. Epub 2014 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China [2] State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; 1] High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China [2] National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China [3] School of Life Sciences, University of Science and Technology of China, Hefei 230026, China. ; 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China [2] University of Chinese Academy of Science, Beijing 100049, China. ; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China. ; State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*antagonists & ; inhibitors/*chemistry/*metabolism ; DNA Methylation ; Enzyme Activation ; Histones/*chemistry/*metabolism ; Humans ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-11-05
    Description: Lantibiotics are a class of peptide antibiotics that contain one or more thioether bonds. The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed by the dehydration of Ser/Thr by the lantibiotic dehydratase NisB (ref. 2). Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process. However, the molecular mechanism by which NisB uses glutamate to catalyse dehydration remains unresolved. Here we show that this process involves glutamyl-tRNA(Glu) to activate Ser/Thr residues. In addition, the 2.9-A crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyse the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate an unexpected role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430201/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430201/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ortega, Manuel A -- Hao, Yue -- Zhang, Qi -- Walker, Mark C -- van der Donk, Wilfred A -- Nair, Satish K -- 5T32-GM070421/GM/NIGMS NIH HHS/ -- F32 GM112284/GM/NIGMS NIH HHS/ -- R01 GM 058822/GM/NIGMS NIH HHS/ -- R01 GM058822/GM/NIGMS NIH HHS/ -- R01 GM079038/GM/NIGMS NIH HHS/ -- S10 RR027109 A/RR/NCRR NIH HHS/ -- T32 GM070421/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):509-12. doi: 10.1038/nature13888. Epub 2014 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; 1] Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA [2] Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; 1] Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA [2] Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363770" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/classification/*metabolism ; Bacteriocins/biosynthesis/*metabolism ; Crystallography, X-Ray ; Escherichia coli/genetics ; Glutamic Acid/metabolism ; Hydro-Lyases/*chemistry/classification/*metabolism ; Lactococcus lactis/*enzymology/genetics ; Membrane Proteins/*chemistry/classification/*metabolism ; Models, Molecular ; Nisin/biosynthesis/metabolism ; Phylogeny ; Protein Structure, Tertiary ; RNA, Transfer, Glu/genetics/*metabolism ; Serine/metabolism ; Threonine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-12-05
    Description: Activation of mechanosensitive ion channels by physical force underlies many physiological processes including the sensation of touch, hearing and pain. TRAAK (also known as KCNK4) ion channels are neuronally expressed members of the two-pore domain K(+) (K2P) channel family and are mechanosensitive. They are involved in controlling mechanical and temperature nociception in mice. Mechanosensitivity of TRAAK is mediated directly through the lipid bilayer--it is a membrane-tension-gated channel. However, the molecular mechanism of TRAAK channel gating and mechanosensitivity is unknown. Here we present crystal structures of TRAAK in conductive and non-conductive conformations defined by the presence of permeant ions along the conduction pathway. In the non-conductive state, a lipid acyl chain accesses the channel cavity through a 5 A-wide lateral opening in the membrane inner leaflet and physically blocks ion passage. In the conductive state, rotation of a transmembrane helix (TM4) about a central hinge seals the intramembrane opening, preventing lipid block of the cavity and permitting ion entry. Additional rotation of a membrane interacting TM2-TM3 segment, unique to mechanosensitive K2Ps, against TM4 may further stabilize the conductive conformation. Comparison of the structures reveals a biophysical explanation for TRAAK mechanosensitivity--an expansion in cross-sectional area up to 2.7 nm(2) in the conductive state is expected to create a membrane-tension-dependent energy difference between conformations that promotes force activation. Our results show how tension of the lipid bilayer can be harnessed to control gating and mechanosensitivity of a eukaryotic ion channel.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682367/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682367/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brohawn, Stephen G -- Campbell, Ernest B -- MacKinnon, Roderick -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):126-30. doi: 10.1038/nature14013.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471887" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Humans ; Ion Channel Gating/*physiology ; *Models, Molecular ; Mutation ; Oxidation-Reduction ; Potassium Channels/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-03-05
    Description: Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doria-Rose, Nicole A -- Schramm, Chaim A -- Gorman, Jason -- Moore, Penny L -- Bhiman, Jinal N -- DeKosky, Brandon J -- Ernandes, Michael J -- Georgiev, Ivelin S -- Kim, Helen J -- Pancera, Marie -- Staupe, Ryan P -- Altae-Tran, Han R -- Bailer, Robert T -- Crooks, Ema T -- Cupo, Albert -- Druz, Aliaksandr -- Garrett, Nigel J -- Hoi, Kam H -- Kong, Rui -- Louder, Mark K -- Longo, Nancy S -- McKee, Krisha -- Nonyane, Molati -- O'Dell, Sijy -- Roark, Ryan S -- Rudicell, Rebecca S -- Schmidt, Stephen D -- Sheward, Daniel J -- Soto, Cinque -- Wibmer, Constantinos Kurt -- Yang, Yongping -- Zhang, Zhenhai -- NISC Comparative Sequencing Program -- Mullikin, James C -- Binley, James M -- Sanders, Rogier W -- Wilson, Ian A -- Moore, John P -- Ward, Andrew B -- Georgiou, George -- Williamson, Carolyn -- Abdool Karim, Salim S -- Morris, Lynn -- Kwong, Peter D -- Shapiro, Lawrence -- Mascola, John R -- P01 AI082362/AI/NIAID NIH HHS/ -- R01 AI100790/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 May 1;509(7498):55-62. doi: 10.1038/nature13036. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; 1] Department of Biochemistry, Columbia University, New York, New York 10032, USA [2]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [4]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa. ; Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; Torrey Pines Institute, San Diego, California 92037, USA. ; Weill Medical College of Cornell University, New York, New York 10065, USA. ; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa. ; Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; Department of Biochemistry, Columbia University, New York, New York 10032, USA. ; 1] NISC Comparative Sequencing program, National Institutes of Health, Bethesda, Maryland 20892, USA [2] NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, Netherlands. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA [2] Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA [3] Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Department of Epidemiology, Columbia University, New York, New York 10032, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Department of Biochemistry, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590074" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity/genetics/immunology ; Antigens, CD4/immunology/metabolism ; B-Lymphocytes/cytology/immunology/metabolism ; Binding Sites/immunology ; Cell Lineage ; Complementarity Determining Regions/chemistry/genetics/immunology ; Epitope Mapping ; Epitopes, B-Lymphocyte/chemistry/immunology ; Evolution, Molecular ; HIV Antibodies/chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp160/*chemistry/*immunology ; HIV Infections/immunology ; HIV-1/chemistry/immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Protein Structure, Tertiary ; Somatic Hypermutation, Immunoglobulin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-12-05
    Description: NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information on the Na(+)-NQR complex has been available until now. Here we present the crystal structure of the Na(+)-NQR complex at 3.5 A resolution. The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded part, reveals an electron transfer pathway from the NADH-oxidizing cytoplasmic NqrF subunit across the membrane to the periplasmic NqrC, and back to the quinone reduction site on NqrA located in the cytoplasm. A sodium channel was localized in subunit NqrB, which represents the largest membrane subunit of the Na(+)-NQR and is structurally related to urea and ammonia transporters. On the basis of the structure we propose a mechanism of redox-driven Na(+) translocation where the change in redox state of the flavin mononucleotide cofactor in NqrB triggers the transport of Na(+) through the observed channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steuber, Julia -- Vohl, Georg -- Casutt, Marco S -- Vorburger, Thomas -- Diederichs, Kay -- Fritz, Gunter -- England -- Nature. 2014 Dec 4;516(7529):62-7. doi: 10.1038/nature14003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Garbenstrasse 30, University of Hohenheim, 70599 Stuttgart, Germany. ; 1] Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany [2] Hermann-Staudinger-Graduate school, University of Freiburg, Hebelstrasse 27, 79104 Freiburg, Germany. ; Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany. ; Department of Biology, University of Konstanz, Universitatsstrasse 10, 78457 Konstanz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471880" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Flavoproteins/chemistry ; Iron/chemistry ; *Models, Molecular ; NAD(P)H Dehydrogenase (Quinone)/*chemistry ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Sodium/*chemistry ; Sodium Channels/chemistry ; Vibrio cholerae/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stroebel, David -- Paoletti, Pierre -- England -- Nature. 2014 Jul 10;511(7508):162-3. doi: 10.1038/511162a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, Ecole Normale Superieure, CNRS UMR8197, INSERM U1024, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Models, Molecular ; Protein Structure, Tertiary ; Receptors, N-Methyl-D-Aspartate/*chemistry/metabolism/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-11-20
    Description: Influenza virus polymerase uses a capped primer, derived by 'cap-snatching' from host pre-messenger RNA, to transcribe its RNA genome into mRNA and a stuttering mechanism to generate the poly(A) tail. By contrast, genome replication is unprimed and generates exact full-length copies of the template. Here we use crystal structures of bat influenza A and human influenza B polymerases (FluA and FluB), bound to the viral RNA promoter, to give mechanistic insight into these distinct processes. In the FluA structure, a loop analogous to the priming loop of flavivirus polymerases suggests that influenza could initiate unprimed template replication by a similar mechanism. Comparing the FluA and FluB structures suggests that cap-snatching involves in situ rotation of the PB2 cap-binding domain to direct the capped primer first towards the endonuclease and then into the polymerase active site. The polymerase probably undergoes considerable conformational changes to convert the observed pre-initiation state into the active initiation and elongation states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reich, Stefan -- Guilligay, Delphine -- Pflug, Alexander -- Malet, Helene -- Berger, Imre -- Crepin, Thibaut -- Hart, Darren -- Lunardi, Thomas -- Nanao, Max -- Ruigrok, Rob W H -- Cusack, Stephen -- England -- Nature. 2014 Dec 18;516(7531):361-6. doi: 10.1038/nature14009. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France. ; University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409151" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallization ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Gene Expression Regulation, Viral ; Influenza A virus/chemistry/*enzymology ; Influenza B virus/chemistry/*enzymology ; *Models, Molecular ; Promoter Regions, Genetic ; Protein Binding ; Protein Structure, Tertiary ; *RNA Caps/chemistry/metabolism ; RNA, Viral/*biosynthesis/*chemistry ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-07-11
