ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-07-31
    Description: Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses. The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components. Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22(phox), the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22(phox) is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yazdanpanah, Benjamin -- Wiegmann, Katja -- Tchikov, Vladimir -- Krut, Oleg -- Pongratz, Carola -- Schramm, Michael -- Kleinridders, Andre -- Wunderlich, Thomas -- Kashkar, Hamid -- Utermohlen, Olaf -- Bruning, Jens C -- Schutze, Stefan -- Kronke, Martin -- England -- Nature. 2009 Aug 27;460(7259):1159-63. doi: 10.1038/nature08206. Epub 2009 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cytochrome b Group/metabolism ; Enzyme Activation ; Fibroblasts ; Flavin Mononucleotide/metabolism ; Flavin-Adenine Dinucleotide/biosynthesis/metabolism ; HeLa Cells ; Humans ; Isoenzymes/chemistry/metabolism ; Membrane Glycoproteins/metabolism ; Mice ; NADH, NADPH Oxidoreductases/metabolism ; NADPH Oxidase/chemistry/*metabolism ; Phosphotransferases (Alcohol Group Acceptor)/deficiency/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Reactive Oxygen Species/metabolism ; Receptors, Tumor Necrosis Factor, Type I/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-15
    Description: Author(s): Binhui Hu, M. M. Yazdanpanah, B. E. Kane, E. H. Hwang, and S. Das Sarma We report experiment and theory on an ambipolar gate-controlled Si(111)-vacuum field effect transistor where we study electron and hole (low-temperature 2D) transport in the same device simply by changing the external gate voltage to tune the system from being a 2D electron system at positive gate v… [Phys. Rev. Lett. 115, 036801] Published Mon Jul 13, 2015
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...