ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-04
    Description: Members of the dynein family, consisting of cytoplasmic and axonemal isoforms, are motors that move towards the minus ends of microtubules. Cytoplasmic dynein-1 (dynein-1) plays roles in mitosis and cellular cargo transport, and is implicated in viral infections and neurodegenerative diseases. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Here we present the crystal structure of the human cytoplasmic dynein-2 motor bound to the ATP-hydrolysis transition state analogue ADP.vanadate. The structure reveals a closure of the motor's ring of six AAA+ domains (ATPases associated with various cellular activites: AAA1-AAA6). This induces a steric clash with the linker, the key element for the generation of movement, driving it into a conformation that is primed to produce force. Ring closure also changes the interface between the stalk and buttress coiled-coil extensions of the motor domain. This drives helix sliding in the stalk which causes the microtubule binding domain at its tip to release from the microtubule. Our structure answers the key questions of how ATP hydrolysis leads to linker remodelling and microtubule affinity regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336856/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336856/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Helgo -- Zalyte, Ruta -- Urnavicius, Linas -- Carter, Andrew P -- 100387/Wellcome Trust/United Kingdom -- MC_UP_A025_1011/Medical Research Council/United Kingdom -- WT100387/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Feb 19;518(7539):435-8. doi: 10.1038/nature14023. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470043" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/analogs & derivatives/metabolism ; Binding Sites ; Crystallography, X-Ray ; *Cytoplasm ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Humans ; Hydrolysis ; Models, Molecular ; Movement ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-05
    Description: ATP-binding cassette (ABC) transporters translocate substrates across cell membranes, using energy harnessed from ATP binding and hydrolysis at their nucleotide-binding domains. ABC exporters are present both in prokaryotes and eukaryotes, with examples implicated in multidrug resistance of pathogens and cancer cells, as well as in many human diseases. TmrAB is a heterodimeric ABC exporter from the thermophilic Gram-negative eubacterium Thermus thermophilus; it is homologous to various multidrug transporters and contains one degenerate site with a non-catalytic residue next to the Walker B motif. Here we report a subnanometre-resolution structure of detergent-solubilized TmrAB in a nucleotide-free, inward-facing conformation by single-particle electron cryomicroscopy. The reconstructions clearly resolve characteristic features of ABC transporters, including helices in the transmembrane domain and nucleotide-binding domains. A cavity in the transmembrane domain is accessible laterally from the cytoplasmic side of the membrane as well as from the cytoplasm, indicating that the transporter lies in an inward-facing open conformation. The two nucleotide-binding domains remain in contact via their carboxy-terminal helices. Furthermore, comparison between our structure and the crystal structures of other ABC transporters suggests a possible trajectory of conformational changes that involves a sliding and rotating motion between the two nucleotide-binding domains during the transition from the inward-facing to outward-facing conformations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372080/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372080/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, JungMin -- Wu, Shenping -- Tomasiak, Thomas M -- Mergel, Claudia -- Winter, Michael B -- Stiller, Sebastian B -- Robles-Colmanares, Yaneth -- Stroud, Robert M -- Tampe, Robert -- Craik, Charles S -- Cheng, Yifan -- 1P41CA196276-01/CA/NCI NIH HHS/ -- P41 CA196276/CA/NCI NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50GM073210/GM/NIGMS NIH HHS/ -- P50GM082250/GM/NIGMS NIH HHS/ -- R01 GM024485/GM/NIGMS NIH HHS/ -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R37 GM024485/GM/NIGMS NIH HHS/ -- R37GM024485/GM/NIGMS NIH HHS/ -- S10 RR026814/RR/NCRR NIH HHS/ -- S10RR026814/RR/NCRR NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):396-400. doi: 10.1038/nature13872. Epub 2014 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany. ; 1] Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA [2] Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; 1] Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany [2] Cluster of Excellence - Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363761" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/immunology/*ultrastructure ; Antigens/chemistry/immunology ; Binding Sites ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Models, Molecular ; Nucleotides/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rotation ; Thermus thermophilus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-10
    Description: The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grallert, Agnes -- Boke, Elvan -- Hagting, Anja -- Hodgson, Ben -- Connolly, Yvonne -- Griffiths, John R -- Smith, Duncan L -- Pines, Jonathon -- Hagan, Iain M -- 092096/Wellcome Trust/United Kingdom -- A13678/Cancer Research UK/United Kingdom -- A16406/Cancer Research UK/United Kingdom -- C147/A16406/Cancer Research UK/United Kingdom -- C29/A13678/Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):94-8. doi: 10.1038/nature14019. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; The Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN, UK. ; Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487150" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Chromosome Segregation ; Conserved Sequence ; Cyclin B/metabolism ; Enzyme Activation ; HeLa Cells ; Holoenzymes/metabolism ; Humans ; Isoenzymes/metabolism ; *Mitosis ; Molecular Sequence Data ; Phosphorylation ; Protein Phosphatase 1/*metabolism ; Protein Phosphatase 2/chemistry/*metabolism ; Protein Subunits/chemistry/metabolism ; Schizosaccharomyces/*cytology/*enzymology ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-24
    Description: Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziller, Michael J -- Edri, Reuven -- Yaffe, Yakey -- Donaghey, Julie -- Pop, Ramona -- Mallard, William -- Issner, Robbyn -- Gifford, Casey A -- Goren, Alon -- Xing, Jeffrey -- Gu, Hongcang -- Cacchiarelli, Davide -- Tsankov, Alexander M -- Epstein, Charles -- Rinn, John L -- Mikkelsen, Tarjei S -- Kohlbacher, Oliver -- Gnirke, Andreas -- Bernstein, Bradley E -- Elkabetz, Yechiel -- Meissner, Alexander -- F32 DK095537/DK/NIDDK NIH HHS/ -- HG006911/HG/NHGRI NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):355-9. doi: 10.1038/nature13990. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 6997801, Israel. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA [3] Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Applied Bioinformatics, Center for Bioinformatics and Quantitative Biology Center, University of Tubingen, Tubingen 72076, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533951" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Differentiation/*genetics ; Cell Lineage/genetics ; Embryonic Stem Cells/*cytology/metabolism ; Epigenesis, Genetic/*genetics ; Epigenomics/*methods ; Humans ; Neural Stem Cells/*cytology/*metabolism ; RNA, Small Interfering/analysis/genetics ; Reproducibility of Results ; Transcription Factors/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):405-6. doi: 10.1126/science.346.6208.405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*psychology ; *Biological Evolution ; *Cooperative Behavior ; Female ; Hominidae/anatomy & histology/psychology ; Humans ; Male ; Skull/*anatomy & histology ; Testosterone/metabolism ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-29
    Description: The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wietek, Jonas -- Wiegert, J Simon -- Adeishvili, Nona -- Schneider, Franziska -- Watanabe, Hiroshi -- Tsunoda, Satoshi P -- Vogt, Arend -- Elstner, Marcus -- Oertner, Thomas G -- Hegemann, Peter -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biology, Experimental Biophysics, Humboldt Universitat zu Berlin, D-10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674867" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Binding Sites ; CA1 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Ion Channel Gating ; Light ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Protein Engineering ; Pyramidal Cells/metabolism ; Rats ; Recombinant Fusion Proteins/chemistry ; Rhodopsin/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-17
