ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-25
    Description: The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H 2 O) 2 and (D 2 O) 2 , are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H 2 O) 2 ((D 2 O) 2 ). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-01
    Description: Zwitterionic porphyrin (tetrakis {4-(2-carboxyethyl)pyridinio}porphyrin (TPyCP)) with four pyridinium and carboxyl groups in the molecule was synthesized. The adsorption behaviour of TPyCP on the montmorillonite clay surface was examined in an aqueous colloidal solution. While the adsorption maximum λmax of TPyCP was 424 nm in water, it shifted to longer wavelengths on complex formation with clay. The λmax on the exfoliated clay surface was 450 nm, and that in the stacked clay sheets was 471 nm, respectively. Under alkaline conditions ([NaOH] = 2×10–4 m), the stacking behaviour of the clay was completely suppressed. It emerged that anionic parts in the porphyrin molecule can suppress the stacking of clay sheets. Judging from the quantitative analysis, the maximum adsorption amount of TPyCP was 100% vs. cation exchange capacity (CEC) of the clay. As the adsorption density of TPyCP increased, λmax shifted slightly to longer wavelengths due to the interactions between adjacent porphyrins. When the loading level of TPyCP was 200% vs. CEC, the stacking of TPyCP was indicated. The average stacking layer number was calculated to be 1.48. On the other hand, it is known that tetra cationic porphyrins without anionic parts do not form such stacking structures. Thus, it seems that zwitterionic porphyrin has the potential to form a three dimensional structure through electrostatic interactions between porphyrins on the clay surface.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-13
    Description: The mucosal immune system forms the largest part of the entire immune system, containing about three-quarters of all lymphocytes and producing grams of secretory IgA daily to protect the mucosal surface from pathogens. To evoke the mucosal immune response, antigens on the mucosal surface must be transported across the epithelial barrier into organized lymphoid structures such as Peyer's patches. This function, called antigen transcytosis, is mediated by specialized epithelial M cells. The molecular mechanisms promoting this antigen uptake, however, are largely unknown. Here we report that glycoprotein 2 (GP2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for mucosal antigens. Recombinant GP2 protein selectively bound a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane. Consistently, these bacteria were colocalized with endogenous GP2 on the apical plasma membrane as well as in cytoplasmic vesicles in M cells. Moreover, deficiency of bacterial FimH or host GP2 led to defects in transcytosis of type-I-piliated bacteria through M cells, resulting in an attenuation of antigen-specific immune responses in Peyer's patches. GP2 is therefore a previously unrecognized transcytotic receptor on M cells for type-I-piliated bacteria and is a prerequisite for the mucosal immune response to these bacteria. Given that M cells are considered a promising target for oral vaccination against various infectious diseases, the GP2-dependent transcytotic pathway could provide a new target for the development of M-cell-targeted mucosal vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hase, Koji -- Kawano, Kazuya -- Nochi, Tomonori -- Pontes, Gemilson Soares -- Fukuda, Shinji -- Ebisawa, Masashi -- Kadokura, Kazunori -- Tobe, Toru -- Fujimura, Yumiko -- Kawano, Sayaka -- Yabashi, Atsuko -- Waguri, Satoshi -- Nakato, Gaku -- Kimura, Shunsuke -- Murakami, Takaya -- Iimura, Mitsutoshi -- Hamura, Kimiyo -- Fukuoka, Shin-Ichi -- Lowe, Anson W -- Itoh, Kikuji -- Kiyono, Hiroshi -- Ohno, Hiroshi -- DK43294/DK/NIDDK NIH HHS/ -- DK56339/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):226-30. doi: 10.1038/nature08529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN, Kanagawa 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907495" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Escherichia coli/genetics/immunology/*metabolism ; Animals ; Antigens, Bacterial/genetics/immunology/*metabolism ; Cell Line ; Epithelial Cells/*immunology/metabolism ; Escherichia coli/immunology/metabolism ; Fimbriae Proteins/genetics/immunology/*metabolism ; GPI-Linked Proteins ; Glycoproteins ; HeLa Cells ; Humans ; Immunity, Mucosal/*immunology ; Intestines/cytology ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Peyer's Patches/*cytology/immunology ; Salmonella typhimurium/genetics/immunology/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-15
