ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (272)
  • Cell Line  (202)
  • Nature Publishing Group (NPG)  (454)
  • American Geophysical Union
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Springer Nature
  • 2005-2009  (454)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2009-12-23
    Description: Reprogramming of somatic cell nuclei to yield induced pluripotent stem (iPS) cells makes possible derivation of patient-specific stem cells for regenerative medicine. However, iPS cell generation is asynchronous and slow (2-3 weeks), the frequency is low (〈0.1%), and DNA demethylation constitutes a bottleneck. To determine regulatory mechanisms involved in reprogramming, we generated interspecies heterokaryons (fused mouse embryonic stem (ES) cells and human fibroblasts) that induce reprogramming synchronously, frequently and fast. Here we show that reprogramming towards pluripotency in single heterokaryons is initiated without cell division or DNA replication, rapidly (1 day) and efficiently (70%). Short interfering RNA (siRNA)-mediated knockdown showed that activation-induced cytidine deaminase (AID, also known as AICDA) is required for promoter demethylation and induction of OCT4 (also known as POU5F1) and NANOG gene expression. AID protein bound silent methylated OCT4 and NANOG promoters in fibroblasts, but not active demethylated promoters in ES cells. These data provide new evidence that mammalian AID is required for active DNA demethylation and initiation of nuclear reprogramming towards pluripotency in human somatic cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhutani, Nidhi -- Brady, Jennifer J -- Damian, Mara -- Sacco, Alessandra -- Corbel, Stephane Y -- Blau, Helen M -- AG009521/AG/NIA NIH HHS/ -- AG024987/AG/NIA NIH HHS/ -- AI007328/AI/NIAID NIH HHS/ -- R01 AG009521/AG/NIA NIH HHS/ -- R01 AG009521-25/AG/NIA NIH HHS/ -- R01 AG024987/AG/NIA NIH HHS/ -- R01 AG024987-05/AG/NIA NIH HHS/ -- T32 AI007328/AI/NIAID NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory for Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5175, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20027182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Fusion ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/genetics/*physiology ; Chromatin Immunoprecipitation ; Cytidine Deaminase/deficiency/genetics/*metabolism ; DNA/chemistry/genetics/metabolism ; *DNA Methylation ; DNA Replication ; Embryonic Stem Cells/cytology/metabolism ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; Gene Knockdown Techniques ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/*cytology/enzymology/*metabolism ; Lung/cytology/embryology ; Mice ; Models, Biological ; Octamer Transcription Factor-3/genetics ; Promoter Regions, Genetic/genetics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-17
    Description: Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951497/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951497/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ruiqiang -- Fan, Wei -- Tian, Geng -- Zhu, Hongmei -- He, Lin -- Cai, Jing -- Huang, Quanfei -- Cai, Qingle -- Li, Bo -- Bai, Yinqi -- Zhang, Zhihe -- Zhang, Yaping -- Wang, Wen -- Li, Jun -- Wei, Fuwen -- Li, Heng -- Jian, Min -- Li, Jianwen -- Zhang, Zhaolei -- Nielsen, Rasmus -- Li, Dawei -- Gu, Wanjun -- Yang, Zhentao -- Xuan, Zhaoling -- Ryder, Oliver A -- Leung, Frederick Chi-Ching -- Zhou, Yan -- Cao, Jianjun -- Sun, Xiao -- Fu, Yonggui -- Fang, Xiaodong -- Guo, Xiaosen -- Wang, Bo -- Hou, Rong -- Shen, Fujun -- Mu, Bo -- Ni, Peixiang -- Lin, Runmao -- Qian, Wubin -- Wang, Guodong -- Yu, Chang -- Nie, Wenhui -- Wang, Jinhuan -- Wu, Zhigang -- Liang, Huiqing -- Min, Jiumeng -- Wu, Qi -- Cheng, Shifeng -- Ruan, Jue -- Wang, Mingwei -- Shi, Zhongbin -- Wen, Ming -- Liu, Binghang -- Ren, Xiaoli -- Zheng, Huisong -- Dong, Dong -- Cook, Kathleen -- Shan, Gao -- Zhang, Hao -- Kosiol, Carolin -- Xie, Xueying -- Lu, Zuhong -- Zheng, Hancheng -- Li, Yingrui -- Steiner, Cynthia C -- Lam, Tommy Tsan-Yuk -- Lin, Siyuan -- Zhang, Qinghui -- Li, Guoqing -- Tian, Jing -- Gong, Timing -- Liu, Hongde -- Zhang, Dejin -- Fang, Lin -- Ye, Chen -- Zhang, Juanbin -- Hu, Wenbo -- Xu, Anlong -- Ren, Yuanyuan -- Zhang, Guojie -- Bruford, Michael W -- Li, Qibin -- Ma, Lijia -- Guo, Yiran -- An, Na -- Hu, Yujie -- Zheng, Yang -- Shi, Yongyong -- Li, Zhiqiang -- Liu, Qing -- Chen, Yanling -- Zhao, Jing -- Qu, Ning -- Zhao, Shancen -- Tian, Feng -- Wang, Xiaoling -- Wang, Haiyin -- Xu, Lizhi -- Liu, Xiao -- Vinar, Tomas -- Wang, Yajun -- Lam, Tak-Wah -- Yiu, Siu-Ming -- Liu, Shiping -- Zhang, Hemin -- Li, Desheng -- Huang, Yan -- Wang, Xia -- Yang, Guohua -- Jiang, Zhi -- Wang, Junyi -- Qin, Nan -- Li, Li -- Li, Jingxiang -- Bolund, Lars -- Kristiansen, Karsten -- Wong, Gane Ka-Shu -- Olson, Maynard -- Zhang, Xiuqing -- Li, Songgang -- Yang, Huanming -- Wang, Jian -- Wang, Jun -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-05/HG/NHGRI NIH HHS/ -- England -- Nature. 2010 Jan 21;463(7279):311-7. doi: 10.1038/nature08696. Epub 2009 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010809" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; China ; Conserved Sequence/genetics ; Contig Mapping ; Diet/veterinary ; Dogs ; Evolution, Molecular ; Female ; Fertility/genetics/physiology ; Genome/*genetics ; *Genomics ; Heterozygote ; Humans ; Multigene Family/genetics ; Polymorphism, Single Nucleotide/genetics ; Receptors, G-Protein-Coupled/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Synteny/genetics ; Ursidae/classification/*genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalton, Rex -- England -- Nature. 2009 Jan 22;457(7228):369. doi: 10.1038/457369a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158758" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breeding/economics/*methods ; Cattle/*genetics ; Dairying/economics/*methods ; Female ; Internationality ; Male ; Milk/*secretion/*standards ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; United States ; United States Department of Agriculture
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-06-02
    Description: The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720823/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720823/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raya, Angel -- Rodriguez-Piza, Ignasi -- Guenechea, Guillermo -- Vassena, Rita -- Navarro, Susana -- Barrero, Maria Jose -- Consiglio, Antonella -- Castella, Maria -- Rio, Paula -- Sleep, Eduard -- Gonzalez, Federico -- Tiscornia, Gustavo -- Garreta, Elena -- Aasen, Trond -- Veiga, Anna -- Verma, Inder M -- Surralles, Jordi -- Bueren, Juan -- Izpisua Belmonte, Juan Carlos -- R01 HL053670/HL/NHLBI NIH HHS/ -- R01 HL053670-14/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Jul 2;460(7251):53-9. doi: 10.1038/nature08129. Epub 2009 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19483674" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cellular Reprogramming ; Fanconi Anemia/*pathology/*therapy ; Health ; Hematopoietic Stem Cells/*cytology/metabolism ; Humans ; Pluripotent Stem Cells/*cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-05-05
    Description: A20 is a negative regulator of the NF-kappaB pathway and was initially identified as being rapidly induced after tumour-necrosis factor-alpha stimulation. It has a pivotal role in regulation of the immune response and prevents excessive activation of NF-kappaB in response to a variety of external stimuli; recent genetic studies have disclosed putative associations of polymorphic A20 (also called TNFAIP3) alleles with autoimmune disease risk. However, the involvement of A20 in the development of human cancers is unknown. Here we show, using a genome-wide analysis of genetic lesions in 238 B-cell lymphomas, that A20 is a common genetic target in B-lineage lymphomas. A20 is frequently inactivated by somatic mutations and/or deletions in mucosa-associated tissue lymphoma (18 out of 87; 21.8%) and Hodgkin's lymphoma of nodular sclerosis histology (5 out of 15; 33.3%), and, to a lesser extent, in other B-lineage lymphomas. When re-expressed in a lymphoma-derived cell line with no functional A20 alleles, wild-type A20, but not mutant A20, resulted in suppression of cell growth and induction of apoptosis, accompanied by downregulation of NF-kappaB activation. The A20-deficient cells stably generated tumours in immunodeficient mice, whereas the tumorigenicity was effectively suppressed by re-expression of A20. In A20-deficient cells, suppression of both cell growth and NF-kappaB activity due to re-expression of A20 depended, at least partly, on cell-surface-receptor signalling, including the tumour-necrosis factor receptor. Considering the physiological function of A20 in the negative modulation of NF-kappaB activation induced by multiple upstream stimuli, our findings indicate that uncontrolled signalling of NF-kappaB caused by loss of A20 function is involved in the pathogenesis of subsets of B-lineage lymphomas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, Motohiro -- Sanada, Masashi -- Kato, Itaru -- Sato, Yasuharu -- Takita, Junko -- Takeuchi, Kengo -- Niwa, Akira -- Chen, Yuyan -- Nakazaki, Kumi -- Nomoto, Junko -- Asakura, Yoshitaka -- Muto, Satsuki -- Tamura, Azusa -- Iio, Mitsuru -- Akatsuka, Yoshiki -- Hayashi, Yasuhide -- Mori, Hiraku -- Igarashi, Takashi -- Kurokawa, Mineo -- Chiba, Shigeru -- Mori, Shigeo -- Ishikawa, Yuichi -- Okamoto, Koji -- Tobinai, Kensei -- Nakagama, Hitoshi -- Nakahata, Tatsutoshi -- Yoshino, Tadashi -- Kobayashi, Yukio -- Ogawa, Seishi -- England -- Nature. 2009 Jun 4;459(7247):712-6. doi: 10.1038/nature07969. Epub 2009 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genomics Project, Department of Pediatrics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19412163" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/physiology ; Cell Line ; Cysteine Endopeptidases/*genetics/*metabolism ; DNA-Binding Proteins ; Gene Expression ; *Gene Silencing ; Genome/genetics ; Humans ; Intracellular Signaling Peptides and Proteins/*genetics/*metabolism ; Lymphoma, B-Cell/*genetics/*physiopathology ; Mice ; NF-kappa B/genetics/metabolism ; Nuclear Proteins/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-07-31
    Description: Acid-sensing ion channels are proton-activated, sodium-selective channels composed of three subunits, and are members of the superfamily of epithelial sodium channels, mechanosensitive and FMRF-amide peptide-gated ion channels. These ubiquitous eukaryotic ion channels have essential roles in biological activities as diverse as sodium homeostasis, taste and pain. Despite their crucial roles in biology and their unusual trimeric subunit stoichiometry, there is little knowledge of the structural and chemical principles underlying their ion channel architecture and ion-binding sites. Here we present the structure of a functional acid-sensing ion channel in a desensitized state at 3 A resolution, the location and composition of the approximately 8 A 'thick' desensitization gate, and the trigonal antiprism coordination of caesium ions bound in the extracellular vestibule. Comparison of the acid-sensing ion channel structure with the ATP-gated P2X(4) receptor reveals similarity in pore architecture and aqueous vestibules, suggesting that there are unanticipated yet common structural and mechanistic principles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845979/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845979/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzales, Eric B -- Kawate, Toshimitsu -- Gouaux, Eric -- F32 GM083615/GM/NIGMS NIH HHS/ -- F32 GM083615-01/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 30;460(7255):599-604. doi: 10.1038/nature08218.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641589" target="_blank"〉PubMed〈/a〉
    Keywords: Acid Sensing Ion Channels ; Animals ; Binding Sites ; CHO Cells ; Cell Line ; Cesium/metabolism ; Chickens/*physiology ; Cricetinae ; Cricetulus ; Crystallization ; Humans ; Ions/metabolism ; *Models, Molecular ; Nerve Tissue Proteins/*chemistry ; Protein Structure, Tertiary ; Receptors, Purinergic P2/*chemistry ; Receptors, Purinergic P2X ; Sodium Channels/*chemistry ; Zebrafish/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-03-27
    Description: Toll-like receptors (TLRs) recognize microbial components, and evoke inflammation and immune responses. TLR stimulation activates complex gene expression networks that regulate the magnitude and duration of the immune reaction. Here we identify the TLR-inducible gene Zc3h12a as an immune response modifier that has an essential role in preventing immune disorders. Zc3h12a-deficient mice suffered from severe anaemia, and most died within 12 weeks. Zc3h12a(-/-) mice also showed augmented serum immunoglobulin levels and autoantibody production, together with a greatly increased number of plasma cells, as well as infiltration of plasma cells to the lung. Most Zc3h12a(-/-) splenic T cells showed effector/memory characteristics and produced interferon-gamma in response to T-cell receptor stimulation. Macrophages from Zc3h12a(-/-) mice showed highly increased production of interleukin (IL)-6 and IL-12p40 (also known as IL12b), but not TNF, in response to TLR ligands. Although the activation of TLR signalling pathways was normal, Il6 messenger RNA decay was severely impaired in Zc3h12a(-/-) macrophages. Overexpression of Zc3h12a accelerated Il6 mRNA degradation via its 3'-untranslated region (UTR), and destabilized RNAs with 3'-UTRs for genes including Il6, Il12p40 and the calcitonin receptor gene Calcr. Zc3h12a contains a putative amino-terminal nuclease domain, and the expressed protein had RNase activity, consistent with a role in the decay of Il6 mRNA. Together, these results indicate that Zc3h12a is an essential RNase that prevents immune disorders by directly controlling the stability of a set of inflammatory genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsushita, Kazufumi -- Takeuchi, Osamu -- Standley, Daron M -- Kumagai, Yutaro -- Kawagoe, Tatsukata -- Miyake, Tohru -- Satoh, Takashi -- Kato, Hiroki -- Tsujimura, Tohru -- Nakamura, Haruki -- Akira, Shizuo -- P01 AI070167/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Apr 30;458(7242):1185-90. doi: 10.1038/nature07924. Epub 2009 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19322177" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics/metabolism ; Anemia/complications/genetics ; Animals ; Autoantibodies/blood/immunology ; Autoimmune Diseases/complications/immunology ; Cell Line ; Cytokines/biosynthesis/genetics ; Fetal Diseases/immunology ; Humans ; Immunity/*genetics/*immunology ; Inflammation Mediators/metabolism ; Interleukin-6/genetics ; Macrophages, Peritoneal/immunology/metabolism ; Mice ; Plasma Cells/cytology ; *RNA Stability ; Ribonucleases/deficiency/genetics/*metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-08-12
    Description: Reprogramming somatic cells to induced pluripotent stem (iPS) cells has been accomplished by expressing pluripotency factors and oncogenes, but the low frequency and tendency to induce malignant transformation compromise the clinical utility of this powerful approach. We address both issues by investigating the mechanisms limiting reprogramming efficiency in somatic cells. Here we show that reprogramming factors can activate the p53 (also known as Trp53 in mice, TP53 in humans) pathway. Reducing signalling to p53 by expressing a mutated version of one of its negative regulators, by deleting or knocking down p53 or its target gene, p21 (also known as Cdkn1a), or by antagonizing reprogramming-induced apoptosis in mouse fibroblasts increases reprogramming efficiency. Notably, decreasing p53 protein levels enabled fibroblasts to give rise to iPS cells capable of generating germline-transmitting chimaeric mice using only Oct4 (also known as Pou5f1) and Sox2. Furthermore, silencing of p53 significantly increased the reprogramming efficiency of human somatic cells. These results provide insights into reprogramming mechanisms and suggest new routes to more efficient reprogramming while minimizing the use of oncogenes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735889/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735889/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawamura, Teruhisa -- Suzuki, Jotaro -- Wang, Yunyuan V -- Menendez, Sergio -- Morera, Laura Batlle -- Raya, Angel -- Wahl, Geoffrey M -- Izpisua Belmonte, Juan Carlos -- 5 R01 CA061449/CA/NCI NIH HHS/ -- 5 R01 CA100845/CA/NCI NIH HHS/ -- R01 CA061449/CA/NCI NIH HHS/ -- R01 CA061449-30/CA/NCI NIH HHS/ -- R01 CA100845/CA/NCI NIH HHS/ -- R01 CA100845-05/CA/NCI NIH HHS/ -- R33 HL088293/HL/NHLBI NIH HHS/ -- R33 HL088293-03/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Aug 27;460(7259):1140-4. doi: 10.1038/nature08311. Epub 2009 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19668186" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cellular Reprogramming/*physiology ; Cyclin-Dependent Kinase Inhibitor p21/deficiency/genetics/metabolism ; Down-Regulation ; Embryo, Mammalian/cytology ; Female ; Fibroblasts/cytology/metabolism ; Humans ; Keratinocytes ; Male ; Mice ; Mice, Inbred C57BL ; Pluripotent Stem Cells/*cytology/*metabolism ; Tumor Suppressor Protein p53/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-09-26
    Description: India has been underrepresented in genome-wide surveys of human variation. We analyse 25 diverse groups in India to provide strong evidence for two ancient populations, genetically divergent, that are ancestral to most Indians today. One, the 'Ancestral North Indians' (ANI), is genetically close to Middle Easterners, Central Asians, and Europeans, whereas the other, the 'Ancestral South Indians' (ASI), is as distinct from ANI and East Asians as they are from each other. By introducing methods that can estimate ancestry without accurate ancestral populations, we show that ANI ancestry ranges from 39-71% in most Indian groups, and is higher in traditionally upper caste and Indo-European speakers. Groups with only ASI ancestry may no longer exist in mainland India. However, the indigenous Andaman Islanders are unique in being ASI-related groups without ANI ancestry. Allele frequency differences between groups in India are larger than in Europe, reflecting strong founder effects whose signatures have been maintained for thousands of years owing to endogamy. We therefore predict that there will be an excess of recessive diseases in India, which should be possible to screen and map genetically.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reich, David -- Thangaraj, Kumarasamy -- Patterson, Nick -- Price, Alkes L -- Singh, Lalji -- HG004168/HG/NHGRI NIH HHS/ -- R01 HG006399/HG/NHGRI NIH HHS/ -- U01 HG004168/HG/NHGRI NIH HHS/ -- U01 HG004168-03/HG/NHGRI NIH HHS/ -- England -- Nature. 2009 Sep 24;461(7263):489-94. doi: 10.1038/nature08365.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. reich@genetics.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779445" target="_blank"〉PubMed〈/a〉
    Keywords: Asia/ethnology ; Chromosomes, Human, Y/genetics ; Continental Population Groups/genetics ; DNA, Mitochondrial/genetics ; Ethnic Groups/*genetics ; Europe/ethnology ; Female ; Founder Effect ; Gene Frequency ; Genes, Recessive/genetics ; Genetic Variation/*genetics ; Genetics, Medical ; Genetics, Population ; Genome, Human/genetics ; Genomics ; Genotype ; Geography ; Humans ; India ; Language ; Linkage Disequilibrium/genetics ; Male ; Middle East/ethnology ; *Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Principal Component Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-11-06
    Description: The activation of innate immune responses by nucleic acids is crucial to protective and pathological immunities and is mediated by the transmembrane Toll-like receptors (TLRs) and cytosolic receptors. However, it remains unknown whether a mechanism exists that integrates these nucleic-acid-sensing systems. Here we show that high-mobility group box (HMGB) proteins 1, 2 and 3 function as universal sentinels for nucleic acids. HMGBs bind to all immunogenic nucleic acids examined with a correlation between affinity and immunogenic potential. Hmgb1(-/-) and Hmgb2(-/-) mouse cells are defective in type-I interferon and inflammatory cytokine induction by DNA or RNA targeted to activate the cytosolic nucleic-acid-sensing receptors; cells in which the expression of all three HMGBs is suppressed show a more profound defect, accompanied by impaired activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-kappaB. The absence of HMGBs also severely impairs the activation of TLR3, TLR7 and TLR9 by their cognate nucleic acids. Our results therefore indicate a hierarchy in the nucleic-acid-mediated activation of immune responses, wherein the selective activation of nucleic-acid-sensing receptors is contingent on the more promiscuous sensing of nucleic acids by HMGBs. These findings may have implications for understanding the evolution of the innate immune system and for the treatment of immunological disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yanai, Hideyuki -- Ban, Tatsuma -- Wang, ZhiChao -- Choi, Myoung Kwon -- Kawamura, Takeshi -- Negishi, Hideo -- Nakasato, Makoto -- Lu, Yan -- Hangai, Sho -- Koshiba, Ryuji -- Savitsky, David -- Ronfani, Lorenza -- Akira, Shizuo -- Bianchi, Marco E -- Honda, Kenya -- Tamura, Tomohiko -- Kodama, Tatsuhiko -- Taniguchi, Tadatsugu -- England -- Nature. 2009 Nov 5;462(7269):99-103. doi: 10.1038/nature08512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cytosol/immunology ; DNA/immunology ; HMGB Proteins/deficiency/genetics/*immunology/*metabolism ; HMGB1 Protein/deficiency/genetics/immunology/metabolism ; HMGB2 Protein/deficiency/genetics/immunology/metabolism ; Immunity, Innate/*immunology ; Interferon Regulatory Factor-3/metabolism ; Mice ; Mice, Inbred C57BL ; Models, Immunological ; NF-kappa B/metabolism ; Nucleic Acids/*immunology ; Nucleotides/chemistry/immunology/metabolism ; RNA/immunology ; Signal Transduction ; Toll-Like Receptors/immunology ; Virus Diseases/immunology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2009-07-25
    Description: MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression, involved in diverse physiological and pathological processes. Although miRNAs can function as both tumour suppressors and oncogenes in tumour development, a widespread downregulation of miRNAs is commonly observed in human cancers and promotes cellular transformation and tumorigenesis. This indicates an inherent significance of small RNAs in tumour suppression. However, the connection between tumour suppressor networks and miRNA biogenesis machineries has not been investigated in depth. Here we show that a central tumour suppressor, p53, enhances the post-transcriptional maturation of several miRNAs with growth-suppressive function, including miR-16-1, miR-143 and miR-145, in response to DNA damage. In HCT116 cells and human diploid fibroblasts, p53 interacts with the Drosha processing complex through the association with DEAD-box RNA helicase p68 (also known as DDX5) and facilitates the processing of primary miRNAs to precursor miRNAs. We also found that transcriptionally inactive p53 mutants interfere with a functional assembly between Drosha complex and p68, leading to attenuation of miRNA processing activity. These findings suggest that transcription-independent modulation of miRNA biogenesis is intrinsically embedded in a tumour suppressive program governed by p53. Our study reveals a previously unrecognized function of p53 in miRNA processing, which may underlie key aspects of cancer biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Hiroshi I -- Yamagata, Kaoru -- Sugimoto, Koichi -- Iwamoto, Takashi -- Kato, Shigeaki -- Miyazono, Kohei -- England -- Nature. 2009 Jul 23;460(7254):529-33. doi: 10.1038/nature08199.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19626115" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; DNA Damage/physiology ; Gene Expression Regulation ; HCT116 Cells ; Humans ; MicroRNAs/*metabolism ; Mutation ; *RNA Processing, Post-Transcriptional ; Ribonuclease III/metabolism ; Tumor Suppressor Protein p53/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Apr 2;458(7238):550. doi: 10.1038/458550a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19340028" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Enteral Nutrition/ethics/utilization ; Female ; Humans ; Italy ; Living Wills/ethics/*legislation & jurisprudence ; *Patients ; *Physicians ; Right to Die/ethics/*legislation & jurisprudence ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2009-10-30
