ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-19
    Description: Gene-editing nucleases enable targeted modification of DNA sequences in living cells, thereby facilitating efficient knockout and precise editing of endogenous loci. Engineered nucleases also have the potential to introduce mutations at off-target sites of action. Such unintended alterations can confound interpretation of experiments and can have implications for development of therapeutic applications. Recently, two improved methods for identifying the off-target effects of zinc finger nucleases (ZFNs) were described–one using an in vitro cleavage site selection method and the other exploiting the insertion of integration-defective lentiviruses into nuclease-induced double-stranded DNA breaks. However, application of these two methods to a ZFN pair targeted to the human CCR5 gene led to identification of largely non-overlapping off-target sites, raising the possibility that additional off-target sites might exist. Here, we show that in silico abstraction of ZFN cleavage profiles obtained from in vitro cleavage site selections can greatly enhance the ability to identify potential off-target sites in human cells. Our improved method should enable more comprehensive profiling of ZFN specificities.
    Keywords: Synthetic Biology and Assembly Cloning, Protein-nucleic acid interaction, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-12
    Description: We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo- z ) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo- z 's are obtained and studied using most of the existing photo- z codes. A weighting method in a multidimensional colour–magnitude space is applied to the spectroscopic sample in order to evaluate the photo- z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo- z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo- z resolutions 68  ~ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo- z performance, therefore, providing an excellent precedent for future DES data sets.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poritz, M A -- Bernstein, H D -- Walter, P -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1161-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17799267" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-11-23
    Description: The signal recognition particle (SRP) plays a central role in directing the export of nascent proteins from the cytoplasm of mammalian cells. An SRP-dependent translocation machinery in bacteria has not been demonstrated in previous genetic and biochemical studies. Sequence comparisons, however, have identified (i) a gene in Escherichia coli (ffh) whose product is homologous to the 54-kilodalton subunit (SRP54) of SRP, and (ii) an RNA encoded by the ffs gene (4.5S RNA) that shares a conserved domain with the 7SL RNA of SRP. An antiserum to Ffh precipitated 4.5S RNA from E. coli extracts, implying that the two molecules reside in a complex. The 4.5S RNA can also bind to SRP54 and can replace 7SL RNA in an enzymatic assay. The product of a dominant mutation in the ffs gene (4.5S RNAdl1) is also coprecipitated by the antiserum to Ffh protein and is lethal when expressed from an inducible promoter. After induction of 4.5S RNAdl1, the earliest observed phenotype was a permanent induction of the heat shock response, suggesting that there was an accumulation of aberrant proteins in the cytoplasm. Late after induction, translocation of beta-lactamase was impaired; this may be an indirect effect of heat shock, however, because translocation of ribose binding protein or of the porin, OmpA, was unaffected. An unusual separation of the inner and outer membranes, suggestive of a defect in cell envelope, was also observed. Protein synthesis did not cease until very late, an indication that 4.5S RNA probably does not have a direct role in this process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poritz, M A -- Bernstein, H D -- Strub, K -- Zopf, D -- Wilhelm, H -- Walter, P -- New York, N.Y. -- Science. 1990 Nov 23;250(4984):1111-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California Medical School, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1701272" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/metabolism ; Base Sequence ; Enzyme Activation ; Escherichia coli/*genetics ; GTP Phosphohydrolases/metabolism ; Genes, Bacterial ; Heat-Shock Proteins/biosynthesis ; Hot Temperature ; Immunosorbent Techniques ; Isopropyl Thiogalactoside/pharmacology ; Molecular Sequence Data ; Mutation ; Protein Sorting Signals/metabolism ; RNA, Bacterial/*genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Ribonucleoproteins/*genetics/metabolism ; Sequence Homology, Nucleic Acid ; Signal Recognition Particle