    Description: Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furusawa, Yukihiro -- Obata, Yuuki -- Fukuda, Shinji -- Endo, Takaho A -- Nakato, Gaku -- Takahashi, Daisuke -- Nakanishi, Yumiko -- Uetake, Chikako -- Kato, Keiko -- Kato, Tamotsu -- Takahashi, Masumi -- Fukuda, Noriko N -- Murakami, Shinnosuke -- Miyauchi, Eiji -- Hino, Shingo -- Atarashi, Koji -- Onawa, Satoshi -- Fujimura, Yumiko -- Lockett, Trevor -- Clarke, Julie M -- Topping, David L -- Tomita, Masaru -- Hori, Shohei -- Ohara, Osamu -- Morita, Tatsuya -- Koseki, Haruhiko -- Kikuchi, Jun -- Honda, Kenya -- Hase, Koji -- Ohno, Hiroshi -- England -- Nature. 2013 Dec 19;504(7480):446-50. doi: 10.1038/nature12721. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3]. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3] Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan [4]. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan [3]. ; RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan. ; Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan. ; Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Preventative Health National Research Flagship, CSIRO Food and Nutritional Sciences, South Australia 5000, Australia. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan [3] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan. ; 1] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan [2] RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3] PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226770" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Adoptive Transfer ; Animals ; Butyrates/analysis/*metabolism/pharmacology ; *Cell Differentiation/drug effects ; Colitis/drug therapy/pathology ; Colon/cytology/*immunology/metabolism/*microbiology ; Conserved Sequence ; Female ; *Fermentation ; Forkhead Transcription Factors/genetics ; Germ-Free Life ; Histones/metabolism ; Homeostasis/drug effects ; Intestinal Mucosa/cytology/immunology ; Lymphocyte Count ; Magnetic Resonance Spectroscopy ; Male ; Metabolome ; Mice ; Promoter Regions, Genetic/drug effects ; *Symbiosis ; T-Lymphocytes, Regulatory/*cytology/drug effects/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-07
    Description: The nucleolus is a dynamic nuclear body that has been demonstrated to disassemble at the onset of mitosis; the relationship between cell cycle progression and nucleolar integrity, however, remains poorly understood. We studied the role of nucleolar proteins in mitosis by performing a global analysis using small interfering RNAs specific to nucleolar proteins; we focused on nucleolar protein 11 (NOL11), with currently unknown mitotic functions. Depletion of NOL11 delayed entry into the mitotic phase owing to increased inhibitory phosphorylation of cyclin-dependent kinase 1 (Cdk1) and aberrant accumulation of Wee1, a kinase that phosphorylates and inhibits Cdk1. In addition to effects on overall mitotic phenotypes, NOL11 depletion reduced ribosomal RNA (rRNA) levels and caused nucleolar disruption during interphase. Notably, mitotic phenotypes found in NOL11-depleted cells were recapitulated when nucleolar disruption was induced by depletion of rRNA transcription factors or treatment with actinomycin D. Furthermore, delayed entry into the mitotic phase, caused by the depletion of pre-rRNA transcription factors, was attributable to nucleolar disruption rather than to G 2 /M checkpoint activation or reduced protein synthesis. Our findings therefore suggest that maintenance of nucleolar integrity during interphase is essential for proper cell cycle progression to mitosis via the regulation of Wee1 and Cdk1.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-10
    Description: The 2-methylthio (ms 2 ) modification at A37 of tRNAs is critical for accurate decoding, and contributes to metabolic homeostasis in mammals. However, the regulatory mechanism of ms 2 modification remains largely unknown. Here, we report that cysteine hydropersulfide (CysSSH), a newly identified reactive sulfur species, is involved in ms 2 modification in cells. The suppression of intracellular CysSSH production rapidly reduced ms 2 modification, which was rescued by the application of an exogenous CysSSH donor. Using a unique and stable isotope-labeled CysSSH donor, we show that CysSSH was capable of specifically transferring its reactive sulfur atom to the cysteine residues of ms 2 -modifying enzymes as well as ms 2 modification. Furthermore, the suppression of CysSSH production impaired insulin secretion and caused glucose intolerance in both a pancreatic β-cell line and mouse model. These results demonstrate that intracellular CysSSH is a novel sulfur source for ms 2 modification, and that it contributes to insulin secretion.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 55 (1999), S. 79-80 