    Description: The leading cause of infertility in men and women is quantitative and qualitative defects in human germ-cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ-cell formation and differentiation owing to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages. Here we used a germ-cell reporter to quantify and isolate primordial germ cells derived from both male and female human embryonic stem cells. By silencing and overexpressing genes that encode germ-cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ-cell formation and developmental progression. We observed that human DAZL (deleted in azoospermia-like) functions in primordial germ-cell formation, whereas closely related genes DAZ and BOULE (also called BOLL) promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133736/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133736/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kee, Kehkooi -- Angeles, Vanessa T -- Flores, Martha -- Nguyen, Ha Nam -- Reijo Pera, Renee A -- R01 HD047721/HD/NICHD NIH HHS/ -- R01 HD047721-06/HD/NICHD NIH HHS/ -- R01HD047721/HD/NICHD NIH HHS/ -- U54 HD055764/HD/NICHD NIH HHS/ -- U54 HD055764-015755/HD/NICHD NIH HHS/ -- U54HD055764/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):222-5. doi: 10.1038/nature08562. Epub 2009 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Embryonic Stem Cell Research and Education, Institute for Stem Cell Biology & Regenerative Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Palo Alto, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865085" target="_blank"〉PubMed〈/a〉
    Keywords: Bone Morphogenetic Proteins/metabolism ; Cell Count ; *Cell Differentiation ; Cell Line ; Cellular Reprogramming ; Embryonic Stem Cells/cytology/metabolism ; Female ; Gene Expression ; Gene Silencing ; Genes, Reporter ; Germ Cells/*cytology/*metabolism ; *Haploidy ; Humans ; Male ; Meiosis ; Organ Specificity ; RNA-Binding Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonnell, Anna -- England -- Nature. 2009 Jun 18;459(7249):909. doi: 10.1038/459909b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Fertility ; History, Ancient ; Humans ; Pregnancy ; Sculpture/*history
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2009-07-31
    Description: P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X(4) receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in beta-strands, have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an approximately 8 A slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawate, Toshimitsu -- Michel, Jennifer Carlisle -- Birdsong, William T -- Gouaux, Eric -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM075026-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 30;460(7255):592-8. doi: 10.1038/nature08198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641588" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Gadolinium/metabolism ; Humans ; Ion Channels/antagonists & inhibitors/*chemistry ; Membrane Proteins/chemistry ; *Models, Molecular ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Purinergic P2 Receptor Antagonists ; Receptors, Purinergic P2/*chemistry ; Receptors, Purinergic P2X4 ; Zebrafish/*physiology ; Zebrafish Proteins/antagonists & inhibitors/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2009-07-25
    Description: African primates are naturally infected with over 40 different simian immunodeficiency viruses (SIVs), two of which have crossed the species barrier and generated human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Unlike the human viruses, however, SIVs do not generally cause acquired immunodeficiency syndrome (AIDS) in their natural hosts. Here we show that SIVcpz, the immediate precursor of HIV-1, is pathogenic in free-ranging chimpanzees. By following 94 members of two habituated chimpanzee communities in Gombe National Park, Tanzania, for over 9 years, we found a 10- to 16-fold higher age-corrected death hazard for SIVcpz-infected (n = 17) compared to uninfected (n = 77) chimpanzees. We also found that SIVcpz-infected females were less likely to give birth and had a higher infant mortality rate than uninfected females. Immunohistochemistry and in situ hybridization of post-mortem spleen and lymph node samples from three infected and two uninfected chimpanzees revealed significant CD4(+) T-cell depletion in all infected individuals, with evidence of high viral replication and extensive follicular dendritic cell virus trapping in one of them. One female, who died within 3 years of acquiring SIVcpz, had histopathological findings consistent with end-stage AIDS. These results indicate that SIVcpz, like HIV-1, is associated with progressive CD4(+) T-cell loss, lymphatic tissue destruction and premature death. These findings challenge the prevailing view that all natural SIV infections are non-pathogenic and suggest that SIVcpz has a substantial negative impact on the health, reproduction and lifespan of chimpanzees in the wild.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keele, Brandon F -- Jones, James Holland -- Terio, Karen A -- Estes, Jacob D -- Rudicell, Rebecca S -- Wilson, Michael L -- Li, Yingying -- Learn, Gerald H -- Beasley, T Mark -- Schumacher-Stankey, Joann -- Wroblewski, Emily -- Mosser, Anna -- Raphael, Jane -- Kamenya, Shadrack -- Lonsdorf, Elizabeth V -- Travis, Dominic A -- Mlengeya, Titus -- Kinsel, Michael J -- Else, James G -- Silvestri, Guido -- Goodall, Jane -- Sharp, Paul M -- Shaw, George M -- Pusey, Anne E -- Hahn, Beatrice H -- HHSN266200400088C/PHS HHS/ -- P30 AI 27767/AI/NIAID NIH HHS/ -- P30 AI027767/AI/NIAID NIH HHS/ -- P30 AI027767-21A17134/AI/NIAID NIH HHS/ -- R01 AI058715/AI/NIAID NIH HHS/ -- R01 AI058715-06A1/AI/NIAID NIH HHS/ -- R01 AI50529/AI/NIAID NIH HHS/ -- R01 AI58715/AI/NIAID NIH HHS/ -- R37 AI050529/AI/NIAID NIH HHS/ -- R37 AI050529-06A1/AI/NIAID NIH HHS/ -- RR-00165/RR/NCRR NIH HHS/ -- T32 GM008111/GM/NIGMS NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- U19 AI067854-059010/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 23;460(7254):515-9. doi: 10.1038/nature08200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19626114" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/pathology ; Africa ; Animals ; Animals, Wild ; CD4-Positive T-Lymphocytes/immunology ; Female ; Humans ; Male ; Molecular Sequence Data ; Pan troglodytes/*virology ; Prevalence ; Simian Acquired Immunodeficiency ; Syndrome/epidemiology/immunology/*mortality/*pathology ; Simian Immunodeficiency Virus/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2009-03-10
    Description: Acetylation within the globular core domain of histone H3 on lysine 56 (H3K56) has recently been shown to have a critical role in packaging DNA into chromatin following DNA replication and repair in budding yeast. However, the function or occurrence of this specific histone mark has not been studied in multicellular eukaryotes, mainly because the Rtt109 enzyme that is known to mediate acetylation of H3K56 (H3K56ac) is fungal-specific. Here we demonstrate that the histone acetyl transferase CBP (also known as Nejire) in flies and CBP and p300 (Ep300) in humans acetylate H3K56, whereas Drosophila Sir2 and human SIRT1 and SIRT2 deacetylate H3K56ac. The histone chaperones ASF1A in humans and Asf1 in Drosophila are required for acetylation of H3K56 in vivo, whereas the histone chaperone CAF-1 (chromatin assembly factor 1) in humans and Caf1 in Drosophila are required for the incorporation of histones bearing this mark into chromatin. We show that, in response to DNA damage, histones bearing acetylated K56 are assembled into chromatin in Drosophila and human cells, forming foci that colocalize with sites of DNA repair. Furthermore, acetylation of H3K56 is increased in multiple types of cancer, correlating with increased levels of ASF1A in these tumours. Our identification of multiple proteins regulating the levels of H3K56 acetylation in metazoans will allow future studies of this critical and unique histone modification that couples chromatin assembly to DNA synthesis, cell proliferation and cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Chandrima -- Lucia, M Scott -- Hansen, Kirk C -- Tyler, Jessica K -- CA95641/CA/NCI NIH HHS/ -- GM64475/GM/NIGMS NIH HHS/ -- R01 CA095641/CA/NCI NIH HHS/ -- R01 CA095641-07/CA/NCI NIH HHS/ -- R01 GM064475/GM/NIGMS NIH HHS/ -- R01 GM064475-07/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 May 7;459(7243):113-7. doi: 10.1038/nature07861. Epub 2009 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19270680" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Cycle Proteins/metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone/metabolism ; DNA Damage/physiology ; Drosophila Proteins/metabolism ; Drosophila melanogaster/*enzymology ; HeLa Cells ; Histone Deacetylases/metabolism ; Histones/*metabolism ; Humans ; Lysine/*metabolism ; Molecular Chaperones/metabolism ; Retinoblastoma-Binding Protein 4 ; Sirtuin 1 ; Sirtuin 2 ; Sirtuins/metabolism ; p300-CBP Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2009-07-31
    Description: Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses. The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components. Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22(phox), the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22(phox) is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yazdanpanah, Benjamin -- Wiegmann, Katja -- Tchikov, Vladimir -- Krut, Oleg -- Pongratz, Carola -- Schramm, Michael -- Kleinridders, Andre -- Wunderlich, Thomas -- Kashkar, Hamid -- Utermohlen, Olaf -- Bruning, Jens C -- Schutze, Stefan -- Kronke, Martin -- England -- Nature. 2009 Aug 27;460(7259):1159-63. doi: 10.1038/nature08206. Epub 2009 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cytochrome b Group/metabolism ; Enzyme Activation ; Fibroblasts ; Flavin Mononucleotide/metabolism ; Flavin-Adenine Dinucleotide/biosynthesis/metabolism ; HeLa Cells ; Humans ; Isoenzymes/chemistry/metabolism ; Membrane Glycoproteins/metabolism ; Mice ; NADH, NADPH Oxidoreductases/metabolism ; NADPH Oxidase/chemistry/*metabolism ; Phosphotransferases (Alcohol Group Acceptor)/deficiency/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Reactive Oxygen Species/metabolism ; Receptors, Tumor Necrosis Factor, Type I/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2009-08-21
    Description: A decision is a commitment to a proposition or plan of action based on evidence and the expected costs and benefits associated with the outcome. Progress in a variety of fields has led to a quantitative understanding of the mechanisms that evaluate evidence and reach a decision. Several formalisms propose that a representation of noisy evidence is evaluated against a criterion to produce a decision. Without additional evidence, however, these formalisms fail to explain why a decision-maker would change their mind. Here we extend a model, developed to account for both the timing and the accuracy of the initial decision, to explain subsequent changes of mind. Subjects made decisions about a noisy visual stimulus, which they indicated by moving a handle. Although they received no additional information after initiating their movement, their hand trajectories betrayed a change of mind in some trials. We propose that noisy evidence is accumulated over time until it reaches a criterion level, or bound, which determines the initial decision, and that the brain exploits information that is in the processing pipeline when the initial decision is made to subsequently either reverse or reaffirm the initial decision. The model explains both the frequency of changes of mind as well as their dependence on both task difficulty and whether the initial decision was accurate or erroneous. The theoretical and experimental findings advance the understanding of decision-making to the highly flexible and cognitive acts of vacillation and self-correction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875179/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875179/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Resulaj, Arbora -- Kiani, Roozbeh -- Wolpert, Daniel M -- Shadlen, Michael N -- 077730/Wellcome Trust/United Kingdom -- EY11378/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Sep 10;461(7261):263-6. doi: 10.1038/nature08275. Epub 2009 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693010" target="_blank"〉PubMed〈/a〉
    Keywords: Computers ; Cues ; Decision Making/*physiology ; Female ; Hand/physiology ; Humans ; Male ; Models, Neurological ; Models, Psychological ; Motion ; Movement ; Photic Stimulation ; Psychomotor Performance ; Reaction Time ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2009-08-28
    Description: Mitochondria are found in all eukaryotic cells and contain their own genome (mitochondrial DNA or mtDNA). Unlike the nuclear genome, which is derived from both the egg and sperm at fertilization, the mtDNA in the embryo is derived almost exclusively from the egg; that is, it is of maternal origin. Mutations in mtDNA contribute to a diverse range of currently incurable human diseases and disorders. To establish preclinical models for new therapeutic approaches, we demonstrate here that the mitochondrial genome can be efficiently replaced in mature non-human primate oocytes (Macaca mulatta) by spindle-chromosomal complex transfer from one egg to an enucleated, mitochondrial-replete egg. The reconstructed oocytes with the mitochondrial replacement were capable of supporting normal fertilization, embryo development and produced healthy offspring. Genetic analysis confirmed that nuclear DNA in the three infants born so far originated from the spindle donors whereas mtDNA came from the cytoplast donors. No contribution of spindle donor mtDNA was detected in offspring. Spindle replacement is shown here as an efficient protocol replacing the full complement of mitochondria in newly generated embryonic stem cell lines. This approach may offer a reproductive option to prevent mtDNA disease transmission in affected families.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774772/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774772/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tachibana, Masahito -- Sparman, Michelle -- Sritanaudomchai, Hathaitip -- Ma, Hong -- Clepper, Lisa -- Woodward, Joy -- Li, Ying -- Ramsey, Cathy -- Kolotushkina, Olena -- Mitalipov, Shoukhrat -- P01 HD047675/HD/NICHD NIH HHS/ -- P01 HD047675-01A17045/HD/NICHD NIH HHS/ -- P01 HD047675-04/HD/NICHD NIH HHS/ -- P51 RR000163/RR/NCRR NIH HHS/ -- P51 RR000163-486766/RR/NCRR NIH HHS/ -- P51 RR000163-486775/RR/NCRR NIH HHS/ -- P51 RR000163-486819/RR/NCRR NIH HHS/ -- P51 RR000163-496038/RR/NCRR NIH HHS/ -- P51 RR000163-496045/RR/NCRR NIH HHS/ -- P51 RR000163-496074/RR/NCRR NIH HHS/ -- P51 RR000163-496133/RR/NCRR NIH HHS/ -- P51 RR000163-496134/RR/NCRR NIH HHS/ -- P51 RR000163-496136/RR/NCRR NIH HHS/ -- P51 RR000163-496137/RR/NCRR NIH HHS/ -- R01 HD057121/HD/NICHD NIH HHS/ -- R01 HD057121-01A2/HD/NICHD NIH HHS/ -- R01 NS044330/NS/NINDS NIH HHS/ -- R01 NS044330-05/NS/NINDS NIH HHS/ -- R24 RR013632/RR/NCRR NIH HHS/ -- R24 RR013632-10/RR/NCRR NIH HHS/ -- England -- Nature. 2009 Sep 17;461(7262):367-72. doi: 10.1038/nature08368. Epub 2009 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oregon National Primate Research Center, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19710649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/genetics ; DNA, Mitochondrial/analysis/*genetics ; Embryo Transfer ; Embryonic Stem Cells/*cytology/*metabolism/transplantation ; Female ; Fertilization in Vitro ; Genes, Mitochondrial/*genetics ; Genome, Mitochondrial/*genetics ; Macaca mulatta/embryology/*genetics ; Male ; Meiosis ; Mitochondrial Diseases/genetics/prevention & control ; Mutation ; Oocytes/cytology/metabolism ; Pregnancy ; *Reproductive Techniques, Assisted
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gowans, James -- England -- Nature. 2009 May 28;459(7246):506. doi: 10.1038/459506c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478763" target="_blank"〉PubMed〈/a〉
    Keywords: Clinical Trials as Topic/history ; Correspondence as Topic/history ; Female ; Great Britain ; History, 20th Century ; Humans ; Periodicals as Topic/*history
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2009-06-30
    Description: One of the most distinctive steps in the development of the vertebrate nervous system occurs at mitotic exit when cells lose multipotency and begin to develop stable connections that will persist for a lifetime. This transition is accompanied by a switch in ATP-dependent chromatin-remodelling mechanisms that appears to coincide with the final mitotic division of neurons. This switch involves the exchange of the BAF53a (also known as ACTL6a) and BAF45a (PHF10) subunits within Swi/Snf-like neural-progenitor-specific BAF (npBAF) complexes for the homologous BAF53b (ACTL6b) and BAF45b (DPF1) subunits within neuron-specific BAF (nBAF) complexes in post-mitotic neurons. The subunits of the npBAF complex are essential for neural-progenitor proliferation, and mice with reduced dosage for the genes encoding its subunits have defects in neural-tube closure similar to those in human spina bifida, one of the most serious congenital birth defects. In contrast, BAF53b and the nBAF complex are essential for an evolutionarily conserved program of post-mitotic neural development and dendritic morphogenesis. Here we show that this essential transition is mediated by repression of BAF53a by miR-9* and miR-124. We find that BAF53a repression is mediated by sequences in the 3' untranslated region corresponding to the recognition sites for miR-9* and miR-124, which are selectively expressed in post-mitotic neurons. Mutation of these sites led to persistent expression of BAF53a and defective activity-dependent dendritic outgrowth in neurons. In addition, overexpression of miR-9* and miR-124 in neural progenitors caused reduced proliferation. Previous studies have indicated that miR-9* and miR-124 are repressed by the repressor-element-1-silencing transcription factor (REST, also known as NRSF). Indeed, expression of REST in post-mitotic neurons led to derepression of BAF53a, indicating that REST-mediated repression of microRNAs directs the essential switch of chromatin regulatory complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921580/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921580/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoo, Andrew S -- Staahl, Brett T -- Chen, Lei -- Crabtree, Gerald R -- 2 T32 HD007249/HD/NICHD NIH HHS/ -- AI060037/AI/NIAID NIH HHS/ -- HD55391/HD/NICHD NIH HHS/ -- NS046789/NS/NINDS NIH HHS/ -- R01 HD055391/HD/NICHD NIH HHS/ -- R01 NS046789/NS/NINDS NIH HHS/ -- R01 NS046789-08/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 30;460(7255):642-6. doi: 10.1038/nature08139. Epub 2009 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, and Department of Developmental Biology, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19561591" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Actins/genetics/metabolism ; Animals ; CHO Cells ; Cell Line ; Chromatin Assembly and Disassembly/genetics/*physiology ; Chromosomal Proteins, Non-Histone/genetics/metabolism ; Cricetinae ; Cricetulus ; DNA-Binding Proteins/genetics/metabolism ; Dendrites/physiology ; *Gene Expression Regulation, Developmental ; Mice ; Mice, Transgenic ; MicroRNAs/*metabolism ; Mitosis ; Nervous System/cytology/*embryology ; Neurons/cytology ; Repressor Proteins/metabolism ; Stem Cells/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2009-08-21
    Description: Activity is thought to guide the patterning of synaptic connections in the developing nervous system. Specifically, differences in the activity of converging inputs are thought to cause the elimination of synapses from less active inputs and increase connectivity with more active inputs. Here we present findings that challenge the generality of this notion and offer a new view of the role of activity in synapse development. To imbalance neurotransmission from different sets of inputs in vivo, we generated transgenic mice in which ON but not OFF types of bipolar cells in the retina express tetanus toxin (TeNT). During development, retinal ganglion cells (RGCs) select between ON and OFF bipolar cell inputs (ON or OFF RGCs) or establish a similar number of synapses with both on separate dendritic arborizations (ON-OFF RGCs). In TeNT retinas, ON RGCs correctly selected the silenced ON bipolar cell inputs over the transmitting OFF bipolar cells, but were connected with them through fewer synapses at maturity. Time-lapse imaging revealed that this was caused by a reduced rate of synapse formation rather than an increase in synapse elimination. Similarly, TeNT-expressing ON bipolar cell axons generated fewer presynaptic active zones. The remaining active zones often recruited multiple, instead of single, synaptic ribbons. ON-OFF RGCs in TeNT mice maintained convergence of ON and OFF bipolar cells inputs and had fewer synapses on their ON arbor without changes to OFF arbor synapses. Our results reveal an unexpected and remarkably selective role for activity in circuit development in vivo, regulating synapse formation but not elimination, affecting synapse number but not dendritic or axonal patterning, and mediating independently the refinement of connections from parallel (ON and OFF) processing streams even where they converge onto the same postsynaptic cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kerschensteiner, Daniel -- Morgan, Josh L -- Parker, Edward D -- Lewis, Renate M -- Wong, Rachel O L -- EY01730/EY/NEI NIH HHS/ -- EY10699/EY/NEI NIH HHS/ -- R01 EY010699/EY/NEI NIH HHS/ -- R01 EY010699-16/EY/NEI NIH HHS/ -- T32 EY07031/EY/NEI NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1016-20. doi: 10.1038/nature08236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA. KerschensteinerD@vision.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693082" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; Dendrites/metabolism ; Female ; Glutamic Acid/metabolism ; Male ; Mice ; Mice, Transgenic ; Receptors, Kainic Acid/genetics/metabolism ; Retinal Bipolar Cells/cytology/metabolism ; Retinal Ganglion Cells/cytology/metabolism ; Synapses/*metabolism ; Synaptic Transmission/*physiology ; Tetanus Toxin/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2009-12-04