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-15
    Description: The role of long noncoding RNA (lncRNA) in adult hearts is unknown; also unclear is how lncRNA modulates nucleosome remodelling. An estimated 70% of mouse genes undergo antisense transcription, including myosin heavy chain 7 (Myh7), which encodes molecular motor proteins for heart contraction. Here we identify a cluster of lncRNA transcripts from Myh7 loci and demonstrate a new lncRNA-chromatin mechanism for heart failure. In mice, these transcripts, which we named myosin heavy-chain-associated RNA transcripts (Myheart, or Mhrt), are cardiac-specific and abundant in adult hearts. Pathological stress activates the Brg1-Hdac-Parp chromatin repressor complex to inhibit Mhrt transcription in the heart. Such stress-induced Mhrt repression is essential for cardiomyopathy to develop: restoring Mhrt to the pre-stress level protects the heart from hypertrophy and failure. Mhrt antagonizes the function of Brg1, a chromatin-remodelling factor that is activated by stress to trigger aberrant gene expression and cardiac myopathy. Mhrt prevents Brg1 from recognizing its genomic DNA targets, thus inhibiting chromatin targeting and gene regulation by Brg1. It does so by binding to the helicase domain of Brg1, a domain that is crucial for tethering Brg1 to chromatinized DNA targets. Brg1 helicase has dual nucleic-acid-binding specificities: it is capable of binding lncRNA (Mhrt) and chromatinized--but not naked--DNA. This dual-binding feature of helicase enables a competitive inhibition mechanism by which Mhrt sequesters Brg1 from its genomic DNA targets to prevent chromatin remodelling. A Mhrt-Brg1 feedback circuit is thus crucial for heart function. Human MHRT also originates from MYH7 loci and is repressed in various types of myopathic hearts, suggesting a conserved lncRNA mechanism in human cardiomyopathy. Our studies identify a cardioprotective lncRNA, define a new targeting mechanism for ATP-dependent chromatin-remodelling factors, and establish a new paradigm for lncRNA-chromatin interaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Pei -- Li, Wei -- Lin, Chiou-Hong -- Yang, Jin -- Shang, Ching -- Nurnberg, Sylvia T -- Jin, Kevin Kai -- Xu, Weihong -- Lin, Chieh-Yu -- Lin, Chien-Jung -- Xiong, Yiqin -- Chien, Huan-Chieh -- Zhou, Bin -- Ashley, Euan -- Bernstein, Daniel -- Chen, Peng-Sheng -- Chen, Huei-Sheng Vincent -- Quertermous, Thomas -- Chang, Ching-Pin -- HL105194/HL/NHLBI NIH HHS/ -- HL109512/HL/NHLBI NIH HHS/ -- HL111770/HL/NHLBI NIH HHS/ -- HL116997/HL/NHLBI NIH HHS/ -- HL118087/HL/NHLBI NIH HHS/ -- HL121197/HL/NHLBI NIH HHS/ -- HL71140/HL/NHLBI NIH HHS/ -- HL78931/HL/NHLBI NIH HHS/ -- R01 HL111770/HL/NHLBI NIH HHS/ -- R01 HL116997/HL/NHLBI NIH HHS/ -- R01 HL121197/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):102-6. doi: 10.1038/nature13596. Epub 2014 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Price Center 420, Bronx, New York 10461, USA. ; Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Del E. Webb Neuroscience, Aging &Stem Cell Research Center, Sanford/Burnham Medical Research Institute, La Jolla, California 92037, USA. ; 1] Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [3] Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiac Myosins/genetics ; Cardiomegaly/*genetics/*pathology/prevention & control ; Cardiomyopathies/genetics/pathology/prevention & control ; Chromatin/genetics/metabolism ; Chromatin Assembly and Disassembly ; DNA Helicases/antagonists & inhibitors/chemistry/genetics/metabolism ; Feedback, Physiological ; Heart Failure/genetics/pathology/prevention & control ; Histone Deacetylases/metabolism ; Humans ; Mice ; Myocardium/metabolism/pathology ; Myosin Heavy Chains/*genetics ; Nuclear Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Organ Specificity ; Poly(ADP-ribose) Polymerases/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Long Noncoding/antagonists & inhibitors/*genetics/metabolism ; Transcription Factors/antagonists & inhibitors/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernstein, Harris D -- England -- Nature. 2012 Dec 13;492(7428):189-91. doi: 10.1038/492189a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235870" target="_blank"〉PubMed〈/a〉
    Keywords: Escherichia coli/*metabolism ; GTP Phosphohydrolases/*metabolism ; Protein Biosynthesis/*physiology ; RNA, Bacterial/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-17
