ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-02
    Description: The genome-wide recombination rate varies between individuals, but the mechanism controlling this variation in humans has remained elusive. A genome-wide search identified sequence variants in the 4p16.3 region correlated with recombination rate in both males and females. These variants are located in the RNF212 gene, a putative ortholog of the ZHP-3 gene that is essential for recombinations and chiasma formation in Caenorhabditis elegans. It is noteworthy that the haplotype formed by two single-nucleotide polymorphisms (SNPs) associated with the highest recombination rate in males is associated with a low recombination rate in females. Consequently, if the frequency of the haplotype changes, the average recombination rate will increase for one sex and decrease for the other, but the sex-averaged recombination rate of the population can stay relatively constant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Augustine -- Thorleifsson, Gudmar -- Stefansson, Hreinn -- Masson, Gisli -- Helgason, Agnar -- Gudbjartsson, Daniel F -- Jonsdottir, Gudrun M -- Gudjonsson, Sigurjon A -- Sverrisson, Sverrir -- Thorlacius, Theodora -- Jonasdottir, Aslaug -- Hardarson, Gudmundur A -- Palsson, Stefan T -- Frigge, Michael L -- Gulcher, Jeffrey R -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1398-401. doi: 10.1126/science.1152422. Epub 2008 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE Genetics Inc, 101 Reykjavik, Iceland. kong@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239089" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chromosomes, Human, Pair 4/*genetics ; Fathers ; Female ; *Genome, Human ; Haplotypes ; Humans ; Linkage Disequilibrium ; Male ; Meiosis ; Molecular Sequence Data ; Mothers ; Polymorphism, Single Nucleotide ; *Recombination, Genetic ; Sex Characteristics ; Synaptonemal Complex/metabolism ; Ubiquitin-Protein Ligases/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-24
    Description: Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. Here we conduct a study of genome-wide mutation rates by sequencing the entire genomes of 78 Icelandic parent-offspring trios at high coverage. We show that in our samples, with an average father's age of 29.7, the average de novo mutation rate is 1.20 x 10(-8) per nucleotide per generation. Most notably, the diversity in mutation rate of single nucleotide polymorphisms is dominated by the age of the father at conception of the child. The effect is an increase of about two mutations per year. An exponential model estimates paternal mutations doubling every 16.5 years. After accounting for random Poisson variation, father's age is estimated to explain nearly all of the remaining variation in the de novo mutation counts. These observations shed light on the importance of the father's age on the risk of diseases such as schizophrenia and autism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Augustine -- Frigge, Michael L -- Masson, Gisli -- Besenbacher, Soren -- Sulem, Patrick -- Magnusson, Gisli -- Gudjonsson, Sigurjon A -- Sigurdsson, Asgeir -- Jonasdottir, Aslaug -- Jonasdottir, Adalbjorg -- Wong, Wendy S W -- Sigurdsson, Gunnar -- Walters, G Bragi -- Steinberg, Stacy -- Helgason, Hannes -- Thorleifsson, Gudmar -- Gudbjartsson, Daniel F -- Helgason, Agnar -- Magnusson, Olafur Th -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- MH071425/MH/NIMH NIH HHS/ -- R01 MH071425/MH/NIMH NIH HHS/ -- England -- Nature. 2012 Aug 23;488(7412):471-5. doi: 10.1038/nature11396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE Genetics, Sturlugata 8, 101 Reykjavik, Iceland. kong@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22914163" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Autistic Disorder/epidemiology/etiology/*genetics ; Chromosomes, Human/genetics ; Female ; *Genetic Predisposition to Disease ; Genome, Human/genetics ; Humans ; Iceland/epidemiology ; Male ; Middle Aged ; Mothers ; *Mutation Rate ; Ovum/metabolism ; *Paternal Age ; Pedigree ; Polymorphism, Single Nucleotide/genetics ; Risk Factors ; Schizophrenia/epidemiology/etiology/*genetics ; Selection, Genetic/genetics ; Sequence Analysis, DNA ; Spermatozoa/metabolism ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-19
    Description: Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P 〈 5 x 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perry, John R B -- Day, Felix -- Elks, Cathy E -- Sulem, Patrick -- Thompson, Deborah J -- Ferreira, Teresa -- He, Chunyan -- Chasman, Daniel I -- Esko, Tonu -- Thorleifsson, Gudmar -- Albrecht, Eva -- Ang, Wei Q -- Corre, Tanguy -- Cousminer, Diana L -- Feenstra, Bjarke -- Franceschini, Nora -- Ganna, Andrea -- Johnson, Andrew D -- Kjellqvist, Sanela -- Lunetta, Kathryn L -- McMahon, George -- Nolte, Ilja M -- Paternoster, Lavinia -- Porcu, Eleonora -- Smith, Albert V -- Stolk, Lisette -- Teumer, Alexander -- Tsernikova, Natalia -- Tikkanen, Emmi -- Ulivi, Sheila -- Wagner, Erin K -- Amin, Najaf -- Bierut, Laura J -- Byrne, Enda M -- Hottenga, Jouke-Jan -- Koller, Daniel L -- Mangino, Massimo -- Pers, Tune H -- Yerges-Armstrong, Laura M -- Hua Zhao, Jing -- Andrulis, Irene L -- Anton-Culver, Hoda -- Atsma, Femke -- Bandinelli, Stefania -- Beckmann, Matthias W -- Benitez, Javier -- Blomqvist, Carl -- Bojesen, Stig E -- Bolla, Manjeet K -- Bonanni, Bernardo -- Brauch, Hiltrud -- Brenner, Hermann -- Buring, Julie E -- Chang-Claude, Jenny -- Chanock, Stephen -- Chen, Jinhui -- Chenevix-Trench, Georgia -- Collee, J Margriet -- Couch, Fergus J -- Couper, David -- Coviello, Andrea D -- Cox, Angela -- Czene, Kamila -- D'adamo, Adamo Pio -- Davey Smith, George -- De Vivo, Immaculata -- Demerath, Ellen W -- Dennis, Joe -- Devilee, Peter -- Dieffenbach, Aida K -- Dunning, Alison M -- Eiriksdottir, Gudny -- Eriksson, Johan G -- Fasching, Peter A -- Ferrucci, Luigi -- Flesch-Janys, Dieter -- Flyger, Henrik -- Foroud, Tatiana -- Franke, Lude -- Garcia, Melissa E -- Garcia-Closas, Montserrat -- Geller, Frank -- de Geus, Eco E J -- Giles, Graham G -- Gudbjartsson, Daniel F -- Gudnason, Vilmundur -- Guenel, Pascal -- Guo, Suiqun -- Hall, Per -- Hamann, Ute -- Haring, Robin -- Hartman, Catharina A -- Heath, Andrew C -- Hofman, Albert -- Hooning, Maartje J -- Hopper, John L -- Hu, Frank B -- Hunter, David J -- Karasik, David -- Kiel, Douglas P -- Knight, Julia A -- Kosma, Veli-Matti -- Kutalik, Zoltan -- Lai, Sandra -- Lambrechts, Diether -- Lindblom, Annika -- Magi, Reedik -- Magnusson, Patrik K -- Mannermaa, Arto -- Martin, Nicholas G -- Masson, Gisli -- McArdle, Patrick F -- McArdle, Wendy L -- Melbye, Mads -- Michailidou, Kyriaki -- Mihailov, Evelin -- Milani, Lili -- Milne, Roger L -- Nevanlinna, Heli -- Neven, Patrick -- Nohr, Ellen A -- Oldehinkel, Albertine J -- Oostra, Ben A -- Palotie, Aarno -- Peacock, Munro -- Pedersen, Nancy L -- Peterlongo, Paolo -- Peto, Julian -- Pharoah, Paul D P -- Postma, Dirkje S -- Pouta, Anneli -- Pylkas, Katri -- Radice, Paolo -- Ring, Susan -- Rivadeneira, Fernando -- Robino, Antonietta -- Rose, Lynda M -- Rudolph, Anja -- Salomaa, Veikko -- Sanna, Serena -- Schlessinger, David -- Schmidt, Marjanka K -- Southey, Mellissa C -- Sovio, Ulla -- Stampfer, Meir J -- Stockl, Doris -- Storniolo, Anna M -- Timpson, Nicholas J -- Tyrer, Jonathan -- Visser, Jenny A -- Vollenweider, Peter -- Volzke, Henry -- Waeber, Gerard -- Waldenberger, Melanie -- Wallaschofski, Henri -- Wang, Qin -- Willemsen, Gonneke -- Winqvist, Robert -- Wolffenbuttel, Bruce H R -- Wright, Margaret J -- Australian Ovarian Cancer Study -- GENICA Network -- kConFab -- LifeLines Cohort Study -- InterAct Consortium -- Early Growth Genetics (EGG) Consortium -- Boomsma, Dorret I -- Econs, Michael J -- Khaw, Kay-Tee -- Loos, Ruth J F -- McCarthy, Mark I -- Montgomery, Grant W -- Rice, John P -- Streeten, Elizabeth A -- Thorsteinsdottir, Unnur -- van Duijn, Cornelia M -- Alizadeh, Behrooz Z -- Bergmann, Sven -- Boerwinkle, Eric -- Boyd, Heather A -- Crisponi, Laura -- Gasparini, Paolo -- Gieger, Christian -- Harris, Tamara B -- Ingelsson, Erik -- Jarvelin, Marjo-Riitta -- Kraft, Peter -- Lawlor, Debbie -- Metspalu, Andres -- Pennell, Craig E -- Ridker, Paul M -- Snieder, Harold -- Sorensen, Thorkild I A -- Spector, Tim D -- Strachan, David P -- Uitterlinden, Andre G -- Wareham, Nicholas J -- Widen, Elisabeth -- Zygmunt, Marek -- Murray, Anna -- Easton, Douglas F -- Stefansson, Kari -- Murabito, Joanne M -- Ong, Ken K -- 098381/Wellcome Trust/United Kingdom -- 10118/Cancer Research UK/United Kingdom -- G0701863/Medical Research Council/United Kingdom -- G1000143/Medical Research Council/United Kingdom -- G9815508/Medical Research Council/United Kingdom -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U106179472/Medical Research Council/United Kingdom -- MC_UU_12013/1/Medical Research Council/United Kingdom -- MC_UU_12013/3/Medical Research Council/United Kingdom -- MC_UU_12015/1/Medical Research Council/United Kingdom -- MC_UU_12015/2/Medical Research Council/United Kingdom -- MR/J012165/1/Medical Research Council/United Kingdom -- P50 CA116201/CA/NCI NIH HHS/ -- R01 AG041517/AG/NIA NIH HHS/ -- UL1 TR001108/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):92-7. doi: 10.1038/nature13545. Epub 2014 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK. [3] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [4] Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. [5]. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2]. ; 1] deCODE Genetics, Reykjavik IS-101, Iceland. [2]. ; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. ; 1] Department of Epidemiology, Indiana University Richard M Fairbanks School of Public Health, Indianapolis, Indiana 46202, USA. [2] Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana 46202, USA. ; 1] Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia. [2] Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [3] Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge, Massachusetts 02142, USA. [4] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; deCODE Genetics, Reykjavik IS-101, Iceland. ; Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. ; School of Women's and Infants' Health, The University of Western Australia, WA-6009, Australia. ; 1] Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland. [2] Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland. ; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Finland. ; Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark. ; Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599-7400, USA. ; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden. ; NHLBI's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA. ; Science for Life Laboratory, Karolinska Institutet, Stockholm, Box 1031, 17121 Solna, Sweden. ; 1] NHLBI's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA. [2] Boston University School of Public Health, Department of Biostatistics, Boston, Massachusetts 02118, USA. ; 1] MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK. [2] School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. ; Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands. ; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK. ; 1] Institute of Genetics and Biomedical Research, National Research Council, Cagliari, 09042 Sardinia, Italy. [2] University of Sassari, Department of Biomedical Sciences, 07100 Sassari, Italy. ; 1] Icelandic Heart Association, IS-201 Kopavogur, Iceland. [2] University of Iceland, IS-101 Reykjavik, Iceland. ; 1] Department of Internal Medicine, Erasmus MC, 3015 GE Rotterdam, the Netherlands. [2] Netherlands Consortium on Health Aging and National Genomics Initiative, 2300 RC Leiden, the Netherlands. ; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany. ; 1] Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia. [2] Department of Biotechnology, University of Tartu, 51010 Tartu, Estonia. ; 1] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Finland. [2] Hjelt Institute, University of Helsinki, FI-00014, Finland. ; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", 34137 Trieste, Italy. ; Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, the Netherlands. ; Department of Psychiatry, Washington University, St Louis, Missouri 63110, USA. ; 1] The University of Queensland, Queensland Brain Institute, St Lucia, Queensland 4072, Australia. [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia. ; Department of Biological Psychology, VU University Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands. ; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202-3082, USA. ; Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. ; 1] Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge, Massachusetts 02142, USA. [3] Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [4] Center for Biological Sequence Analysis, Department of Systems Biology, Technical 142 University of Denmark, DK-2800 Lyngby, Denmark. ; Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. ; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. ; 1] Ontario Cancer Genetics Network, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Epidemiology, University of California Irvine, Irvine, California 92697-7550, USA. ; Sanquin Research, 6525 GA Nijmegen, The Netherlands. ; 1] Tuscany Regional Health Agency, Florence, Italy, I.O.T. and Department of Medical and Surgical Critical Care, University of Florence, 50134 Florence, Italy. [2] Geriatric Unit, Azienda Sanitaria di Firenze, 50122 Florence, Italy. ; University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany. ; 1] Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain. [2] Centro de Investigacion en Red de Enfermedades Raras (CIBERER), E-46010 Valencia, Spain. ; Department of Oncology, University of Helsinki and Helsinki University Central Hospital, FI-00100 Helsinki, Finland. ; 1] Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark. [2] Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark. ; Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), 20139 Milan, Italy. ; 1] DrMargarete Fischer-Bosch-Institute of Clinical Pharmacology, D-70376 Stuttgart, Germany. [2] University of Tubingen, D-72074 Tubingen, Germany. ; 1] Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany. [2] German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany. ; Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany. ; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA. ; 1] Departments of Anatomy and Neurological Surgery, Indiana University school of Medicine, Indianapolis, Indiana 46202, USA. [2] Stark Neuroscience Research Center, Indiana University school of Medicine, Indianapolis, Indiana 46202, USA. ; Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006 Australia. ; Department of Clinical Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. ; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. ; Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599-7420, USA. ; Boston University School of Medicine, Department of Medicine, Sections of Preventive Medicine and Endocrinology, Boston, Massachusetts 02118, USA. ; Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield S10 2RX, UK. ; 1] Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", 34137 Trieste, Italy. [2] Department of Clinical Medical Sciences, Surgical and Health, University of Trieste, 34149 Trieste, Italy. ; 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Department of Human Genetics &Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands. ; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge CB1 8RN, UK. ; Icelandic Heart Association, IS-201 Kopavogur, Iceland. ; 1] National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland. [2] Department of General Practice and Primary health Care, University of Helsinki, FI-00014 Helsinki, Finland. [3] Helsinki University Central Hospital, Unit of General Practice, FI-00029 HUS Helsinki, Finland. [4] Folkhalsan Research Centre, FI-00290 Helsinki, Finland. ; Longitudinal Studies Section, Clinical Research Branch, Gerontology Research Center, National Institute on Aging, Baltimore, Maryland 20892, USA. ; Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, D-20246 Hamburg, Germany. ; Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark. ; Department of Genetics, University of Groningen, University Medical Centre Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands. ; National Insitute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA. ; 1] Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK. [2] Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London SW3 6JB, UK. ; 1] Department of Biological Psychology, VU University Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands. [2] EMGO + Institute for Health and Care Research, VU University Medical Centre, Van der Boechorststraat 7, 1081 Bt, Amsterdam, The Netherlands. ; 1] Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia. [2] Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. ; 1] deCODE Genetics, Reykjavik IS-101, Iceland. [2] Faculty of Medicine, University of Iceland, IS-101 Reykjavik, Iceland. ; 1] Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, F-94807 Villejuif, France. [2] University Paris-Sud, UMRS 1018, F-94807 Villejuif, France. ; Department of Obstetrics and Gynecology, Southern Medical University, 510515 Guangzhou, China. ; Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany. ; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. ; Department of Psychiatry, University of Groningen, University Medical Center Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands. ; Washington University, Department of Psychiatry, St Louis, Missouri 63110, USA. ; Department of Epidemiology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, the Netherlands. ; Department of Medical Oncology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands. ; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. ; 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; 1] Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge, Massachusetts 02142, USA. [2] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [3] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Harvard Medical School, Boston, Massachusetts 02115, USA. [2] Hebrew SeniorLife Institute for Aging Research, Boston, Massachusetts 02131, USA. ; 1] Hebrew SeniorLife Institute for Aging Research, Boston, Massachusetts 02131, USA. [2] Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. [2] Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada. ; 1] School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland. [2] Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland. ; Institute of Genetics and Biomedical Research, National Research Council, Cagliari, 09042 Sardinia, Italy. ; 1] Vesalius Research Center (VRC), VIB, 3000 Leuven, Belgium. [2] Laboratory for Translational Genetics, Department of Oncology, University of Leuven, 3000 Leuven, Belgium. ; Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden. ; Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia. ; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. ; 1] Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark. [2] Department of Medicine, Stanford School of Medicine, Stanford, California 94305-5101, USA. ; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, P.O. Box 100, FI-00029 HUS Helsinki, Finland. ; KULeuven (University of Leuven), Department of Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, 3000 Leuven, Belgium. ; Research Unit of Obstetrics &Gynecology, Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark. ; Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands. ; 1] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Finland. [2] Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [3] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [4] Psychiatric &Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy. ; Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK. ; University Groningen, University Medical Center Groningen, Department Pulmonary Medicine and Tuberculosis, GRIAC Research Institute, P.O. Box 30.001, NL-9700 RB Groningen, The Netherlands. ; 1] National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland. [2] Department of Obstetrics and Gynecology, Oulu University Hospital, P.O. Box 10, FI-90029 OYS Oulu, Finland. ; Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, P.O. Box 3000, FI-90014 Oulu, Finland. ; Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy. ; 1] Department of Internal Medicine, Erasmus MC, 3015 GE Rotterdam, the Netherlands. [2] Netherlands Consortium on Health