    Description: Dietary restriction extends healthy lifespan in diverse organisms and reduces fecundity. It is widely assumed to induce adaptive reallocation of nutrients from reproduction to somatic maintenance, aiding survival of food shortages in nature. If this were the case, long life under dietary restriction and high fecundity under full feeding would be mutually exclusive, through competition for the same limiting nutrients. Here we report a test of this idea in which we identified the nutrients producing the responses of lifespan and fecundity to dietary restriction in Drosophila. Adding essential amino acids to the dietary restriction condition increased fecundity and decreased lifespan, similar to the effects of full feeding, with other nutrients having little or no effect. However, methionine alone was necessary and sufficient to increase fecundity as much as did full feeding, but without reducing lifespan. Reallocation of nutrients therefore does not explain the responses to dietary restriction. Lifespan was decreased by the addition of amino acids, with an interaction between methionine and other essential amino acids having a key role. Hence, an imbalance in dietary amino acids away from the ratio optimal for reproduction shortens lifespan during full feeding and limits fecundity during dietary restriction. Reduced activity of the insulin/insulin-like growth factor signalling pathway extends lifespan in diverse organisms, and we find that it also protects against the shortening of lifespan with full feeding. In other organisms, including mammals, it may be possible to obtain the benefits to lifespan of dietary restriction without incurring a reduction in fecundity, through a suitable balance of nutrients in the diet.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grandison, Richard C -- Piper, Matthew D W -- Partridge, Linda -- 081394/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Dec 24;462(7276):1061-4. doi: 10.1038/nature08619. Epub 2009 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Healthy Ageing, Department of Genetics Evolution and Environment, University College London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19956092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; *Diet ; Drosophila melanogaster/metabolism/*physiology ; Female ; Insulin/metabolism ; Longevity/*physiology ; Methionine/metabolism ; Oviposition/physiology ; Random Allocation ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mellars, Paul -- England -- Nature. 2009 May 14;459(7244):176-7. doi: 10.1038/459176a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19444200" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Archaeology ; Female ; Germany ; History, Ancient ; Horns/chemistry ; Humans ; Sculpture/*history ; Sex Characteristics ; Symbolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2009-07-03
    Description: The generation and expansion of diverse cardiovascular cell lineages is a critical step during human cardiogenesis, with major implications for congenital heart disease. Unravelling the mechanisms for the diversification of human heart cell lineages has been hampered by the lack of genetic tools to purify early cardiac progenitors and define their developmental potential. Recent studies in the mouse embryo have identified a multipotent cardiac progenitor that contributes to all of the major cell types in the murine heart. In contrast to murine development, human cardiogenesis has a much longer onset of heart cell lineage diversification and expansion, suggesting divergent pathways. Here we identify a diverse set of human fetal ISL1(+) cardiovascular progenitors that give rise to the cardiomyocyte, smooth muscle and endothelial cell lineages. Using two independent transgenic and gene-targeting approaches in human embryonic stem cell lines, we show that purified ISL1(+) primordial progenitors are capable of self-renewal and expansion before differentiation into the three major cell types in the heart. These results lay the foundation for the generation of human model systems for cardiovascular disease and novel approaches for human regenerative cardiovascular medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bu, Lei -- Jiang, Xin -- Martin-Puig, Silvia -- Caron, Leslie -- Zhu, Shenjun -- Shao, Ying -- Roberts, Drucilla J -- Huang, Paul L -- Domian, Ibrahim J -- Chien, Kenneth R -- England -- Nature. 2009 Jul 2;460(7251):113-7. doi: 10.1038/nature08191.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3208, 185 Cambridge Street, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19571884" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation ; Cell Division ; Cell Line ; *Cell Lineage ; Coculture Techniques ; Embryonic Stem Cells/cytology/metabolism ; Endothelial Cells/cytology ; Fetus/cytology/embryology ; Heart/embryology ; Homeodomain Proteins/*metabolism ; Humans ; LIM-Homeodomain Proteins ; Multipotent Stem Cells/*cytology/*metabolism ; Muscle, Smooth/cytology ; Myocardium/*cytology ; Myocytes, Cardiac/cytology ; Transcription Factors ; Wnt Proteins/metabolism ; Wnt3 Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2009-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khalil, Ahmad M -- England -- Nature. 2009 Mar 19;458(7236):263. doi: 10.1038/458263f.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; *Models, Genetic ; RNA Interference ; RNA, Long Noncoding ; RNA, Untranslated/*genetics ; Ribonuclease III/deficiency ; X Chromosome Inactivation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, Jennifer A Marshall -- England -- Nature. 2009 Sep 10;461(7261):177-8. doi: 10.1038/461177a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741690" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chick Embryo ; Chickens/*genetics/*physiology ; Disorders of Sex Development ; Evolution, Molecular ; Female ; Gene Dosage/genetics ; Humans ; Male ; Models, Genetic ; Ovary/embryology/metabolism ; RNA Interference ; SOX9 Transcription Factor/genetics/metabolism ; Sex Chromosomes/*genetics ; *Sex Determination Processes ; Testis/embryology/metabolism ; Transcription Factors/deficiency/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Larry J -- England -- Nature. 2009 Jan 8;457(7226):148. doi: 10.1038/457148a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA. lyoun03@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19129828" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arvicolinae/genetics/physiology ; Dopamine/metabolism ; Female ; Humans ; *Love ; Male ; Maternal Behavior/physiology ; Oxytocin/*metabolism ; Pair Bond ; Paternal Behavior ; Receptors, Vasopressin/genetics/metabolism ; Sexual Behavior/drug effects/physiology ; Vasopressins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2009-09-29
    Description: Activation of Janus kinase 2 (JAK2) by chromosomal translocations or point mutations is a frequent event in haematological malignancies. JAK2 is a non-receptor tyrosine kinase that regulates several cellular processes by inducing cytoplasmic signalling cascades. Here we show that human JAK2 is present in the nucleus of haematopoietic cells and directly phosphorylates Tyr 41 (Y41) on histone H3. Heterochromatin protein 1alpha (HP1alpha), but not HP1beta, specifically binds to this region of H3 through its chromo-shadow domain. Phosphorylation of H3Y41 by JAK2 prevents this binding. Inhibition of JAK2 activity in human leukaemic cells decreases both the expression of the haematopoietic oncogene lmo2 and the phosphorylation of H3Y41 at its promoter, while simultaneously increasing the binding of HP1alpha at the same site. Tauhese results identify a previously unrecognized nuclear role for JAK2 in the phosphorylation of H3Y41 and reveal a direct mechanistic link between two genes, jak2 and lmo2, involved in normal haematopoiesis and leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785147/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785147/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, Mark A -- Bannister, Andrew J -- Gottgens, Berthold -- Foster, Samuel D -- Bartke, Till -- Green, Anthony R -- Kouzarides, Tony -- 089957/Wellcome Trust/United Kingdom -- 12765/Cancer Research UK/United Kingdom -- G0800784/Medical Research Council/United Kingdom -- MC_UP_1102/2/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Oct 8;461(7265):819-22. doi: 10.1038/nature08448. Epub 2009 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19783980" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Binding Sites ; Cell Line ; Cell Nucleus/enzymology ; Chromatin/chemistry/*metabolism ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA-Binding Proteins/genetics ; Gene Expression Regulation, Neoplastic ; Hematopoiesis/genetics ; Hematopoietic Stem Cells/cytology/enzymology ; Histones/chemistry/genetics/*metabolism ; Humans ; Janus Kinase 2/antagonists & inhibitors/*metabolism ; LIM Domain Proteins ; Leukemia/enzymology/genetics/metabolism/pathology ; Metalloproteins/genetics ; Mice ; Oncogenes/genetics ; Phosphorylation ; Promoter Regions, Genetic/genetics ; Protein Binding ; Proto-Oncogene Proteins ; Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2009-04-24
    Description: Mammals rely heavily on olfaction to interact adequately with each other and with their environment. They make use of seven-transmembrane G-protein-coupled receptors to identify odorants and pheromones. These receptors are present on dendrites of olfactory sensory neurons located in the main olfactory or vomeronasal sensory epithelia, and pertain to the odorant, trace amine-associated receptor and vomeronasal type 1 (ref. 4) or 2 (refs 5-7) receptor superfamilies. Whether these four sensor classes represent the complete olfactory molecular repertoire used by mammals to make sense of the outside world is unknown. Here we report the expression of formyl peptide receptor-related genes by vomeronasal sensory neurons, in multiple mammalian species. Similar to the four known olfactory receptor gene classes, these genes encode seven-transmembrane proteins, and are characterized by monogenic transcription and a punctate expression pattern in the sensory neuroepithelium. In vitro expression of mouse formyl peptide receptor-like 1, 3, 4, 6 and 7 provides sensitivity to disease/inflammation-related ligands. Establishing an in situ approach that combines whole-mount vomeronasal preparations with dendritic calcium imaging in the intact neuroepithelium, we show neuronal responses to the same molecules, which therefore represent a new class of vomeronasal agonists. Taken together, these results suggest that formyl peptide receptor-like proteins have an olfactory function associated with the identification of pathogens, or of pathogenic states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riviere, Stephane -- Challet, Ludivine -- Fluegge, Daniela -- Spehr, Marc -- Rodriguez, Ivan -- England -- Nature. 2009 May 28;459(7246):574-7. doi: 10.1038/nature08029.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology and Animal Biology, and National Center of Competence Frontiers in Genetics, University of Geneva, 1205 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19387439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Signaling ; Cell Line ; Dendrites/drug effects/metabolism ; *Disease ; Gene Expression Profiling ; Humans ; Inflammation/pathology ; Ligands ; Mice ; Olfactory Perception/drug effects/*physiology ; Olfactory Receptor Neurons/cytology/drug effects/*metabolism ; Organ Specificity ; Receptors, Formyl Peptide/genetics/*metabolism ; Smell/drug effects/*physiology ; Vomeronasal Organ/*cytology/drug effects/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buchen, Lizzie -- England -- Nature. 2009 Dec 3;462(7273):562-4. doi: 10.1038/462562a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19956235" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior/physiology ; *Behavior, Animal ; Behavioral Research/*instrumentation/methods ; Drosophila melanogaster/*physiology ; Female ; Humans ; Male ; Software ; Video Recording/instrumentation/methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2009-09-01
    Description: Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors (OCT4 (also called POU5F1), SOX2, c-Myc and KLF4). We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells. Here we report the generation of one-factor human iPS cells from human fetal neural stem cells (one-factor (1F) human NiPS cells) by ectopic expression of OCT4 alone. One-factor human NiPS cells resemble human embryonic stem cells in global gene expression profiles, epigenetic status, as well as pluripotency in vitro and in vivo. These findings demonstrate that the transcription factor OCT4 is sufficient to reprogram human neural stem cells to pluripotency. One-factor iPS cell generation will advance the field further towards understanding reprogramming and generating patient-specific pluripotent stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jeong Beom -- Greber, Boris -- Arauzo-Bravo, Marcos J -- Meyer, Johann -- Park, Kook In -- Zaehres, Holm -- Scholer, Hans R -- England -- Nature. 2009 Oct 1;461(7264):649-3. doi: 10.1038/nature08436.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Rontgenstrasse 20, 48149 Munster, NRW, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19718018" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; *Cell Dedifferentiation ; Cell Differentiation ; Cell Line ; *Cellular Reprogramming ; DNA Methylation ; Embryonic Stem Cells/cytology/metabolism ; Epigenesis, Genetic ; Fetus/*cytology ; Gene Expression Profiling ; Germ Layers/cytology/metabolism ; Humans ; Mice ; Neurons/*cytology/metabolism ; Octamer Transcription Factor-3/genetics/*metabolism ; Pluripotent Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2009-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rockenbach, Bettina -- Milinski, Manfred -- England -- Nature. 2009 Jan 1;457(7225):39-40. doi: 10.1038/457039a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19122632" target="_blank"〉PubMed〈/a〉
    Keywords: Altruism ; Biological Evolution ; *Cooperative Behavior ; Cost-Benefit Analysis ; Female ; *Game Theory ; Humans ; Male ; Models, Psychological ; *Punishment/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2009-10-23
    Description: NF-kappaB transcription factors function as crucial regulators of inflammatory and immune responses as well as of cell survival. They have also been implicated in cellular transformation and tumorigenesis. However, despite extensive biochemical characterization of NF-kappaB signalling during the past twenty years, the requirement for NF-kappaB in tumour development in vivo, particularly in solid tumours, is not completely understood. Here we show that the NF-kappaB pathway is required for the development of tumours in a mouse model of lung adenocarcinoma. Concomitant loss of p53 (also known as Trp53) and expression of oncogenic Kras(G12D) resulted in NF-kappaB activation in primary mouse embryonic fibroblasts. Conversely, in lung tumour cell lines expressing Kras(G12D) and lacking p53, p53 restoration led to NF-kappaB inhibition. Furthermore, the inhibition of NF-kappaB signalling induced apoptosis in p53-null lung cancer cell lines. Inhibition of the pathway in lung tumours in vivo, from the time of tumour initiation or after tumour progression, resulted in significantly reduced tumour development. Together, these results indicate a critical function for NF-kappaB signalling in lung tumour development and, further, that this requirement depends on p53 status. These findings also provide support for the development of NF-kappaB inhibitory drugs as targeted therapies for the treatment of patients with defined mutations in Kras and p53.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780341/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780341/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meylan, Etienne -- Dooley, Alison L -- Feldser, David M -- Shen, Lynn -- Turk, Erin -- Ouyang, Chensi -- Jacks, Tyler -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA014051-37/CA/NCI NIH HHS/ -- P30 CA014051-38/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Nov 5;462(7269):104-7. doi: 10.1038/nature08462. Epub 2009 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Koch Institute for Integrative Cancer Research, and Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847165" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/*metabolism/*pathology ; Animals ; Apoptosis ; Carcinoma, Non-Small-Cell Lung/metabolism/pathology ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Cells, Cultured ; DNA/metabolism ; *Disease Models, Animal ; Fibroblasts ; Genes, p53/genetics ; Humans ; Lung Neoplasms/*metabolism/*pathology ; Mice ; NF-kappa B/antagonists & inhibitors/*metabolism ; Oncogene Protein p21(ras)/genetics/metabolism ; *Signal Transduction ; Transcription Factor RelA/metabolism ; Tumor Suppressor Protein p53/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2009-04-07
    Description: The versatility of Ca2+ signals derives from their spatio-temporal organization. For Ca2+ signals initiated by inositol-1,4,5-trisphosphate (InsP3), this requires local interactions between InsP3 receptors (InsP3Rs) mediated by their rapid stimulation and slower inhibition by cytosolic Ca2+. This allows hierarchical recruitment of Ca2+ release events as the InsP3 concentration increases. Single InsP3Rs respond first, then clustered InsP3Rs open together giving a local 'Ca2+ puff', and as puffs become more frequent they ignite regenerative Ca2+ waves. Using nuclear patch-clamp recording, here we demonstrate that InsP3Rs are initially randomly distributed with an estimated separation of 1 m. Low concentrations of InsP3 cause InsP3Rs to aggregate rapidly and reversibly into small clusters of about four closely associated InsP3Rs. At resting cytosolic [Ca2+], clustered InsP3Rs open independently, but with lower open probability, shorter open time, and less InsP3 sensitivity than lone InsP3Rs. Increasing cytosolic [Ca2+] reverses the inhibition caused by clustering, InsP3R gating becomes coupled, and the duration of multiple openings is prolonged. Clustering both exposes InsP3Rs to local Ca2+ rises and increases the effects of Ca2+. Dynamic regulation of clustering by InsP3 retunes InsP3R sensitivity to InsP3 and Ca2+, facilitating hierarchical recruitment of the elementary events that underlie all InsP3-evoked Ca2+ signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702691/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702691/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taufiq-Ur-Rahman -- Skupin, Alexander -- Falcke, Martin -- Taylor, Colin W -- 085295/Wellcome Trust/United Kingdom -- BBE0046601/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Apr 2;458(7238):655-9. doi: 10.1038/nature07763.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19348050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; *Calcium Signaling ; Cell Line ; Cytosol/metabolism ; Inositol 1,4,5-Trisphosphate/*metabolism ; Inositol 1,4,5-Trisphosphate Receptors/*metabolism ; Ion Channel Gating ; Patch-Clamp Techniques ; Protein Transport ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2009-04-10
    Description: The repair of DNA double-strand breaks (DSBs) is tightly regulated during the cell cycle. In G1 phase, the absence of a sister chromatid means that repair of DSBs occurs through non-homologous end-joining or microhomology-mediated end-joining (MMEJ). These pathways often involve loss of DNA sequences at the break site and are therefore error-prone. In late S and G2 phases, even though DNA end-joining pathways remain functional, there is an increase in repair of DSBs by homologous recombination, which is mostly error-free. Consequently, the relative contribution of these different pathways to DSB repair in the cell cycle has a large influence on the maintenance of genetic integrity. It has remained unknown how DSBs are directed for repair by different, potentially competing, repair pathways. Here we identify a role for CtIP (also known as RBBP8) in this process in the avian B-cell line DT40. We establish that CtIP is required not only for repair of DSBs by homologous recombination in S/G2 phase but also for MMEJ in G1. The function of CtIP in homologous recombination, but not MMEJ, is dependent on the phosphorylation of serine residue 327 and recruitment of BRCA1. Cells expressing CtIP protein that cannot be phosphorylated at serine 327 are specifically defective in homologous recombination and have a decreased level of single-stranded DNA after DNA damage, whereas MMEJ remains unaffected. Our data support a model in which phosphorylation of serine 327 of CtIP as cells enter S phase and the recruitment of BRCA1 functions as a molecular switch to shift the balance of DSB repair from error-prone DNA end-joining to error-free homologous recombination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857324/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857324/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yun, Maximina H -- Hiom, Kevin -- MC_U105184300/Medical Research Council/United Kingdom -- U.1051.03.005(78826)/Medical Research Council/United Kingdom -- England -- Nature. 2009 May 21;459(7245):460-3. doi: 10.1038/nature07955. Epub 2009 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19357644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/*metabolism ; B-Lymphocytes/cytology/metabolism ; BRCA1 Protein/*metabolism ; Carrier Proteins/genetics/*metabolism ; *Cell Cycle ; Cell Line ; Chickens ; Cisplatin/pharmacology ; *DNA Breaks, Double-Stranded/radiation effects ; DNA Repair/genetics/*physiology ; G1 Phase ; G2 Phase ; Humans ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Recombination, Genetic/genetics ; S Phase ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2009-11-13
    Description: Cohesin not only links sister chromatids but also inhibits the transcriptional machinery's interaction with and movement along chromatin. In contrast, replication forks must traverse such cohesin-associated obstructions to duplicate the entire genome in S phase. How this occurs is unknown. Through single-molecule analysis, we demonstrate that the replication factor C (RFC)-CTF18 clamp loader (RFC(CTF18)) controls the velocity, spacing and restart activity of replication forks in human cells and is required for robust acetylation of cohesin's SMC3 subunit and sister chromatid cohesion. Unexpectedly, we discovered that cohesin acetylation itself is a central determinant of fork processivity, as slow-moving replication forks were found in cells lacking the Eco1-related acetyltransferases ESCO1 or ESCO2 (refs 8-10) (including those derived from Roberts' syndrome patients, in whom ESCO2 is biallelically mutated) and in cells expressing a form of SMC3 that cannot be acetylated. This defect was a consequence of cohesin's hyperstable interaction with two regulatory cofactors, WAPL and PDS5A (refs 12, 13); removal of either cofactor allowed forks to progress rapidly without ESCO1, ESCO2, or RFC(CTF18). Our results show a novel mechanism for clamp-loader-dependent fork progression, mediated by the post-translational modification and structural remodelling of the cohesin ring. Loss of this regulatory mechanism leads to the spontaneous accrual of DNA damage and may contribute to the abnormalities of the Roberts' syndrome cohesinopathy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777716/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777716/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Terret, Marie-Emilie -- Sherwood, Rebecca -- Rahman, Sadia -- Qin, Jun -- Jallepalli, Prasad V -- R01 CA107342/CA/NCI NIH HHS/ -- R01 CA107342-05/CA/NCI NIH HHS/ -- R01 GM094972/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):231-4. doi: 10.1038/nature08550.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907496" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/deficiency/genetics ; Carrier Proteins/genetics/metabolism ; Cell Aging ; Cell Cycle Proteins/chemistry/*metabolism ; Cell Line ; Chromatids/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics/*metabolism ; DNA Damage ; DNA Replication/drug effects/*physiology ; Humans ; Mutagens/toxicity ; Nuclear Proteins/genetics/metabolism ; Protein Subunits/metabolism ; Proto-Oncogene Proteins/metabolism ; Replication Protein C/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2009-10-16