    Description: N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present X-ray crystal structures of the Xenopus laevis GluN1-GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino-terminal and ligand-binding domains. The transmembrane domains harbour a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a approximately twofold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263351/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263351/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Chia-Hsueh -- Lu, Wei -- Michel, Jennifer Carlisle -- Goehring, April -- Du, Juan -- Song, Xianqiang -- Gouaux, Eric -- R37 NS038631/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 10;511(7508):191-7. doi: 10.1038/nature13548. Epub 2014 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA [2]. ; 1] Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA [2] Howard Hughes Medical Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. ; Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dizocilpine Maleate/chemistry ; Ion Channels/chemistry ; Ligands ; *Models, Molecular ; Phenols ; Piperidines/chemistry ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Receptors, N-Methyl-D-Aspartate/*chemistry ; Xenopus laevis/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-09-12
    Description: To prime reverse transcription, retroviruses require annealing of a transfer RNA molecule to the U5 primer binding site (U5-PBS) region of the viral genome. The residues essential for primer annealing are initially locked in intramolecular interactions; hence, annealing requires the chaperone activity of the retroviral nucleocapsid (NC) protein to facilitate structural rearrangements. Here we show that, unlike classical chaperones, the Moloney murine leukaemia virus NC uses a unique mechanism for remodelling: it specifically targets multiple structured regions in both the U5-PBS and tRNA(Pro) primer that otherwise sequester residues necessary for annealing. This high-specificity and high-affinity binding by NC consequently liberates these sequestered residues--which are exactly complementary--for intermolecular interactions. Furthermore, NC utilizes a step-wise, entropy-driven mechanism to trigger both residue-specific destabilization and residue-specific release. Our structures of NC bound to U5-PBS and tRNA(Pro) reveal the structure-based mechanism for retroviral primer annealing and provide insights as to how ATP-independent chaperones can target specific RNAs amidst the cellular milieu of non-target RNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Sarah B -- Yildiz, F Zehra -- Lo, Jennifer A -- Wang, Bo -- D'Souza, Victoria M -- England -- Nature. 2014 Nov 27;515(7528):591-5. doi: 10.1038/nature13709. Epub 2014 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Department of Biology, Georgetown University, Washington DC 20057, USA. [3]. ; 1] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2]. ; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209668" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Genome, Viral/genetics ; Humans ; *Models, Molecular ; *Moloney murine leukemia virus/chemistry/genetics ; Nuclear Magnetic Resonance, Biomolecular ; *Nucleocapsid Proteins/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; *RNA, Transfer/chemistry/metabolism ; RNA, Viral/*chemistry/*metabolism ; Reverse Transcription/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-08-15
    Description: The role of long noncoding RNA (lncRNA) in adult hearts is unknown; also unclear is how lncRNA modulates nucleosome remodelling. An estimated 70% of mouse genes undergo antisense transcription, including myosin heavy chain 7 (Myh7), which encodes molecular motor proteins for heart contraction. Here we identify a cluster of lncRNA transcripts from Myh7 loci and demonstrate a new lncRNA-chromatin mechanism for heart failure. In mice, these transcripts, which we named myosin heavy-chain-associated RNA transcripts (Myheart, or Mhrt), are cardiac-specific and abundant in adult hearts. Pathological stress activates the Brg1-Hdac-Parp chromatin repressor complex to inhibit Mhrt transcription in the heart. Such stress-induced Mhrt repression is essential for cardiomyopathy to develop: restoring Mhrt to the pre-stress level protects the heart from hypertrophy and failure. Mhrt antagonizes the function of Brg1, a chromatin-remodelling factor that is activated by stress to trigger aberrant gene expression and cardiac myopathy. Mhrt prevents Brg1 from recognizing its genomic DNA targets, thus inhibiting chromatin targeting and gene regulation by Brg1. It does so by binding to the helicase domain of Brg1, a domain that is crucial for tethering Brg1 to chromatinized DNA targets. Brg1 helicase has dual nucleic-acid-binding specificities: it is capable of binding lncRNA (Mhrt) and chromatinized--but not naked--DNA. This dual-binding feature of helicase enables a competitive inhibition mechanism by which Mhrt sequesters Brg1 from its genomic DNA targets to prevent chromatin remodelling. A Mhrt-Brg1 feedback circuit is thus crucial for heart function. Human MHRT also originates from MYH7 loci and is repressed in various types of myopathic hearts, suggesting a conserved lncRNA mechanism in human cardiomyopathy. Our studies identify a cardioprotective lncRNA, define a new targeting mechanism for ATP-dependent chromatin-remodelling factors, and establish a new paradigm for lncRNA-chromatin interaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Pei -- Li, Wei -- Lin, Chiou-Hong -- Yang, Jin -- Shang, Ching -- Nurnberg, Sylvia T -- Jin, Kevin Kai -- Xu, Weihong -- Lin, Chieh-Yu -- Lin, Chien-Jung -- Xiong, Yiqin -- Chien, Huan-Chieh -- Zhou, Bin -- Ashley, Euan -- Bernstein, Daniel -- Chen, Peng-Sheng -- Chen, Huei-Sheng Vincent -- Quertermous, Thomas -- Chang, Ching-Pin -- HL105194/HL/NHLBI NIH HHS/ -- HL109512/HL/NHLBI NIH HHS/ -- HL111770/HL/NHLBI NIH HHS/ -- HL116997/HL/NHLBI NIH HHS/ -- HL118087/HL/NHLBI NIH HHS/ -- HL121197/HL/NHLBI NIH HHS/ -- HL71140/HL/NHLBI NIH HHS/ -- HL78931/HL/NHLBI NIH HHS/ -- R01 HL111770/HL/NHLBI NIH HHS/ -- R01 HL116997/HL/NHLBI NIH HHS/ -- R01 HL121197/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):102-6. doi: 10.1038/nature13596. Epub 2014 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Price Center 420, Bronx, New York 10461, USA. ; Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Del E. Webb Neuroscience, Aging &Stem Cell Research Center, Sanford/Burnham Medical Research Institute, La Jolla, California 92037, USA. ; 1] Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [3] Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiac Myosins/genetics ; Cardiomegaly/*genetics/*pathology/prevention & control ; Cardiomyopathies/genetics/pathology/prevention & control ; Chromatin/genetics/metabolism ; Chromatin Assembly and Disassembly ; DNA Helicases/antagonists & inhibitors/chemistry/genetics/metabolism ; Feedback, Physiological ; Heart Failure/genetics/pathology/prevention & control ; Histone Deacetylases/metabolism ; Humans ; Mice ; Myocardium/metabolism/pathology ; Myosin Heavy Chains/*genetics ; Nuclear Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Organ Specificity ; Poly(ADP-ribose) Polymerases/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Long Noncoding/antagonists & inhibitors/*genetics/metabolism ; Transcription Factors/antagonists & inhibitors/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-07-22
    Description: Clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, is characterized by elevated glycogen levels and fat deposition. These consistent metabolic alterations are associated with normoxic stabilization of hypoxia-inducible factors (HIFs) secondary to von Hippel-Lindau (VHL) mutations that occur in over 90% of ccRCC tumours. However, kidney-specific VHL deletion in mice fails to elicit ccRCC-specific metabolic phenotypes and tumour formation, suggesting that additional mechanisms are essential. Recent large-scale sequencing analyses revealed the loss of several chromatin remodelling enzymes in a subset of ccRCC (these included polybromo-1, SET domain containing 2 and BRCA1-associated protein-1, among others), indicating that epigenetic perturbations are probably important contributors to the natural history of this disease. Here we used an integrative approach comprising pan-metabolomic profiling and metabolic gene set analysis and determined that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) is uniformly depleted in over six hundred ccRCC tumours examined. Notably, the human FBP1 locus resides on chromosome 9q22, the loss of which is associated with poor prognosis for ccRCC patients. Our data further indicate that FBP1 inhibits ccRCC progression through two distinct mechanisms. First, FBP1 antagonizes glycolytic flux in renal tubular epithelial cells, the presumptive ccRCC cell of origin, thereby inhibiting a potential Warburg effect. Second, in pVHL (the protein encoded by the VHL gene)-deficient ccRCC cells, FBP1 restrains cell proliferation, glycolysis and the pentose phosphate pathway in a catalytic-activity-independent manner, by inhibiting nuclear HIF function via direct interaction with the HIF inhibitory domain. This unique dual function of the FBP1 protein explains its ubiquitous loss in ccRCC, distinguishing FBP1 from previously identified tumour suppressors that are not consistently mutated in all tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Bo -- Qiu, Bo -- Lee, David S M -- Walton, Zandra E -- Ochocki, Joshua D -- Mathew, Lijoy K -- Mancuso, Anthony -- Gade, Terence P F -- Keith, Brian -- Nissim, Itzhak -- Simon, M Celeste -- CA104838/CA/NCI NIH HHS/ -- DK053761/DK/NIDDK NIH HHS/ -- F30 CA177106/CA/NCI NIH HHS/ -- F32 CA192758/CA/NCI NIH HHS/ -- P01 CA104838/CA/NCI NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- R01 DK053761/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 11;513(7517):251-5. doi: 10.1038/nature13557. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA. ; 1] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Department of Pediatrics, Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Division of Child Development and Metabolic Disease, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. ; 1] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA [3] Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Carcinoma, Renal Cell/*enzymology/genetics/physiopathology ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Disease Progression ; Epithelial Cells/metabolism ; Fructose-Bisphosphatase/chemistry/genetics/*metabolism ; Glycolysis ; Humans ; Kidney Neoplasms/*enzymology/genetics/physiopathology ; Models, Molecular ; NADP/metabolism ; Protein Structure, Tertiary ; Swine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-08-15
    Description: Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 A resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 A constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hassaine, Gherici -- Deluz, Cedric -- Grasso, Luigino -- Wyss, Romain -- Tol, Menno B -- Hovius, Ruud -- Graff, Alexandra -- Stahlberg, Henning -- Tomizaki, Takashi -- Desmyter, Aline -- Moreau, Christophe -- Li, Xiao-Dan -- Poitevin, Frederic -- Vogel, Horst -- Nury, Hugues -- England -- Nature. 2014 Aug 21;512(7514):276-81. doi: 10.1038/nature13552. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] [3] Theranyx, 163 Avenue de Luminy, 13288 Marseille, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2]. ; Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland. ; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland. ; Swiss Light Source, Paul Scherrer Institute, CH-5234 Villigen, Switzerland. ; Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 7257 and Universite Aix-Marseille, F-13288 Marseille, France. ; 1] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [2] CNRS, IBS, F-38000 Grenoble, France [3] CEA, DSV, IBS, F-38000 Grenoble, France. ; Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Unite de Dynamique Structurale des Macromolecules, Institut Pasteur, CNRS UMR3528, F-75015 Paris, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [3] CNRS, IBS, F-38000 Grenoble, France [4] CEA, DSV, IBS, F-38000 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119048" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Agents/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Receptors, Serotonin, 5-HT3/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-07-22