Aging and National Genomics Initiative, 2300 RC Leiden, the Netherlands. [3] Department of Epidemiology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, the Netherlands. ; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland. ; National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224-6825, USA. ; Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Postbus 90203, 1006 BE Amsterdam, The Netherlands. ; Department of Pathology, The University of Melbourne, Melbourne, Victoria 3010, Australia. ; 1] Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK. [2] Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK. ; 1] Institute of Epidemiology II, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-8576 Neuherberg, Germany. [2] Department of Obstetrics and Gynaecology, Campus Grosshadern, Ludwig-Maximilians-University, D-81377 Munich, Germany. ; Department of Internal Medicine, Erasmus MC, 3015 GE Rotterdam, the Netherlands. ; Department of Internal Medicine, Lausanne University Hospital, CH-1015 Lausanne, Switzerland. ; 1] Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. [2] DZHK (German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany. ; Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-8576 Neuherberg, Germany. ; 1] Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. [2] DZHK (German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany. ; Department of Endocrinology, University of Groningen, University Medical Centre Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands. ; Queensland Insitute of Medical Research, Brisbane, Queensland 4029, Australia. ; 1] Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202-3082, USA. [2] Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge CB2 0QQ, UK. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and Development Institute, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1003, New York, New York 10029, USA. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK. [3] Oxford Centre for Diabetes, Endocrinology, &Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK. ; 1] Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. [2] Geriatric Research and Education Clinical Center (GRECC) - Veterans Administration Medical Center, Baltimore, Maryland 21201, USA. ; 1] Netherlands Consortium on Health Aging and National Genomics Initiative, 2300 RC Leiden, the Netherlands. [2] Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, the Netherlands. [3] Centre of Medical Systems Biology, PO Box 9600, 2300 RC Leiden, the Netherlands. ; Human Genetics Center and Divof Epidemiology, University of Houston, P.O. Box 20186, Texas 77025 USA. ; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Box 256, 751 05 Uppsala, Sweden. ; 1] Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK. [2] Institute of Health Sciences, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland. [3] Biocenter Oulu, University of Oulu, P.O. Box 5000, Aapistie 5A, FI-90014 Oulu, Finland. [4] Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland. [5] Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O. Box 20, FI-90220 Oulu, 90029 OYS, Finland. ; 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; 1] Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Denmark. [2] Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, DK-2000 Frederiksberg, Denmark. ; Division of Population Health Sciences and Education, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK. ; Department of Obstetrics and Gynecology, University Medicine Greifswald, D-17475 Greifswald, Germany. ; University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK. ; 1] deCODE Genetics, Reykjavik IS-101, Iceland. [2] Faculty of Medicine, University of Iceland, IS-101 Reykjavik, Iceland. [3]. ; 1] NHLBI's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA. [2] Boston University School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, Massachusetts 02118, USA. [3]. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK. [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231870" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Age Factors ; *Alleles ; Body Mass Index ; Breast Neoplasms/genetics ; Cardiovascular Diseases/genetics ; Child ; Diabetes Mellitus, Type 2/genetics ; Europe/ethnology ; Female ; Genetic Loci/*genetics ; Genome-Wide Association Study ; Genomic Imprinting/genetics ; Humans ; Hypothalamo-Hypophyseal System/physiology ; Intercellular Signaling Peptides and Proteins/genetics ; Male ; Membrane Proteins/genetics ; Menarche/*genetics ; Obesity/genetics ; Ovary/physiology ; *Parents ; Polymorphism, Single Nucleotide/genetics ; Potassium Channels, Tandem Pore Domain/genetics ; Proteins/genetics ; Quantitative Trait Loci/genetics ; Receptors, GABA-B/metabolism ; Receptors, Retinoic Acid/metabolism ; Ribonucleoproteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-05-05