    Description: Epigenetic modifications at the histone level affect gene regulation in response to extracellular signals. However, regulated epigenetic modifications at the DNA level, especially active DNA demethylation, in gene activation are not well understood. Here we report that DNA methylation/demethylation is hormonally switched to control transcription of the cytochrome p450 27B1 (CYP27B1) gene. Reflecting vitamin-D-mediated transrepression of the CYP27B1 gene by the negative vitamin D response element (nVDRE), methylation of CpG sites ((5m)CpG) is induced by vitamin D in this gene promoter. Conversely, treatment with parathyroid hormone, a hormone known to activate the CYP27B1 gene, induces active demethylation of the (5m)CpG sites in this promoter. Biochemical purification of a complex associated with the nVDRE-binding protein (VDIR, also known as TCF3) identified two DNA methyltransferases, DNMT1 and DNMT3B, for methylation of CpG sites, as well as a DNA glycosylase, MBD4 (ref. 10). Protein-kinase-C-phosphorylated MBD4 by parathyroid hormone stimulation promotes incision of methylated DNA through glycosylase activity, and a base-excision repair process seems to complete DNA demethylation in the MBD4-bound promoter. Such parathyroid-hormone-induced DNA demethylation and subsequent transcriptional derepression are impaired in Mbd4(-/-) mice. Thus, the present findings suggest that methylation switching at the DNA level contributes to the hormonal control of transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Mi-Sun -- Kondo, Takeshi -- Takada, Ichiro -- Youn, Min-Young -- Yamamoto, Yoko -- Takahashi, Sayuri -- Matsumoto, Takahiro -- Fujiyama, Sally -- Shirode, Yuko -- Yamaoka, Ikuko -- Kitagawa, Hirochika -- Takeyama, Ken-ichi -- Shibuya, Hiroshi -- Ohtake, Fumiaki -- Kato, Shigeaki -- England -- Nature. 2009 Oct 15;461(7266):1007-12. doi: 10.1038/nature08456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ERATO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchisi, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829383" target="_blank"〉PubMed〈/a〉
    Keywords: 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics ; Animals ; Cell Line ; CpG Islands/genetics ; DNA (Cytosine-5-)-Methyltransferase/metabolism ; DNA Glycosylases/metabolism ; DNA Methylation/*drug effects ; Down-Regulation/drug effects ; Endodeoxyribonucleases/deficiency/genetics ; Mice ; Parathyroid Hormone/*pharmacology ; Phosphorylation ; Protein Kinase C/metabolism ; Response Elements/genetics ; Transcription, Genetic/*drug effects ; Vitamin D/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2009-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rose, Steven -- England -- Nature. 2009 Nov 5;462(7269):35. doi: 10.1038/462035c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890309" target="_blank"〉PubMed〈/a〉
    Keywords: Continental Population Groups/*genetics ; *Ethics, Research ; Female ; Humans ; Intelligence/*genetics ; Male ; Reproducibility of Results ; *Sex Characteristics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2009-09-18
    Description: Hepatitis C virus (HCV) infection is the most common blood-borne infection in the United States, with estimates of 4 million HCV-infected individuals in the United States and 170 million worldwide. Most (70-80%) HCV infections persist and about 30% of individuals with persistent infection develop chronic liver disease, including cirrhosis and hepatocellular carcinoma. Epidemiological, viral and host factors have been associated with the differences in HCV clearance or persistence, and studies have demonstrated that a strong host immune response against HCV favours viral clearance. Thus, variation in genes involved in the immune response may contribute to the ability to clear the virus. In a recent genome-wide association study, a single nucleotide polymorphism (rs12979860) 3 kilobases upstream of the IL28B gene, which encodes the type III interferon IFN-3, was shown to associate strongly with more than a twofold difference in response to HCV drug treatment. To determine the potential effect of rs12979860 variation on outcome to HCV infection in a natural history setting, we genotyped this variant in HCV cohorts comprised of individuals who spontaneously cleared the virus (n = 388) or had persistent infection (n = 620). We show that the C/C genotype strongly enhances resolution of HCV infection among individuals of both European and African ancestry. To our knowledge, this is the strongest and most significant genetic effect associated with natural clearance of HCV, and these results implicate a primary role for IL28B in resolution of HCV infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172006/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172006/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomas, David L -- Thio, Chloe L -- Martin, Maureen P -- Qi, Ying -- Ge, Dongliang -- O'Huigin, Colm -- Kidd, Judith -- Kidd, Kenneth -- Khakoo, Salim I -- Alexander, Graeme -- Goedert, James J -- Kirk, Gregory D -- Donfield, Sharyne M -- Rosen, Hugo R -- Tobler, Leslie H -- Busch, Michael P -- McHutchison, John G -- Goldstein, David B -- Carrington, Mary -- HHSN261200800001E/CO/NCI NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- R01 DA004334/DA/NIDA NIH HHS/ -- R01DA004334/DA/NIDA NIH HHS/ -- R01DA013324/DA/NIDA NIH HHS/ -- R01DK60590/DK/NIDDK NIH HHS/ -- R01HD41224/HD/NICHD NIH HHS/ -- R01HL076902/HL/NHLBI NIH HHS/ -- R56 DA004334/DA/NIDA NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2009 Oct 8;461(7265):798-801. doi: 10.1038/nature08463.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johns Hopkins University, Division of Infectious Diseases, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19759533" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Africa/ethnology ; Europe/ethnology ; Female ; Gene Frequency ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Genotype ; Hepacivirus/drug effects/*immunology/physiology ; Hepatitis C/drug therapy/*genetics/*immunology/virology ; Humans ; Interleukins/*genetics/*immunology ; Male ; Polymorphism, Single Nucleotide/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2009-09-29
    Description: Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kitano, Jun -- Ross, Joseph A -- Mori, Seiichi -- Kume, Manabu -- Jones, Felicity C -- Chan, Yingguang F -- Absher, Devin M -- Grimwood, Jane -- Schmutz, Jeremy -- Myers, Richard M -- Kingsley, David M -- Peichel, Catherine L -- P50 HG002568/HG/NHGRI NIH HHS/ -- P50 HG002568-08/HG/NHGRI NIH HHS/ -- P50 HG02568/HG/NHGRI NIH HHS/ -- R01 GM071854/GM/NIGMS NIH HHS/ -- R01 GM071854-05/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1079-83. doi: 10.1038/nature08441. Epub 2009 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19783981" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Crosses, Genetic ; Female ; *Genetic Speciation ; Hybridization, Genetic ; Infertility, Male/genetics ; Japan ; Male ; Mating Preference, Animal ; Oceans and Seas ; Pacific Ocean ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Reproduction/genetics/physiology ; Sex Characteristics ; Sex Chromosomes/*genetics ; Smegmamorpha/anatomy & histology/classification/*genetics/*physiology ; Social Isolation ; Y Chromosome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2009-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomas Scott, Christopher -- Owen-Smith, Jason -- McCormick, Jennifer -- England -- Nature. 2009 Jul 2;460(7251):33. doi: 10.1038/460033b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19571864" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Federal Government ; *Guidelines as Topic ; Humans ; *National Institutes of Health (U.S.) ; *Stem Cells ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2009-05-09
    Description: Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not that of HDAC1, decreased dendritic spine density, synapse number, synaptic plasticity and memory formation. Conversely, Hdac2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic treatment with HDACis in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic treatment with HDACis. Correspondingly, treatment with HDACis failed to further facilitate memory formation in Hdac2-deficient mice. Furthermore, analysis of promoter occupancy revealed an association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Taken together, our results suggest that HDAC2 functions in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guan, Ji-Song -- Haggarty, Stephen J -- Giacometti, Emanuela -- Dannenberg, Jan-Hermen -- Joseph, Nadine -- Gao, Jun -- Nieland, Thomas J F -- Zhou, Ying -- Wang, Xinyu -- Mazitschek, Ralph -- Bradner, James E -- DePinho, Ronald A -- Jaenisch, Rudolf -- Tsai, Li-Huei -- R01 DA028301/DA/NIDA NIH HHS/ -- R01 DA028301-02/DA/NIDA NIH HHS/ -- R01 NS051874/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 May 7;459(7243):55-60. doi: 10.1038/nature07925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Butyrates/pharmacology ; Dendritic Spines/physiology ; Electrical Synapses/*physiology ; Female ; Gene Expression Regulation ; Hippocampus/metabolism ; Histone Deacetylase 1 ; Histone Deacetylase 2 ; Histone Deacetylase Inhibitors ; Histone Deacetylases/deficiency/genetics/*metabolism ; Hydroxamic Acids/pharmacology ; Learning/drug effects ; Male ; Memory/drug effects/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons/metabolism ; Promoter Regions, Genetic/genetics ; Repressor Proteins/antagonists & inhibitors/genetics/*metabolism ; Sodium/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2009-07-28
    Description: Progressive telomere attrition or uncapping of the shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. Telomere deprotection activates both ataxia telangiectasia mutated (ATM) and telangiectasia and Rad3-related (ATR) kinase-dependent DNA damage response pathways, and promotes efficient non-homologous end-joining (NHEJ) of dysfunctional telomeres. The mammalian MRE11-RAD50-NBS1 (MRN; NBS1 is also known as NBN) complex interacts with ATM to sense chromosomal double-strand breaks and coordinate global DNA damage responses. Although the MRN complex accumulates at dysfunctional telomeres, it is not known whether mammalian MRN promotes repair at these sites. Here we address this question by using mouse alleles that either inactivate the entire MRN complex or eliminate only the nuclease activities of MRE11 (ref. 8). We show that cells lacking MRN do not activate ATM when telomeric repeat binding factor 2 (TRF2) is removed from telomeres, and ligase 4 (LIG4)-dependent chromosome end-to-end fusions are markedly reduced. Residual chromatid fusions involve only telomeres generated by leading strand synthesis. Notably, although cells deficient for MRE11 nuclease activity efficiently activate ATM and recruit 53BP1 (also known as TP53BP1) to deprotected telomeres, the 3' telomeric overhang persists to prevent NHEJ-mediated chromosomal fusions. Removal of shelterin proteins that protect the 3' overhang in the setting of MRE11 nuclease deficiency restores LIG4-dependent chromosome fusions. Our data indicate a critical role for the MRN complex in sensing dysfunctional telomeres, and show that in the absence of TRF2, MRE11 nuclease activity removes the 3' telomeric overhang to promote chromosome fusions. MRE11 can also protect newly replicated leading strand telomeres from NHEJ by promoting 5' strand resection to generate POT1a-TPP1-bound 3' overhangs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760383/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760383/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Yibin -- Guo, Xiaolan -- Ferguson, David O -- Chang, Sandy -- K01CA124461/CA/NCI NIH HHS/ -- P30 CA046592/CA/NCI NIH HHS/ -- R01 AG028888/AG/NIA NIH HHS/ -- R01 AG028888-02/AG/NIA NIH HHS/ -- R01 CA129037/CA/NCI NIH HHS/ -- R01 CA129037-02/CA/NCI NIH HHS/ -- R01 HL079118/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):914-8. doi: 10.1038/nature08196. Epub 2009 Jul 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Box 1010, The M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19633651" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/genetics/metabolism ; Alleles ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone ; Chromosome Aberrations ; DNA Damage ; DNA Ligases/metabolism ; DNA Repair Enzymes/deficiency/genetics/*metabolism ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Fibroblasts ; Intracellular Signaling Peptides and Proteins/metabolism ; Mice ; Nuclear Proteins/deficiency/genetics/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Telomere/genetics/*metabolism ; Telomeric Repeat Binding Protein 2/deficiency/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2009-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knoepfler, Paul -- England -- Nature. 2009 Jan 22;457(7228):361. doi: 10.1038/457361e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, Davis, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158746" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Comparative Genomic Hybridization ; Embryonic Stem Cells/*cytology/*pathology ; Humans ; Neoplasms/*pathology ; Neoplastic Stem Cells/pathology ; Pluripotent Stem Cells/*cytology/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2009-08-13
    Description: Since the initial description of induced pluripotent stem (iPS) cells created by forced expression of four transcription factors in mouse fibroblasts, the technique has been used to generate embryonic stem (ES)-cell-like pluripotent cells from a variety of cell types in other species, including primates and rat. It has become a popular means to reprogram somatic genomes into an embryonic-like pluripotent state, and a preferred alternative to somatic-cell nuclear transfer and somatic-cell fusion with ES cells. However, iPS cell reprogramming remains slow and inefficient. Notably, no live animals have been produced by the most stringent tetraploid complementation assay, indicative of a failure to create fully pluripotent cells. Here we report the generation of several iPS cell lines that are capable of generating viable, fertile live-born progeny by tetraploid complementation. These iPS cells maintain a pluripotent potential that is very close to ES cells generated from in vivo or nuclear transfer embryos. We demonstrate the practicality of using iPS cells as useful tools for the characterization of cellular reprogramming and developmental potency, and confirm that iPS cells can attain true pluripotency that is similar to that of ES cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Xiao-yang -- Li, Wei -- Lv, Zhuo -- Liu, Lei -- Tong, Man -- Hai, Tang -- Hao, Jie -- Guo, Chang-long -- Ma, Qing-wen -- Wang, Liu -- Zeng, Fanyi -- Zhou, Qi -- England -- Nature. 2009 Sep 3;461(7260):86-90. doi: 10.1038/nature08267.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19672241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/cytology/physiology ; Cell Dedifferentiation/physiology ; Cell Line ; Cell Lineage ; Cellular Reprogramming ; Embryo, Mammalian/cytology/embryology/metabolism ; Embryonic Stem Cells/cytology/physiology ; Female ; Fibroblasts/cytology ; Gene Expression Profiling ; Genetic Complementation Test ; Male ; Mice ; Mice, SCID ; Pluripotent Stem Cells/cytology/*physiology ; *Polyploidy ; Pregnancy ; *Reproductive Techniques ; Survival Rate ; Teratoma
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2009-12-17
    Description: Male animals are typically more elaborately ornamented than females. Classic sexual selection theory notes that because sperm are cheaper to produce than eggs, and because males generally compete more intensely for reproductive opportunities and invest less in parental care than females, males can obtain greater fitness benefits from mating multiply. Therefore, sexual selection typically results in male-biased sex differences in secondary sexual characters. This generality has recently been questioned, because in cooperatively breeding vertebrates, the strength of selection on traits used in intrasexual competition for access to mates (sexual selection) or other resources linked to reproduction (social selection) is similar in males and females. Because selection is acting with comparable intensity in both sexes in cooperatively breeding species, the degree of sexual dimorphism in traits used in intrasexual competition should be reduced in cooperative breeders. Here we use the socially diverse African starlings (Sturnidae) to demonstrate that the degree of sexual dimorphism in plumage and body size is reduced in cooperatively breeding species as a result of increased selection on females for traits that increase access to reproductive opportunities, other resources, or higher social status. In cooperative breeders such as these, where there is unequal sharing of reproduction (reproductive skew) among females, and where female dominance rank influences access to mates and other resources, intrasexual competition among females may be intense and ultimately select for female trait elaboration. Selection is thereby acting with different intensities on males and females in cooperatively versus non-cooperatively breeding species, and female-female interactions in group-living vertebrates will have important consequences for the evolution of female morphological, physiological and behavioural traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubenstein, Dustin R -- Lovette, Irby J -- England -- Nature. 2009 Dec 10;462(7274):786-9. doi: 10.1038/nature08614.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Columbia University, Department of Ecology, Evolution and Environmental Biology, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, New York 10027, USA. dr2497@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010686" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Bayes Theorem ; Body Size/physiology ; Competitive Behavior ; Cooperative Behavior ; Feathers/anatomy & histology/physiology ; Female ; Male ; Markov Chains ; Mating Preference, Animal/*physiology ; Monte Carlo Method ; Phylogeny ; Reproduction/*physiology ; Selection, Genetic ; *Sex Characteristics ; *Social Behavior ; Social Dominance ; Starlings/*anatomy & histology/*physiology ; Wings, Animal/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Jan 15;457(7227):236. doi: 10.1038/457236a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148049" target="_blank"〉PubMed〈/a〉
    Keywords: *Acquired Immunodeficiency Syndrome/drug ; therapy/economics/epidemiology/prevention & control ; *Federal Government ; Female ; Humans ; International Cooperation ; *Leadership ; Male ; Sexual Abstinence ; United States/epidemiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2009-12-18
    Description: Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five-one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes-have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Augustine -- Steinthorsdottir, Valgerdur -- Masson, Gisli -- Thorleifsson, Gudmar -- Sulem, Patrick -- Besenbacher, Soren -- Jonasdottir, Aslaug -- Sigurdsson, Asgeir -- Kristinsson, Kari Th -- Jonasdottir, Adalbjorg -- Frigge, Michael L -- Gylfason, Arnaldur -- Olason, Pall I -- Gudjonsson, Sigurjon A -- Sverrisson, Sverrir -- Stacey, Simon N -- Sigurgeirsson, Bardur -- Benediktsdottir, Kristrun R -- Sigurdsson, Helgi -- Jonsson, Thorvaldur -- Benediktsson, Rafn -- Olafsson, Jon H -- Johannsson, Oskar Th -- Hreidarsson, Astradur B -- Sigurdsson, Gunnar -- DIAGRAM Consortium -- Ferguson-Smith, Anne C -- Gudbjartsson, Daniel F -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- 077016/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- G9723500/Medical Research Council/United Kingdom -- K08 AR055688/AR/NIAMS NIH HHS/ -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U106179474/Medical Research Council/United Kingdom -- MC_U127592696/Medical Research Council/United Kingdom -- R01 DK029867/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):868-74. doi: 10.1038/nature08625.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland. kong@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016592" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Binding Sites ; Breast Neoplasms/genetics ; Carcinoma, Basal Cell/genetics ; Chromosomes, Human, Pair 11/genetics ; Chromosomes, Human, Pair 7/genetics ; DNA Methylation/genetics ; Diabetes Mellitus, Type 2/genetics ; *Fathers ; Female ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genomic Imprinting/genetics ; Haplotypes ; Humans ; Iceland ; Male ; *Mothers ; Pedigree ; Polymorphism, Single Nucleotide/*genetics ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2009-02-06
    Description: The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778612/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778612/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diehn, Maximilian -- Cho, Robert W -- Lobo, Neethan A -- Kalisky, Tomer -- Dorie, Mary Jo -- Kulp, Angela N -- Qian, Dalong -- Lam, Jessica S -- Ailles, Laurie E -- Wong, Manzhi -- Joshua, Benzion -- Kaplan, Michael J -- Wapnir, Irene -- Dirbas, Frederick M -- Somlo, George -- Garberoglio, Carlos -- Paz, Benjamin -- Shen, Jeannie -- Lau, Sean K -- Quake, Stephen R -- Brown, J Martin -- Weissman, Irving L -- Clarke, Michael F -- R01 CA100225/CA/NCI NIH HHS/ -- R01 CA100225-05/CA/NCI NIH HHS/ -- U54 CA126524/CA/NCI NIH HHS/ -- U54 CA126524-04/CA/NCI NIH HHS/ -- England -- Nature. 2009 Apr 9;458(7239):780-3. doi: 10.1038/nature07733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194462" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/physiopathology ; Cells, Cultured ; DNA Damage/genetics/radiation effects ; Female ; Gene Expression ; Humans ; Mammary Glands, Human/cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Neoplastic Stem Cells/*metabolism/*radiation effects ; Radiation Tolerance/*physiology ; Reactive Oxygen Species/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2009-05-22
    Description: Cohesin-mediated sister chromatid cohesion is essential for chromosome segregation and post-replicative DNA repair. In addition, evidence from model organisms and from human genetics suggests that cohesin is involved in the control of gene expression. This non-canonical role has recently been rationalized by the findings that mammalian cohesin complexes are recruited to a subset of DNase I hypersensitive sites and to conserved noncoding sequences by the DNA-binding protein CTCF. CTCF functions at insulators (which control interactions between enhancers and promoters) and at boundary elements (which demarcate regions of distinct chromatin structure), and cohesin contributes to its enhancer-blocking activity. The underlying mechanisms remain unknown, and the full spectrum of cohesin functions remains to be determined. Here we show that cohesin forms the topological and mechanistic basis for cell-type-specific long-range chromosomal interactions in cis at the developmentally regulated cytokine locus IFNG. Hence, the ability of cohesin to constrain chromosome topology is used not only for the purpose of sister chromatid cohesion, but also to dynamically define the spatial conformation of specific loci. This new aspect of cohesin function is probably important for normal development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869028/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869028/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hadjur, Suzana -- Williams, Luke M -- Ryan, Natalie K -- Cobb, Bradley S -- Sexton, Tom -- Fraser, Peter -- Fisher, Amanda G -- Merkenschlager, Matthias -- G0900491/Medical Research Council/United Kingdom -- G117/530/Medical Research Council/United Kingdom -- MC_U120027516/Medical Research Council/United Kingdom -- U.1200(U.1200)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2009 Jul 16;460(7253):410-3. doi: 10.1038/nature08079. Epub 2009 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458616" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/metabolism ; Cell Cycle Proteins/*metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone/*metabolism ; Chromosomes/*genetics/*metabolism ; *Gene Expression Regulation, Developmental ; Histones/metabolism ; Humans ; Interferon-gamma/*genetics ; Mice ; Nuclear Proteins/genetics/metabolism ; Organ Specificity ; Phosphoproteins/genetics/metabolism ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2009-11-13