    Description: The gamma-secretase complex, comprising presenilin 1 (PS1), PEN-2, APH-1 and nicastrin, is a membrane-embedded protease that controls a number of important cellular functions through substrate cleavage. Aberrant cleavage of the amyloid precursor protein (APP) results in aggregation of amyloid-beta, which accumulates in the brain and consequently causes Alzheimer's disease. Here we report the three-dimensional structure of an intact human gamma-secretase complex at 4.5 A resolution, determined by cryo-electron-microscopy single-particle analysis. The gamma-secretase complex comprises a horseshoe-shaped transmembrane domain, which contains 19 transmembrane segments (TMs), and a large extracellular domain (ECD) from nicastrin, which sits immediately above the hollow space formed by the TM horseshoe. Intriguingly, nicastrin ECD is structurally similar to a large family of peptidases exemplified by the glutamate carboxypeptidase PSMA. This structure serves as an important basis for understanding the functional mechanisms of the gamma-secretase complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134323/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134323/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Peilong -- Bai, Xiao-chen -- Ma, Dan -- Xie, Tian -- Yan, Chuangye -- Sun, Linfeng -- Yang, Guanghui -- Zhao, Yanyu -- Zhou, Rui -- Scheres, Sjors H W -- Shi, Yigong -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2014 Aug 14;512(7513):166-70. doi: 10.1038/nature13567. Epub 2014 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK [2]. ; 1] Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043039" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid Precursor Protein Secretases/*chemistry ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Humans ; *Models, Molecular ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-05-13
    Description: Sulphur is an essential element for life and is ubiquitous in living systems. Yet how the sulphur atom is incorporated into many sulphur-containing secondary metabolites is poorly understood. For bond formation between carbon and sulphur in primary metabolites, the major ionic sulphur sources are the persulphide and thiocarboxylate groups on sulphur-carrier (donor) proteins. Each group is post-translationally generated through the action of a specific activating enzyme. In all reported bacterial cases, the gene encoding the enzyme that catalyses the carbon-sulphur bond formation reaction and that encoding the cognate sulphur-carrier protein exist in the same gene cluster. To study the production of the 2-thiosugar moiety in BE-7585A, an antibiotic from Amycolatopsis orientalis, we identified a putative 2-thioglucose synthase, BexX, whose protein sequence and mode of action seem similar to those of ThiG, the enzyme that catalyses thiazole formation in thiamine biosynthesis. However, no gene encoding a sulphur-carrier protein could be located in the BE-7585A cluster. Subsequent genome sequencing uncovered a few genes encoding sulphur-carrier proteins that are probably involved in the biosynthesis of primary metabolites but only one activating enzyme gene in the A. orientalis genome. Further experiments showed that this activating enzyme can adenylate each of these sulphur-carrier proteins and probably also catalyses the subsequent thiolation, through its rhodanese domain. A proper combination of these sulphur-delivery systems is effective for BexX-catalysed 2-thioglucose production. The ability of BexX to selectively distinguish sulphur-carrier proteins is given a structural basis using X-ray crystallography. This study is, to our knowledge, the first complete characterization of thiosugar formation in nature and also demonstrates the receptor promiscuity of the A. orientalis sulphur-delivery system. Our results also show that co-opting the sulphur-delivery machinery of primary metabolism for the biosynthesis of sulphur-containing natural products is probably a general strategy found in nature.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Eita -- Zhang, Xuan -- Sun, He G -- Lu, Mei-yeh Jade -- Liu, Tsung-lin -- Ou, Albert -- Li, Jeng-yi -- Chen, Yu-hsiang -- Ealick, Steven E -- Liu, Hung-wen -- DK67081/DK/NIDDK NIH HHS/ -- GM035906/GM/NIGMS NIH HHS/ -- GM103403/GM/NIGMS NIH HHS/ -- GM103485/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41 GM103485/GM/NIGMS NIH HHS/ -- R01 DK067081/DK/NIDDK NIH HHS/ -- R01 GM035906/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 19;510(7505):427-31. doi: 10.1038/nature13256. Epub 2014 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA. ; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA. ; Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA. ; 1] Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan [2] Genomics Research Center, Academia Sinica, Taipei 115, Taiwan. ; 1] Genomics Research Center, Academia Sinica, Taipei 115, Taiwan [2] Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan. ; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan. ; Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan. ; 1] Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA [2] Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24814342" target="_blank"〉PubMed〈/a〉
    Keywords: Actinomycetales/*enzymology/*genetics/metabolism ; Carrier Proteins/chemistry/*metabolism ; Catalytic Domain ; Genome, Bacterial/genetics ; Ligases/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Sulfur/*metabolism ; Thiosugars/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-07-22
    Description: Mutations that deregulate Notch1 and Ras/phosphoinositide 3 kinase (PI3K)/Akt signalling are prevalent in T-cell acute lymphoblastic leukaemia (T-ALL), and often coexist. Here we show that the PI3K inhibitor GDC-0941 is active against primary T-ALLs from wild-type and Kras(G12D) mice, and addition of the MEK inhibitor PD0325901 increases its efficacy. Mice invariably relapsed after treatment with drug-resistant clones, most of which unexpectedly had reduced levels of activated Notch1 protein, downregulated many Notch1 target genes, and exhibited cross-resistance to gamma-secretase inhibitors. Multiple resistant primary T-ALLs that emerged in vivo did not contain somatic Notch1 mutations present in the parental leukaemia. Importantly, resistant clones upregulated PI3K signalling. Consistent with these data, inhibiting Notch1 activated the PI3K pathway, providing a likely mechanism for selection against oncogenic Notch1 signalling. These studies validate PI3K as a therapeutic target in T-ALL and raise the unexpected possibility that dual inhibition of PI3K and Notch1 signalling could promote drug resistance in T-ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dail, Monique -- Wong, Jason -- Lawrence, Jessica -- O'Connor, Daniel -- Nakitandwe, Joy -- Chen, Shann-Ching -- Xu, Jin -- Lee, Leslie B -- Akagi, Keiko -- Li, Qing -- Aster, Jon C -- Pear, Warren S -- Downing, James R -- Sampath, Deepak -- Shannon, Kevin -- K08 CA134649/CA/NCI NIH HHS/ -- K99 CA157950/CA/NCI NIH HHS/ -- P01 CA119070/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 CA180037/CA/NCI NIH HHS/ -- R37 CA072614/CA/NCI NIH HHS/ -- R37 CA72614/CA/NCI NIH HHS/ -- U01 CA084221/CA/NCI NIH HHS/ -- England -- Nature. 2014 Sep 25;513(7519):512-6. doi: 10.1038/nature13495. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, California 94143, USA. ; Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Translational Oncology, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio 43210, USA. ; Division of Haematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Pathology, Brigham &Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Abramson Family Cancer Research Institute and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043004" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzamides/pharmacology/therapeutic use ; Clone Cells/drug effects/metabolism/pathology ; Diphenylamine/analogs & derivatives/pharmacology/therapeutic use ; Down-Regulation/drug effects ; *Drug Resistance, Neoplasm/drug effects/genetics ; Drug Synergism ; Genes, ras/genetics ; Indazoles/*pharmacology/therapeutic use ; Male ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors ; Phosphatidylinositol 3-Kinases/*antagonists & inhibitors ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*drug ; therapy/*genetics/metabolism/pathology ; Protein Kinase Inhibitors/*pharmacology/therapeutic use ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-akt/metabolism ; Receptor, Notch1/chemistry/deficiency/genetics/*metabolism ; Signal Transduction/drug effects ; Sulfonamides/*pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-03-05
    Description: Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Hong -- Li, Yuanyuan -- Xi, Yuanxin -- Jiang, Shiming -- Stratton, Sabrina -- Peng, Danni -- Tanaka, Kaori -- Ren, Yongfeng -- Xia, Zheng -- Wu, Jun -- Li, Bing -- Barton, Michelle C -- Li, Wei -- Li, Haitao -- Shi, Xiaobing -- CA016672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 GM090077/GM/NIGMS NIH HHS/ -- R01 HG007538/HG/NHGRI NIH HHS/ -- R01GM090077/GM/NIGMS NIH HHS/ -- R01HG007538/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):263-8. doi: 10.1038/nature13045. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]. ; Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590075" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Breast Neoplasms/*genetics/metabolism/*pathology ; Carrier Proteins/chemistry/*metabolism ; Chromatin/genetics/metabolism ; Co-Repressor Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Disease-Free Survival ; Female ; Gene Expression Regulation, Neoplastic/genetics ; Histones/chemistry/*metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Oncogenes/genetics ; Prognosis ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*metabolism ; Substrate Specificity ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-06-27
    Description: The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the beta-keto intermediate, and after beta-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074775/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074775/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whicher, Jonathan R -- Dutta, Somnath -- Hansen, Douglas A -- Hale, Wendi A -- Chemler, Joseph A -- Dosey, Annie M -- Narayan, Alison R H -- Hakansson, Kristina -- Sherman, David H -- Smith, Janet L -- Skiniotis, Georgios -- 1R21CA138331-01A1/CA/NCI NIH HHS/ -- DK042303/DK/NIDDK NIH HHS/ -- DK090165/DK/NIDDK NIH HHS/ -- GM076477/GM/NIGMS NIH HHS/ -- R01 DK042303/DK/NIDDK NIH HHS/ -- R01 DK090165/DK/NIDDK NIH HHS/ -- R01 GM076477/GM/NIGMS NIH HHS/ -- T32 GM008597/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 26;510(7506):560-4. doi: 10.1038/nature13409. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Chemical Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA [3]. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2]. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [4] Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24965656" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/chemistry/metabolism/ultrastructure ; Acyltransferases/chemistry/metabolism/ultrastructure ; Alcohol Oxidoreductases/chemistry/metabolism/ultrastructure ; Bacterial Proteins/chemistry/metabolism/ultrastructure ; *Biocatalysis ; Catalytic Domain ; Cryoelectron Microscopy ; Macrolides/metabolism ; Models, Molecular ; Polyketide Synthases/*chemistry/*metabolism/ultrastructure ; Protein Structure, Tertiary ; Streptomyces/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-07-22