    Description: The global endemic of cardiovascular diseases calls for improved risk assessment and treatment. Here, we describe an association between myocardial infarction (MI) and a common sequence variant on chromosome 9p21. This study included a total of 4587 cases and 12,767 controls. The identified variant, adjacent to the tumor suppressor genes CDKN2A and CDKN2B, was associated with the disease with high significance. Approximately 21% of individuals in the population are homozygous for this variant, and their estimated risk of suffering myocardial infarction is 1.64 times as great as that of noncarriers. The corresponding risk is 2.02 times as great for early-onset cases. The population attributable risk is 21% for MI in general and 31% for early-onset cases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helgadottir, Anna -- Thorleifsson, Gudmar -- Manolescu, Andrei -- Gretarsdottir, Solveig -- Blondal, Thorarinn -- Jonasdottir, Aslaug -- Jonasdottir, Adalbjorg -- Sigurdsson, Asgeir -- Baker, Adam -- Palsson, Arnar -- Masson, Gisli -- Gudbjartsson, Daniel F -- Magnusson, Kristinn P -- Andersen, Karl -- Levey, Allan I -- Backman, Valgerdur M -- Matthiasdottir, Sigurborg -- Jonsdottir, Thorbjorg -- Palsson, Stefan -- Einarsdottir, Helga -- Gunnarsdottir, Steinunn -- Gylfason, Arnaldur -- Vaccarino, Viola -- Hooper, W Craig -- Reilly, Muredach P -- Granger, Christopher B -- Austin, Harland -- Rader, Daniel J -- Shah, Svati H -- Quyyumi, Arshed A -- Gulcher, Jeffrey R -- Thorgeirsson, Gudmundur -- Thorsteinsdottir, Unnur -- Kong, Augustine -- Stefansson, Kari -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1491-3. Epub 2007 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, IS-101 Reykjavik, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17478679" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Aged ; Case-Control Studies ; Chromosome Mapping ; Chromosomes, Human, Pair 9/*genetics ; Coronary Artery Disease/genetics ; Female ; Genes, p16 ; *Genetic Predisposition to Disease ; *Genetic Variation ; Genotype ; Haplotypes ; Heterozygote ; Homozygote ; Humans ; Linkage Disequilibrium ; Male ; Middle Aged ; Myocardial Infarction/*genetics ; *Polymorphism, Single Nucleotide ; Risk Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-18
    Description: Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five-one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes-have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Augustine -- Steinthorsdottir, Valgerdur -- Masson, Gisli -- Thorleifsson, Gudmar -- Sulem, Patrick -- Besenbacher, Soren -- Jonasdottir, Aslaug -- Sigurdsson, Asgeir -- Kristinsson, Kari Th -- Jonasdottir, Adalbjorg -- Frigge, Michael L -- Gylfason, Arnaldur -- Olason, Pall I -- Gudjonsson, Sigurjon A -- Sverrisson, Sverrir -- Stacey, Simon N -- Sigurgeirsson, Bardur -- Benediktsdottir, Kristrun R -- Sigurdsson, Helgi -- Jonsson, Thorvaldur -- Benediktsson, Rafn -- Olafsson, Jon H -- Johannsson, Oskar Th -- Hreidarsson, Astradur B -- Sigurdsson, Gunnar -- DIAGRAM Consortium -- Ferguson-Smith, Anne C -- Gudbjartsson, Daniel F -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- 077016/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- G9723500/Medical Research Council/United Kingdom -- K08 AR055688/AR/NIAMS NIH HHS/ -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U106179474/Medical Research Council/United Kingdom -- MC_U127592696/Medical Research Council/United Kingdom -- R01 DK029867/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):868-74. doi: 10.1038/nature08625.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland. kong@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016592" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Binding Sites ; Breast Neoplasms/genetics ; Carcinoma, Basal Cell/genetics ; Chromosomes, Human, Pair 11/genetics ; Chromosomes, Human, Pair 7/genetics ; DNA Methylation/genetics ; Diabetes Mellitus, Type 2/genetics ; *Fathers ; Female ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genomic Imprinting/genetics ; Haplotypes ; Humans ; Iceland ; Male ; *Mothers ; Pedigree ; Polymorphism, Single Nucleotide/*genetics ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-07
    Description: Low bone mineral density (BMD) is used as a parameter of osteoporosis. Genome-wide association studies of BMD have hitherto focused on BMD as a quantitative trait, yielding common variants of small effects that contribute to the population diversity in BMD. Here we use BMD as a dichotomous trait, searching for variants that may have a direct effect on the risk of pathologically low BMD rather than on the regulation of BMD in the healthy population. Through whole-genome sequencing of Icelandic individuals, we found a rare nonsense mutation within the leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) gene (c.376C〉T) that is strongly associated with low BMD, and with osteoporotic fractures. This mutation leads to termination of LGR4 at position 126 and fully disrupts its function. The c.376C〉T mutation is also associated with electrolyte imbalance, late onset of menarche and reduced testosterone levels, as well as an increased risk of squamous cell carcinoma of the skin and biliary tract cancer. Interestingly, the phenotype of carriers of the c.376C〉T mutation overlaps that of Lgr4 mutant mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Styrkarsdottir, Unnur -- Thorleifsson, Gudmar -- Sulem, Patrick -- Gudbjartsson, Daniel F -- Sigurdsson, Asgeir -- Jonasdottir, Aslaug -- Jonasdottir, Adalbjorg -- Oddsson, Asmundur -- Helgason, Agnar -- Magnusson, Olafur T -- Walters, G Bragi -- Frigge, Michael L -- Helgadottir, Hafdis T -- Johannsdottir, Hrefna -- Bergsteinsdottir, Kristin -- Ogmundsdottir, Margret H -- Center, Jacqueline R -- Nguyen, Tuan V -- Eisman, John A -- Christiansen, Claus -- Steingrimsson, Erikur -- Jonasson, Jon G -- Tryggvadottir, Laufey -- Eyjolfsson, Gudmundur I -- Theodors, Asgeir -- Jonsson, Thorvaldur -- Ingvarsson, Thorvaldur -- Olafsson, Isleifur -- Rafnar, Thorunn -- Kong, Augustine -- Sigurdsson, Gunnar -- Masson, Gisli -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- HL-102923/HL/NHLBI NIH HHS/ -- HL-102924/HL/NHLBI NIH HHS/ -- HL-102925/HL/NHLBI NIH HHS/ -- HL-102926/HL/NHLBI NIH HHS/ -- HL-103010/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):517-20. doi: 10.1038/nature12124. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE Genetics/Amgen, 101 Reykjavik, Iceland. unnurth@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Australia ; Biliary Tract Neoplasms/*genetics ; Bone Density/*genetics ; Carcinoma, Squamous Cell/*genetics ; Codon, Nonsense/*genetics ; Denmark ; Down-Regulation/genetics ; Female ; Heterozygote ; Humans ; Iceland ; Male ; Menarche/genetics ; Mice ; Mice, Knockout ; Osteoporotic Fractures/*genetics ; Phenotype ; Receptors, G-Protein-Coupled/chemistry/deficiency/*genetics/metabolism ; Skin Neoplasms/*genetics ; Testosterone/analysis ; Water-Electrolyte Imbalance/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-07-03
    Description: Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the 'genomic disorders', have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077530/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077530/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stefansson, Hreinn -- Ophoff, Roel A -- Steinberg, Stacy -- Andreassen, Ole A -- Cichon, Sven -- Rujescu, Dan -- Werge, Thomas -- Pietilainen, Olli P H -- Mors, Ole -- Mortensen, Preben B -- Sigurdsson, Engilbert -- Gustafsson, Omar -- Nyegaard, Mette -- Tuulio-Henriksson, Annamari -- Ingason, Andres -- Hansen, Thomas -- Suvisaari, Jaana -- Lonnqvist, Jouko -- Paunio, Tiina -- Borglum, Anders D -- Hartmann, Annette -- Fink-Jensen, Anders -- Nordentoft, Merete -- Hougaard, David -- Norgaard-Pedersen, Bent -- Bottcher, Yvonne -- Olesen, Jes -- Breuer, Rene -- Moller, Hans-Jurgen -- Giegling, Ina -- Rasmussen, Henrik B -- Timm, Sally -- Mattheisen, Manuel -- Bitter, Istvan -- Rethelyi, Janos M -- Magnusdottir, Brynja B -- Sigmundsson, Thordur -- Olason, Pall -- Masson, Gisli -- Gulcher, Jeffrey R -- Haraldsson, Magnus -- Fossdal, Ragnheidur -- Thorgeirsson, Thorgeir E -- Thorsteinsdottir, Unnur -- Ruggeri, Mirella -- Tosato, Sarah -- Franke, Barbara -- Strengman, Eric -- Kiemeney, Lambertus A -- Genetic Risk and Outcome in Psychosis (GROUP) -- Melle, Ingrid -- Djurovic, Srdjan -- Abramova, Lilia -- Kaleda, Vasily -- Sanjuan, Julio -- de Frutos, Rosa -- Bramon, Elvira -- Vassos, Evangelos -- Fraser, Gillian -- Ettinger, Ulrich -- Picchioni, Marco -- Walker, Nicholas -- Toulopoulou, Timi -- Need, Anna C -- Ge, Dongliang -- Yoon, Joeng Lim -- Shianna, Kevin V -- Freimer, Nelson B -- Cantor, Rita M -- Murray, Robin -- Kong, Augustine -- Golimbet, Vera -- Carracedo, Angel -- Arango, Celso -- Costas, Javier -- Jonsson, Erik G -- Terenius, Lars -- Agartz, Ingrid -- Petursson, Hannes -- Nothen, Markus M -- Rietschel, Marcella -- Matthews, Paul M -- Muglia, Pierandrea -- Peltonen, Leena -- St Clair, David -- Goldstein, David B -- Stefansson, Kari -- Collier, David A -- 089061/Wellcome Trust/United Kingdom -- 1R01HL087679-01/HL/NHLBI NIH HHS/ -- PDA/02/06/016/Department of Health/United Kingdom -- R01 MH078075/MH/NIMH NIH HHS/ -- England -- Nature. 2009 Aug 6;460(7256):744-7. doi: 10.1038/nature08186. Epub 2009 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, IS-101 Reykjavik, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19571808" target="_blank"〉PubMed〈/a〉
    Keywords: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; Chromosomes, Human, Pair 11/genetics ; Chromosomes, Human, Pair 18/genetics ; Chromosomes, Human, Pair 6/genetics ; DNA-Binding Proteins/genetics ; Genetic Markers/genetics ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genome-Wide Association Study ; Genotype ; Humans ; Major Histocompatibility Complex/genetics ; Neurogranin/genetics ; Polymorphism, Single Nucleotide/*genetics ; Schizophrenia/*genetics/immunology ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-29