    ISSN: 1432-1041
    Keywords: Key words Digoxin ; Voglibase ; Interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 345-346 (Aug. 2007), p. 189-192 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The work hardening behavior by cold rolling was investigated in ultralow carbon and lowcarbon martensitic steels containing 12%Cr or 18%Ni, and then the effect of carbon on the workhardening behavior was discussed in terms of the change in dislocation density and the microstructuredevelopment during deformation. In the ultralow carbon steel, the hardness is almost constantirrespective of the reduction ratio. On the other hand, the low carbon steel exhibits marked workhardening. The dislocation density of these specimens was confirmed to be never increased by coldrolling. It was also found that cold rolling gives no significant influence on the morphology ofmartensite packet and block structure. TEM images of the cold-rolled steels revealed that themartensite laths in the ultralow carbon steel are partially vanished, while those in the carbon bearingsteel are stably remained. These results indicate that the solute carbon retards the movement ofdislocations, which results in the high work hardening rate through the formation of fine dislocationsubstructure within laths
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 539-543 (Mar. 2007), p. 4783-4788 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The behavior of work hardening by cold rolling and tensile deformation was investigatedin an ultralow carbon and carbon bearing martensitic steels, and then the effect of carbon on thework hardening behavior was discussed in terms of the change in dislocation density and themicrostructure development during deformation. In the ultralow carbon 18%Ni steel (20ppmC), thehardness is almost constant irrespective of the reduction ratio. On the other hand, the carbon bearing18%Ni steel (890ppmC) exhibits marked work hardening. The dislocation density of thesespecimens was confirmed to be never increased by cold rolling. It was also found that 10% coldrolling gives no significant influence on the morphology of martensite packet and block structure.TEM images of the 10% cold-rolled steels revealed that the martensite laths in the ultralow carbonsteel are partially vanished, while those in the carbon bearing steel are stably remained. Theseresults indicate that the solute carbon retards the movement of dislocations, which results in thehigh work hardening rate through the formation of fine dislocation substructure within laths
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 539-543 (Mar. 2007), p. 228-233 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Yield strength of highly dislocated metals is known to be directly proportional to thesquare root of dislocation density (ρ), so called Bailey-Hirsch relationship. In general, themicrostructure of heavily cold worked iron is characterized by cellar tangled dislocations. On theother hand, the dislocation substructure of martensite is characterized by randomly distributeddislocations although it has almost same or higher dislocation density in comparison with heavilycold worked iron. In this paper, yielding behavior of ultra low carbon martensite (Fe-18%Ni alloy)was discussed in connection with microstructural change during cold working. Originally, theelastic proportional limit and 0.2% proof stress is low in as-quenched martensite in spite of its highdislocation density. Small amount of cold rolling results in the decrease of dislocation density from6.8x1015/m-2 to 3.4x1015/m-2 but both the elastic proportional limit and 0.2% proof stress aremarkedly increased by contraries. 0.2% proof stress of cold-rolled martensite could be plotted onthe extended line of the Bailey-Hirsch equation obtained in cold-rolled iron. It was also confirmedthat small amount of cold rolling causes a clear microstructural change from randomly distributeddislocations to cellar tangled dislocations. Martensite contains two types of dislocations;statistically stored dislocation (SS-dislocation) and geometrically necessary dislocation(GN-dislocation). In the early deformation stage, SS-dislocations easily disappear through thedislocation interaction and movement to grain boundaries or surface. This process produces aplastic strain and lowers the elastic proportional limit and 0.2% proof stress in the ultra low carbonmartensite
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...