    Description: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guojie -- Li, Cai -- Li, Qiye -- Li, Bo -- Larkin, Denis M -- Lee, Chul -- Storz, Jay F -- Antunes, Agostinho -- Greenwold, Matthew J -- Meredith, Robert W -- Odeen, Anders -- Cui, Jie -- Zhou, Qi -- Xu, Luohao -- Pan, Hailin -- Wang, Zongji -- Jin, Lijun -- Zhang, Pei -- Hu, Haofu -- Yang, Wei -- Hu, Jiang -- Xiao, Jin -- Yang, Zhikai -- Liu, Yang -- Xie, Qiaolin -- Yu, Hao -- Lian, Jinmin -- Wen, Ping -- Zhang, Fang -- Li, Hui -- Zeng, Yongli -- Xiong, Zijun -- Liu, Shiping -- Zhou, Long -- Huang, Zhiyong -- An, Na -- Wang, Jie -- Zheng, Qiumei -- Xiong, Yingqi -- Wang, Guangbiao -- Wang, Bo -- Wang, Jingjing -- Fan, Yu -- da Fonseca, Rute R -- Alfaro-Nunez, Alonzo -- Schubert, Mikkel -- Orlando, Ludovic -- Mourier, Tobias -- Howard, Jason T -- Ganapathy, Ganeshkumar -- Pfenning, Andreas -- Whitney, Osceola -- Rivas, Miriam V -- Hara, Erina -- Smith, Julia -- Farre, Marta -- Narayan, Jitendra -- Slavov, Gancho -- Romanov, Michael N -- Borges, Rui -- Machado, Joao Paulo -- Khan, Imran -- Springer, Mark S -- Gatesy, John -- Hoffmann, Federico G -- Opazo, Juan C -- Hastad, Olle -- Sawyer, Roger H -- Kim, Heebal -- Kim, Kyu-Won -- Kim, Hyeon Jeong -- Cho, Seoae -- Li, Ning -- Huang, Yinhua -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Bertelsen, Mads F -- Derryberry, Elizabeth -- Warren, Wesley -- Wilson, Richard K -- Li, Shengbin -- Ray, David A -- Green, Richard E -- O'Brien, Stephen J -- Griffin, Darren -- Johnson, Warren E -- Haussler, David -- Ryder, Oliver A -- Willerslev, Eske -- Graves, Gary R -- Alstrom, Per -- Fjeldsa, Jon -- Mindell, David P -- Edwards, Scott V -- Braun, Edward L -- Rahbek, Carsten -- Burt, David W -- Houde, Peter -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Avian Genome Consortium -- Jarvis, Erich D -- Gilbert, M Thomas P -- Wang, Jun -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R01 HL087216/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1311-20. doi: 10.1126/science.1251385. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. ; Royal Veterinary College, University of London, London, UK. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal. ; Department of Biological Sciences, University of South Carolina, Columbia, SC, USA. ; Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA. ; Department of Animal Ecology, Uppsala University, Norbyvagen 18D, S-752 36 Uppsala, Sweden. ; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia. Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore. ; Department of Integrative Biology University of California, Berkeley, CA 94720, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. College of Life Sciences, Wuhan University, Wuhan 430072, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. BGI Education Center,University of Chinese Academy of Sciences,Shenzhen, 518083, China. ; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK. ; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Instituto de Ciencias Biomedicas Abel Salazar (ICBAS), Universidade do Porto, Portugal. ; Department of Biology, University of California Riverside, Riverside, CA 92521, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Post Office Box 7011, S-750 07, Uppsala, Sweden. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. ; Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. College of Animal Science and Technology, China Agricultural University, Beijing 100094, China. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA. Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA. ; The Genome Institute at Washington University, St. Louis, MO 63108, USA. ; College of Medicine and Forensics, Xi'an Jiaotong University, Xi'an, 710061, China. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia. Nova Southeastern University Oceanographic Center 8000 N Ocean Drive, Dania, FL 33004, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA. ; Genetics Division, San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA. ; Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China. Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, SE-750 07 Uppsala, Sweden. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Imperial College London, Grand Challenges in Ecosystems and the Environment Initiative, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK. ; Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Department of Medicine, University of Hong Kong, Hong Kong. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504712" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biodiversity ; *Biological Evolution ; Birds/classification/*genetics/physiology ; Conserved Sequence ; Diet ; *Evolution, Molecular ; Female ; Flight, Animal ; Genes ; Genetic Variation ; *Genome ; Genomics ; Male ; Molecular Sequence Annotation ; Phylogeny ; Reproduction/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Synteny ; Vision, Ocular/genetics ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-25
    Description: Lingham-Soliar questions our interpretation of integumentary structures in the Middle-Late Jurassic ornithischian dinosaur Kulindadromeus as feather-like appendages and alternatively proposes that the compound structures observed around the humerus and femur of Kulindadromeus are support fibers associated with badly degraded scales. We consider this hypothesis highly unlikely because of the taphonomy and morphology of the preserved structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godefroit, Pascal -- Sinitsa, Sofia M -- Dhouailly, Danielle -- Bolotsky, Yuri L -- Sizov, Alexander V -- McNamara, Maria E -- Benton, Michael J -- Spagna, Paul -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):434. doi: 10.1126/science.1260146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Directorate, Earth and History of Life, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. pascal.godefroit@naturalsciences.be. ; Institute of Natural Resources, Ecology, and Cryology, 26 Butin Street, 672 014 Chita, Russia. ; UJF-CNRS FRE 3405, AGIM, Universite Joseph Fourier, Site Sante, 38 706 La Tronche, France. ; Institute of Geology and Nature Management, FEB RAS, 1 Relochny Street 675 000, Blagoveschensk, Russia. ; Institute of the Earth Crust, SB RAS, 128 Lermontov Street, 664 033 Irkutsk, Russia. ; School of Biological, Earth, and Environmental Science, University College Cork, Cork, Ireland. School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. ; School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. ; Directorate, Earth and History of Life, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342796" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Dinosaurs/*anatomy & histology ; Epidermis/*anatomy & histology ; Feathers/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-06-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, William F -- Sousa, Filipa L -- Lane, Nick -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1092-3. doi: 10.1126/science.1251653.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Evolution, Heinrich-Heine-Universitat, Universitatsstrasse 1, 40225 Dusseldorf, Germany. bill@hhu.de. ; Institute of Molecular Evolution, Heinrich-Heine-Universitat, Universitatsstrasse 1, 40225 Dusseldorf, Germany. ; Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904143" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Anaerobiosis ; Bacteria, Anaerobic/*metabolism ; *Biological Evolution ; *Energy Metabolism ; Methane/metabolism ; Methanobacterium/*metabolism ; *Origin of Life
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koschowitz, Marie-Claire -- Fischer, Christian -- Sander, Martin -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):416-8. doi: 10.1126/science.1258957.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Institute for Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology with Zoological Museum, Georg-August-Universitat Gottingen, Berliner Strasse 28, 37073 Goettingen, Germany. m.koschowitz@uni-bonn.de. ; Institute for Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology with Zoological Museum, Georg-August-Universitat Gottingen, Berliner Strasse 28, 37073 Goettingen, Germany. ; Division of Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342783" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Size ; *Color Vision ; Dinosaurs/anatomy & histology/classification/*physiology ; Feathers/anatomy & histology/*physiology ; Galliformes/anatomy & histology/classification/*physiology ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kennett, Douglas J -- Asmerom, Yemane -- Kemp, Brian M -- Polyak, Victor -- Bolnick, Deborah A -- Malhi, Ripan S -- Culleton, Brendan J -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):390. doi: 10.1126/science.345.6195.390-a. Epub 2014 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology and Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA. djk23@psu.edu. ; Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA. ; Department of Anthropology and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA. ; Department of Anthropology and Population Research Center, University of Texas at Austin, Austin, TX 78712, USA. ; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA. ; Department of Anthropology and Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061196" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Humans ; Indians, North American/*genetics ; *Skeleton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayr, Gerald -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1466. doi: 10.1126/science.346.6216.1466-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Senckenberg Research Institute and Natural History Museum Frankfurt, Ornithological Section, D-60325 Frankfurt am Main, Germany. gerald.mayr@senckenberg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525236" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Color Vision ; Dinosaurs/*physiology ; Feathers/*physiology ; Galliformes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-12-17