    Description: Metabotropic glutamate receptors are class C G-protein-coupled receptors which respond to the neurotransmitter glutamate. Structural studies have been restricted to the amino-terminal extracellular domain, providing little understanding of the membrane-spanning signal transduction domain. Metabotropic glutamate receptor 5 is of considerable interest as a drug target in the treatment of fragile X syndrome, autism, depression, anxiety, addiction and movement disorders. Here we report the crystal structure of the transmembrane domain of the human receptor in complex with the negative allosteric modulator, mavoglurant. The structure provides detailed insight into the architecture of the transmembrane domain of class C receptors including the precise location of the allosteric binding site within the transmembrane domain and key micro-switches which regulate receptor signalling. This structure also provides a model for all class C G-protein-coupled receptors and may aid in the design of new small-molecule drugs for the treatment of brain disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dore, Andrew S -- Okrasa, Krzysztof -- Patel, Jayesh C -- Serrano-Vega, Maria -- Bennett, Kirstie -- Cooke, Robert M -- Errey, James C -- Jazayeri, Ali -- Khan, Samir -- Tehan, Ben -- Weir, Malcolm -- Wiggin, Giselle R -- Marshall, Fiona H -- England -- Nature. 2014 Jul 31;511(7511):557-62. doi: 10.1038/nature13396. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK [2]. ; Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25042998" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; *Models, Molecular ; Protein Structure, Tertiary ; Receptor, Metabotropic Glutamate 5/*chemistry ; Rhodopsin/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-04-22
    Description: The capacity of numerous bacterial species to tolerate antibiotics and other toxic compounds arises in part from the activity of energy-dependent transporters. In Gram-negative bacteria, many of these transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component. A model system for such a pump is the acridine resistance complex of Escherichia coli. This pump assembly comprises the outer-membrane channel TolC, the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which bridges these two integral membrane proteins. The AcrAB-TolC efflux pump is able to transport vectorially a diverse array of compounds with little chemical similarity, thus conferring resistance to a broad spectrum of antibiotics. Homologous complexes are found in many Gram-negative species, including in animal and plant pathogens. Crystal structures are available for the individual components of the pump and have provided insights into substrate recognition, energy coupling and the transduction of conformational changes associated with the transport process. However, how the subunits are organized in the pump, their stoichiometry and the details of their interactions are not known. Here we present the pseudo-atomic structure of a complete multidrug efflux pump in complex with a modulatory protein partner from E. coli. The model defines the quaternary organization of the pump, identifies key domain interactions, and suggests a cooperative process for channel assembly and opening. These findings illuminate the basis for drug resistance in numerous pathogenic bacterial species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Dijun -- Wang, Zhao -- James, Nathan R -- Voss, Jarrod E -- Klimont, Ewa -- Ohene-Agyei, Thelma -- Venter, Henrietta -- Chiu, Wah -- Luisi, Ben F -- 076846/Wellcome Trust/United Kingdom -- 094229/Wellcome Trust/United Kingdom -- P41 GM103832/GM/NIGMS NIH HHS/ -- P41GM103832/GM/NIGMS NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 May 22;509(7501):512-5. doi: 10.1038/nature13205. Epub 2014 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK. ; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK. ; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5000, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24747401" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Carrier Proteins/*chemistry/*metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drug Resistance, Bacterial ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipoproteins/*chemistry/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Multidrug Resistance-Associated Proteins/*chemistry/*metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-01-10
    Description: The human immunodeficiency virus (HIV)-1 protein Vif has a central role in the neutralization of host innate defences by hijacking cellular proteasomal degradation pathways to subvert the antiviral activity of host restriction factors; however, the underlying mechanism by which Vif achieves this remains unclear. Here we report a crystal structure of the Vif-CBF-beta-CUL5-ELOB-ELOC complex. The structure reveals that Vif, by means of two domains, organizes formation of the pentameric complex by interacting with CBF-beta, CUL5 and ELOC. The larger domain (alpha/beta domain) of Vif binds to the same side of CBF-beta as RUNX1, indicating that Vif and RUNX1 are exclusive for CBF-beta binding. Interactions of the smaller domain (alpha-domain) of Vif with ELOC and CUL5 are cooperative and mimic those of SOCS2 with the latter two proteins. A unique zinc-finger motif of Vif, which is located between the two Vif domains, makes no contacts with the other proteins but stabilizes the conformation of the alpha-domain, which may be important for Vif-CUL5 interaction. Together, our data reveal the structural basis for Vif hijacking of the CBF-beta and CUL5 E3 ligase complex, laying a foundation for rational design of novel anti-HIV drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Yingying -- Dong, Liyong -- Qiu, Xiaolin -- Wang, Yishu -- Zhang, Bailing -- Liu, Hongnan -- Yu, You -- Zang, Yi -- Yang, Maojun -- Huang, Zhiwei -- England -- Nature. 2014 Jan 9;505(7482):229-33. doi: 10.1038/nature12884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China [2]. ; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402281" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Core Binding Factor Alpha 2 Subunit/metabolism ; Core Binding Factor beta Subunit/*chemistry/*metabolism ; Crystallography, X-Ray ; Cullin Proteins/*chemistry/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Protein Binding ; Protein Stability ; Protein Structure, Tertiary ; Suppressor of Cytokine Signaling Proteins ; Transcription Factors/chemistry/metabolism ; vif Gene Products, Human Immunodeficiency Virus/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-06-10
    Description: Type-A gamma-aminobutyric acid receptors (GABAARs) are the principal mediators of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signalling triggers hyperactive neurological disorders such as insomnia, anxiety and epilepsy. Here we present the first three-dimensional structure of a GABAAR, the human beta3 homopentamer, at 3 A resolution. This structure reveals architectural elements unique to eukaryotic Cys-loop receptors, explains the mechanistic consequences of multiple human disease mutations and shows an unexpected structural role for a conserved N-linked glycan. The receptor was crystallized bound to a previously unknown agonist, benzamidine, opening a new avenue for the rational design of GABAAR modulators. The channel region forms a closed gate at the base of the pore, representative of a desensitized state. These results offer new insights into the signalling mechanisms of pentameric ligand-gated ion channels and enhance current understanding of GABAergic neurotransmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167603/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167603/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Paul S -- Aricescu, A Radu -- 084655/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- MR/L009609/1/Medical Research Council/United Kingdom -- England -- Nature. 2014 Aug 21;512(7514):270-5. doi: 10.1038/nature13293. Epub 2014 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24909990" target="_blank"〉PubMed〈/a〉
    Keywords: Benzamidines/chemistry/metabolism/pharmacology ; Binding Sites ; Cell Membrane/chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Drug Design ; GABA-A Receptor Agonists/chemistry/metabolism/pharmacology ; Genetic Predisposition to Disease ; Glycosylation ; Humans ; Models, Molecular ; Mutation/genetics ; Polysaccharides/chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, GABA-A/*chemistry/genetics ; Synaptic Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-07-22
    Description: Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 A resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kupitz, Christopher -- Basu, Shibom -- Grotjohann, Ingo -- Fromme, Raimund -- Zatsepin, Nadia A -- Rendek, Kimberly N -- Hunter, Mark S -- Shoeman, Robert L -- White, Thomas A -- Wang, Dingjie -- James, Daniel -- Yang, Jay-How -- Cobb, Danielle E -- Reeder, Brenda -- Sierra, Raymond G -- Liu, Haiguang -- Barty, Anton -- Aquila, Andrew L -- Deponte, Daniel -- Kirian, Richard A -- Bari, Sadia -- Bergkamp, Jesse J -- Beyerlein, Kenneth R -- Bogan, Michael J -- Caleman, Carl -- Chao, Tzu-Chiao -- Conrad, Chelsie E -- Davis, Katherine M -- Fleckenstein, Holger -- Galli, Lorenzo -- Hau-Riege, Stefan P -- Kassemeyer, Stephan -- Laksmono, Hartawan -- Liang, Mengning -- Lomb, Lukas -- Marchesini, Stefano -- Martin, Andrew V -- Messerschmidt, Marc -- Milathianaki, Despina -- Nass, Karol -- Ros, Alexandra -- Roy-Chowdhury, Shatabdi -- Schmidt, Kevin -- Seibert, Marvin -- Steinbrener, Jan -- Stellato, Francesco -- Yan, Lifen -- Yoon, Chunhong -- Moore, Thomas A -- Moore, Ana L -- Pushkar, Yulia -- Williams, Garth J -- Boutet, Sebastien -- Doak, R Bruce -- Weierstall, Uwe -- Frank, Matthias -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- 1R01GM095583/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 11;513(7517):261-5. doi: 10.1038/nature13453. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2]. ; Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Lawrence Livermore National Laboratory, Livermore, California 94550, USA. ; Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ; Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] European XFEL GmbH, Notkestrasse 85, 22607 Hamburg, Germany. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA [2] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; 1] Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany [2] Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics and Astronomy, Uppsala University, Regementsvagen 1, SE-752 37 Uppsala, Sweden. ; 1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2] University of Regina, 3737 Wascana Pkwy Regina, Saskatchewan S4S 0A2, Canada. ; Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA. ; 1] Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. ; Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department ARC Centre of Excellence for Coherent X-ray Science, Department of Physics, University of Melbourne, Parkville VIC 3010, Australia. ; Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [3] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. ; 1] Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA [2] Uppsala University, Sankt Olofsgatan 10B, 753 12 Uppsala, Sweden. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany [3] Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043005" target="_blank"〉PubMed〈/a〉
    Keywords: *Crystallography, X-Ray ; Cyanobacteria/*chemistry ; *Models, Molecular ; Photosystem II Protein Complex/*chemistry ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-07-22
    Description: Ubiquitination is a crucial cellular signalling process, and is controlled on multiple levels. Cullin-RING E3 ubiquitin ligases (CRLs) are regulated by the eight-subunit COP9 signalosome (CSN). CSN inactivates CRLs by removing their covalently attached activator, NEDD8. NEDD8 cleavage by CSN is catalysed by CSN5, a Zn(2+)-dependent isopeptidase that is inactive in isolation. Here we present the crystal structure of the entire approximately 350-kDa human CSN holoenzyme at 3.8 A resolution, detailing the molecular architecture of the complex. CSN has two organizational centres: a horseshoe-shaped ring created by its six proteasome lid-CSN-initiation factor 3 (PCI) domain proteins, and a large bundle formed by the carboxy-terminal alpha-helices of every subunit. CSN5 and its dimerization partner, CSN6, are intricately embedded at the core of the helical bundle. In the substrate-free holoenzyme, CSN5 is autoinhibited, which precludes access to the active site. We find that neddylated CRL binding to CSN is sensed by CSN4, and communicated to CSN5 with the assistance of CSN6, resulting in activation of the deneddylase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lingaraju, Gondichatnahalli M -- Bunker, Richard D -- Cavadini, Simone -- Hess, Daniel -- Hassiepen, Ulrich -- Renatus, Martin -- Fischer, Eric S -- Thoma, Nicolas H -- England -- Nature. 2014 Aug 14;512(7513):161-5. doi: 10.1038/nature13566. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, 4003 Basel, Switzerland [3]. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, 4003 Basel, Switzerland. ; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. ; Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043011" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; *Models, Molecular ; Multiprotein Complexes/*chemistry ; Peptide Hydrolases/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-05-13