    Description: The signalling pathways controlling both the evolution and development of language in the human brain remain unknown. So far, the transcription factor FOXP2 (forkhead box P2) is the only gene implicated in Mendelian forms of human speech and language dysfunction. It has been proposed that the amino acid composition in the human variant of FOXP2 has undergone accelerated evolution, and this two-amino-acid change occurred around the time of language emergence in humans. However, this remains controversial, and whether the acquisition of these amino acids in human FOXP2 has any functional consequence in human neurons remains untested. Here we demonstrate that these two human-specific amino acids alter FOXP2 function by conferring differential transcriptional regulation in vitro. We extend these observations in vivo to human and chimpanzee brain, and use network analysis to identify novel relationships among the differentially expressed genes. These data provide experimental support for the functional relevance of changes in FOXP2 that occur on the human lineage, highlighting specific pathways with direct consequences for human brain development and disease in the central nervous system (CNS). Because FOXP2 has an important role in speech and language in humans, the identified targets may have a critical function in the development and evolution of language circuitry in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778075/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778075/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Konopka, Genevieve -- Bomar, Jamee M -- Winden, Kellen -- Coppola, Giovanni -- Jonsson, Zophonias O -- Gao, Fuying -- Peng, Sophia -- Preuss, Todd M -- Wohlschlegel, James A -- Geschwind, Daniel H -- N01-HD-4-3368/HD/NICHD NIH HHS/ -- N01-HD-4-3383/HD/NICHD NIH HHS/ -- R21 MH075028/MH/NIMH NIH HHS/ -- R21 MH075028-02/MH/NIMH NIH HHS/ -- R21MH075028/MH/NIMH NIH HHS/ -- R37 MH060233/MH/NIMH NIH HHS/ -- R37 MH060233-06A1/MH/NIMH NIH HHS/ -- R37MH60233-06A1/MH/NIMH NIH HHS/ -- RR00165/RR/NCRR NIH HHS/ -- T32HD007032/HD/NICHD NIH HHS/ -- T32MH073526/MH/NIMH NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):213-7. doi: 10.1038/nature08549.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA. gena@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/*embryology/*metabolism ; Cell Line ; Evolution, Molecular ; Forkhead Transcription Factors/chemistry/genetics/*metabolism ; *Gene Expression Regulation, Developmental ; Humans ; Language ; Pan troglodytes/embryology/genetics/metabolism ; Promoter Regions, Genetic/genetics ; Species Specificity ; Speech/physiology ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2009-10-09
    Description: PIWI-interacting RNAs (piRNAs) silence retrotransposons in Drosophila germ lines by associating with the PIWI proteins Argonaute 3 (AGO3), Aubergine (Aub) and Piwi. piRNAs in Drosophila are produced from intergenic repetitive genes and piRNA clusters by two systems: the primary processing pathway and the amplification loop. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, primary piRNA processing remains elusive. Here we analysed piRNA processing in a Drosophila ovarian somatic cell line where Piwi, but not Aub or AGO3, is expressed; thus, only the primary piRNAs exist. In addition to flamenco, a Piwi-specific piRNA cluster, traffic jam (tj), a large Maf gene, was determined as a new piRNA cluster. piRNAs arising from tj correspond to the untranslated regions of tj messenger RNA and are sense-oriented. piRNA loading on to Piwi may occur in the cytoplasm. zucchini, a gene encoding a putative cytoplasmic nuclease, is required for tj-derived piRNA production. In tj and piwi mutant ovaries, somatic cells fail to intermingle with germ cells and Fasciclin III is overexpressed. Loss of tj abolishes Piwi expression in gonadal somatic cells. Thus, in gonadal somatic cells, tj gives rise simultaneously to two different molecules: the TJ protein, which activates Piwi expression, and piRNAs, which define the Piwi targets for silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saito, Kuniaki -- Inagaki, Sachi -- Mituyama, Toutai -- Kawamura, Yoshinori -- Ono, Yukiteru -- Sakota, Eri -- Kotani, Hazuki -- Asai, Kiyoshi -- Siomi, Haruhiko -- Siomi, Mikiko C -- England -- Nature. 2009 Oct 29;461(7268):1296-9. doi: 10.1038/nature08501. Epub 2009 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Keio University School of Medicine, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Cell Adhesion Molecules, Neuronal/metabolism ; Cell Line ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Endoribonucleases/metabolism ; Female ; Genes, Insect/genetics ; Genetic Loci/genetics ; Maf Transcription Factors, Large/genetics/*metabolism ; Male ; Ovary/cytology/metabolism ; Phenotype ; Proto-Oncogene Proteins/genetics/*metabolism ; RNA/biosynthesis/genetics/*metabolism ; RNA Interference ; RNA Processing, Post-Transcriptional ; RNA-Induced Silencing Complex/genetics/*metabolism ; Testis/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2009-12-18
    Description: Mutations in BRCA1 are associated with a high risk of breast and ovarian cancer. BRCA1 participates in the DNA damage response and acts as a ubiquitin ligase. However, its regulation remains poorly understood. Here we report that BRCA1 is modified by small ubiquitin-like modifier (SUMO) in response to genotoxic stress, and co-localizes at sites of DNA damage with SUMO1, SUMO2/3 and the SUMO-conjugating enzyme Ubc9. PIAS SUMO E3 ligases co-localize with and modulate SUMO modification of BRCA1, and are required for BRCA1 ubiquitin ligase activity in cells. In vitro SUMO modification of the BRCA1/BARD1 heterodimer greatly increases its ligase activity, identifying it as a SUMO-regulated ubiquitin ligase (SRUbL). Further, PIAS SUMO ligases are required for complete accumulation of double-stranded DNA (dsDNA) damage-repair proteins subsequent to RNF8 accrual, and for proficient double-strand break repair. These data demonstrate that the SUMOylation pathway plays a significant role in mammalian DNA damage response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, Joanna R -- Boutell, Chris -- Keppler, Melanie -- Densham, Ruth -- Weekes, Daniel -- Alamshah, Amin -- Butler, Laura -- Galanty, Yaron -- Pangon, Laurent -- Kiuchi, Tai -- Ng, Tony -- Solomon, Ellen -- 10331/Cancer Research UK/United Kingdom -- 6900577/Medical Research Council/United Kingdom -- C8820/A9494/Cancer Research UK/United Kingdom -- G0100152 #56891/Medical Research Council/United Kingdom -- G9600577/Medical Research Council/United Kingdom -- MC_UP_A550_1030/Medical Research Council/United Kingdom -- England -- Nature. 2009 Dec 17;462(7275):886-90. doi: 10.1038/nature08593.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical and Molecular Genetics, King's College London, Guy's Medical School Campus, London SE1 9RT, UK. jo.morris@genetics.kcl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016594" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/*metabolism ; COS Cells ; Cell Line ; Cercopithecus aethiops ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA Repair ; HeLa Cells ; Histones/metabolism ; Humans ; Protein Inhibitors of Activated STAT/metabolism ; Small Ubiquitin-Related Modifier Proteins/*metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2009-02-11
    Description: Multicellular organisms evolved sophisticated defence systems to confer protection against pathogens. An important characteristic of these immune systems is their ability to act both locally at the site of infection and at distal uninfected locations. In insects, such as Drosophila melanogaster, RNA interference (RNAi) mediates antiviral immunity. However, the antiviral RNAi defence in flies seems to be a local, cell-autonomous process, as flies are thought to be unable to generate a systemic RNAi response. Here we show that a recently defined double-stranded RNA (dsRNA) uptake pathway is essential for effective antiviral RNAi immunity in adult flies. Mutant flies defective in this dsRNA uptake pathway were hypersensitive to infection with Drosophila C virus and Sindbis virus. Mortality in dsRNA-uptake-defective flies was accompanied by 100-to 10(5)-fold increases in viral titres and higher levels of viral RNA. Furthermore, inoculating naked dsRNA into flies elicited a sequence-specific antiviral immune response that required an intact dsRNA uptake pathway. These findings suggest that spread of dsRNA to uninfected sites is essential for effective antiviral immunity. Notably, infection with green fluorescent protein (GFP)-tagged Sindbis virus suppressed expression of host-encoded GFP at a distal site. Thus, similar to protein-based immunity in vertebrates, the antiviral RNAi response in flies also relies on the systemic spread of a virus-specific immunity signal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saleh, Maria-Carla -- Tassetto, Michel -- van Rij, Ronald P -- Goic, Bertsy -- Gausson, Valerie -- Berry, Bassam -- Jacquier, Caroline -- Antoniewski, Christophe -- Andino, Raul -- AI064738/AI/NIAID NIH HHS/ -- AI40085/AI/NIAID NIH HHS/ -- R01 AI040085/AI/NIAID NIH HHS/ -- R01 AI064738/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Mar 19;458(7236):346-50. doi: 10.1038/nature07712. Epub 2009 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco 94122-2280, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19204732" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Drosophila melanogaster/genetics/*immunology/microbiology/*virology ; Micrococcus luteus/immunology ; Pectobacterium carotovorum/immunology ; RNA Interference/*immunology ; RNA Viruses/*immunology/physiology ; RNA, Double-Stranded/genetics/immunology/metabolism ; Sindbis Virus/genetics/growth & development/immunology ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolgin, Elie -- England -- Nature. 2009 Dec 17;462(7275):843-5. doi: 10.1038/462843a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016572" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; Genome, Human/*genetics ; History, 20th Century ; History, 21st Century ; *Human Genome Project/history ; Humans ; Male ; Reproducibility of Results ; Research Design ; *Research Personnel ; Research Subjects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2009-07-22
    Description: Acquired uniparental disomy (aUPD) is a common feature of cancer genomes, leading to loss of heterozygosity. aUPD is associated not only with loss-of-function mutations of tumour suppressor genes, but also with gain-of-function mutations of proto-oncogenes. Here we show unique gain-of-function mutations of the C-CBL (also known as CBL) tumour suppressor that are tightly associated with aUPD of the 11q arm in myeloid neoplasms showing myeloproliferative features. The C-CBL proto-oncogene, a cellular homologue of v-Cbl, encodes an E3 ubiquitin ligase and negatively regulates signal transduction of tyrosine kinases. Homozygous C-CBL mutations were found in most 11q-aUPD-positive myeloid malignancies. Although the C-CBL mutations were oncogenic in NIH3T3 cells, c-Cbl was shown to functionally and genetically act as a tumour suppressor. C-CBL mutants did not have E3 ubiquitin ligase activity, but inhibited that of wild-type C-CBL and CBL-B (also known as CBLB), leading to prolonged activation of tyrosine kinases after cytokine stimulation. c-Cbl(-/-) haematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines compared to c-Cbl(+/+) HSPCs, and transduction of C-CBL mutants into c-Cbl(-/-) HSPCs further augmented their sensitivities to a broader spectrum of cytokines, including stem-cell factor (SCF, also known as KITLG), thrombopoietin (TPO, also known as THPO), IL3 and FLT3 ligand (FLT3LG), indicating the presence of a gain-of-function that could not be attributed to a simple loss-of-function. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in a c-Cbl(+/+) background or by co-transduction of wild-type C-CBL, which suggests the pathogenic importance of loss of wild-type C-CBL alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a new insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some myeloid cancer subsets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanada, Masashi -- Suzuki, Takahiro -- Shih, Lee-Yung -- Otsu, Makoto -- Kato, Motohiro -- Yamazaki, Satoshi -- Tamura, Azusa -- Honda, Hiroaki -- Sakata-Yanagimoto, Mamiko -- Kumano, Keiki -- Oda, Hideaki -- Yamagata, Tetsuya -- Takita, Junko -- Gotoh, Noriko -- Nakazaki, Kumi -- Kawamata, Norihiko -- Onodera, Masafumi -- Nobuyoshi, Masaharu -- Hayashi, Yasuhide -- Harada, Hiroshi -- Kurokawa, Mineo -- Chiba, Shigeru -- Mori, Hiraku -- Ozawa, Keiya -- Omine, Mitsuhiro -- Hirai, Hisamaru -- Nakauchi, Hiromitsu -- Koeffler, H Phillip -- Ogawa, Seishi -- 2R01CA026038-30/CA/NCI NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):904-8. doi: 10.1038/nature08240. Epub 2009 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genomics Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19620960" target="_blank"〉PubMed〈/a〉
    Keywords: Allelic Imbalance ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosomes, Human, Pair 11/genetics ; Female ; *Genes, Tumor Suppressor ; Humans ; Leukemia, Myeloid/*genetics/metabolism/pathology ; Male ; Mice ; Mice, Knockout ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/*metabolism ; Mutation ; NIH 3T3 Cells ; Neoplasm Transplantation ; Oncogenes/genetics ; Phosphorylation ; Protein Conformation ; Proto-Oncogene Proteins c-cbl/antagonists & ; inhibitors/chemistry/deficiency/*genetics/*metabolism ; Ubiquitination ; Uniparental Disomy/genetics ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2009-11-27
    Description: Receptor-activator of NF-kappaB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rank(floxed) deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rank(floxed) deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1beta and TNFalpha. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE(2)/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rank(floxed) mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanada, Reiko -- Leibbrandt, Andreas -- Hanada, Toshikatsu -- Kitaoka, Shiho -- Furuyashiki, Tomoyuki -- Fujihara, Hiroaki -- Trichereau, Jean -- Paolino, Magdalena -- Qadri, Fatimunnisa -- Plehm, Ralph -- Klaere, Steffen -- Komnenovic, Vukoslav -- Mimata, Hiromitsu -- Yoshimatsu, Hironobu -- Takahashi, Naoyuki -- von Haeseler, Arndt -- Bader, Michael -- Kilic, Sara Sebnem -- Ueta, Yoichi -- Pifl, Christian -- Narumiya, Shuh -- Penninger, Josef M -- England -- Nature. 2009 Nov 26;462(7272):505-9. doi: 10.1038/nature08596.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/drug effects/metabolism ; Body Temperature Regulation/*drug effects/*physiology ; Child ; Dinoprostone/metabolism ; Female ; Fever/*chemically induced/complications/*metabolism ; Gene Expression Profiling ; Humans ; Injections, Intraventricular ; Male ; Mice ; Mice, Inbred C57BL ; Pneumonia/complications/metabolism ; RANK Ligand/administration & dosage/antagonists & ; inhibitors/metabolism/*pharmacology ; Rats ; Rats, Wistar ; Receptor Activator of Nuclear Factor-kappa B/genetics/*metabolism ; Receptors, Prostaglandin E/metabolism ; Receptors, Prostaglandin E, EP3 Subtype ; *Sex Characteristics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2009-06-19
    Description: Pluripotency of embryonic stem (ES) cells is controlled by defined transcription factors. During differentiation, mouse ES cells undergo global epigenetic reprogramming, as exemplified by X-chromosome inactivation (XCI) in which one female X chromosome is silenced to achieve gene dosage parity between the sexes. Somatic XCI is regulated by homologous X-chromosome pairing and counting, and by the random choice of future active and inactive X chromosomes. XCI and cell differentiation are tightly coupled, as blocking one process compromises the other and dedifferentiation of somatic cells to induced pluripotent stem cells is accompanied by X chromosome reactivation. Recent evidence suggests coupling of Xist expression to pluripotency factors occurs, but how the two are interconnected remains unknown. Here we show that Oct4 (also known as Pou5f1) lies at the top of the XCI hierarchy, and regulates XCI by triggering X-chromosome pairing and counting. Oct4 directly binds Tsix and Xite, two regulatory noncoding RNA genes of the X-inactivation centre, and also complexes with XCI trans-factors, Ctcf and Yy1 (ref. 17), through protein-protein interactions. Depletion of Oct4 blocks homologous X-chromosome pairing and results in the inactivation of both X chromosomes in female cells. Thus, we have identified the first trans-factor that regulates counting, and ascribed new functions to Oct4 during X-chromosome reprogramming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Donohoe, Mary E -- Silva, Susana S -- Pinter, Stefan F -- Xu, Na -- Lee, Jeannie T -- GM58839/GM/NIGMS NIH HHS/ -- R01 GM058839/GM/NIGMS NIH HHS/ -- R01 GM058839-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 2;460(7251):128-32. doi: 10.1038/nature08098. Epub 2009 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536159" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Chromosome Pairing ; Female ; Humans ; Male ; Mice ; Octamer Transcription Factor-3/deficiency/genetics/*metabolism ; Protein Binding ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; Repressor Proteins/*metabolism ; SOXB1 Transcription Factors ; Transcriptional Activation ; X Chromosome/*genetics/*metabolism ; X Chromosome Inactivation/*genetics ; YY1 Transcription Factor/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2009-04-03
    Description: In the course of synaptic transmission in the brain and periphery, acetylcholine receptors (AChRs) rapidly transduce a chemical signal into an electrical impulse. The speed of transduction is facilitated by rapid ACh association and dissociation, suggesting a binding site relatively non-selective for small cations. Selective transduction has been thought to originate from the ability of ACh, over that of other organic cations, to trigger the subsequent channel-opening step. However, transitions to and from the open state were shown to be similar for agonists with widely different efficacies. By studying mutant AChRs, we show here that the ultimate closed-to-open transition is agonist-independent and preceded by two primed closed states; the first primed state elicits brief openings, whereas the second elicits long-lived openings. Long-lived openings and the associated primed state are detected in the absence and presence of an agonist, and exhibit the same kinetic signatures under both conditions. By covalently locking the agonist-binding sites in the bound conformation, we find that each site initiates a priming step. Thus, a change in binding-site conformation primes the AChR for channel opening in a process that enables selective activation by ACh while maximizing the speed and efficiency of the biological response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukhtasimova, Nuriya -- Lee, Won Yong -- Wang, Hai-Long -- Sine, Steven M -- NS031744/NS/NINDS NIH HHS/ -- R01 NS031744/NS/NINDS NIH HHS/ -- R01 NS031744-18/NS/NINDS NIH HHS/ -- England -- Nature. 2009 May 21;459(7245):451-4. doi: 10.1038/nature07923. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Disulfides/metabolism ; Electric Conductivity ; Humans ; Kinetics ; Models, Molecular ; *Movement ; Nicotinic Agonists/pharmacology ; Patch-Clamp Techniques ; Protein Structure, Tertiary ; Receptors, Nicotinic/*chemistry/genetics/*metabolism ; Synaptic Transmission/physiology ; Torpedo
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2009-04-24
    Description: Ca(2+) mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP(3)), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP(3) and cyclic ADP ribose cause the release of Ca(2+) from sarcoplasmic/endoplasmic reticulum stores by the activation of InsP(3) and ryanodine receptors (InsP(3)Rs and RyRs). In contrast, the nature of the intracellular stores targeted by NAADP and the molecular identity of the NAADP receptors remain controversial, although evidence indicates that NAADP mobilizes Ca(2+) from lysosome-related acidic compartments. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with human TPC1 (also known as TPCN1) and chicken TPC3 (TPCN3) being expressed on endosomal membranes, and human TPC2 (TPCN2) on lysosomal membranes when expressed in HEK293 cells. Membranes enriched with TPC2 show high affinity NAADP binding, and TPC2 underpins NAADP-induced Ca(2+) release from lysosome-related stores that is subsequently amplified by Ca(2+)-induced Ca(2+) release by InsP(3)Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but were only attenuated by depleting endoplasmic reticulum Ca(2+) stores or by blocking InsP(3)Rs. Thus, TPCs form NAADP receptors that release Ca(2+) from acidic organelles, which can trigger further Ca(2+) signals via sarcoplasmic/endoplasmic reticulum. TPCs therefore provide new insights into the regulation and organization of Ca(2+) signals in animal cells, and will advance our understanding of the physiological role of NAADP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761823/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761823/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calcraft, Peter J -- Ruas, Margarida -- Pan, Zui -- Cheng, Xiaotong -- Arredouani, Abdelilah -- Hao, Xuemei -- Tang, Jisen -- Rietdorf, Katja -- Teboul, Lydia -- Chuang, Kai-Ting -- Lin, Peihui -- Xiao, Rui -- Wang, Chunbo -- Zhu, Yingmin -- Lin, Yakang -- Wyatt, Christopher N -- Parrington, John -- Ma, Jianjie -- Evans, A Mark -- Galione, Antony -- Zhu, Michael X -- 070772/Wellcome Trust/United Kingdom -- FS/05/050/British Heart Foundation/United Kingdom -- P30 NS045758/NS/NINDS NIH HHS/ -- P30 NS045758-05/NS/NINDS NIH HHS/ -- P30 NS045758-059003/NS/NINDS NIH HHS/ -- P30-NS045758/NS/NINDS NIH HHS/ -- R01 DK081654/DK/NIDDK NIH HHS/ -- R01 DK081654-01A1/DK/NIDDK NIH HHS/ -- R01 NS042183/NS/NINDS NIH HHS/ -- R01 NS042183-04/NS/NINDS NIH HHS/ -- R21 NS056942/NS/NINDS NIH HHS/ -- R21 NS056942-01/NS/NINDS NIH HHS/ -- England -- Nature. 2009 May 28;459(7246):596-600. doi: 10.1038/nature08030. Epub 2009 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19387438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium Channels/genetics/*metabolism ; *Calcium Signaling/drug effects ; Cell Line ; Chickens ; Humans ; Hydrogen-Ion Concentration ; Insulin-Secreting Cells/drug effects/metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; NADP/*analogs & derivatives/metabolism/pharmacology ; Organelles/drug effects/*metabolism ; Protein Binding
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2009-01-20