    Description: Sex-specific chromosomes, like the W of most female birds and the Y of male mammals, usually have lost most genes owing to a lack of recombination. We analyze newly available genomes of 17 bird species representing the avian phylogenetic range, and find that more than half of them do not have as fully degenerated W chromosomes as that of chicken. We show that avian sex chromosomes harbor tremendous diversity among species in their composition of pseudoautosomal regions and degree of Z/W differentiation. Punctuated events of shared or lineage-specific recombination suppression have produced a gradient of "evolutionary strata" along the Z chromosome, which initiates from the putative avian sex-determining gene DMRT1 and ends at the pseudoautosomal region. W-linked genes are subject to ongoing functional decay after recombination was suppressed, and the tempo of degeneration slows down in older strata. Overall, we unveil a complex history of avian sex chromosome evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Qi -- Zhang, Jilin -- Bachtrog, Doris -- An, Na -- Huang, Quanfei -- Jarvis, Erich D -- Gilbert, M Thomas P -- Zhang, Guojie -- GM076007/GM/NIGMS NIH HHS/ -- GM093182/GM/NIGMS NIH HHS/ -- R01 GM076007/GM/NIGMS NIH HHS/ -- R01 GM093182/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1246338. doi: 10.1126/science.1246338. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, CA94720, USA. zhouqi@berkeley.edu zhanggj@genomics.org.cn. ; China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China. ; Department of Integrative Biology, University of California, Berkeley, CA94720, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. zhouqi@berkeley.edu zhanggj@genomics.org.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504727" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; *Biological Evolution ; Birds/classification/*genetics ; Chickens/genetics ; Chromosome Inversion ; Chromosome Mapping ; *Evolution, Molecular ; Female ; Male ; Phylogeny ; Recombination, Genetic ; Sex Chromosomes/*genetics ; Species Specificity ; Struthioniformes/genetics ; Synteny ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coley, Phyllis D -- Kursar, Thomas A -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):35-6. doi: 10.1126/science.1248110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Utah, Salt Lake City, UT 84112, USA, and Smithsonian Tropical Research Institute, Panama City, Panama.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Biological Evolution ; French Guiana ; *Herbivory ; Mexico ; Panama ; Plant Leaves ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gramling, Carolyn -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):537. doi: 10.1126/science.346.6209.537.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; *Biological Evolution ; Oxygen/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-10-25
    Description: Godefroit et al. (Reports, 25 July 2014, p. 451) reported scales and feathers, including "basal plates," in an ornithischian dinosaur. Their arguments against the filaments being collagen fibers are not supported because of a fundamental misinterpretation of such structures and underestimation of their size. The parsimonious explanation is that the filaments are support fibers in association with badly degraded scales and that they do not represent early feather stages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lingham-Soliar, Theagarten -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):434. doi: 10.1126/science.1259983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342795" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Dinosaurs/*anatomy & histology ; Epidermis/*anatomy & histology ; Feathers/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-12-06
    Description: The prevention of fertilization through self-pollination (or pollination by a close relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility locus (S locus). The many alleles at this locus exhibit a dominance hierarchy that determines which of the two allelic specificities of a heterozygous genotype is expressed at the phenotypic level. Here, we uncover the evolution of how at least 17 small RNA (sRNA)-producing loci and their multiple target sites collectively control the dominance hierarchy among alleles within the gene controlling the pollen S-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of sRNA-target interactions by jointly acting on sRNA genes and their target sites, which has resulted in a complex system of regulation among alleles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Durand, Eleonore -- Meheust, Raphael -- Soucaze, Marion -- Goubet, Pauline M -- Gallina, Sophie -- Poux, Celine -- Fobis-Loisy, Isabelle -- Guillon, Eline -- Gaude, Thierry -- Sarazin, Alexis -- Figeac, Martin -- Prat, Elisa -- Marande, William -- Berges, Helene -- Vekemans, Xavier -- Billiard, Sylvain -- Castric, Vincent -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1200-5. doi: 10.1126/science.1259442.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire Genetique et Evolution des Populations Vegetales, CNRS UMR 8198, Universite Lille 1, F-59655 Villeneuve d'Ascq cedex, France. ; Reproduction et Developpement des Plantes, Institut Federatif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Claude Bernard Lyon I, Ecole Normale Superieure de Lyon, F-69364 Lyon, Cedex 07, France. ; Department of Biology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland. ; UDSL Universite Lille 2 Droit et Sante, and Plate-forme de genomique fonctionnelle et structurale IFR-114, F-59000 Lille, France. ; Centre National des Ressources Genomiques Vegetales, INRA UPR 1258, Castanet-Tolosan, France. ; Laboratoire Genetique et Evolution des Populations Vegetales, CNRS UMR 8198, Universite Lille 1, F-59655 Villeneuve d'Ascq cedex, France. vincent.castric@univ-lille1.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477454" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics ; *Biological Evolution ; *Gene Expression Regulation, Plant ; *Gene Regulatory Networks ; *Genes, Dominant ; *Genes, Recessive ; Genetic Loci ; Models, Molecular ; Phylogeny ; Pollination ; RNA, Small Untranslated/classification/*genetics ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-03-08
    Description: Although substantial progress has been achieved in the structural analysis of exporters from the superfamily of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, much less is known about how they selectively recognize substrates and how substrate binding is coupled to ATP hydrolysis. We have addressed these questions through crystallographic analysis of the Atm1/ABCB7/HMT1/ABCB6 ortholog from Novosphingobium aromaticivorans DSM 12444, NaAtm1, at 2.4 angstrom resolution. Consistent with a physiological role in cellular detoxification processes, functional studies showed that glutathione derivatives can serve as substrates for NaAtm1 and that its overexpression in Escherichia coli confers protection against silver and mercury toxicity. The glutathione binding site highlights the articulated design of ABC exporters, with ligands and nucleotides spanning structurally conserved elements to create adaptable interfaces accommodating conformational rearrangements during the transport cycle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jonas Y -- Yang, Janet G -- Zhitnitsky, Daniel -- Lewinson, Oded -- Rees, Douglas C -- GM45162/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 GM045162/GM/NIGMS NIH HHS/ -- R37 GM045162/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1133-6. doi: 10.1126/science.1246489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 114-96, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604198" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/genetics/metabolism ; Bacterial Proteins/*chemistry/genetics/metabolism ; Binding Sites ; Crystallography, X-Ray ; Glutathione/chemistry ; Inactivation, Metabolic ; Metals, Heavy/*metabolism/*toxicity ; Protein Multimerization ; Protein Structure, Secondary ; Sphingomonadaceae/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-01-18
    Description: A major evolutionary transition to eusociality with reproductive division of labor between queens and workers has arisen independently at least 10 times in the ants, bees, and wasps. Pheromones produced by queens are thought to play a key role in regulating this complex social system, but their evolutionary history remains unknown. Here, we identify the first sterility-inducing queen pheromones in a wasp, bumblebee, and desert ant and synthesize existing data on compounds that characterize female fecundity in 64 species of social insects. Our results show that queen pheromones are strikingly conserved across at least three independent origins of eusociality, with wasps, ants, and some bees all appearing to use nonvolatile, saturated hydrocarbons to advertise fecundity and/or suppress worker reproduction. These results suggest that queen pheromones evolved from conserved signals of solitary ancestors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Oystaeyen, Annette -- Oliveira, Ricardo Caliari -- Holman, Luke -- van Zweden, Jelle S -- Romero, Carmen -- Oi, Cintia A -- d'Ettorre, Patrizia -- Khalesi, Mohammadreza -- Billen, Johan -- Wackers, Felix -- Millar, Jocelyn G -- Wenseleers, Tom -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):287-90. doi: 10.1126/science.1244899.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Socioecology and Social Evolution, Zoological Institute, University of Leuven, Naamsestraat 59-Box 2466, 3000 Leuven, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436417" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*physiology ; Bees/*physiology ; Biological Assay ; *Biological Evolution ; Female ; Fertility/drug effects/*physiology ; Male ; Pheromones/classification/pharmacology/*physiology ; Reproduction/drug effects/physiology ; Wasps/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Libby, Eric -- Ratcliff, William C -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):426-7. doi: 10.1126/science.1262053.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Santa Fe Institute, Santa Fe, NM 87501, USA. elibby@santafe.edu. ; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342789" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; *Biological Evolution ; Cells/*cytology ; Life Cycle Stages