    Description: 2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N(epsilon)-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066111/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066111/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chowdhury, Rasheduzzaman -- Sekirnik, Rok -- Brissett, Nigel C -- Krojer, Tobias -- Ho, Chia-Hua -- Ng, Stanley S -- Clifton, Ian J -- Ge, Wei -- Kershaw, Nadia J -- Fox, Gavin C -- Muniz, Joao R C -- Vollmar, Melanie -- Phillips, Claire -- Pilka, Ewa S -- Kavanagh, Kathryn L -- von Delft, Frank -- Oppermann, Udo -- McDonough, Michael A -- Doherty, Aidan J -- Schofield, Christopher J -- 092809/Wellcome Trust/United Kingdom -- 6947/Cancer Research UK/United Kingdom -- BB/C518230/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/L009846/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Jun 19;510(7505):422-6. doi: 10.1038/nature13263. Epub 2014 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK. ; 1] The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK [2]. ; 1] Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK [2]. ; Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK. ; Synchrotron SOLEIL, Saint Aubin, 91192 Gif-sur-Yvette Cedex, France. ; 1] Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK [2] NIHR Oxford Biomedical Research Unit, Botnar Research Centre, Oxford OX3 7LD, UK. ; Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24814345" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Conserved Sequence ; Eukaryota/classification/*enzymology ; Humans ; *Models, Molecular ; Oxygenases/*chemistry/metabolism ; Phylogeny ; Prokaryotic Cells/classification/*enzymology ; Protein Folding ; Protein Structure, Tertiary ; Ribosomes/*enzymology ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-03-05
    Description: Ubiquitin (Ub) has important roles in a wide range of intracellular signalling pathways. In the conventional view, ubiquitin alters the signalling activity of the target protein through covalent modification, but accumulating evidence points to the emerging role of non-covalent interaction between ubiquitin and the target. In the innate immune signalling pathway of a viral RNA sensor, RIG-I, both covalent and non-covalent interactions with K63-linked ubiquitin chains (K63-Ubn) were shown to occur in its signalling domain, a tandem caspase activation and recruitment domain (hereafter referred to as 2CARD). Non-covalent binding of K63-Ubn to 2CARD induces its tetramer formation, a requirement for downstream signal activation. Here we report the crystal structure of the tetramer of human RIG-I 2CARD bound by three chains of K63-Ub2. 2CARD assembles into a helical tetramer resembling a 'lock-washer', in which the tetrameric surface serves as a signalling platform for recruitment and activation of the downstream signalling molecule, MAVS. Ubiquitin chains are bound along the outer rim of the helical trajectory, bridging adjacent subunits of 2CARD and stabilizing the 2CARD tetramer. The combination of structural and functional analyses reveals that binding avidity dictates the K63-linkage and chain-length specificity of 2CARD, and that covalent ubiquitin conjugation of 2CARD further stabilizes the Ub-2CARD interaction and thus the 2CARD tetramer. Our work provides unique insights into the novel types of ubiquitin-mediated signal-activation mechanism, and previously unexpected synergism between the covalent and non-covalent ubiquitin interaction modes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peisley, Alys -- Wu, Bin -- Xu, Hui -- Chen, Zhijian J -- Hur, Sun -- R01-GM63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 1;509(7498):110-4. doi: 10.1038/nature13140. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 USA [2] Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590070" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Caspases/metabolism ; Crystallography, X-Ray ; DEAD-box RNA Helicases/*chemistry/*metabolism ; Humans ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Protein Stability ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA, Viral/analysis/metabolism ; Signal Transduction ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-09-12
    Description: Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The 14 conserved 'core' subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 'supernumerary' subunits are unknown. Here we describe a 5 A resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we considerably advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224586/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224586/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinothkumar, Kutti R -- Zhu, Jiapeng -- Hirst, Judy -- MC_U105184322/Medical Research Council/United Kingdom -- MC_U105663141/Medical Research Council/United Kingdom -- U105184322/Medical Research Council/United Kingdom -- U105663141/Medical Research Council/United Kingdom -- England -- Nature. 2014 Nov 6;515(7525):80-4. doi: 10.1038/nature13686. Epub 2014 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK [2]. ; 1] MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK [2]. ; MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209663" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cryoelectron Microscopy ; Electron Transport Complex I/*chemistry/*ultrastructure ; Mitochondria, Heart/enzymology ; Models, Molecular ; Protein Structure, Tertiary ; Protein Subunits/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-01-28
    Description: RNA-directed DNA methylation in Arabidopsis thaliana depends on the upstream synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) and downstream synthesis of non-coding transcripts by Pol V. Pol V transcripts are thought to interact with siRNAs which then recruit DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA. The SU(VAR)3-9 homologues SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone methyltransferases, a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine (SAM)-binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SRA (SET- and RING-ASSOCIATED) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. Furthermore, tethering SUVH2 with a zinc finger to an unmethylated site is sufficient to recruit Pol V and establish DNA methylation and gene silencing. These results indicate that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of plant genomes for epigenetic silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Lianna M -- Du, Jiamu -- Hale, Christopher J -- Bischof, Sylvain -- Feng, Suhua -- Chodavarapu, Ramakrishna K -- Zhong, Xuehua -- Marson, Giuseppe -- Pellegrini, Matteo -- Segal, David J -- Patel, Dinshaw J -- Jacobsen, Steven E -- F32GM096483-01/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- P30 CA016042/CA/NCI NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 6;507(7490):124-8. doi: 10.1038/nature12931. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2]. ; 1] Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2]. ; Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA. ; 1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2] Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA. ; 1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2] Wisconsin Institute for Discovery, Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA. ; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Genome Center and Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463519" target="_blank"〉PubMed〈/a〉
    Keywords: *Arabidopsis/enzymology/genetics ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites/genetics ; Biocatalysis ; Chromatin/chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; *DNA Methylation/genetics ; DNA-Binding Proteins/chemistry/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Flowers/growth & development ; Gene Expression Regulation, Plant ; Gene Silencing ; Genome, Plant/genetics ; Histone-Lysine N-Methyltransferase/*chemistry/*metabolism ; Models, Molecular ; Mutation/genetics ; Phenotype ; Protein Structure, Tertiary ; Protein Transport ; RNA, Plant/biosynthesis/genetics/metabolism ; RNA, Small Interfering/biosynthesis/genetics/metabolism ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-11-20
    Description: The influenza virus polymerase transcribes or replicates the segmented RNA genome (viral RNA) into viral messenger RNA or full-length copies. To initiate RNA synthesis, the polymerase binds to the conserved 3' and 5' extremities of the viral RNA. Here we present the crystal structure of the heterotrimeric bat influenza A polymerase, comprising subunits PA, PB1 and PB2, bound to its viral RNA promoter. PB1 contains a canonical RNA polymerase fold that is stabilized by large interfaces with PA and PB2. The PA endonuclease and the PB2 cap-binding domain, involved in transcription by cap-snatching, form protrusions facing each other across a solvent channel. The 5' extremity of the promoter folds into a compact hook that is bound in a pocket formed by PB1 and PA close to the polymerase active site. This structure lays the basis for an atomic-level mechanistic understanding of the many functions of influenza polymerase, and opens new opportunities for anti-influenza drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pflug, Alexander -- Guilligay, Delphine -- Reich, Stefan -- Cusack, Stephen -- England -- Nature. 2014 Dec 18;516(7531):355-60. doi: 10.1038/nature14008. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409142" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; DNA-Directed RNA Polymerases/*chemistry ; Influenza A virus/*enzymology ; Models, Molecular ; Promoter Regions, Genetic ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-02-28
    Description: Tripartite Tc toxin complexes of bacterial pathogens perforate the host membrane and translocate toxic enzymes into the host cell, including in humans. The underlying mechanism is complex but poorly understood. Here we report the first, to our knowledge, high-resolution structures of a TcA subunit in its prepore and pore state and of a complete 1.7 megadalton Tc complex. The structures reveal that, in addition to a translocation channel, TcA forms four receptor-binding sites and a neuraminidase-like region, which are important for its host specificity. pH-induced opening of the shell releases an entropic spring that drives the injection of the TcA channel into the membrane. Binding of TcB/TcC to TcA opens a gate formed by a six-bladed beta-propeller and results in a continuous protein translocation channel, whose architecture and properties suggest a novel mode of protein unfolding and translocation. Our results allow us to understand key steps of infections involving Tc toxins at the molecular level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meusch, Dominic -- Gatsogiannis, Christos -- Efremov, Rouslan G -- Lang, Alexander E -- Hofnagel, Oliver -- Vetter, Ingrid R -- Aktories, Klaus -- Raunser, Stefan -- England -- Nature. 2014 Apr 3;508(7494):61-5. doi: 10.1038/nature13015. Epub 2014 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany [2]. ; Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany. ; Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. ; Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. ; 1] Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany. ; 1] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany [2] Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Thielallee 63, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572368" target="_blank"〉PubMed〈/a〉
    Keywords: ADP Ribose Transferases/metabolism ; Bacterial Toxins/*chemistry/*metabolism ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Host Specificity ; Hydrogen-Ion Concentration ; Models, Molecular ; Neuraminidase/chemistry ; Photorhabdus/*chemistry ; Porosity ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protein Transport ; Protein Unfolding ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-02-21