    Description: Meiotic recombinations contribute to genetic diversity by yielding new combinations of alleles. Recently, high-resolution recombination maps were inferred from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium (LD) patterns that capture historical recombination events. The use of these maps has been demonstrated by the identification of recombination hotspots and associated motifs, and the discovery that the PRDM9 gene affects the proportion of recombinations occurring at hotspots. However, these maps provide no information about individual or sex differences. Moreover, locus-specific demographic factors like natural selection can bias LD-based estimates of recombination rate. Existing genetic maps based on family data avoid these shortcomings, but their resolution is limited by relatively few meioses and a low density of markers. Here we used genome-wide SNP data from 15,257 parent-offspring pairs to construct the first recombination maps based on directly observed recombinations with a resolution that is effective down to 10 kilobases (kb). Comparing male and female maps reveals that about 15% of hotspots in one sex are specific to that sex. Although male recombinations result in more shuffling of exons within genes, female recombinations generate more new combinations of nearby genes. We discover novel associations between recombination characteristics of individuals and variants in the PRDM9 gene and we identify new recombination hotspots. Comparisons of our maps with two LD-based maps inferred from data of HapMap populations of Utah residents with ancestry from northern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) reveal population differences previously masked by noise and map differences at regions previously described as targets of natural selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Augustine -- Thorleifsson, Gudmar -- Gudbjartsson, Daniel F -- Masson, Gisli -- Sigurdsson, Asgeir -- Jonasdottir, Aslaug -- Walters, G Bragi -- Jonasdottir, Adalbjorg -- Gylfason, Arnaldur -- Kristinsson, Kari Th -- Gudjonsson, Sigurjon A -- Frigge, Michael L -- Helgason, Agnar -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- England -- Nature. 2010 Oct 28;467(7319):1099-103. doi: 10.1038/nature09525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland. kong@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981099" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chromosomes, Human/*genetics ; DNA-Binding Proteins/genetics ; Europe/ethnology ; Exons/genetics ; Female ; Genetics, Population ; Haplotypes/genetics ; Heterozygote ; Histone-Lysine N-Methyltransferase/genetics ; Humans ; Linkage Disequilibrium/genetics ; Male ; Meiosis/genetics ; Nigeria/ethnology ; Pedigree ; Polymorphism, Single Nucleotide/genetics ; Recombination, Genetic/*genetics ; Sample Size ; Selection, Genetic/genetics ; *Sex Characteristics ; Utah
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-22
    Description: The nature of active deformation in the Gulf of Cadiz is important for developing a better understanding of the interplate tectonics and for revealing the source of the 1755 Great Lisbon earthquake. New, high-resolution 3-D seismic data reveal a classic pull-apart basin that has formed on an east striking fault in the Southern Lobe of the Gulf of Cadiz accretionary wedge. Geometrical relationships between an array of faults and associated basins show evidence for both dextral and sinistral shear sense in the Southern Lobe. Strike-slip faulting within the lobe may provide a link between frontal accretion at the deformation front and extension and gravitational sliding processes occurring further upslope. Inception of the strike-slip faults appears to accommodate deformation driven by spatially variant accretion or gravitational spreading rates, or both. This implies that active deformation on strike-slip faults in the Southern Lobe is unrelated to the proposed modern inception of a transform plate boundary through the Gulf of Cadiz and underscores the importance of detailed bathymetric analysis in understanding tectonic processes.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-19
    Description: Active gas venting occurs on the uppermost continental slope off west Svalbard, close to and upslope from the present-day intersection of the base of methane hydrate stability (BMHS) with the seabed in about 400 m water depth in the inter-fan region between the Kongsfjorden and Isfjorden cross-shelf troughs. From an integrated analysis of high-resolution, two-dimensional, pre-stack migrated seismic reflection profiles and multibeam bathymetric data, we map out a bottom simulating reflector (BSR) in the inter-fan region and analyze the subsurface gas migration and accumulation. Gas seeps mostly occur in the zone from which the BMHS at the seabed has retreated over the recent past (1975–2008) as a consequence of a bottom water temperature rise of 1°C. The overall margin-parallel alignment of the gas seeps is not related to fault-controlled gas migration, as seismic evidence of faults is absent. There is no evidence for a BSR close to the gas flare region in the upper slope but numerous gas pockets exist directly below the predicted BMHS. While the contour following trend of the gas seeps could be a consequence of retreat of the landward limit of the BMHS and gas hydrate dissociation, the scattered distribution of seeps within the probable hydrate dissociation corridor and the occurrence of a cluster of seeps outside the predicted BMHS limit and near the shelf break indicate the role of lithological heterogeneity in focusing gas migration.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...