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-01-07
    Description: Sexual reproduction is restricted to eukaryotic species and involves the fusion of haploid gametes to form a diploid cell that subsequently undergoes meiosis to generate recombinant haploid forms. This process has been extensively studied in the unicellular yeast Saccharomyces cerevisiae, which exhibits separate regulatory control over mating and meiosis. Here we address the mechanism of sexual reproduction in the related hemiascomycete species Candida lusitaniae. We demonstrate that, in contrast to S. cerevisiae, C. lusitaniae exhibits a highly integrated sexual program in which the programs regulating mating and meiosis have fused. Profiling of the C. lusitaniae sexual cycle revealed that gene expression patterns during mating and meiosis were overlapping, indicative of co-regulation. This was particularly evident for genes involved in pheromone MAPK signalling, which were highly induced throughout the sexual cycle of C. lusitaniae. Furthermore, genetic analysis showed that the orthologue of IME2, a 'diploid-specific' factor in S. cerevisiae, and STE12, the master regulator of S. cerevisiae mating, were each required for progression through both mating and meiosis in C. lusitaniae. Together, our results establish that sexual reproduction has undergone significant rewiring between S. cerevisiae and C. lusitaniae, and that a concerted sexual cycle operates in C. lusitaniae that is more reminiscent of the distantly related ascomycete, Schizosaccharomyces pombe. We discuss these results in light of the evolution of sexual reproduction in yeast, and propose that regulatory coupling of mating and meiosis has evolved multiple times as an adaptation to promote the haploid lifestyle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051440/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051440/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sherwood, Racquel Kim -- Scaduto, Christine M -- Torres, Sandra E -- Bennett, Richard J -- F31AI075607/AI/NIAID NIH HHS/ -- R01 AI081704/AI/NIAID NIH HHS/ -- T32 GM007601/GM/NIGMS NIH HHS/ -- T32GM007601/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Feb 20;506(7488):387-90. doi: 10.1038/nature12891. Epub 2014 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, Rhode Island 02912, USA [2] Department of Microbial Pathogenesis, Yale University, 295 Congress Avenue, New Haven, Connecticut 06536-0812, USA (R.K.S.); University of California San Francisco, Tetrad Graduate Program, San Francisco, California 94158-2330, USA (S.E.T.). [3]. ; 1] Department of Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, Rhode Island 02912, USA [2]. ; 1] Department of Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, Rhode Island 02912, USA [2] Department of Microbial Pathogenesis, Yale University, 295 Congress Avenue, New Haven, Connecticut 06536-0812, USA (R.K.S.); University of California San Francisco, Tetrad Graduate Program, San Francisco, California 94158-2330, USA (S.E.T.). ; Department of Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, Rhode Island 02912, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390351" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Candida/cytology/*genetics/*physiology ; Fungal Proteins/genetics/metabolism ; Gene Expression Profiling ; Gene Expression Regulation/genetics ; Genes, Essential/genetics ; *Haploidy ; Intracellular Signaling Peptides and Proteins/metabolism ; MAP Kinase Signaling System ; Meiosis/*genetics/*physiology ; Pheromones/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Reproduction/genetics/physiology ; Saccharomyces cerevisiae/cytology/physiology ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces/cytology/physiology ; Sex ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klug, Hope -- England -- Nature. 2014 Nov 20;515(7527):343. doi: 10.1038/515343a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Tennessee, Chattanooga, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409817" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Developmental Biology ; *Gene-Environment Interaction ; *Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-08-29
    Description: Despite the large evolutionary distances between metazoan species, they can show remarkable commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology. Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. Here we map the genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors, generating a total of 1,019 data sets from diverse cell types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous regulatory factor families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding of the regulatory underpinnings of model organism biology and how these relate to human biology, development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyle, Alan P -- Araya, Carlos L -- Brdlik, Cathleen -- Cayting, Philip -- Cheng, Chao -- Cheng, Yong -- Gardner, Kathryn -- Hillier, LaDeana W -- Janette, Judith -- Jiang, Lixia -- Kasper, Dionna -- Kawli, Trupti -- Kheradpour, Pouya -- Kundaje, Anshul -- Li, Jingyi Jessica -- Ma, Lijia -- Niu, Wei -- Rehm, E Jay -- Rozowsky, Joel -- Slattery, Matthew -- Spokony, Rebecca -- Terrell, Robert -- Vafeados, Dionne -- Wang, Daifeng -- Weisdepp, Peter -- Wu, Yi-Chieh -- Xie, Dan -- Yan, Koon-Kiu -- Feingold, Elise A -- Good, Peter J -- Pazin, Michael J -- Huang, Haiyan -- Bickel, Peter J -- Brenner, Steven E -- Reinke, Valerie -- Waterston, Robert H -- Gerstein, Mark -- White, Kevin P -- Kellis, Manolis -- Snyder, Michael -- F32GM101778/GM/NIGMS NIH HHS/ -- P50GM081892/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- RC2HG005679/HG/NHGRI NIH HHS/ -- U01 HG004267/HG/NHGRI NIH HHS/ -- U01HG004264/HG/NHGRI NIH HHS/ -- U01HG004267/HG/NHGRI NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- U54 HG006996/HG/NHGRI NIH HHS/ -- U54HG004558/HG/NHGRI NIH HHS/ -- U54HG006996/HG/NHGRI NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Aug 28;512(7515):453-6. doi: 10.1038/nature13668.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Computer Science, Stanford University, Stanford, California 94305, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Statistics, University of California, Berkeley, California 94720, USA [2] Department of Statistics, University of California, Los Angeles, California 90095, USA. ; Institute for Genomics and Systems Biology, University of Chicago, Chicago, Ilinois 60637, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA. ; Department of Statistics, University of California, Berkeley, California 94720, USA. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [2] Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans/*genetics/growth & development ; Chromatin Immunoprecipitation ; Conserved Sequence/genetics ; Drosophila melanogaster/*genetics/growth & development ; *Evolution, Molecular ; Gene Expression Regulation/*genetics ; Gene Expression Regulation, Developmental/genetics ; Gene Regulatory Networks/*genetics ; Genome/genetics ; Humans ; Molecular Sequence Annotation ; Nucleotide Motifs/genetics ; Organ Specificity/genetics ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-03-29
    Description: In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence chi (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a chi sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by chi is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different chi-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to chi sequences, and explains how chi recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krajewski, Wojciech W -- Fu, Xin -- Wilkinson, Martin -- Cronin, Nora B -- Dillingham, Mark S -- Wigley, Dale B -- 100401/Wellcome Trust/United Kingdom -- 12799/Cancer Research UK/United Kingdom -- A12799/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Apr 17;508(7496):416-9. doi: 10.1038/nature13037. Epub 2014 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK [2] CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK. ; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK. ; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670664" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/analogs & derivatives/metabolism ; Bacillus subtilis/*enzymology ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/genetics/metabolism ; DNA Helicases/*chemistry/metabolism ; Exodeoxyribonucleases/*chemistry/*metabolism ; Models, Molecular ; Molecular Conformation ; Recombination, Genetic/*genetics ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-12-05
    Description: NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information on the Na(+)-NQR complex has been available until now. Here we present the crystal structure of the Na(+)-NQR complex at 3.5 A resolution. The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded part, reveals an electron transfer pathway from the NADH-oxidizing cytoplasmic NqrF subunit across the membrane to the periplasmic NqrC, and back to the quinone reduction site on NqrA located in the cytoplasm. A sodium channel was localized in subunit NqrB, which represents the largest membrane subunit of the Na(+)-NQR and is structurally related to urea and ammonia transporters. On the basis of the structure we propose a mechanism of redox-driven Na(+) translocation where the change in redox state of the flavin mononucleotide cofactor in NqrB triggers the transport of Na(+) through the observed channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steuber, Julia -- Vohl, Georg -- Casutt, Marco S -- Vorburger, Thomas -- Diederichs, Kay -- Fritz, Gunter -- England -- Nature. 2014 Dec 4;516(7529):62-7. doi: 10.1038/nature14003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Garbenstrasse 30, University of Hohenheim, 70599 Stuttgart, Germany. ; 1] Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany [2] Hermann-Staudinger-Graduate school, University of Freiburg, Hebelstrasse 27, 79104 Freiburg, Germany. ; Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany. ; Department of Biology, University of Konstanz, Universitatsstrasse 10, 78457 Konstanz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471880" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Flavoproteins/chemistry ; Iron/chemistry ; *Models, Molecular ; NAD(P)H Dehydrogenase (Quinone)/*chemistry ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Sodium/*chemistry ; Sodium Channels/chemistry ; Vibrio cholerae/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-07-22