    Description: Hepatitis C virus (HCV) is a significant public health concern with approximately 160 million people infected worldwide. HCV infection often results in chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. No vaccine is available and current therapies are effective against some, but not all, genotypes. HCV is an enveloped virus with two surface glycoproteins (E1 and E2). E2 binds to the host cell through interactions with scavenger receptor class B type I (SR-BI) and CD81, and serves as a target for neutralizing antibodies. Little is known about the molecular mechanism that mediates cell entry and membrane fusion, although E2 is predicted to be a class II viral fusion protein. Here we describe the structure of the E2 core domain in complex with an antigen-binding fragment (Fab) at 2.4 A resolution. The E2 core has a compact, globular domain structure, consisting mostly of beta-strands and random coil with two small alpha-helices. The strands are arranged in two, perpendicular sheets (A and B), which are held together by an extensive hydrophobic core and disulphide bonds. Sheet A has an IgG-like fold that is commonly found in viral and cellular proteins, whereas sheet B represents a novel fold. Solution-based studies demonstrate that the full-length E2 ectodomain has a similar globular architecture and does not undergo significant conformational or oligomeric rearrangements on exposure to low pH. Thus, the IgG-like fold is the only feature that E2 shares with class II membrane fusion proteins. These results provide unprecedented insights into HCV entry and will assist in developing an HCV vaccine and new inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126800/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126800/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khan, Abdul Ghafoor -- Whidby, Jillian -- Miller, Matthew T -- Scarborough, Hannah -- Zatorski, Alexandra V -- Cygan, Alicja -- Price, Aryn A -- Yost, Samantha A -- Bohannon, Caitlin D -- Jacob, Joshy -- Grakoui, Arash -- Marcotrigiano, Joseph -- AI070101/AI/NIAID NIH HHS/ -- DK083356/DK/NIDDK NIH HHS/ -- P50 GM103368/GM/NIGMS NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- P51 RR000165/RR/NCRR NIH HHS/ -- R01 AI070101/AI/NIAID NIH HHS/ -- R01 AI080659/AI/NIAID NIH HHS/ -- R01 DK083356/DK/NIDDK NIH HHS/ -- RR-00165/RR/NCRR NIH HHS/ -- T32 AI007403/AI/NIAID NIH HHS/ -- T32 AI007610/AI/NIAID NIH HHS/ -- England -- Nature. 2014 May 15;509(7500):381-4. doi: 10.1038/nature13117. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA. ; Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA. ; 1] Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA [2] Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553139" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Disulfides/chemistry ; Hepacivirus/*chemistry/physiology ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Immunoglobulin G/chemistry ; Models, Molecular ; Protein Folding ; Protein Structure, Tertiary ; Scattering, Small Angle ; Surface Properties ; Viral Envelope Proteins/*chemistry/metabolism ; Viral Fusion Proteins ; Viral Hepatitis Vaccines ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-05-23
    Description: The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 A resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Dong -- Xu, Chao -- Sun, Pengcheng -- Wu, Jianping -- Yan, Chuangye -- Hu, Mingxu -- Yan, Nieng -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):121-5. doi: 10.1038/nature13306. Epub 2014 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847886" target="_blank"〉PubMed〈/a〉
    Keywords: Carbohydrate Metabolism, Inborn Errors/genetics ; Crystallography, X-Ray ; Escherichia coli Proteins ; Glucose Transporter Type 1/*chemistry/deficiency/genetics/metabolism ; Humans ; Ligands ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/deficiency/genetics ; Mutation/genetics ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Symporters
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-09-12
    Description: Genetic equality between males and females is established by chromosome-wide dosage-compensation mechanisms. In the fruitfly Drosophila melanogaster, the dosage-compensation complex promotes twofold hypertranscription of the single male X-chromosome and is silenced in females by inhibition of the translation of msl2, which codes for the limiting component of the dosage-compensation complex. The female-specific protein Sex-lethal (Sxl) recruits Upstream-of-N-ras (Unr) to the 3' untranslated region of msl2 messenger RNA, preventing the engagement of the small ribosomal subunit. Here we report the 2.8 A crystal structure, NMR and small-angle X-ray and neutron scattering data of the ternary Sxl-Unr-msl2 ribonucleoprotein complex featuring unprecedented intertwined interactions of two Sxl RNA recognition motifs, a Unr cold-shock domain and RNA. Cooperative complex formation is associated with a 1,000-fold increase of RNA binding affinity for the Unr cold-shock domain and involves novel ternary interactions, as well as non-canonical RNA contacts by the alpha1 helix of Sxl RNA recognition motif 1. Our results suggest that repression of dosage compensation, necessary for female viability, is triggered by specific, cooperative molecular interactions that lock a ribonucleoprotein switch to regulate translation. The structure serves as a paradigm for how a combination of general and widespread RNA binding domains expands the code for specific single-stranded RNA recognition in the regulation of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hennig, Janosch -- Militti, Cristina -- Popowicz, Grzegorz M -- Wang, Iren -- Sonntag, Miriam -- Geerlof, Arie -- Gabel, Frank -- Gebauer, Fatima -- Sattler, Michael -- England -- Nature. 2014 Nov 13;515(7526):287-90. doi: 10.1038/nature13693. Epub 2014 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Structural Biology, Helmholtz Zentrum Munchen, Ingolstadter Landstrasse 1, DE-85764, Germany [2] Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universitat Munchen, Lichtenbergstr. 4, DE-85747 Garching, Germany. ; 1] Centre for Genomic Regulation, Gene Regulation, Stem Cells and Cancer Programme, Dr Aiguader 88, 08003 Barcelona, Spain [2] Universisty Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain. ; Institute of Structural Biology, Helmholtz Zentrum Munchen, Ingolstadter Landstrasse 1, DE-85764, Germany. ; 1] Universite Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France [2] Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France [3] Commissariat a l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France [4] Institut Laue-Langevin, F-38042 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209665" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Cold-Shock Response ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/*metabolism ; Dosage Compensation, Genetic ; Drosophila Proteins/*chemistry/*metabolism ; Drosophila melanogaster/*chemistry/genetics ; Female ; Gene Expression Regulation ; Male ; Models, Molecular ; Neutron Diffraction ; Nuclear Magnetic Resonance, Biomolecular ; Nucleotide Motifs ; *Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Messenger/chemistry/*metabolism ; RNA-Binding Proteins/*chemistry/*metabolism ; Ribonucleoproteins/chemistry/metabolism ; Scattering, Small Angle ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-01-28
    Description: A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282169/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282169/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larsbrink, Johan -- Rogers, Theresa E -- Hemsworth, Glyn R -- McKee, Lauren S -- Tauzin, Alexandra S -- Spadiut, Oliver -- Klinter, Stefan -- Pudlo, Nicholas A -- Urs, Karthik -- Koropatkin, Nicole M -- Creagh, A Louise -- Haynes, Charles A -- Kelly, Amelia G -- Cederholm, Stefan Nilsson -- Davies, Gideon J -- Martens, Eric C -- Brumer, Harry -- BB/I014802/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- DK084214/DK/NIDDK NIH HHS/ -- GM099513/GM/NIGMS NIH HHS/ -- K01 DK084214/DK/NIDDK NIH HHS/ -- R01 GM099513/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):498-502. doi: 10.1038/nature12907. Epub 2014 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden [2]. ; 1] Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2]. ; 1] Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK [2]. ; 1] Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden [2] Wallenberg Wood Science Center, Royal Institute of Technology (KTH), Teknikringen 56-58, 100 44 Stockholm, Sweden. ; Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden. ; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Michael Smith Laboratories and Department of Chemical and Biological Engineering, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK. ; 1] Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden [2] Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463512" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteroides/enzymology/*genetics/growth & development/*metabolism ; Carbohydrate Metabolism/genetics ; Carbohydrate Sequence ; Cell Wall/chemistry ; Crystallography, X-Ray ; Diet ; Dietary Fiber ; Evolution, Molecular ; Gastrointestinal Tract/*microbiology ; Genetic Loci/*genetics ; Glucans/chemistry/*metabolism ; Glycoside Hydrolases/chemistry/genetics/metabolism ; Humans ; Metagenome ; Models, Molecular ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary ; Symbiosis ; Xylans/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-11-28
    Description: Human tumours typically harbour a remarkable number of somatic mutations. If presented on major histocompatibility complex class I molecules (MHCI), peptides containing these mutations could potentially be immunogenic as they should be recognized as 'non-self' neo-antigens by the adaptive immune system. Recent work has confirmed that mutant peptides can serve as T-cell epitopes. However, few mutant epitopes have been described because their discovery required the laborious screening of patient tumour-infiltrating lymphocytes for their ability to recognize antigen libraries constructed following tumour exome sequencing. We sought to simplify the discovery of immunogenic mutant peptides by characterizing their general properties. We developed an approach that combines whole-exome and transcriptome sequencing analysis with mass spectrometry to identify neo-epitopes in two widely used murine tumour models. Of the 〉1,300 amino acid changes identified, approximately 13% were predicted to bind MHCI, a small fraction of which were confirmed by mass spectrometry. The peptides were then structurally modelled bound to MHCI. Mutations that were solvent-exposed and therefore accessible to T-cell antigen receptors were predicted to be immunogenic. Vaccination of mice confirmed the approach, with each predicted immunogenic peptide yielding therapeutically active T-cell responses. The predictions also enabled the generation of peptide-MHCI dextramers that could be used to monitor the kinetics and distribution of the anti-tumour T-cell response before and after vaccination. These findings indicate that a suitable prediction algorithm may provide an approach for the pharmacodynamic monitoring of T-cell responses as well as for the development of personalized vaccines in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yadav, Mahesh -- Jhunjhunwala, Suchit -- Phung, Qui T -- Lupardus, Patrick -- Tanguay, Joshua -- Bumbaca, Stephanie -- Franci, Christian -- Cheung, Tommy K -- Fritsche, Jens -- Weinschenk, Toni -- Modrusan, Zora -- Mellman, Ira -- Lill, Jennie R -- Delamarre, Lelia -- England -- Nature. 2014 Nov 27;515(7528):572-6. doi: 10.1038/nature14001.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genentech, South San Francisco, California 94080, USA. ; Immatics Biotechnologies GmbH, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25428506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/immunology ; Cancer Vaccines/immunology ; Cell Line, Tumor ; Exome/*genetics ; Female ; Gene Expression Profiling ; Immunity, Cellular/immunology ; Immunogenetic Phenomena/*genetics ; Immunoprecipitation ; *Mass Spectrometry ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; *Mutation ; Neoplasms/*genetics/immunology ; Peptides/genetics ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-10-21