    Description: The computational power of single neurons is greatly enhanced by active dendritic conductances that have a large influence on their spike activity. In cortical output neurons such as the large pyramidal cells of layer 5 (L5), activation of apical dendritic calcium channels leads to plateau potentials that increase the gain of the input/output function and switch the cell to burst-firing mode. The apical dendrites are innervated by local excitatory and inhibitory inputs as well as thalamic and corticocortical projections, which makes it a formidable task to predict how these inputs influence active dendritic properties in vivo. Here we investigate activity in populations of L5 pyramidal dendrites of the somatosensory cortex in awake and anaesthetized rats following sensory stimulation using a new fibre-optic method for recording dendritic calcium changes. We show that the strength of sensory stimulation is encoded in the combined dendritic calcium response of a local population of L5 pyramidal cells in a graded manner. The slope of the stimulus-response function was under the control of a particular subset of inhibitory neurons activated by synaptic inputs predominantly in L5. Recordings from single apical tuft dendrites in vitro showed that activity in L5 pyramidal neurons disynaptically coupled via interneurons directly blocks the initiation of dendritic calcium spikes in neighbouring pyramidal neurons. The results constitute a functional description of a cortical microcircuit in awake animals that relies on the active properties of L5 pyramidal dendrites and their very high sensitivity to inhibition. The microcircuit is organized so that local populations of apical dendrites can adaptively encode bottom-up sensory stimuli linearly across their full dynamic range.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murayama, Masanori -- Perez-Garci, Enrique -- Nevian, Thomas -- Bock, Tobias -- Senn, Walter -- Larkum, Matthew E -- England -- Nature. 2009 Feb 26;457(7233):1137-41. doi: 10.1038/nature07663. Epub 2009 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiologisches Institut, Universitat Bern, Buhlplatz 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19151696" target="_blank"〉PubMed〈/a〉
    Keywords: Anesthesia ; Animals ; Calcium/metabolism ; Dendrites/*physiology ; Electric Stimulation ; Excitatory Postsynaptic Potentials/physiology ; Female ; Interneurons/*physiology ; Models, Neurological ; Rats ; Rats, Wistar ; Somatosensory Cortex/*cytology/*physiology ; Wakefulness/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanderson, Katharine -- England -- Nature. 2009 Mar 19;458(7236):269. doi: 10.1038/458269a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295573" target="_blank"〉PubMed〈/a〉
    Keywords: Clinical Trials, Phase I as Topic ; Cyclohexanols/chemistry/economics/pharmacokinetics ; Deuterium/*chemistry ; Drug Industry/*economics ; Female ; Humans ; Paroxetine/analogs & derivatives/chemistry/economics/pharmacokinetics ; Patents as Topic/legislation & jurisprudence ; Pharmaceutical Preparations/*chemistry/economics/*metabolism ; Venlafaxine Hydrochloride
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2009-08-08
    Description: During the twentieth century, the global population has gone through unprecedented increases in economic and social development that coincided with substantial declines in human fertility and population growth rates. The negative association of fertility with economic and social development has therefore become one of the most solidly established and generally accepted empirical regularities in the social sciences. As a result of this close connection between development and fertility decline, more than half of the global population now lives in regions with below-replacement fertility (less than 2.1 children per woman). In many highly developed countries, the trend towards low fertility has also been deemed irreversible. Rapid population ageing, and in some cases the prospect of significant population decline, have therefore become a central socioeconomic concern and policy challenge. Here we show, using new cross-sectional and longitudinal analyses of the total fertility rate and the human development index (HDI), a fundamental change in the well-established negative relationship between fertility and development as the global population entered the twenty-first century. Although development continues to promote fertility decline at low and medium HDI levels, our analyses show that at advanced HDI levels, further development can reverse the declining trend in fertility. The previously negative development-fertility relationship has become J-shaped, with the HDI being positively associated with fertility among highly developed countries. This reversal of fertility decline as a result of continued economic and social development has the potential to slow the rates of population ageing, thereby ameliorating the social and economic problems that have been associated with the emergence and persistence of very low fertility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myrskyla, Mikko -- Kohler, Hans-Peter -- Billari, Francesco C -- England -- Nature. 2009 Aug 6;460(7256):741-3. doi: 10.1038/nature08230.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Population Studies Center, University of Pennsylvania, 3718 Locust Walk, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661915" target="_blank"〉PubMed〈/a〉
    Keywords: Age Distribution ; *Birth Rate/trends ; Cross-Sectional Studies ; Developed Countries/economics/*statistics & numerical data ; Education ; Female ; Fertility/physiology ; History, 20th Century ; History, 21st Century ; Humans ; Income ; Life Expectancy ; Longitudinal Studies ; Male ; Maternal Age ; *Population Growth ; Reproductive Behavior/history/*statistics & numerical data ; Technology/history/statistics & numerical data/trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2009-03-06
    Description: AMP-activated protein kinase (AMPK) is a metabolic fuel gauge conserved along the evolutionary scale in eukaryotes that senses changes in the intracellular AMP/ATP ratio. Recent evidence indicated an important role for AMPK in the therapeutic benefits of metformin, thiazolidinediones and exercise, which form the cornerstones of the clinical management of type 2 diabetes and associated metabolic disorders. In general, activation of AMPK acts to maintain cellular energy stores, switching on catabolic pathways that produce ATP, mostly by enhancing oxidative metabolism and mitochondrial biogenesis, while switching off anabolic pathways that consume ATP. This regulation can take place acutely, through the regulation of fast post-translational events, but also by transcriptionally reprogramming the cell to meet energetic needs. Here we demonstrate that AMPK controls the expression of genes involved in energy metabolism in mouse skeletal muscle by acting in coordination with another metabolic sensor, the NAD+-dependent type III deacetylase SIRT1. AMPK enhances SIRT1 activity by increasing cellular NAD+ levels, resulting in the deacetylation and modulation of the activity of downstream SIRT1 targets that include the peroxisome proliferator-activated receptor-gamma coactivator 1alpha and the forkhead box O1 (FOXO1) and O3 (FOXO3a) transcription factors. The AMPK-induced SIRT1-mediated deacetylation of these targets explains many of the convergent biological effects of AMPK and SIRT1 on energy metabolism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616311/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616311/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canto, Carles -- Gerhart-Hines, Zachary -- Feige, Jerome N -- Lagouge, Marie -- Noriega, Lilia -- Milne, Jill C -- Elliott, Peter J -- Puigserver, Pere -- Auwerx, Johan -- 231138/European Research Council/International -- DK069966/DK/NIDDK NIH HHS/ -- DK59820/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Apr 23;458(7241):1056-60. doi: 10.1038/nature07813.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19262508" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Acetylation ; Aminoimidazole Carboxamide/analogs & derivatives ; Animals ; Cell Line ; *Energy Metabolism/genetics ; Enzyme Activation ; Forkhead Transcription Factors/genetics ; Gene Expression Regulation ; Genes, Mitochondrial/genetics ; Male ; Mice ; Muscle, Skeletal/cytology/enzymology/metabolism ; Mutation ; NAD/*metabolism ; Oxygen Consumption ; Phosphorylation ; Ribonucleotides ; Sirtuin 1 ; Sirtuins/*metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2009-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuroiwa, Asato -- England -- Nature. 2009 Nov 5;462(7269):34. doi: 10.1038/462034b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890307" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; Chick Embryo ; Chickens/*genetics ; Female ; Humans ; Male ; *Models, Biological ; Sex Chromosomes/genetics ; *Sex Determination Processes ; Testis/embryology/metabolism ; Transcription Factors/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2009-11-10
    Description: CD4(+) T helper cells are well known for their role in providing critical signals during priming of cytotoxic CD8(+) T lymphocyte (CTL) responses in vivo. T-cell help is required for the generation of primary CTL responses as well as in promoting protective CD8(+) memory T-cell development. However, the role of CD4 help in the control of CTL responses at the effector stage is unknown. Here we show that fully helped effector CTLs are themselves not self-sufficient for entry into the infected tissue, but rely on the CD4(+) T cells to provide the necessary cue. CD4(+) T helper cells control the migration of CTL indirectly through the secretion of IFN-gamma and induction of local chemokine secretion in the infected tissue. Our results reveal a previously unappreciated role of CD4 help in mobilizing effector CTL to the peripheral sites of infection where they help to eliminate infected cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789415/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789415/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakanishi, Yusuke -- Lu, Bao -- Gerard, Craig -- Iwasaki, Akiko -- AI054359/AI/NIAID NIH HHS/ -- AI062428/AI/NIAID NIH HHS/ -- AI39759/AI/NIAID NIH HHS/ -- HL51366/HL/NHLBI NIH HHS/ -- R01 AI054359/AI/NIAID NIH HHS/ -- R01 AI054359-06A2/AI/NIAID NIH HHS/ -- R01 AI062428/AI/NIAID NIH HHS/ -- R01 AI062428-05/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Nov 26;462(7272):510-3. doi: 10.1038/nature08511. Epub 2009 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19898495" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Chemokines/immunology/secretion ; *Chemotaxis ; Female ; Herpes Simplex/immunology/virology ; Herpesvirus 2, Human/*immunology ; Immunity, Mucosal/immunology ; Interferon-gamma/antagonists & inhibitors/immunology/secretion ; Mice ; Mice, Inbred C57BL ; Models, Immunological ; Mucous Membrane/immunology/virology ; Receptors, CXCR3/metabolism ; T-Lymphocytes, Cytotoxic/*cytology/*immunology ; T-Lymphocytes, Helper-Inducer/*immunology/secretion ; Vagina/*immunology/*virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2009-10-16
    Description: Language is a uniquely human ability that evolved at some point in the roughly 6,000,000 years since human and chimpanzee lines diverged. Even in the most linguistically impoverished environments, children naturally develop sophisticated language systems. In contrast, reading is a learnt skill that does not develop without intensive tuition and practice. Learning to read is likely to involve ontogenic structural brain changes, but these are nearly impossible to isolate in children owing to concurrent biological, environmental and social maturational changes. In Colombia, guerrillas are re-integrating into mainstream society and learning to read for the first time as adults. This presents a unique opportunity to investigate how literacy changes the brain, without the maturational complications present in children. Here we compare structural brain scans from those who learnt to read as adults (late-literates) with those from a carefully matched set of illiterates. Late-literates had more white matter in the splenium of the corpus callosum and more grey matter in bilateral angular, dorsal occipital, middle temporal, left supramarginal and superior temporal gyri. The importance of these brain regions for skilled reading was investigated in early literates, who learnt to read as children. We found anatomical connections linking the left and right angular and dorsal occipital gyri through the area of the corpus callosum where white matter was higher in late-literates than in illiterates; that reading, relative to object naming, increased the interhemispheric functional connectivity between the left and right angular gyri; and that activation in the left angular gyrus exerts top-down modulation on information flow from the left dorsal occipital gyrus to the left supramarginal gyrus. These findings demonstrate how the regions identified in late-literates interact during reading, relative to object naming, in early literates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carreiras, Manuel -- Seghier, Mohamed L -- Baquero, Silvia -- Estevez, Adelina -- Lozano, Alfonso -- Devlin, Joseph T -- Price, Cathy J -- 082420/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Oct 15;461(7266):983-6. doi: 10.1038/nature08461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basque Center on Cognition Brain and Language, Donostia-San Sebastian 20009, Spain [2] IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain. m.carreiras@bcbl.eu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829380" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Brain/*anatomy & histology/*physiology ; Child ; Colombia ; Corpus Callosum/anatomy & histology/physiology ; Educational Status ; Female ; Humans ; Language ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Models, Neurological ; Neural Pathways/physiology ; *Reading ; Speech/physiology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2009-05-22
    Description: Consistent with the role of microRNAs (miRNAs) in down-regulating gene expression by reducing the translation and/or stability of target messenger RNAs, the levels of specific miRNAs are important for correct embryonic development and have been linked to several forms of cancer. However, the regulatory mechanisms by which primary miRNAs (pri-miRNAs) are processed first to precursor miRNAs (pre-miRNAs) and then to mature miRNAs by the multiprotein Drosha and Dicer complexes, respectively, remain largely unknown. The KH-type splicing regulatory protein (KSRP, also known as KHSRP) interacts with single-strand AU-rich-element-containing mRNAs and is a key mediator of mRNA decay. Here we show in mammalian cells that KSRP also serves as a component of both Drosha and Dicer complexes and regulates the biogenesis of a subset of miRNAs. KSRP binds with high affinity to the terminal loop of the target miRNA precursors and promotes their maturation. This mechanism is required for specific changes in target mRNA expression that affect specific biological programs, including proliferation, apoptosis and differentiation. These findings reveal an unexpected mechanism that links KSRP to the machinery regulating maturation of a cohort of miRNAs that, in addition to its role in promoting mRNA decay, independently serves to integrate specific regulatory programs of protein expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768332/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768332/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trabucchi, Michele -- Briata, Paola -- Garcia-Mayoral, Mariaflor -- Haase, Astrid D -- Filipowicz, Witold -- Ramos, Andres -- Gherzi, Roberto -- Rosenfeld, Michael G -- 082088/Wellcome Trust/United Kingdom -- DK018477/DK/NIDDK NIH HHS/ -- DK39949/DK/NIDDK NIH HHS/ -- GFP04003/Telethon/Italy -- HL065445/HL/NHLBI NIH HHS/ -- MC_U117533887/Medical Research Council/United Kingdom -- MC_U117574558/Medical Research Council/United Kingdom -- R37 DK039949/DK/NIDDK NIH HHS/ -- R37 DK039949-26/DK/NIDDK NIH HHS/ -- R37 DK039949-27/DK/NIDDK NIH HHS/ -- WT022088MA/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jun 18;459(7249):1010-4. doi: 10.1038/nature08025. Epub 2009 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, California 92093-0648, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458619" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Humans ; Mice ; MicroRNAs/*biosynthesis/genetics/metabolism ; RNA Processing, Post-Transcriptional ; RNA-Binding Proteins/*metabolism ; Ribonuclease III/chemistry/metabolism ; Trans-Activators/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2009-12-17
    Description: The majority of excitatory synapses in the mammalian CNS (central nervous system) are formed on dendritic spines, and spine morphology and distribution are critical for synaptic transmission, synaptic integration and plasticity. Here, we show that a secreted semaphorin, Sema3F, is a negative regulator of spine development and synaptic structure. Mice with null mutations in genes encoding Sema3F, and its holoreceptor components neuropilin-2 (Npn-2, also known as Nrp2) and plexin A3 (PlexA3, also known as Plxna3), exhibit increased dentate gyrus (DG) granule cell (GC) and cortical layer V pyramidal neuron spine number and size, and also aberrant spine distribution. Moreover, Sema3F promotes loss of spines and excitatory synapses in dissociated neurons in vitro, and in Npn-2(-/-) brain slices cortical layer V and DG GCs exhibit increased mEPSC (miniature excitatory postsynaptic current) frequency. In contrast, a distinct Sema3A-Npn-1/PlexA4 signalling cascade controls basal dendritic arborization in layer V cortical neurons, but does not influence spine morphogenesis or distribution. These disparate effects of secreted semaphorins are reflected in the restricted dendritic localization of Npn-2 to apical dendrites and of Npn-1 (also known as Nrp1) to all dendrites of cortical pyramidal neurons. Therefore, Sema3F signalling controls spine distribution along select dendritic processes, and distinct secreted semaphorin signalling events orchestrate CNS connectivity through the differential control of spine morphogenesis, synapse formation, and the elaboration of dendritic morphology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842559/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842559/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Tracy S -- Rubio, Maria E -- Clem, Roger L -- Johnson, Dontais -- Case, Lauren -- Tessier-Lavigne, Marc -- Huganir, Richard L -- Ginty, David D -- Kolodkin, Alex L -- F32 NS051003/NS/NINDS NIH HHS/ -- P50 MH06883/MH/NIMH NIH HHS/ -- R01 DC-006881/DC/NIDCD NIH HHS/ -- R01 MH059199/MH/NIMH NIH HHS/ -- R01 MH059199-07/MH/NIMH NIH HHS/ -- R01 MH059199-08/MH/NIMH NIH HHS/ -- R01 MH059199-09/MH/NIMH NIH HHS/ -- R01 MH059199-10/MH/NIMH NIH HHS/ -- R01 MH59199/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Dec 24;462(7276):1065-9. doi: 10.1038/nature08628. Epub 2009 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Central Nervous System/cytology/drug effects/*growth & ; development/*metabolism/ultrastructure ; Female ; Gene Expression Regulation, Developmental ; Male ; Mice ; Mice, Knockout ; Neuropilin-1/metabolism ; Neuropilin-2/metabolism ; Pyramidal Cells/*cytology/drug effects/*growth & development/ultrastructure ; Recombinant Proteins/pharmacology ; Semaphorins/genetics/*metabolism/pharmacology ; Signal Transduction ; Synapses/drug effects/*physiology/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2009-06-12
    Description: Osteoblasts and endothelium constitute functional niches that support haematopoietic stem cells in mammalian bone marrow. Adult bone marrow also contains adipocytes, the number of which correlates inversely with the haematopoietic activity of the marrow. Fatty infiltration of haematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia. To explore whether adipocytes influence haematopoiesis or simply fill marrow space, we compared the haematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. Here we show, by flow cytometry, colony-forming activity and competitive repopulation assay, that haematopoietic stem cells and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 'fatless' mice, which are genetically incapable of forming adipocytes, and in mice treated with the peroxisome proliferator-activated receptor-gamma inhibitor bisphenol A diglycidyl ether, which inhibits adipogenesis, marrow engraftment after irradiation is accelerated relative to wild-type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone-marrow microenvironment, and indicate that antagonizing marrow adipogenesis may enhance haematopoietic recovery in clinical bone-marrow transplantation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831539/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831539/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naveiras, Olaia -- Nardi, Valentina -- Wenzel, Pamela L -- Hauschka, Peter V -- Fahey, Frederic -- Daley, George Q -- DP1 OD000256/OD/NIH HHS/ -- DP1 OD000256-01/OD/NIH HHS/ -- R01 DK059279/DK/NIDDK NIH HHS/ -- R01 DK059279-06/DK/NIDDK NIH HHS/ -- R01 DK070055/DK/NIDDK NIH HHS/ -- R01 DK070055-01/DK/NIDDK NIH HHS/ -- T32- HL -7623/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 9;460(7252):259-63. doi: 10.1038/nature08099. Epub 2009 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516257" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/drug effects/*physiology ; Adipogenesis/drug effects ; Adiposity/physiology ; Animals ; Benzhydryl Compounds ; Bone Marrow Cells/*cytology/*metabolism ; Bone Marrow Transplantation ; Cell Line ; Epoxy Compounds/pharmacology ; Femur ; *Hematopoiesis/drug effects ; Hematopoietic Stem Cells/cytology/metabolism ; Homeostasis ; Mice ; Mice, Inbred C57BL ; Osteogenesis ; Spine/cytology/metabolism ; Stromal Cells ; Tail ; Thorax ; Tibia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2009-02-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ehrenfeld, Joan G -- England -- Nature. 2009 Feb 26;457(7233):1079. doi: 10.1038/4571079d.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242450" target="_blank"〉PubMed〈/a〉
    Keywords: Aphrodisiacs/*history ; *Drama ; England ; Female ; History, 16th Century ; Humans ; *Literature, Modern ; *Love ; Male ; Wit and Humor as Topic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2009-02-13
    Description: Despite decades of research, the identity of the cells generating the first haematopoietic cells in mammalian embryos is unknown. Indeed, whether blood cells arise from mesodermal cells, mesenchymal progenitors, bipotent endothelial-haematopoietic precursors or haemogenic endothelial cells remains controversial. Proximity of endothelial and blood cells at sites of embryonic haematopoiesis, as well as their similar gene expression, led to the hypothesis of the endothelium generating blood. However, owing to lacking technology it has been impossible to observe blood cell emergence continuously at the single-cell level, and the postulated existence of haemogenic endothelial cells remains disputed. Here, using new imaging and cell-tracking methods, we show that embryonic endothelial cells can be haemogenic. By continuous long-term single-cell observation of mouse mesodermal cells generating endothelial cell and blood colonies, it was possible to detect haemogenic endothelial cells giving rise to blood cells. Living endothelial and haematopoietic cells were identified by simultaneous detection of morphology and multiple molecular and functional markers. Detachment of nascent blood cells from endothelium is not directly linked to asymmetric cell division, and haemogenic endothelial cells are specified from cells already expressing endothelial markers. These results improve our understanding of the developmental origin of mammalian blood and the potential generation of haematopoietic stem cells from embryonic stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eilken, Hanna M -- Nishikawa, Shin-Ichi -- Schroeder, Timm -- England -- Nature. 2009 Feb 12;457(7231):896-900. doi: 10.1038/nature07760.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Stem Cell Research, Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212410" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Cells/*cytology ; *Cell Differentiation ; Cell Line ; Embryo, Mammalian/cytology/embryology ; Embryonic Stem Cells/cytology ; Hemangioblasts/*cytology ; *Image Processing, Computer-Assisted ; Mesoderm/cytology ; Mice ; Microscopy, Fluorescence ; *Video Recording