    Description: Hundreds of tail-anchored proteins, including soluble N-ethylmaleimide-sensitive factor attachment receptors (SNAREs) involved in vesicle fusion, are inserted post-translationally into the endoplasmic reticulum membrane by a dedicated protein-targeting pathway. Before insertion, the carboxy-terminal transmembrane domains of tail-anchored proteins are shielded in the cytosol by the conserved targeting factor Get3 (in yeast; TRC40 in mammals). The Get3 endoplasmic-reticulum receptor comprises the cytosolic domains of the Get1/2 (WRB/CAML) transmembrane complex, which interact individually with the targeting factor to drive a conformational change that enables substrate release and, as a consequence, insertion. Because tail-anchored protein insertion is not associated with significant translocation of hydrophilic protein sequences across the membrane, it remains possible that Get1/2 cytosolic domains are sufficient to place Get3 in proximity with the endoplasmic-reticulum lipid bilayer and permit spontaneous insertion to occur. Here we use cell reporters and biochemical reconstitution to define mutations in the Get1/2 transmembrane domain that disrupt tail-anchored protein insertion without interfering with Get1/2 cytosolic domain function. These mutations reveal a novel Get1/2 insertase function, in the absence of which substrates stay bound to Get3 despite their proximity to the lipid bilayer; as a consequence, the notion of spontaneous transmembrane domain insertion is a non sequitur. Instead, the Get1/2 transmembrane domain helps to release substrates from Get3 by capturing their transmembrane domains, and these transmembrane interactions define a bona fide pre-integrated intermediate along a facilitated route for tail-anchor entry into the lipid bilayer. Our work sheds light on the fundamental point of convergence between co-translational and post-translational endoplasmic-reticulum membrane protein targeting and insertion: a mechanism for reducing the ability of a targeting factor to shield its substrates enables substrate handover to a transmembrane-domain-docking site embedded in the endoplasmic-reticulum membrane.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fei -- Chan, Charlene -- Weir, Nicholas R -- Denic, Vladimir -- R01 GM099943/GM/NIGMS NIH HHS/ -- R01GM0999943-01/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Aug 28;512(7515):441-4. doi: 10.1038/nature13471. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Northwest Labs, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043001" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/chemistry/genetics/*metabolism ; Adenosine Triphosphatases/metabolism ; Binding Sites ; Endoplasmic Reticulum/chemistry/enzymology/*metabolism ; Guanine Nucleotide Exchange Factors/metabolism ; Intracellular Membranes/chemistry/enzymology/*metabolism ; Lipid Bilayers/chemistry/metabolism ; Membrane Proteins/chemistry/genetics/*metabolism ; Multiprotein Complexes/chemistry/*metabolism ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation ; Protein Binding ; Protein Structure, Tertiary/genetics ; Protein Transport/genetics ; Saccharomyces cerevisiae/*cytology/*enzymology/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-04-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Bernard -- England -- Nature. 2014 Apr 3;508(7494):31-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24707524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asia ; *Biological Evolution ; *Fossils ; History, 20th Century ; Hominidae/anatomy & histology/*classification ; Kenya ; Paleontology/*history ; Phylogeny ; Tanzania
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-02-14
    Description: Extant vertebrates form two clades, the jawless Cyclostomata (lampreys and hagfishes) and the jawed Gnathostomata (all other vertebrates), with contrasting facial architectures. These arise during development from just a few key differences in the growth patterns of the cranial primordia: notably, the nasal sacs and hypophysis originate from a single placode in cyclostomes but from separate placodes in gnathostomes, and infraoptic ectomesenchyme migrates forward either side of the single placode in cyclostomes but between the placodes in gnathostomes. Fossil stem gnathostomes preserve cranial anatomies rich in landmarks that provide proxies for developmental processes and allow the transition from jawless to jawed vertebrates to be broken down into evolutionary steps. Here we use propagation phase contrast synchrotron microtomography to image the cranial anatomy of the primitive placoderm (jawed stem gnathostome) Romundina, and show that it combines jawed vertebrate architecture with cranial and cerebral proportions resembling those of cyclostomes and the galeaspid (jawless stem gnathostome) Shuyu. This combination seems to be primitive for jawed vertebrates, and suggests a decoupling between ectomesenchymal growth trajectory, ectomesenchymal proliferation, and cerebral shape change during the origin of gnathostomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dupret, Vincent -- Sanchez, Sophie -- Goujet, Daniel -- Tafforeau, Paul -- Ahlberg, Per E -- England -- Nature. 2014 Mar 27;507(7493):500-3. doi: 10.1038/nature12980. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Uppsala University, Department of Organismal Biology, Subdepartment of Evolution and Development, Norbyvagen 18A, SE-752 36, Uppsala, Sweden. ; 1] Uppsala University, Department of Organismal Biology, Subdepartment of Evolution and Development, Norbyvagen 18A, SE-752 36, Uppsala, Sweden [2] European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France. ; Museum national d'Histoire naturelle, UMR 7207 CR2P CNRS/MNHN/UPMC, 8 rue Buffon, CP 38,75231 Paris Cedex 05, France. ; European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Brain/anatomy & histology ; Face/anatomy & histology ; Fishes/*anatomy & histology/classification ; *Fossils ; *Jaw/anatomy & histology ; Lampreys/anatomy & histology ; Neural Crest/anatomy & histology ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-02-28
    Description: Nitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter that can take up nitrate over a wide range of concentrations. The mode of action of NRT1.1 is controlled by phosphorylation of a key residue, Thr 101; however, how this post-translational modification switches the transporter between two affinity states remains unclear. Here we report the crystal structure of unphosphorylated NRT1.1, which reveals an unexpected homodimer in the inward-facing conformation. In this low-affinity state, the Thr 101 phosphorylation site is embedded in a pocket immediately adjacent to the dimer interface, linking the phosphorylation status of the transporter to its oligomeric state. Using a cell-based fluorescence resonance energy transfer assay, we show that functional NRT1.1 dimerizes in the cell membrane and that the phosphomimetic mutation of Thr 101 converts the protein into a monophasic high-affinity transporter by structurally decoupling the dimer. Together with analyses of the substrate transport tunnel, our results establish a phosphorylation-controlled dimerization switch that allows NRT1.1 to uptake nitrate with two distinct affinity modes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968801/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968801/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Ji -- Bankston, John R -- Payandeh, Jian -- Hinds, Thomas R -- Zagotta, William N -- Zheng, Ning -- NS074545/NS/NINDS NIH HHS/ -- R01EY10329/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 6;507(7490):73-7. doi: 10.1038/nature13074. Epub 2014 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA. ; Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA. ; 1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572362" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anion Transport Proteins/*chemistry/genetics/metabolism ; Arabidopsis/*chemistry/genetics ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation/genetics ; Nitrates/chemistry/metabolism ; Phosphorylation ; Phosphothreonine/chemistry/metabolism ; Plant Proteins/*chemistry/genetics/metabolism ; *Protein Multimerization ; Protein Structure, Quaternary ; Protons ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-08-22