    Description: Protein poly(ADP-ribosyl)ation (PARylation) has a role in diverse cellular processes such as DNA repair, transcription, Wnt signalling, and cell death. Recent studies have shown that PARylation can serve as a signal for the polyubiquitination and degradation of several crucial regulatory proteins, including Axin and 3BP2 (refs 7, 8, 9). The RING-type E3 ubiquitin ligase RNF146 (also known as Iduna) is responsible for PARylation-dependent ubiquitination (PARdU). Here we provide a structural basis for RNF146-catalysed PARdU and how PARdU specificity is achieved. First, we show that iso-ADP-ribose (iso-ADPr), the smallest internal poly(ADP-ribose) (PAR) structural unit, binds between the WWE and RING domains of RNF146 and functions as an allosteric signal that switches the RING domain from a catalytically inactive state to an active one. In the absence of PAR, the RING domain is unable to bind and activate a ubiquitin-conjugating enzyme (E2) efficiently. Binding of PAR or iso-ADPr induces a major conformational change that creates a functional RING structure. Thus, RNF146 represents a new mechanistic class of RING E3 ligases, the activities of which are regulated by non-covalent ligand binding, and that may provide a template for designing inducible protein-degradation systems. Second, we find that RNF146 directly interacts with the PAR polymerase tankyrase (TNKS). Disruption of the RNF146-TNKS interaction inhibits turnover of the substrate Axin in cells. Thus, both substrate PARylation and PARdU are catalysed by enzymes within the same protein complex, and PARdU substrate specificity may be primarily determined by the substrate-TNKS interaction. We propose that the maintenance of unliganded RNF146 in an inactive state may serve to maintain the stability of the RNF146-TNKS complex, which in turn regulates the homeostasis of PARdU activity in the cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DaRosa, Paul A -- Wang, Zhizhi -- Jiang, Xiaomo -- Pruneda, Jonathan N -- Cong, Feng -- Klevit, Rachel E -- Xu, Wenqing -- R01 GM099766/GM/NIGMS NIH HHS/ -- T32 GM007270/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):223-6. doi: 10.1038/nature13826. Epub 2014 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA. ; Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA. ; Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA. ; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25327252" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/chemistry/metabolism ; Allosteric Regulation ; Animals ; Biocatalysis ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Ligands ; Mice ; Models, Molecular ; Poly Adenosine Diphosphate Ribose/chemistry/*metabolism ; Protein Binding ; *Protein Processing, Post-Translational ; Protein Structure, Tertiary ; Substrate Specificity ; Tankyrases/metabolism ; Ubiquitin-Conjugating Enzymes/chemistry/metabolism ; Ubiquitin-Protein Ligases/chemistry/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-11-11
    Description: The spindle assembly checkpoint (SAC) maintains genomic stability by delaying chromosome segregation until the last chromosome has attached to the mitotic spindle. The SAC prevents the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase from recognizing cyclin B and securin by catalysing the incorporation of the APC/C co-activator, CDC20, into a complex called the mitotic checkpoint complex (MCC). The SAC works through unattached kinetochores generating a diffusible 'wait anaphase' signal that inhibits the APC/C in the cytoplasm, but the nature of this signal remains a key unsolved problem. Moreover, the SAC and the APC/C are highly responsive to each other: the APC/C quickly targets cyclin B and securin once all the chromosomes attach in metaphase, but is rapidly inhibited should kinetochore attachment be perturbed. How this is achieved is also unknown. Here, we show that the MCC can inhibit a second CDC20 that has already bound and activated the APC/C. We show how the MCC inhibits active APC/C and that this is essential for the SAC. Moreover, this mechanism can prevent anaphase in the absence of kinetochore signalling. Thus, we propose that the diffusible 'wait anaphase' signal could be the MCC itself, and explain how reactivating the SAC can rapidly inhibit active APC/C.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312099/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312099/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Izawa, Daisuke -- Pines, Jonathon -- 092096/Wellcome Trust/United Kingdom -- 13959/Cancer Research UK/United Kingdom -- A13678/Cancer Research UK/United Kingdom -- A13959/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 29;517(7536):631-4. doi: 10.1038/nature13911. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Gurdon Institute and Department of Zoology, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383541" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Anaphase-Promoting Complex-Cyclosome/*antagonists & inhibitors/metabolism ; Animals ; Cdc20 Proteins/*metabolism ; Cytoplasm/enzymology/metabolism ; HeLa Cells ; Humans ; M Phase Cell Cycle Checkpoints ; *Mitosis ; Multiprotein Complexes/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/metabolism ; Spindle Apparatus/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-11-11
    Description: Biotin-dependent carboxylases are widely distributed in nature and have important functions in the metabolism of fatty acids, amino acids, carbohydrates, cholesterol and other compounds. Defective mutations in several of these enzymes have been linked to serious metabolic diseases in humans, and acetyl-CoA carboxylase is a target for drug discovery in the treatment of diabetes, cancer and other diseases. Here we report the identification and biochemical, structural and functional characterizations of a novel single-chain (120 kDa), multi-domain biotin-dependent carboxylase in bacteria. It has preference for long-chain acyl-CoA substrates, although it is also active towards short-chain and medium-chain acyl-CoAs, and we have named it long-chain acyl-CoA carboxylase. The holoenzyme is a homo-hexamer with molecular mass of 720 kDa. The 3.0 A crystal structure of the long-chain acyl-CoA carboxylase holoenzyme from Mycobacterium avium subspecies paratuberculosis revealed an architecture that is strikingly different from those of related biotin-dependent carboxylases. In addition, the domains of each monomer have no direct contact with each other. They are instead extensively swapped in the holoenzyme, such that one cycle of catalysis involves the participation of four monomers. Functional studies in Pseudomonas aeruginosa suggest that the enzyme is involved in the utilization of selected carbon and nitrogen sources.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Timothy H -- Hsiao, Yu-Shan -- Jo, Jeanyoung -- Chou, Chi-Yuan -- Dietrich, Lars E P -- Walz, Thomas -- Tong, Liang -- 1S10RR028832/RR/NCRR NIH HHS/ -- P01 GM062580/GM/NIGMS NIH HHS/ -- R01 AI103369/AI/NIAID NIH HHS/ -- R01AI103369/AI/NIAID NIH HHS/ -- R01DK067238/DK/NIDDK NIH HHS/ -- S10OD012018/OD/NIH HHS/ -- T32 GM008798/GM/NIGMS NIH HHS/ -- U54GM094597/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 5;518(7537):120-4. doi: 10.1038/nature13912. Epub 2014 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383525" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Coenzyme A/metabolism ; Biocatalysis ; Biotin/metabolism ; Carbon/metabolism ; Carbon-Carbon Ligases/*chemistry/*metabolism/ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Mycobacterium avium subsp. paratuberculosis/*enzymology ; Nitrogen/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Pseudomonas aeruginosa/enzymology/genetics/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-12-18
    Description: The ryanodine receptors (RyRs) are high-conductance intracellular Ca(2+) channels that play a pivotal role in the excitation-contraction coupling of skeletal and cardiac muscles. RyRs are the largest known ion channels, with a homotetrameric organization and approximately 5,000 residues in each protomer. Here we report the structure of the rabbit RyR1 in complex with its modulator FKBP12 at an overall resolution of 3.8 A, determined by single-particle electron cryomicroscopy. Three previously uncharacterized domains, named central, handle and helical domains, display the armadillo repeat fold. These domains, together with the amino-terminal domain, constitute a network of superhelical scaffold for binding and propagation of conformational changes. The channel domain exhibits the voltage-gated ion channel superfamily fold with distinct features. A negative-charge-enriched hairpin loop connecting S5 and the pore helix is positioned above the entrance to the selectivity-filter vestibule. The four elongated S6 segments form a right-handed helical bundle that closes the pore at the cytoplasmic border of the membrane. Allosteric regulation of the pore by the cytoplasmic domains is mediated through extensive interactions between the central domains and the channel domain. These structural features explain high ion conductance by RyRs and the long-range allosteric regulation of channel activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338550/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338550/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Zhen -- Bai, Xiao-chen -- Yan, Chuangye -- Wu, Jianping -- Li, Zhangqiang -- Xie, Tian -- Peng, Wei -- Yin, Chang-cheng -- Li, Xueming -- Scheres, Sjors H W -- Shi, Yigong -- Yan, Nieng -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):50-5. doi: 10.1038/nature14063. Epub 2014 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Ministry of Education Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; 1] Ministry of Education Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; Department of Biophysics, the Health Science Center &Center for Protein Science, Peking University, Beijing 100191, China. ; Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517095" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Allosteric Regulation ; Animals ; Cryoelectron Microscopy ; Ion Channel Gating ; Models, Molecular ; Molecular Weight ; Protein Multimerization ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/metabolism/*ultrastructure ; Sarcoplasmic Reticulum/chemistry ; Tacrolimus Binding Protein 1A/chemistry/metabolism/ultrastructure ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-05-03
    Description: DNA methylation is an epigenetic modification that has critical roles in gene silencing, development and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24-nucleotide small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate siRNA biogenesis, and Pol-V, which functions to generate scaffold transcripts that recruit downstream RdDM factors. To understand the mechanisms controlling Pol-IV targeting we investigated the function of SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), a Pol-IV-interacting protein. Here we show that SHH1 acts upstream in the RdDM pathway to enable siRNA production from a large subset of the most active RdDM targets, and that SHH1 is required for Pol-IV occupancy at these same loci. We also show that the SHH1 SAWADEE domain is a novel chromatin-binding module that adopts a unique tandem Tudor-like fold and functions as a dual lysine reader, probing for both unmethylated K4 and methylated K9 modifications on the histone 3 (H3) tail. Finally, we show that key residues within both lysine-binding pockets of SHH1 are required in vivo to maintain siRNA and DNA methylation levels as well as Pol-IV occupancy at RdDM targets, demonstrating a central role for methylated H3K9 binding in SHH1 function and providing the first insights into the mechanism of Pol-IV targeting. Given the parallels between methylation systems in plants and mammals, a further understanding of this early targeting step may aid our ability to control the expression of endogenous and newly introduced genes, which has broad implications for agriculture and gene therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, Julie A -- Du, Jiamu -- Hale, Christopher J -- Feng, Suhua -- Krajewski, Krzysztof -- Palanca, Ana Marie S -- Strahl, Brian D -- Patel, Dinshaw J -- Jacobsen, Steven E -- GM60398/GM/NIGMS NIH HHS/ -- GM85394/GM/NIGMS NIH HHS/ -- R01 GM060398/GM/NIGMS NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 20;498(7454):385-9. doi: 10.1038/nature12178. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636332" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*enzymology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Binding Sites/genetics ; Chromatin/chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA Methylation/*genetics ; DNA-Directed RNA Polymerases/genetics/*metabolism ; Epigenesis, Genetic/genetics ; Histones/chemistry/metabolism ; Homeodomain Proteins/chemistry/*metabolism ; Lysine/chemistry/metabolism ; Methyltransferases/genetics/metabolism ; Models, Molecular ; Mutation ; Protein Folding ; Protein Structure, Tertiary ; RNA, Small Interfering/biosynthesis/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-07-19