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2009-11-10
    Description: Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be achieved by overexpression of Oct4, Sox2, Klf4 and c-Myc transcription factors, but only a minority of donor somatic cells can be reprogrammed to pluripotency. Here we demonstrate that reprogramming by these transcription factors is a continuous stochastic process where almost all mouse donor cells eventually give rise to iPS cells on continued growth and transcription factor expression. Additional inhibition of the p53/p21 pathway or overexpression of Lin28 increased the cell division rate and resulted in an accelerated kinetics of iPS cell formation that was directly proportional to the increase in cell proliferation. In contrast, Nanog overexpression accelerated reprogramming in a predominantly cell-division-rate-independent manner. Quantitative analyses define distinct cell-division-rate-dependent and -independent modes for accelerating the stochastic course of reprogramming, and suggest that the number of cell divisions is a key parameter driving epigenetic reprogramming to pluripotency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789972/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789972/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanna, Jacob -- Saha, Krishanu -- Pando, Bernardo -- van Zon, Jeroen -- Lengner, Christopher J -- Creyghton, Menno P -- van Oudenaarden, Alexander -- Jaenisch, Rudolf -- R01 CA087869/CA/NCI NIH HHS/ -- R01 CA087869-09/CA/NCI NIH HHS/ -- R01 HD045022/HD/NICHD NIH HHS/ -- R01 HD045022-06/HD/NICHD NIH HHS/ -- R01-CA087869/CA/NCI NIH HHS/ -- R01-HDO45022/PHS HHS/ -- R37 CA084198/CA/NCI NIH HHS/ -- R37 CA084198-09/CA/NCI NIH HHS/ -- R37-CA084198/CA/NCI NIH HHS/ -- U54CA143874/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 3;462(7273):595-601. doi: 10.1038/nature08592. Epub 2009 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. Hanna@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19898493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Division ; Cell Line ; *Cellular Reprogramming ; Gene Expression Regulation, Developmental ; Mice ; Mice, SCID ; Models, Biological ; Pluripotent Stem Cells/*cytology/*metabolism ; Time Factors ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2009-05-15
    Description: Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41(+)c-Kit(+) haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adamo, Luigi -- Naveiras, Olaia -- Wenzel, Pamela L -- McKinney-Freeman, Shannon -- Mack, Peter J -- Gracia-Sancho, Jorge -- Suchy-Dicey, Astrid -- Yoshimoto, Momoko -- Lensch, M William -- Yoder, Mervin C -- Garcia-Cardena, Guillermo -- Daley, George Q -- R01 AI080759/AI/NIAID NIH HHS/ -- R01 AI080759-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jun 25;459(7250):1131-5. doi: 10.1038/nature08073. Epub 2009 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19440194" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/cytology/embryology ; *Cell Differentiation ; Cell Line ; Cells, Cultured ; Core Binding Factor Alpha 2 Subunit/genetics ; Embryonic Stem Cells ; Endothelium-Dependent Relaxing Factors/pharmacology ; Female ; Gene Expression Regulation, Developmental ; Hematopoiesis/*physiology ; Hematopoietic Stem Cells/*cytology/drug effects ; Mice ; Nitric Oxide/pharmacology ; Pregnancy ; *Stress, Mechanical
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2009-02-03
    Description: It has been proposed that during embryonic development haematopoietic cells arise from a mesodermal progenitor with both endothelial and haematopoietic potential called the haemangioblast. A conflicting theory instead associates the first haematopoietic cells with a phenotypically differentiated endothelial cell that has haematopoietic potential (that is, a haemogenic endothelium). Support for the haemangioblast concept was initially provided by the identification during mouse embryonic stem cell differentiation of a clonal precursor, the blast colony-forming cell (BL-CFC), which gives rise to blast colonies with both endothelial and haematopoietic components. Although recent studies have now provided evidence for the presence of this bipotential precursor in vivo, the precise mechanism for generation of haematopoietic cells from the haemangioblast still remains completely unknown. Here we demonstrate that the haemangioblast generates haematopoietic cells through the formation of a haemogenic endothelium intermediate, providing the first direct link between these two precursor populations. The cell population containing the haemogenic endothelium is transiently generated during BL-CFC development. This cell population is also present in gastrulating mouse embryos and generates haematopoietic cells on further culture. At the molecular level, we demonstrate that the transcription factor Tal1 (also known as Scl; ref. 10) is indispensable for the establishment of this haemogenic endothelium population whereas the core binding factor Runx1 (also known as AML1; ref. 11) is critical for generation of definitive haematopoietic cells from haemogenic endothelium. Together our results merge the two a priori conflicting theories on the origin of haematopoietic development into a single linear developmental process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661201/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661201/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lancrin, Christophe -- Sroczynska, Patrycja -- Stephenson, Catherine -- Allen, Terry -- Kouskoff, Valerie -- Lacaud, Georges -- A5297/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Feb 12;457(7231):892-5. doi: 10.1038/nature07679. Epub 2009 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Stem Cell Biology Group.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Core Binding Factor Alpha 2 Subunit/metabolism ; Embryo, Mammalian/cytology/embryology ; Gene Expression Regulation, Developmental ; Hemangioblasts/*cytology ; Hematopoietic Stem Cells/*cytology ; Mice ; Mice, Inbred ICR ; Oncogene Proteins, Fusion/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuljapurkar, Shripad -- England -- Nature. 2009 Aug 6;460(7256):693-4. doi: 10.1038/460693a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661903" target="_blank"〉PubMed〈/a〉
    Keywords: Age Distribution ; *Birth Rate/trends ; Developed Countries/economics/*statistics & numerical data ; Education ; Female ; Fertility/physiology ; Humans ; Income ; Life Expectancy ; Male ; Maternal Age ; *Population Growth ; Reproductive Behavior/*statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2009-08-21
    Description: Normal epithelial cells require matrix attachment for survival, and the ability of tumour cells to survive outside their natural extracellular matrix (ECM) niches is dependent on acquisition of anchorage independence. Although apoptosis is the most rapid mechanism for eliminating cells lacking appropriate ECM attachment, recent reports suggest that non-apoptotic death processes prevent survival when apoptosis is inhibited in matrix-deprived cells. Here we demonstrate that detachment of mammary epithelial cells from ECM causes an ATP deficiency owing to the loss of glucose transport. Overexpression of ERBB2 rescues the ATP deficiency by restoring glucose uptake through stabilization of EGFR and phosphatidylinositol-3-OH kinase (PI(3)K) activation, and this rescue is dependent on glucose-stimulated flux through the antioxidant-generating pentose phosphate pathway. Notably, we found that the ATP deficiency could be rescued by antioxidant treatment without rescue of glucose uptake. This rescue was found to be dependent on stimulation of fatty acid oxidation, which is inhibited by detachment-induced reactive oxygen species (ROS). The significance of these findings was supported by evidence of an increase in ROS in matrix-deprived cells in the luminal space of mammary acini, and the discovery that antioxidants facilitate the survival of these cells and enhance anchorage-independent colony formation. These results show both the importance of matrix attachment in regulating metabolic activity and an unanticipated mechanism for cell survival in altered matrix environments by antioxidant restoration of ATP generation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931797/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931797/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schafer, Zachary T -- Grassian, Alexandra R -- Song, Loling -- Jiang, Zhenyang -- Gerhart-Hines, Zachary -- Irie, Hanna Y -- Gao, Sizhen -- Puigserver, Pere -- Brugge, Joan S -- K25 CA100290-03/CA/NCI NIH HHS/ -- K25 CA100290-04/CA/NCI NIH HHS/ -- R01 CA105134/CA/NCI NIH HHS/ -- R01 CA105134-09/CA/NCI NIH HHS/ -- England -- Nature. 2009 Sep 3;461(7260):109-13. doi: 10.1038/nature08268. Epub 2009 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693011" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Anoikis/physiology ; Antioxidants/*metabolism ; Breast/cytology/metabolism/pathology ; Breast Neoplasms/metabolism/pathology ; Cell Adhesion ; Cell Line ; Cell Survival ; Enzyme Activation ; Epithelial Cells/cytology/*metabolism/pathology ; Extracellular Matrix/*metabolism ; Fatty Acids/metabolism ; Glucose/metabolism ; Humans ; Oncogenes/genetics/*physiology ; Pentose Phosphate Pathway/physiology ; Phosphatidylinositol 3-Kinases/metabolism ; Reactive Oxygen Species/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, ErbB-2/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2009-07-10
    Description: Inhibition of the TOR signalling pathway by genetic or pharmacological intervention extends lifespan in invertebrates, including yeast, nematodes and fruitflies; however, whether inhibition of mTOR signalling can extend lifespan in a mammalian species was unknown. Here we report that rapamycin, an inhibitor of the mTOR pathway, extends median and maximal lifespan of both male and female mice when fed beginning at 600 days of age. On the basis of age at 90% mortality, rapamycin led to an increase of 14% for females and 9% for males. The effect was seen at three independent test sites in genetically heterogeneous mice, chosen to avoid genotype-specific effects on disease susceptibility. Disease patterns of rapamycin-treated mice did not differ from those of control mice. In a separate study, rapamycin fed to mice beginning at 270 days of age also increased survival in both males and females, based on an interim analysis conducted near the median survival point. Rapamycin may extend lifespan by postponing death from cancer, by retarding mechanisms of ageing, or both. To our knowledge, these are the first results to demonstrate a role for mTOR signalling in the regulation of mammalian lifespan, as well as pharmacological extension of lifespan in both genders. These findings have implications for further development of interventions targeting mTOR for the treatment and prevention of age-related diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, David E -- Strong, Randy -- Sharp, Zelton Dave -- Nelson, James F -- Astle, Clinton M -- Flurkey, Kevin -- Nadon, Nancy L -- Wilkinson, J Erby -- Frenkel, Krystyna -- Carter, Christy S -- Pahor, Marco -- Javors, Martin A -- Fernandez, Elizabeth -- Miller, Richard A -- AG022303/AG/NIA NIH HHS/ -- AG022307/AG/NIA NIH HHS/ -- AG022308/AG/NIA NIH HHS/ -- AG025707/AG/NIA NIH HHS/ -- AG13319/AG/NIA NIH HHS/ -- P30 AG013319/AG/NIA NIH HHS/ -- P30 AG013319-119002/AG/NIA NIH HHS/ -- P30 AG013319-129002/AG/NIA NIH HHS/ -- P30 AG013319-139002/AG/NIA NIH HHS/ -- P30 AG013319-149002/AG/NIA NIH HHS/ -- P30 AG025707/AG/NIA NIH HHS/ -- U01 AG022303/AG/NIA NIH HHS/ -- U01 AG022307/AG/NIA NIH HHS/ -- U01 AG022307-01/AG/NIA NIH HHS/ -- U01 AG022307-02/AG/NIA NIH HHS/ -- U01 AG022307-03/AG/NIA NIH HHS/ -- U01 AG022307-04/AG/NIA NIH HHS/ -- U01 AG022307-05/AG/NIA NIH HHS/ -- U01 AG022307-05S1/AG/NIA NIH HHS/ -- U01 AG022308/AG/NIA NIH HHS/ -- England -- Nature. 2009 Jul 16;460(7253):392-5. doi: 10.1038/nature08221. Epub 2009 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, Maine 04609, USA. david.harrison@jax.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587680" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Aging/*drug effects/genetics/*physiology ; Animals ; Carrier Proteins/antagonists & inhibitors/metabolism ; Diet ; Disease Susceptibility ; Female ; Longevity/*drug effects/*genetics/physiology ; Male ; Mice ; Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors/metabolism ; Sirolimus/*administration & dosage/*pharmacology ; Specific Pathogen-Free Organisms ; Survival Analysis ; TOR Serine-Threonine Kinases ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2009-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chakravarti, Aravinda -- England -- Nature. 2009 Sep 24;461(7263):487-8. doi: 10.1038/461487a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779444" target="_blank"〉PubMed〈/a〉
    Keywords: Asia/ethnology ; Continental Population Groups/genetics/history ; Ethnic Groups/*genetics/history ; Europe/ethnology ; Female ; Founder Effect ; Genetics, Population ; Genome, Human/genetics ; Genomics ; Genotype ; History, 16th Century ; History, 20th Century ; History, Ancient ; Humans ; India ; Language ; Male ; *Phylogeny ; Polymorphism, Single Nucleotide/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2009-09-11
    Description: Phagocytic removal of apoptotic cells occurs efficiently in vivo such that even in tissues with significant apoptosis, very few apoptotic cells are detectable. This is thought to be due to the release of 'find-me' signals by apoptotic cells that recruit motile phagocytes such as monocytes, macrophages and dendritic cells, leading to the prompt clearance of the dying cells. However, the identity and in vivo relevance of such find-me signals are not well understood. Here, through several lines of evidence, we identify extracellular nucleotides as a critical apoptotic cell find-me signal. We demonstrate the caspase-dependent release of ATP and UTP (in equimolar quantities) during the early stages of apoptosis by primary thymocytes and cell lines. Purified nucleotides at these concentrations were sufficient to induce monocyte recruitment comparable to that of apoptotic cell supernatants. Enzymatic removal of ATP and UTP (by apyrase or the expression of ectopic CD39) abrogated the ability of apoptotic cell supernatants to recruit monocytes in vitro and in vivo. We then identified the ATP/UTP receptor P2Y(2) as a critical sensor of nucleotides released by apoptotic cells using RNA interference-mediated depletion studies in monocytes, and macrophages from P2Y(2)-null mice. The relevance of nucleotides in apoptotic cell clearance in vivo was revealed by two approaches. First, in a murine air-pouch model, apoptotic cell supernatants induced a threefold greater recruitment of monocytes and macrophages than supernatants from healthy cells did; this recruitment was abolished by depletion of nucleotides and was significantly decreased in P2Y(2)(-/-) (also known as P2ry2(-/-)) mice. Second, clearance of apoptotic thymocytes was significantly impaired by either depletion of nucleotides or interference with P2Y receptor function (by pharmacological inhibition or in P2Y(2)(-/-) mice). These results identify nucleotides as a critical find-me cue released by apoptotic cells to promote P2Y(2)-dependent recruitment of phagocytes, and provide evidence for a clear relationship between a find-me signal and efficient corpse clearance in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elliott, Michael R -- Chekeni, Faraaz B -- Trampont, Paul C -- Lazarowski, Eduardo R -- Kadl, Alexandra -- Walk, Scott F -- Park, Daeho -- Woodson, Robin I -- Ostankovich, Marina -- Sharma, Poonam -- Lysiak, Jeffrey J -- Harden, T Kendall -- Leitinger, Norbert -- Ravichandran, Kodi S -- R01 GM064709/GM/NIGMS NIH HHS/ -- R01 GM064709-07/GM/NIGMS NIH HHS/ -- R01 GM069998/GM/NIGMS NIH HHS/ -- R01 GM069998-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Sep 10;461(7261):282-6. doi: 10.1038/nature08296.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741708" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism/pharmacology/secretion ; Animals ; Apoptosis/*physiology ; Cell Line ; Cells, Cultured ; Chemotactic Factors/metabolism/pharmacology/secretion ; Chemotaxis/drug effects ; Culture Media, Conditioned/chemistry/metabolism/pharmacology ; Humans ; Jurkat Cells ; Macrophage Activation/drug effects ; Macrophages/cytology/drug effects/metabolism ; Mice ; Mice, Inbred C57BL ; Monocytes/cytology/drug effects/metabolism ; Phagocytes/*cytology/drug effects/metabolism ; Phagocytosis/drug effects/*physiology ; Purinergic P2 Receptor Antagonists ; Receptors, Purinergic P2/deficiency/genetics/metabolism ; Receptors, Purinergic P2Y2 ; *Signal Transduction/drug effects ; Thymus Gland/*cytology ; Uridine Triphosphate/*metabolism/pharmacology/secretion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2009-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ng, Pauline C -- Murray, Sarah S -- Levy, Samuel -- Venter, J Craig -- England -- Nature. 2009 Oct 8;461(7265):724-6. doi: 10.1038/461724a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Science Center Drive, San Diego, California 92121, USA. png@jcvi.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812653" target="_blank"〉PubMed〈/a〉
    Keywords: Ethnic Groups/genetics ; False Negative Reactions ; Female ; Gene Frequency/genetics ; Genetic Counseling/methods/*standards ; Genetic Markers/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Testing/methods/*standards ; Genetics, Medical/methods/*standards ; Genome, Human/*genetics ; Genome-Wide Association Study ; Genotype ; Health Behavior ; Humans ; Male ; Odds Ratio ; Pharmacogenetics ; *Practice Guidelines as Topic ; Prospective Studies ; Reproducibility of Results ; Sequence Analysis, DNA/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2009-06-12
    Description: With 8.9 million new cases and 1.7 million deaths per year, tuberculosis is a leading global killer that has not been effectively controlled. The causative agent, Mycobacterium tuberculosis, proliferates within host macrophages where it modifies both its intracellular and local tissue environment, resulting in caseous granulomas with incomplete bacterial sterilization. Although infection by various mycobacterial species produces a cyclic AMP burst within macrophages that influences cell signalling, the underlying mechanism for the cAMP burst remains unclear. Here we show that among the 17 adenylate cyclase genes present in M. tuberculosis, at least one (Rv0386) is required for virulence. Furthermore, we demonstrate that the Rv0386 adenylate cyclase facilitates delivery of bacterial-derived cAMP into the macrophage cytoplasm. Loss of Rv0386 and the intramacrophage cAMP it delivers results in reductions in TNF-alpha production via the protein kinase A and cAMP response-element-binding protein pathway, decreased immunopathology in animal tissues, and diminished bacterial survival. Direct intoxication of host cells by bacterial-derived cAMP may enable M. tuberculosis to modify both its intracellular and tissue environments to facilitate its long-term survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agarwal, Nisheeth -- Lamichhane, Gyanu -- Gupta, Radhika -- Nolan, Scott -- Bishai, William R -- AI30036/AI/NIAID NIH HHS/ -- AI36973/AI/NIAID NIH HHS/ -- AI37856/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Jul 2;460(7251):98-102. doi: 10.1038/nature08123. Epub 2009 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins School of Medicine, CRB2, Room 1.08, 1550 Orleans Street, Baltimore, Maryland 21231-1044, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516256" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/*metabolism ; Animals ; Cell Line ; Cyclic AMP/*metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cytosol/metabolism/microbiology ; Macrophages/immunology/*metabolism/microbiology/*pathology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mycobacterium tuberculosis/*enzymology/genetics/growth & ; development/*pathogenicity ; Phosphoric Diester Hydrolases/genetics/metabolism ; Phosphorylation ; Tuberculosis/immunology/microbiology/*pathology ; Tumor Necrosis Factor-alpha/biosynthesis/secretion ; Virulence/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2009-11-13
    Description: The mucosal immune system forms the largest part of the entire immune system, containing about three-quarters of all lymphocytes and producing grams of secretory IgA daily to protect the mucosal surface from pathogens. To evoke the mucosal immune response, antigens on the mucosal surface must be transported across the epithelial barrier into organized lymphoid structures such as Peyer's patches. This function, called antigen transcytosis, is mediated by specialized epithelial M cells. The molecular mechanisms promoting this antigen uptake, however, are largely unknown. Here we report that glycoprotein 2 (GP2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for mucosal antigens. Recombinant GP2 protein selectively bound a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane. Consistently, these bacteria were colocalized with endogenous GP2 on the apical plasma membrane as well as in cytoplasmic vesicles in M cells. Moreover, deficiency of bacterial FimH or host GP2 led to defects in transcytosis of type-I-piliated bacteria through M cells, resulting in an attenuation of antigen-specific immune responses in Peyer's patches. GP2 is therefore a previously unrecognized transcytotic receptor on M cells for type-I-piliated bacteria and is a prerequisite for the mucosal immune response to these bacteria. Given that M cells are considered a promising target for oral vaccination against various infectious diseases, the GP2-dependent transcytotic pathway could provide a new target for the development of M-cell-targeted mucosal vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hase, Koji -- Kawano, Kazuya -- Nochi, Tomonori -- Pontes, Gemilson Soares -- Fukuda, Shinji -- Ebisawa, Masashi -- Kadokura, Kazunori -- Tobe, Toru -- Fujimura, Yumiko -- Kawano, Sayaka -- Yabashi, Atsuko -- Waguri, Satoshi -- Nakato, Gaku -- Kimura, Shunsuke -- Murakami, Takaya -- Iimura, Mitsutoshi -- Hamura, Kimiyo -- Fukuoka, Shin-Ichi -- Lowe, Anson W -- Itoh, Kikuji -- Kiyono, Hiroshi -- Ohno, Hiroshi -- DK43294/DK/NIDDK NIH HHS/ -- DK56339/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):226-30. doi: 10.1038/nature08529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN, Kanagawa 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907495" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Escherichia coli/genetics/immunology/*metabolism ; Animals ; Antigens, Bacterial/genetics/immunology/*metabolism ; Cell Line ; Epithelial Cells/*immunology/metabolism ; Escherichia coli/immunology/metabolism ; Fimbriae Proteins/genetics/immunology/*metabolism ; GPI-Linked Proteins ; Glycoproteins ; HeLa Cells ; Humans ; Immunity, Mucosal/*immunology ; Intestines/cytology ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Peyer's Patches/*cytology/immunology ; Salmonella typhimurium/genetics/immunology/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2009-06-26