    Description: Cys-loop receptors are neurotransmitter-gated ion channels that are essential mediators of fast chemical neurotransmission and are associated with a large number of neurological diseases and disorders, as well as parasitic infections. Members of this ion channel superfamily mediate excitatory or inhibitory neurotransmission depending on their ligand and ion selectivity. Structural information for Cys-loop receptors comes from several sources including electron microscopic studies of the nicotinic acetylcholine receptor, high-resolution X-ray structures of extracellular domains and X-ray structures of bacterial orthologues. In 2011 our group published structures of the Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in complex with the allosteric partial agonist ivermectin, which provided insights into the structure of a possibly open state of a eukaryotic Cys-loop receptor, the basis for anion selectivity and channel block, and the mechanism by which ivermectin and related molecules stabilize the open state and potentiate neurotransmitter binding. However, there remain unanswered questions about the mechanism of channel opening and closing, the location and nature of the shut ion channel gate, the transitions between the closed/resting, open/activated and closed/desensitized states, and the mechanism by which conformational changes are coupled between the extracellular, orthosteric agonist binding domain and the transmembrane, ion channel domain. Here we present two conformationally distinct structures of C. elegans GluCl in the absence of ivermectin. Structural comparisons reveal a quaternary activation mechanism arising from rigid-body movements between the extracellular and transmembrane domains and a mechanism for modulation of the receptor by phospholipids.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255919/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255919/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Althoff, Thorsten -- Hibbs, Ryan E -- Banerjee, Surajit -- Gouaux, Eric -- F32 NS061404/NS/NINDS NIH HHS/ -- F32NS061404/NS/NINDS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM100400/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 21;512(7514):333-7. doi: 10.1038/nature13669.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Vollum Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA [2] Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095-1751, USA (T.A.); Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9111, USA (R.E.H.). [3]. ; NE-CAT/Cornell University, 9700 South Cass Avenue, Building 436 E001, Argonne, Illinois 60439, USA. ; 1] Vollum Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA [2] Howard Hughes Medical Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25143115" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Animals ; Apoproteins/*chemistry/metabolism ; Binding Sites ; Binding, Competitive/drug effects ; Caenorhabditis elegans/*chemistry ; Cell Membrane/metabolism ; Chloride Channels/*chemistry/*metabolism ; Crystallography, X-Ray ; Cysteine Loop Ligand-Gated Ion Channel Receptors/*chemistry/*metabolism ; Drug Partial Agonism ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ivermectin/chemistry/metabolism/pharmacology ; Ligands ; Models, Molecular ; Movement/drug effects ; Phosphatidylcholines/chemistry/metabolism/pharmacology ; Protein Binding ; Protein Multimerization/drug effects ; Protein Structure, Tertiary/drug effects ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-01-10
    Description: Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindgren, Johan -- Sjovall, Peter -- Carney, Ryan M -- Uvdal, Per -- Gren, Johan A -- Dyke, Gareth -- Schultz, Bo Pagh -- Shawkey, Matthew D -- Barnes, Kenneth R -- Polcyn, Michael J -- England -- Nature. 2014 Feb 27;506(7489):484-8. doi: 10.1038/nature12899. Epub 2014 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology, Lund University, SE-223 62 Lund, Sweden. ; SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, SE-501 15 Boras, Sweden. ; Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02906, USA. ; 1] MAX-IV laboratory, Lund University, SE-221 00 Lund, Sweden [2] Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden. ; 1] Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK [2] Institute for Life Sciences, University of Southampton, Southampton SO14 3ZH, UK. ; MUSERUM, Natural History Division, Havnevej 14, 7800 Skive, Denmark. ; Integrated Bioscience Program, University of Akron, Akron, Ohio 44325, USA. ; Mosasaur Ranch Museum, Lajitas, Texas 79852, USA. ; Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402224" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*physiology ; *Biological Evolution ; Body Temperature Regulation ; Color ; *Extinction, Biological ; *Fossils ; Melanins/analysis ; Melanosis/*metabolism ; Melanosomes/chemistry ; Phylogeny ; Reptiles/*physiology ; Skin/chemistry ; *Skin Pigmentation ; Turtles/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- Sutikna, Thomas -- Roberts, Richard -- Saptomo, Wahyu -- Brown, Peter -- Gee, Henry -- Dayton, Leigh -- Jungers, Bill -- Henneberg, Maciej -- Falk, Dean -- Martin, Robert -- Aiello, Leslie -- England -- Nature. 2014 Oct 23;514(7523):422-6. doi: 10.1038/514422a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25341771" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Caves ; Expeditions ; Female ; *Fossils ; Hominidae/*anatomy & histology/*classification ; Humans ; Indonesia ; Islands ; Microcephaly ; Skeleton ; Skull/anatomy & histology/pathology ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-07-22
    Description: Human GPR40 receptor (hGPR40), also known as free fatty-acid receptor 1 (FFAR1), is a G-protein-coupled receptor that binds long-chain free fatty acids to enhance glucose-dependent insulin secretion. Novel treatments for type-2 diabetes mellitus are therefore possible by targeting hGPR40 with partial or full agonists. TAK-875, or fasiglifam, is an orally available, potent and selective partial agonist of hGPR40 receptor, which reached phase III clinical trials for the potential treatment of type-2 diabetes mellitus. Data from clinical studies indicate that TAK-875, which is an ago-allosteric modulator of hGPR40 (ref. 3), demonstrates improved glycaemic control and low hypoglycaemic risk in diabetic patients. Here we report the crystal structure of hGPR40 receptor bound to TAK-875 at 2.3 A resolution. The co-complex structure reveals a unique binding mode of TAK-875 and suggests that entry to the non-canonical binding pocket most probably occurs via the lipid bilayer. The atomic details of the extensive charge network in the ligand binding pocket reveal additional interactions not identified in previous studies and contribute to a clear understanding of TAK-875 binding to the receptor. The hGPR40-TAK-875 structure also provides insights into the plausible binding of multiple ligands to the receptor, which has been observed in radioligand binding and Ca(2+) influx assay studies. Comparison of the transmembrane helix architecture with other G-protein-coupled receptors suggests that the crystallized TAK-875-bound hGPR40 complex is in an inactive-like state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Srivastava, Ankita -- Yano, Jason -- Hirozane, Yoshihiko -- Kefala, Georgia -- Gruswitz, Franz -- Snell, Gyorgy -- Lane, Weston -- Ivetac, Anthony -- Aertgeerts, Kathleen -- Nguyen, Jasmine -- Jennings, Andy -- Okada, Kengo -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 4;513(7516):124-7. doi: 10.1038/nature13494. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Structural Biology and Core Sciences &Technology, Takeda California, 10410 Science Center Drive, San Diego, California 92121, USA [2]. ; Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan. ; Department of Structural Biology and Core Sciences &Technology, Takeda California, 10410 Science Center Drive, San Diego, California 92121, USA. ; 1] Department of Structural Biology and Core Sciences &Technology, Takeda California, 10410 Science Center Drive, San Diego, California 92121, USA [2] Beryllium, Membrane Protein Sciences, 7869 NE Day Road West, Bainbridge Island, Washington 98110, USA (F.G.); Dart Neuroscience, 12278 Scripps Summit Drive, San Diego, California 92131, USA (K.A. and J.N.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043059" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Benzofurans/*chemistry/metabolism/*pharmacology ; Binding Sites ; Crystallography, X-Ray ; Diabetes Mellitus, Type 2/drug therapy ; *Drug Partial Agonism ; Humans ; Ligands ; Lipid Bilayers/metabolism ; Models, Molecular ; Receptors, G-Protein-Coupled/*agonists/*chemistry/metabolism ; Structural Homology, Protein ; Sulfones/*chemistry/metabolism/*pharmacology ; Surface Properties
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-07-06
    Description: Discoveries of bird-like theropod dinosaurs and basal avialans in recent decades have helped to put the iconic 'Urvogel' Archaeopteryx into context and have yielded important new data on the origin and early evolution of feathers. However, the biological context under which pennaceous feathers evolved is still debated. Here we describe a new specimen of Archaeopteryx with extensive feather preservation, not only on the wings and tail, but also on the body and legs. The new specimen shows that the entire body was covered in pennaceous feathers, and that the hindlimbs had long, symmetrical feathers along the tibiotarsus but short feathers on the tarsometatarsus. Furthermore, the wing plumage demonstrates that several recent interpretations are problematic. An analysis of the phylogenetic distribution of pennaceous feathers on the tail, hindlimb and arms of advanced maniraptorans and basal avialans strongly indicates that these structures evolved in a functional context other than flight, most probably in relation to display, as suggested by some previous studies. Pennaceous feathers thus represented an exaptation and were later, in several lineages and following different patterns, recruited for aerodynamic functions. This indicates that the origin of flight in avialans was more complex than previously thought and might have involved several convergent achievements of aerial abilities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foth, Christian -- Tischlinger, Helmut -- Rauhut, Oliver W M -- England -- Nature. 2014 Jul 3;511(7507):79-82. doi: 10.1038/nature13467.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Staatliche Naturwissenschaftliche Sammlungen Bayerns, Bayerische Staatssammlung fur Palaontologie und Geologie, Richard-Wagner-Strasse 10, 80333 Munich, Germany [2] Department of Earth and Environmental Sciences and GeoBioCenter, Ludwig-Maximilians-Universitat Munchen, Richard-Wagner-Strasse 10, 80333 Munich, Germany. ; Tannenweg 16, 85134 Stammham, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990749" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/anatomy & histology ; Dinosaurs/*anatomy & histology ; Feathers/*anatomy & histology ; *Fossils ; Germany ; Hindlimb/anatomy & histology ; Phylogeny ; Skeleton ; Tail/anatomy & histology ; Wings, Animal/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-08-29