    Description: Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hollenstein, Kaspar -- Kean, James -- Bortolato, Andrea -- Cheng, Robert K Y -- Dore, Andrew S -- Jazayeri, Ali -- Cooke, Robert M -- Weir, Malcolm -- Marshall, Fiona H -- England -- Nature. 2013 Jul 25;499(7459):438-43. doi: 10.1038/nature12357. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863939" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Aminopyridines/chemistry/metabolism/pharmacology ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Corticotropin-Releasing Hormone/antagonists & ; inhibitors/*chemistry/*classification/metabolism ; Receptors, Dopamine D3/antagonists & inhibitors/chemistry/classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-05-24
    Description: Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair. Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module embraces the alpha1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hondele, Maria -- Stuwe, Tobias -- Hassler, Markus -- Halbach, Felix -- Bowman, Andrew -- Zhang, Elisa T -- Nijmeijer, Bianca -- Kotthoff, Christiane -- Rybin, Vladimir -- Amlacher, Stefan -- Hurt, Ed -- Ladurner, Andreas G -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jul 4;499(7456):111-4. doi: 10.1038/nature12242. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Butenandt Institute and LMU Biomedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, Butenandtstrasse 5, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698368" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Chaetomium/*chemistry ; Conserved Sequence ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Replication ; Fungal Proteins/*chemistry/*metabolism ; Histones/chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Chaperones/*chemistry/*metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-10-05
    Description: Excitatory amino acid transporters (EAATs) are secondary transport proteins that mediate the uptake of glutamate and other amino acids. EAATs fulfil an important role in neuronal signal transmission by clearing the excitatory neurotransmitters from the synaptic cleft after depolarization of the postsynaptic neuron. An intensively studied model system for understanding the transport mechanism of EAATs is the archaeal aspartate transporter GltPh. Each subunit in the homotrimeric GltPh supports the coupled translocation of one aspartate molecule and three Na(+) ions as well as an uncoupled flux of Cl(-) ions. Recent crystal structures of GltPh revealed three possible conformations for the subunits, but it is unclear whether the motions of individual subunits are coordinated to support transport. Here, we report the direct observation of conformational dynamics in individual GltPh trimers embedded in the membrane by applying single-molecule fluorescence resonance energy transfer (FRET). By analysing the transporters in a lipid bilayer instead of commonly used detergent micelles, we achieve conditions that approximate the physiologically relevant ones. From the kinetics of FRET level transitions we conclude that the three GltPh subunits undergo conformational changes stochastically and independently of each other.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erkens, Guus B -- Hanelt, Inga -- Goudsmits, Joris M H -- Slotboom, Dirk Jan -- van Oijen, Antoine M -- England -- Nature. 2013 Oct 3;502(7469):119-23. doi: 10.1038/nature12538.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24091978" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/*chemistry/*metabolism ; Fluorescence Resonance Energy Transfer ; Glutamate Plasma Membrane Transport Proteins/*chemistry/metabolism ; Lipid Bilayers/metabolism ; *Models, Molecular ; Protein Structure, Tertiary ; Pyrococcus horikoshii/chemistry/metabolism ; Sodium/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-12-07
    Description: Transient receptor potential (TRP) channels are polymodal signal detectors that respond to a wide range of physical and chemical stimuli. Elucidating how these channels integrate and convert physiological signals into channel opening is essential to understanding how they regulate cell excitability under normal and pathophysiological conditions. Here we exploit pharmacological probes (a peptide toxin and small vanilloid agonists) to determine structures of two activated states of the capsaicin receptor, TRPV1. A domain (consisting of transmembrane segments 1-4) that moves during activation of voltage-gated channels remains stationary in TRPV1, highlighting differences in gating mechanisms for these structurally related channel superfamilies. TRPV1 opening is associated with major structural rearrangements in the outer pore, including the pore helix and selectivity filter, as well as pronounced dilation of a hydrophobic constriction at the lower gate, suggesting a dual gating mechanism. Allosteric coupling between upper and lower gates may account for rich physiological modulation exhibited by TRPV1 and other TRP channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Erhu -- Liao, Maofu -- Cheng, Yifan -- Julius, David -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01 NS047723/NS/NINDS NIH HHS/ -- R01 NS065071/NS/NINDS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R01NS047723/NS/NINDS NIH HHS/ -- R01NS065071/NS/NINDS NIH HHS/ -- S10 RR026814/RR/NCRR NIH HHS/ -- S10RR026814/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Dec 5;504(7478):113-8. doi: 10.1038/nature12823.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Physiology, University of California, San Francisco, California 94158-2517, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24305161" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Models, Molecular ; Mutation ; Protein Structure, Tertiary ; Rats ; TRPV Cation Channels/*chemistry/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-21
    Description: The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-kappaB (NF-kappaB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-kappaB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Shan -- Zhang, Li -- Yao, Qing -- Li, Lin -- Dong, Na -- Rong, Jie -- Gao, Wenqing -- Ding, Xiaojun -- Sun, Liming -- Chen, Xing -- Chen, She -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Sep 12;501(7466):242-6. doi: 10.1038/nature12436. Epub 2013 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Biological Sciences, China Agricultural University, Beijing 100094, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955153" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Animals ; Antigens, CD95/metabolism ; Apoptosis ; Arginine/*metabolism ; Death Domain Receptor Signaling Adaptor Proteins/metabolism ; Disease Models, Animal ; Enteropathogenic Escherichia coli/*metabolism/pathogenicity ; Escherichia coli Infections/metabolism/microbiology/pathology ; Escherichia coli Proteins/*metabolism ; Fas-Associated Death Domain Protein/chemistry/metabolism ; HeLa Cells ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/chemistry/metabolism ; N-Acetylglucosaminyltransferases/*metabolism ; NF-kappa B/metabolism ; Protein Biosynthesis ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Tumor Necrosis Factor, Type I/chemistry/metabolism ; *Signal Transduction ; TNF Receptor-Associated Death Domain Protein/*chemistry/*metabolism ; TNF-Related Apoptosis-Inducing Ligand/metabolism ; Tumor Necrosis Factor-alpha/metabolism ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-03-19
    Description: The cryptochrome (CRY) flavoproteins act as blue-light receptors in plants and insects, but perform light-independent functions at the core of the mammalian circadian clock. To drive clock oscillations, mammalian CRYs associate with the Period proteins (PERs) and together inhibit the transcription of their own genes. The SCF(FBXL3) ubiquitin ligase complex controls this negative feedback loop by promoting CRY ubiquitination and degradation. However, the molecular mechanisms of their interactions and the functional role of flavin adenine dinucleotide (FAD) binding in CRYs remain poorly understood. Here we report crystal structures of mammalian CRY2 in its apo, FAD-bound and FBXL3-SKP1-complexed forms. Distinct from other cryptochromes of known structures, mammalian CRY2 binds FAD dynamically with an open cofactor pocket. Notably, the F-box protein FBXL3 captures CRY2 by simultaneously occupying its FAD-binding pocket with a conserved carboxy-terminal tail and burying its PER-binding interface. This novel F-box-protein-substrate bipartite interaction is susceptible to disruption by both FAD and PERs, suggesting a new avenue for pharmacological targeting of the complex and a multifaceted regulatory mechanism of CRY ubiquitination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618506/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618506/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xing, Weiman -- Busino, Luca -- Hinds, Thomas R -- Marionni, Samuel T -- Saifee, Nabiha H -- Bush, Matthew F -- Pagano, Michele -- Zheng, Ning -- 5T32-HL007151/HL/NHLBI NIH HHS/ -- K99 CA166181/CA/NCI NIH HHS/ -- R01 GM057587/GM/NIGMS NIH HHS/ -- R01-CA107134/CA/NCI NIH HHS/ -- R01-GM057587/GM/NIGMS NIH HHS/ -- R21-CA161108/CA/NCI NIH HHS/ -- R37 CA076584/CA/NCI NIH HHS/ -- R37-CA-076584/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 4;496(7443):64-8. doi: 10.1038/nature11964. Epub 2013 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23503662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoproteins/chemistry/metabolism ; Binding Sites ; Cryptochromes/chemistry/*metabolism ; Crystallography, X-Ray ; Deoxyribodipyrimidine Photo-Lyase/chemistry ; Drosophila melanogaster/chemistry ; F-Box Proteins/chemistry/*metabolism ; Flavin-Adenine Dinucleotide/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; S-Phase Kinase-Associated Proteins/chemistry/metabolism ; SKP Cullin F-Box Protein Ligases/chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-12-07
    Description: Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 A resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liao, Maofu -- Cao, Erhu -- Julius, David -- Cheng, Yifan -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01 NS047723/NS/NINDS NIH HHS/ -- R01 NS065071/NS/NINDS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R01NS047723/NS/NINDS NIH HHS/ -- R01NS065071/NS/NINDS NIH HHS/ -- S10RR026814/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Dec 5;504(7478):107-12. doi: 10.1038/nature12822.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24305160" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ankyrin Repeat ; *Cryoelectron Microscopy ; HEK293 Cells ; Humans ; *Models, Molecular ; Protein Structure, Tertiary ; Rats ; TRPV Cation Channels/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-06-14
    Description: 53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fradet-Turcotte, Amelie -- Canny, Marella D -- Escribano-Diaz, Cristina -- Orthwein, Alexandre -- Leung, Charles C Y -- Huang, Hao -- Landry, Marie-Claude -- Kitevski-LeBlanc, Julianne -- Noordermeer, Sylvie M -- Sicheri, Frank -- Durocher, Daniel -- 84297-1/Canadian Institutes of Health Research/Canada -- 84297-2/Canadian Institutes of Health Research/Canada -- MOP84297/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 4;499(7456):50-4. doi: 10.1038/nature12318. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760478" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA-Binding Proteins/chemistry/deficiency/genetics ; Female ; Histones/*chemistry/*metabolism ; Humans ; Intracellular Signaling Peptides and ; Proteins/chemistry/deficiency/genetics/*metabolism ; Lysine/*metabolism ; Male ; Mice ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Schizosaccharomyces ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction ; Ubiquitin/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...