    Description: The integrity of polarized epithelia is critical for development and human health. Many questions remain concerning the full complement and the function of the proteins that regulate cell polarity. Here we report that the Drosophila FERM proteins Yurt (Yrt) and Coracle (Cora) and the membrane proteins Neurexin IV (Nrx-IV) and Na(+),K(+)-ATPase are a new group of functionally cooperating epithelial polarity proteins. This 'Yrt/Cora group' promotes basolateral membrane stability and shows negative regulatory interactions with the apical determinant Crumbs (Crb). Genetic analyses indicate that Nrx-IV and Na(+),K(+)-ATPase act together with Cora in one pathway, whereas Yrt acts in a second redundant pathway. Moreover, we show that the Yrt/Cora group is essential for epithelial polarity during organogenesis but not when epithelial polarity is first established or during terminal differentiation. This property of Yrt/Cora group proteins explains the recovery of polarity in embryos lacking the function of the Lethal giant larvae (Lgl) group of basolateral polarity proteins. We also find that the mammalian Yrt orthologue EPB41L5 (also known as YMO1 and Limulus) is required for lateral membrane formation, indicating a conserved function of Yrt proteins in epithelial polarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laprise, Patrick -- Lau, Kimberly M -- Harris, Kathryn P -- Silva-Gagliardi, Nancy F -- Paul, Sarah M -- Beronja, Slobodan -- Beitel, Greg J -- McGlade, C Jane -- Tepass, Ulrich -- England -- Nature. 2009 Jun 25;459(7250):1141-5. doi: 10.1038/nature08067.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19553998" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion Molecules, Neuronal/genetics/*metabolism ; Cell Line ; Cell Polarity ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/*embryology/enzymology/genetics/metabolism ; Epithelium/embryology/*physiology ; Gene Knockdown Techniques ; Membrane Proteins/genetics/*metabolism ; Mutation ; Phenotype ; Sodium-Potassium-Exchanging ATPase/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2009-07-15
    Description: Recent finds demonstrate that internal fertilization and viviparity (live birth) were more widespread in the Placodermi, an extinct group of armoured fishes, than was previously realized. Placoderms represent the sister group of the crown group jawed vertebrates (Gnathostomata), making their mode(s) of reproduction potentially informative about primitive gnathostome conditions. An ossified pelvic fin basipterygium discovered in the arthrodire Incisoscutum ritchiei was hypothesized to be identical in males and females, with males presumed to have an additional cartilaginous element or series forming a clasper. Here we report the discovery of a completely ossified pelvic clasper in Incisoscutum ritchiei (WAM 03.3.28) which shows that this interpretation was incorrect: the basipterygium described previously is in fact unique to females. The male clasper is a slender rod attached to a square basal plate that articulates directly with the pelvis. It carries a small cap of dermal bone covered in denticles and small hooks that may be homologous with the much larger dermal component of the ptyctodont clasper.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahlberg, Per -- Trinajstic, Kate -- Johanson, Zerina -- Long, John -- England -- Nature. 2009 Aug 13;460(7257):888-9. doi: 10.1038/nature08176. Epub 2009 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Subdepartment of Evolutionary Organismal Biology, Department of Physiology and Developmental Biology, Uppsala University, Norbyvagen 18A, 752 36 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19597477" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/anatomy & histology/*physiology ; Animals ; Female ; Fertilization/*physiology ; Fishes/*anatomy & histology/*physiology ; Fossils ; History, Ancient ; Male ; Pelvis/anatomy & histology ; Viviparity, Nonmammalian/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2009-10-02
    Description: Down Syndrome cell adhesion molecule (Dscam) genes encode neuronal cell recognition proteins of the immunoglobulin superfamily. In Drosophila, Dscam1 generates 19,008 different ectodomains by alternative splicing of three exon clusters, each encoding half or a complete variable immunoglobulin domain. Identical isoforms bind to each other, but rarely to isoforms differing at any one of the variable immunoglobulin domains. Binding between isoforms on opposing membranes promotes repulsion. Isoform diversity provides the molecular basis for neurite self-avoidance. Self-avoidance refers to the tendency of branches from the same neuron (self-branches) to selectively avoid one another. To ensure that repulsion is restricted to self-branches, different neurons express different sets of isoforms in a biased stochastic fashion. Genetic studies demonstrated that Dscam1 diversity has a profound role in wiring the fly brain. Here we show how many isoforms are required to provide an identification system that prevents non-self branches from inappropriately recognizing each other. Using homologous recombination, we generated mutant animals encoding 12, 24, 576 and 1,152 potential isoforms. Mutant animals with deletions encoding 4,752 and 14,256 isoforms were also analysed. Branching phenotypes were assessed in three classes of neurons. Branching patterns improved as the potential number of isoforms increased, and this was independent of the identity of the isoforms. Although branching defects in animals with 1,152 potential isoforms remained substantial, animals with 4,752 isoforms were indistinguishable from wild-type controls. Mathematical modelling studies were consistent with the experimental results that thousands of isoforms are necessary to ensure acquisition of unique Dscam1 identities in many neurons. We conclude that thousands of isoforms are essential to provide neurons with a robust discrimination mechanism to distinguish between self and non-self during self-avoidance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836808/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836808/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hattori, Daisuke -- Chen, Yi -- Matthews, Benjamin J -- Salwinski, Lukasz -- Sabatti, Chiara -- Grueber, Wesley B -- Zipursky, S Lawrence -- F31 NS060341/NS/NINDS NIH HHS/ -- R01 DC006485/DC/NIDCD NIH HHS/ -- R01 DC006485-07/DC/NIDCD NIH HHS/ -- R01 HD040279/HD/NICHD NIH HHS/ -- R01 HD040279-05/HD/NICHD NIH HHS/ -- T32 HD007430/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Oct 1;461(7264):644-8. doi: 10.1038/nature08431.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794492" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Alternative Splicing ; Animals ; Brain/cytology/metabolism ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Drosophila Proteins/*chemistry/genetics/*metabolism ; Drosophila melanogaster/*cytology/genetics/*metabolism ; Female ; Male ; Models, Biological ; Mushroom Bodies/cytology/metabolism ; Neurites/*metabolism ; Protein Isoforms/chemistry/genetics/metabolism ; Sequence Deletion ; Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayden, Erika Check -- England -- Nature. 2009 Aug 20;460(7258):940-1. doi: 10.1038/460940a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693052" target="_blank"〉PubMed〈/a〉
    Keywords: Anticoagulants/administration & dosage/adverse effects/therapeutic use ; Cardiovascular Diseases/*drug therapy/*genetics ; Clinical Trials as Topic ; Female ; Genetic Predisposition to Disease/*genetics ; Genetic Testing ; Genetic Variation ; Genome-Wide Association Study ; Genomics/trends ; Humans ; Pharmacogenetics/*trends ; Piperazines/administration & dosage/therapeutic use ; Platelet Aggregation Inhibitors/administration & dosage/adverse ; effects/therapeutic use ; Prasugrel Hydrochloride ; Thiophenes/administration & dosage/therapeutic use ; Ticlopidine/administration & dosage/adverse effects/analogs & ; derivatives/therapeutic use ; Warfarin/administration & dosage/adverse effects/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2009-08-12
    Description: The overexpression of defined transcription factors in somatic cells results in their reprogramming into induced pluripotent stem (iPS) cells. The extremely low efficiency and slow kinetics of in vitro reprogramming suggest that further rare events are required to generate iPS cells. The nature and identity of these events, however, remain elusive. We noticed that the reprogramming potential of primary murine fibroblasts into iPS cells decreases after serial passaging and the concomitant onset of senescence. Consistent with the notion that loss of replicative potential provides a barrier for reprogramming, here we show that cells with low endogenous p19(Arf) (encoded by the Ink4a/Arf locus, also known as Cdkn2a locus) protein levels and immortal fibroblasts deficient in components of the Arf-Trp53 pathway yield iPS cell colonies with up to threefold faster kinetics and at a significantly higher efficiency than wild-type cells, endowing almost every somatic cell with the potential to form iPS cells. Notably, the acute genetic ablation of Trp53 (also known as p53) in cellular subpopulations that normally fail to reprogram rescues their ability to produce iPS cells. Our results show that the acquisition of immortality is a crucial and rate-limiting step towards the establishment of a pluripotent state in somatic cells and underscore the similarities between induced pluripotency and tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Utikal, Jochen -- Polo, Jose M -- Stadtfeld, Matthias -- Maherali, Nimet -- Kulalert, Warakorn -- Walsh, Ryan M -- Khalil, Adam -- Rheinwald, James G -- Hochedlinger, Konrad -- DP2 OD003266/OD/NIH HHS/ -- England -- Nature. 2009 Aug 27;460(7259):1145-8. doi: 10.1038/nature08285. Epub 2009 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Harvard Stem Cell Institute, 185 Cambridge Street, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19668190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging/*physiology ; Cell Differentiation ; Cell Division ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/*physiology ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics/metabolism ; Down-Regulation ; Fibroblasts/cytology/metabolism ; Gene Expression ; Humans ; Keratinocytes ; Kinetics ; Mice ; Mice, SCID ; Pluripotent Stem Cells/*cytology/metabolism ; Tumor Suppressor Protein p53/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2009-03-20
    Description: In the study of complex mammalian behaviours, technological limitations have prevented spatiotemporally precise control over intracellular signalling processes. Here we report the development of a versatile family of genetically encoded optical tools ('optoXRs') that leverage common structure-function relationships among G-protein-coupled receptors (GPCRs) to recruit and control, with high spatiotemporal precision, receptor-initiated biochemical signalling pathways. In particular, we have developed and characterized two optoXRs that selectively recruit distinct, targeted signalling pathways in response to light. The two optoXRs exerted opposing effects on spike firing in nucleus accumbens in vivo, and precisely timed optoXR photostimulation in nucleus accumbens by itself sufficed to drive conditioned place preference in freely moving mice. The optoXR approach allows testing of hypotheses regarding the causal impact of biochemical signalling in behaving mammals, in a targetable and temporally precise manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Airan, Raag D -- Thompson, Kimberly R -- Fenno, Lief E -- Bernstein, Hannah -- Deisseroth, Karl -- England -- Nature. 2009 Apr 23;458(7241):1025-9. doi: 10.1038/nature07926. Epub 2009 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cell Line ; Cricetinae ; Cyclic AMP Response Element-Binding Protein/metabolism ; *Genetic Engineering ; Humans ; Intracellular Space/*metabolism/radiation effects ; Mice ; Nucleus Accumbens/cytology/physiology/radiation effects ; Receptors, Adrenergic, alpha-1/genetics/metabolism ; Receptors, Adrenergic, beta-2/genetics/metabolism ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Recombinant Fusion Proteins/genetics/*metabolism ; Reward ; Rhodopsin/genetics/metabolism ; *Signal Transduction/radiation effects ; Structure-Activity Relationship ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2009-09-01
    Description: The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762480/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762480/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarado, Diego -- Klein, Daryl E -- Lemmon, Mark A -- R01 CA079992/CA/NCI NIH HHS/ -- R01 CA079992-09/CA/NCI NIH HHS/ -- R01 CA079992-10/CA/NCI NIH HHS/ -- R01 CA125432/CA/NCI NIH HHS/ -- R01 CA125432-01A1/CA/NCI NIH HHS/ -- R01 CA125432-02/CA/NCI NIH HHS/ -- R01 CA125432-03/CA/NCI NIH HHS/ -- England -- Nature. 2009 Sep 10;461(7261):287-91. doi: 10.1038/nature08297. Epub 2009 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19718021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Drosophila melanogaster/chemistry/*metabolism ; Enzyme Activation ; Humans ; Ligands ; Models, Molecular ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Receptor, ErbB-2/antagonists & inhibitors/*chemistry/*metabolism ; Receptors, Invertebrate Peptide/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Scattering, Small Angle ; Solubility ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayden, Erika Check -- England -- Nature. 2009 Jan 15;457(7227):254-6. doi: 10.1038/457254a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148076" target="_blank"〉PubMed〈/a〉
    Keywords: *Federal Government ; Female ; *Global Health ; HIV Infections/*drug therapy/*economics/prevention & control ; Humans ; United States ; World Health Organization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2009-07-03
    Description: The cytokine leukaemia inhibitory factor (LIF) integrates signals into mouse embryonic stem (ES) cells to maintain pluripotency. Although the Jak-Stat3 pathway is essential and sufficient to mediate LIF signals, it is still unclear how these signals are linked to the core circuitry of pluripotency-associated transcription factors, consisting of Oct3/4 (also called Pou5f1), Sox2 and Nanog. Here we show that two LIF signalling pathways are each connected to the core circuitry via different transcription factors. In mouse ES cells, Klf4 is mainly activated by the Jak-Stat3 pathway and preferentially activates Sox2, whereas Tbx3 is preferentially regulated by the phosphatidylinositol-3-OH kinase-Akt and mitogen-activated protein kinase pathways and predominantly stimulates Nanog. In the absence of LIF, artificial expression of Klf4 or Tbx3 is sufficient to maintain pluripotency while maintaining the expression of Oct3/4. Notably, overexpression of Nanog supports LIF-independent self-renewal of mouse ES cells in the absence of Klf4 and Tbx3 activity. Therefore, Klf4 and Tbx3 are involved in mediating LIF signalling to the core circuitry but are not directly associated with the maintenance of pluripotency, because ES cells keep pluripotency without their expression in the particular context.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niwa, Hitoshi -- Ogawa, Kazuya -- Shimosato, Daisuke -- Adachi, Kenjiro -- England -- Nature. 2009 Jul 2;460(7251):118-22. doi: 10.1038/nature08113.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 6500047, Japan. niwa@cdb.riken.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19571885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Embryonic Stem Cells/*cytology/*metabolism ; Gene Expression Regulation ; Homeodomain Proteins/genetics/metabolism ; Janus Kinases/metabolism ; Kruppel-Like Transcription Factors/genetics/metabolism ; Leukemia Inhibitory Factor/*metabolism ; MAP Kinase Signaling System ; Mice ; Phosphatidylinositol 3-Kinases/metabolism ; Pluripotent Stem Cells/*cytology/*metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; STAT3 Transcription Factor/metabolism ; *Signal Transduction ; T-Box Domain Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2009-02-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ledford, Heidi -- England -- Nature. 2009 Feb 5;457(7230):642. doi: 10.1038/457642b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19205093" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cell Nucleus/metabolism ; Cellular Reprogramming/genetics/physiology ; Embryo, Mammalian/*cytology/*embryology ; Embryonic Stem Cells/*cytology ; Female ; Humans ; Mice ; *Nuclear Transfer Techniques ; Pluripotent Stem Cells/metabolism ; Rabbits ; Sheep ; Swine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farmer, Stephen R -- England -- Nature. 2009 Apr 16;458(7240):839-40. doi: 10.1038/458839a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370020" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/anatomy & histology/cytology/*metabolism ; *Cold Temperature ; Female ; Humans ; Male ; Obesity/drug therapy/*metabolism ; Sex Characteristics ; Weight Loss/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2009-08-04
    Description: Polymerization of actin filaments directed by the actin-related protein (Arp)2/3 complex supports many types of cellular movements. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones; this is because of the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-0944636 binds between Arp2 and Arp3, where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-0993548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying the Arp2/3 complex in living cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nolen, B J -- Tomasevic, N -- Russell, A -- Pierce, D W -- Jia, Z -- McCormick, C D -- Hartman, J -- Sakowicz, R -- Pollard, T D -- F32 GM074374-02/GM/NIGMS NIH HHS/ -- GM-066311/GM/NIGMS NIH HHS/ -- GM074374-02/GM/NIGMS NIH HHS/ -- P01 GM066311/GM/NIGMS NIH HHS/ -- P01 GM066311-01A1/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1031-4. doi: 10.1038/nature08231. Epub 2009 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19648907" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/metabolism ; Actin-Related Protein 2/antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 2-3 Complex/*antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 3/antagonists & inhibitors/chemistry/metabolism ; Actins/chemistry/metabolism ; Animals ; Biopolymers/chemistry/metabolism ; Cattle ; Cell Line ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Indoles/classification/metabolism/pharmacology ; Listeria/physiology ; Models, Molecular ; Monocytes/immunology ; Protein Conformation/drug effects ; Schizosaccharomyces ; Thiazoles/chemistry/classification/metabolism/pharmacology ; Thiophenes/classification/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2009-08-21
    Description: The isolation of human induced pluripotent stem cells (iPSCs) offers a new strategy for modelling human disease. Recent studies have reported the derivation and differentiation of disease-specific human iPSCs. However, a key challenge in the field is the demonstration of disease-related phenotypes and the ability to model pathogenesis and treatment of disease in iPSCs. Familial dysautonomia (FD) is a rare but fatal peripheral neuropathy, caused by a point mutation in the IKBKAP gene involved in transcriptional elongation. The disease is characterized by the depletion of autonomic and sensory neurons. The specificity to the peripheral nervous system and the mechanism of neuron loss in FD are poorly understood owing to the lack of an appropriate model system. Here we report the derivation of patient-specific FD-iPSCs and the directed differentiation into cells of all three germ layers including peripheral neurons. Gene expression analysis in purified FD-iPSC-derived lineages demonstrates tissue-specific mis-splicing of IKBKAP in vitro. Patient-specific neural crest precursors express particularly low levels of normal IKBKAP transcript, suggesting a mechanism for disease specificity. FD pathogenesis is further characterized by transcriptome analysis and cell-based assays revealing marked defects in neurogenic differentiation and migration behaviour. Furthermore, we use FD-iPSCs for validating the potency of candidate drugs in reversing aberrant splicing and ameliorating neuronal differentiation and migration. Our study illustrates the promise of iPSC technology for gaining new insights into human disease pathogenesis and treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Gabsang -- Papapetrou, Eirini P -- Kim, Hyesoo -- Chambers, Stuart M -- Tomishima, Mark J -- Fasano, Christopher A -- Ganat, Yosif M -- Menon, Jayanthi -- Shimizu, Fumiko -- Viale, Agnes -- Tabar, Viviane -- Sadelain, Michel -- Studer, Lorenz -- R01 NS052671/NS/NINDS NIH HHS/ -- R01 NS052671-03/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Sep 17;461(7262):402-6. doi: 10.1038/nature08320. Epub 2009 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Program, Sloan-Kettering Institute, 1275 York Ave, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693009" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Alternative Splicing/drug effects/genetics ; Animals ; Carrier Proteins/genetics ; Cell Dedifferentiation ; Cell Differentiation ; Cell Lineage ; Cell Movement ; Cells, Cultured ; Child ; Dysautonomia, Familial/drug therapy/genetics/*pathology/*therapy ; Female ; Fibroblasts/cytology/metabolism ; Gene Expression Profiling ; Humans ; Kinetin/pharmacology/therapeutic use ; Male ; Mice ; *Models, Biological ; Neural Crest/cytology/drug effects ; Organ Specificity ; Phenotype ; Pluripotent Stem Cells/cytology/drug effects/*metabolism/*transplantation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-01-09
    Description: Haematopoietic stem cells (HSCs) are the founder cells of the adult haematopoietic system, and thus knowledge of the molecular program directing their generation during development is important for regenerative haematopoietic strategies. Runx1 is a pivotal transcription factor required for HSC generation in the vascular regions of the mouse conceptus-the aorta, vitelline and umbilical arteries, yolk sac and placenta. It is thought that HSCs emerge from vascular endothelial cells through the formation of intra-arterial clusters and that Runx1 functions during the transition from 'haemogenic endothelium' to HSCs. Here we show by conditional deletion that Runx1 activity in vascular-endothelial-cadherin-positive endothelial cells is indeed essential for intra-arterial cluster, haematopoietic progenitor and HSC formation in mice. In contrast, Runx1 is not required in cells expressing Vav1, one of the first pan-haematopoietic genes expressed in HSCs. Collectively these data show that Runx1 function is essential in endothelial cells for haematopoietic progenitor and HSC formation from the vasculature, but its requirement ends once or before Vav is expressed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744041/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744041/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Michael J -- Yokomizo, Tomomasa -- Zeigler, Brandon M -- Dzierzak, Elaine -- Speck, Nancy A -- CA23108/CA/NCI NIH HHS/ -- R01 CA058343/CA/NCI NIH HHS/ -- R01DK54077/DK/NIDDK NIH HHS/ -- R01HL091724/HL/NHLBI NIH HHS/ -- R37 DK054077/DK/NIDDK NIH HHS/ -- R37 DK054077-09/DK/NIDDK NIH HHS/ -- T32 AI-07519/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Feb 12;457(7231):887-91. doi: 10.1038/nature07619. Epub 2009 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19129762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Cadherins/metabolism ; *Cell Differentiation ; Core Binding Factor Alpha 2 Subunit/genetics/*metabolism ; Endothelial Cells/*cytology ; Female ; *Gene Expression Regulation, Developmental ; Hematopoietic Stem Cells/*cytology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Proto-Oncogene Proteins c-vav/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...