    Description: Discovering the structure and dynamics of transcriptional regulatory events in the genome with cellular and temporal resolution is crucial to understanding the regulatory underpinnings of development and disease. We determined the genomic distribution of binding sites for 92 transcription factors and regulatory proteins across multiple stages of Caenorhabditis elegans development by performing 241 ChIP-seq (chromatin immunoprecipitation followed by sequencing) experiments. Integration of regulatory binding and cellular-resolution expression data produced a spatiotemporally resolved metazoan transcription factor binding map. Using this map, we explore developmental regulatory circuits that encode combinatorial logic at the levels of co-binding and co-expression of transcription factors, characterizing the genomic coverage and clustering of regulatory binding, the binding preferences of, and biological processes regulated by, transcription factors, the global transcription factor co-associations and genomic subdomains that suggest shared patterns of regulation, and identifying key transcription factors and transcription factor co-associations for fate specification of individual lineages and cell types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Araya, Carlos L -- Kawli, Trupti -- Kundaje, Anshul -- Jiang, Lixia -- Wu, Beijing -- Vafeados, Dionne -- Terrell, Robert -- Weissdepp, Peter -- Gevirtzman, Louis -- Mace, Daniel -- Niu, Wei -- Boyle, Alan P -- Xie, Dan -- Ma, Lijia -- Murray, John I -- Reinke, Valerie -- Waterston, Robert H -- Snyder, Michael -- R01 GM072675/GM/NIGMS NIH HHS/ -- U01 HG004267/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Aug 28;512(7515):400-5. doi: 10.1038/nature13497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois 60637, USA. ; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164749" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans/cytology/embryology/*genetics/*growth & development ; Caenorhabditis elegans Proteins/metabolism ; Cell Lineage ; Chromatin Immunoprecipitation ; Gene Expression Regulation, Developmental/*genetics ; Genome, Helminth/*genetics ; Genomics ; Larva/cytology/genetics/growth & development/metabolism ; Protein Binding ; *Spatio-Temporal Analysis ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-02-14
    Description: Inference of colour patterning in extinct dinosaurs has been based on the relationship between the morphology of melanin-containing organelles (melanosomes) and colour in extant bird feathers. When this relationship evolved relative to the origin of feathers and other novel integumentary structures, such as hair and filamentous body covering in extinct archosaurs, has not been evaluated. Here we sample melanosomes from the integument of 181 extant amniote taxa and 13 lizard, turtle, dinosaur and pterosaur fossils from the Upper-Jurassic and Lower-Cretaceous of China. We find that in the lineage leading to birds, the observed increase in the diversity of melanosome morphologies appears abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs. Similarly, mammals show an increased diversity of melanosome form compared to all ectothermic amniotes. In these two clades, mammals and maniraptoran dinosaurs including birds, melanosome form and colour are linked and colour reconstruction may be possible. By contrast, melanosomes in lizard, turtle and crocodilian skin, as well as the archosaurian filamentous body coverings (dinosaur 'protofeathers' and pterosaur 'pycnofibres'), show a limited diversity of form that is uncorrelated with colour in extant taxa. These patterns may be explained by convergent changes in the key melanocortin system of mammals and birds, which is known to affect pleiotropically both melanin-based colouration and energetic processes such as metabolic rate in vertebrates, and may therefore support a significant physiological shift in maniraptoran dinosaurs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Quanguo -- Clarke, Julia A -- Gao, Ke-Qin -- Zhou, Chang-Fu -- Meng, Qingjin -- Li, Daliang -- D'Alba, Liliana -- Shawkey, Matthew D -- England -- Nature. 2014 Mar 20;507(7492):350-3. doi: 10.1038/nature12973. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China. ; Department of Geological Sciences, University of Texas at Austin, 1 University Station C1100, Austin, Texas 78712, USA. ; School of Earth and Space Sciences, Peking University, Beijing 100871, China. ; Institute of Paleontology, Shenyang Normal University, Shenyang 110034, China. ; Beijing Museum of Natural History, 126 Tianqiao South Street, Beijing 100050, China. ; Museum of China University of Geosciences (Beijing), 29 Xueyuan Road, 100083, China. ; Department of Biology and Integrated Bioscience Program, University of Akron, Akron, Ohio 44325-3908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522537" target="_blank"〉PubMed〈/a〉
    Keywords: Alligators and Crocodiles/anatomy & histology ; Animals ; *Biological Evolution ; Birds/anatomy & histology ; China ; Dinosaurs/*physiology ; Extinction, Biological ; *Feathers/cytology ; Fossils ; Hair Color ; Integumentary System/anatomy & histology/physiology ; Lizards/anatomy & histology ; Mammals/anatomy & histology ; Melanins/metabolism ; Melanosomes/*physiology/ultrastructure ; *Pigmentation ; Skin Pigmentation ; Turtles/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-08-15
    Description: Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 A resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 A constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hassaine, Gherici -- Deluz, Cedric -- Grasso, Luigino -- Wyss, Romain -- Tol, Menno B -- Hovius, Ruud -- Graff, Alexandra -- Stahlberg, Henning -- Tomizaki, Takashi -- Desmyter, Aline -- Moreau, Christophe -- Li, Xiao-Dan -- Poitevin, Frederic -- Vogel, Horst -- Nury, Hugues -- England -- Nature. 2014 Aug 21;512(7514):276-81. doi: 10.1038/nature13552. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] [3] Theranyx, 163 Avenue de Luminy, 13288 Marseille, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2]. ; Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland. ; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland. ; Swiss Light Source, Paul Scherrer Institute, CH-5234 Villigen, Switzerland. ; Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 7257 and Universite Aix-Marseille, F-13288 Marseille, France. ; 1] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [2] CNRS, IBS, F-38000 Grenoble, France [3] CEA, DSV, IBS, F-38000 Grenoble, France. ; Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Unite de Dynamique Structurale des Macromolecules, Institut Pasteur, CNRS UMR3528, F-75015 Paris, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [3] CNRS, IBS, F-38000 Grenoble, France [4] CEA, DSV, IBS, F-38000 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119048" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Agents/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Receptors, Serotonin, 5-HT3/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-07-22
    Description: Developmental enhancers initiate transcription and are fundamental to our understanding of developmental networks, evolution and disease. Despite their importance, the properties governing enhancer-promoter interactions and their dynamics during embryogenesis remain unclear. At the beta-globin locus, enhancer-promoter interactions appear dynamic and cell-type specific, whereas at the HoxD locus they are stable and ubiquitous, being present in tissues where the target genes are not expressed. The extent to which preformed enhancer-promoter conformations exist at other, more typical, loci and how transcription is eventually triggered is unclear. Here we generated a high-resolution map of enhancer three-dimensional contacts during Drosophila embryogenesis, covering two developmental stages and tissue contexts, at unprecedented resolution. Although local regulatory interactions are common, long-range interactions are highly prevalent within the compact Drosophila genome. Each enhancer contacts multiple enhancers, and promoters with similar expression, suggesting a role in their co-regulation. Notably, most interactions appear unchanged between tissue context and across development, arising before gene activation, and are frequently associated with paused RNA polymerase. Our results indicate that the general topology governing enhancer contacts is conserved from flies to humans and suggest that transcription initiates from preformed enhancer-promoter loops through release of paused polymerase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghavi-Helm, Yad -- Klein, Felix A -- Pakozdi, Tibor -- Ciglar, Lucia -- Noordermeer, Daan -- Huber, Wolfgang -- Furlong, Eileen E M -- England -- Nature. 2014 Aug 7;512(7512):96-100. doi: 10.1038/nature13417. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany. ; 1] European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany [2]. ; Swiss Federal Institute of Technology, School of Life Sciences, CH-1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043061" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Chromosomes, Insect/genetics/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Drosophila melanogaster/embryology/*enzymology/*genetics ; Embryonic Development/*genetics ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation, Developmental/genetics ; Genetic Loci/genetics ; Genome, Insect/genetics ; Humans ; Promoter Regions, Genetic/*genetics ; Transcription Initiation, Genetic ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-07-06