    Description: The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762253/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762253/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, Ke -- Serpooshan, Vahid -- Hurtado, Cecilia -- Diez-Cunado, Marta -- Zhao, Mingming -- Maruyama, Sonomi -- Zhu, Wenhong -- Fajardo, Giovanni -- Noseda, Michela -- Nakamura, Kazuto -- Tian, Xueying -- Liu, Qiaozhen -- Wang, Andrew -- Matsuura, Yuka -- Bushway, Paul -- Cai, Wenqing -- Savchenko, Alex -- Mahmoudi, Morteza -- Schneider, Michael D -- van den Hoff, Maurice J B -- Butte, Manish J -- Yang, Phillip C -- Walsh, Kenneth -- Zhou, Bin -- Bernstein, Daniel -- Mercola, Mark -- Ruiz-Lozano, Pilar -- 5UM1 HL113456/HL/NHLBI NIH HHS/ -- HL065484/HL/NHLBI NIH HHS/ -- HL108176/HL/NHLBI NIH HHS/ -- HL113601/HL/NHLBI NIH HHS/ -- HL116591/HL/NHLBI NIH HHS/ -- K08 AI079268/AI/NIAID NIH HHS/ -- P01 HL098053/HL/NHLBI NIH HHS/ -- P30 AR061303/AR/NIAMS NIH HHS/ -- P30 CA030199/CA/NCI NIH HHS/ -- R01 HL086879/HL/NHLBI NIH HHS/ -- R01 HL113601/HL/NHLBI NIH HHS/ -- UM1 HL113456/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):479-85. doi: 10.1038/nature15372. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of California, San Diego, La Jolla, California 92037, USA. ; Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA. ; Stanford Cardiovascular Institute and Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA. ; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA. ; Imperial College London, Faculty of Medicine, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UK. ; Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, and Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417613151 Tehran, Iran. ; Academic Medical Center. Dept Anatomy, Embryology and Physiology. Meibergdreef 15. 1105AZ Amsterdam, The Netherlands. ; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/drug effects ; Cell Proliferation/drug effects ; Culture Media, Conditioned/pharmacology ; Female ; Follistatin-Related Proteins/genetics/*metabolism ; Humans ; Male ; Mice ; Myoblasts, Cardiac/cytology/drug effects ; Myocardial Infarction/genetics/metabolism/pathology/physiopathology ; Myocardium/*metabolism ; Myocytes, Cardiac/cytology/drug effects/metabolism ; Pericardium/cytology/drug effects/*growth & development/*metabolism ; Rats ; *Regeneration/drug effects ; Signal Transduction ; Swine ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-08-09
    Description: alpha2-Adrenergic receptors (alpha2ARs) are essential components of the neural circuitry regulating cardiovascular function. The role of specific alpha2AR subtypes (alpha2a, alpha2b, and alpha2c) was characterized with hemodynamic measurements obtained from strains of genetically engineered mice deficient in either alpha2b or alpha2c receptors. Stimulation of alpha2b receptors in vascular smooth muscle produced hypertension and counteracted the clinically beneficial hypotensive effect of stimulating alpha2a receptors in the central nervous system. There were no hemodynamic effects produced by disruption of the alpha2c subtype. These results provide evidence for the clinical efficacy of more subtype-selective alpha2AR drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Link, R E -- Desai, K -- Hein, L -- Stevens, M E -- Chruscinski, A -- Bernstein, D -- Barsh, G S -- Kobilka, B K -- GM07365/GM/NIGMS NIH HHS/ -- HL48638/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1996 Aug 9;273(5276):803-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8670422" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic alpha-Agonists/pharmacology ; Adrenergic alpha-Antagonists/metabolism/pharmacology ; Animals ; Blood Pressure/drug effects/*physiology ; Gene Targeting ; Heart Rate/drug effects/*physiology ; Imidazoles/pharmacology ; Kidney/metabolism ; Medetomidine ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Knockout ; Muscle, Smooth, Vascular/metabolism ; Phenylephrine/pharmacology ; Prazosin/pharmacology ; Receptors, Adrenergic, alpha-2/genetics/*physiology ; Yohimbine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-09
    Description: NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells, Published online: 08 May 2018; doi:10.1038/s41467-018-04134-7 It is unclear whether arterial specification is required for hematopoietic stem cell formation. Here, the authors use a chemically defined human pluripotent stem cell (hPSC) differentiation system to show the role of NOTCH signaling in forming arterial-type hemogenic endothelial cells.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gottlieb, Roberta A -- Bernstein, Daniel -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1162-3. doi: 10.1126/science.aad8222.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA. roberta.gottlieb@cshs.org. ; Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Heart/*embryology ; Heart Failure/*metabolism ; Male ; Mitochondria, Heart/*metabolism/*physiology ; Mitochondrial Degradation/*physiology ; *Mitochondrial Dynamics ; Myocardium/*metabolism ; Ubiquitin-Protein Ligases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...