    Description: The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here we analyse bovine embryos to establish that polarized gene expression is progressively lost during limb development in comparison to the mouse. Notably, the transcriptional upregulation of the Ptch1 gene, which encodes a Sonic hedgehog (SHH) receptor, is disrupted specifically in the bovine limb bud mesenchyme. This is due to evolutionary alteration of a Ptch1 cis-regulatory module, which no longer responds to graded SHH signalling during bovine handplate development. Our study provides a molecular explanation for the loss of digit asymmetry in bovine limb buds and suggests that modifications affecting the Ptch1 cis-regulatory landscape have contributed to evolutionary diversification of artiodactyl limbs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez-Rios, Javier -- Duchesne, Amandine -- Speziale, Dario -- Andrey, Guillaume -- Peterson, Kevin A -- Germann, Philipp -- Unal, Erkan -- Liu, Jing -- Floriot, Sandrine -- Barbey, Sarah -- Gallard, Yves -- Muller-Gerbl, Magdalena -- Courtney, Andrew D -- Klopp, Christophe -- Rodriguez, Sabrina -- Ivanek, Robert -- Beisel, Christian -- Wicking, Carol -- Iber, Dagmar -- Robert, Benoit -- McMahon, Andrew P -- Duboule, Denis -- Zeller, Rolf -- NS 033642/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Jul 3;511(7507):46-51. doi: 10.1038/nature13289. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2]. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France [3]. ; Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland. ; School of Life Sciences, Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland. ; Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA. ; Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich and Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich and Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France. ; Institut National de la Recherche Agronomique, Domaine Experimental du Pin au Haras, F-61310 Exmes, France. ; Institute of Anatomy, Department Biomedicine, University of Basel, CH-4056 Basel, Switzerland. ; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Institut National de la Recherche Agronomique, Biometrie et Intelligence Artificielle, F-31326 Castanet-Tolosan, France. ; 1] Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France [2] Institut National de la Recherche Agronomique, Laboratoire d'Ingenierie des Systemes Biologiques et des Procedes, F-31077 Toulouse, France. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; Institut Pasteur, Genetique Moleculaire de la Morphogenese and Centre National de la Recherche Scientifique URA-2578, F-75015 Paris, France. ; 1] School of Life Sciences, Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland [2] Department of Genetics and Evolution, University of Geneva, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Patterning ; Cattle ; Extremities/*anatomy & histology/*embryology ; Female ; Gene Expression Regulation, Developmental/genetics ; Hedgehog Proteins/*metabolism ; Limb Buds/anatomy & histology/embryology ; Male ; Mesoderm/metabolism ; Mice ; Mice, Transgenic ; Receptors, Cell Surface/genetics/*metabolism ; Regulatory Sequences, Nucleic Acid/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-05-03
    Description: The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, is one of the most prominent clinical drug targets for inhibition of platelet aggregation. Although mutagenesis and modelling studies of the P2Y12R provided useful insights into ligand binding, the agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here we report the structures of the human P2Y12R in complex with the full agonist 2-methylthio-adenosine-5'-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 A resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5'-triphosphate (2MeSATP) at 3.1 A resolution. These structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283), reveal striking conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions. Further analysis of these changes provides insight into a distinct ligand binding landscape in the delta-group of class A G-protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing questions surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example, to our knowledge, of a GPCR in which agonist access to the binding pocket requires large-scale rearrangements in the highly malleable extracellular region, the structural and docking studies will therefore provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jin -- Zhang, Kaihua -- Gao, Zhan-Guo -- Paoletta, Silvia -- Zhang, Dandan -- Han, Gye Won -- Li, Tingting -- Ma, Limin -- Zhang, Wenru -- Muller, Christa E -- Yang, Huaiyu -- Jiang, Hualiang -- Cherezov, Vadim -- Katritch, Vsevolod -- Jacobson, Kenneth A -- Stevens, Raymond C -- Wu, Beili -- Zhao, Qiang -- R01 AI100604/AI/NIAID NIH HHS/ -- R01AI100604/AI/NIAID NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54GM094618/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 May 1;509(7498):119-22. doi: 10.1038/nature13288.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China [2]. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; PharmaCenter Bonn, University of Bonn, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784220" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/*analogs & derivatives/chemistry/metabolism ; Adenosine Triphosphate/*analogs & derivatives/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Humans ; Ligands ; Models, Molecular ; Niacin/analogs & derivatives/chemistry/metabolism ; Protein Conformation ; Purinergic P2Y Receptor Agonists/*chemistry/metabolism ; Purinergic P2Y Receptor Antagonists/chemistry/metabolism ; Receptors, Purinergic P2Y12/*chemistry/metabolism ; Substrate Specificity ; Sulfonamides/chemistry/metabolism ; Thionucleotides/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-03-29
    Description: P2Y receptors (P2YRs), a family of purinergic G-protein-coupled receptors (GPCRs), are activated by extracellular nucleotides. There are a total of eight distinct functional P2YRs expressed in human, which are subdivided into P2Y1-like receptors and P2Y12-like receptors. Their ligands are generally charged molecules with relatively low bioavailability and stability in vivo, which limits our understanding of this receptor family. P2Y12R regulates platelet activation and thrombus formation, and several antithrombotic drugs targeting P2Y12R--including the prodrugs clopidogrel (Plavix) and prasugrel (Effient) that are metabolized and bind covalently, and the nucleoside analogue ticagrelor (Brilinta) that acts directly on the receptor--have been approved for the prevention of stroke and myocardial infarction. However, limitations of these drugs (for example, a very long half-life of clopidogrel action and a characteristic adverse effect profile of ticagrelor) suggest that there is an unfulfilled medical need for developing a new generation of P2Y12R inhibitors. Here we report the 2.6 A resolution crystal structure of human P2Y12R in complex with a non-nucleotide reversible antagonist, AZD1283. The structure reveals a distinct straight conformation of helix V, which sets P2Y12R apart from all other known class A GPCR structures. With AZD1283 bound, the highly conserved disulphide bridge in GPCRs between helix III and extracellular loop 2 is not observed and appears to be dynamic. Along with the details of the AZD1283-binding site, analysis of the extracellular interface reveals an adjacent ligand-binding region and suggests that both pockets could be required for dinucleotide binding. The structure provides essential insights for the development of improved P2Y12R ligands and allosteric modulators as drug candidates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174307/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174307/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Kaihua -- Zhang, Jin -- Gao, Zhan-Guo -- Zhang, Dandan -- Zhu, Lan -- Han, Gye Won -- Moss, Steven M -- Paoletta, Silvia -- Kiselev, Evgeny -- Lu, Weizhen -- Fenalti, Gustavo -- Zhang, Wenru -- Muller, Christa E -- Yang, Huaiyu -- Jiang, Hualiang -- Cherezov, Vadim -- Katritch, Vsevolod -- Jacobson, Kenneth A -- Stevens, Raymond C -- Wu, Beili -- Zhao, Qiang -- R01 AI100604/AI/NIAID NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Z99 DK999999/Intramural NIH HHS/ -- ZIA DK031116-26/Intramural NIH HHS/ -- ZIA DK031126-07/Intramural NIH HHS/ -- England -- Nature. 2014 May 1;509(7498):115-8. doi: 10.1038/nature13083. Epub 2014 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China [2]. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670650" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Disulfides/metabolism ; Fibrinolytic Agents/*chemistry ; Humans ; Ligands ; Models, Molecular ; Molecular Docking Simulation ; Niacin/*analogs & derivatives/chemistry/metabolism ; Protein Conformation ; Purinergic P2Y Receptor Antagonists/chemistry/metabolism ; Receptors, Purinergic P2Y12/*chemistry/metabolism ; Sulfonamides/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, William G -- England -- Nature. 2014 Sep 4;513(7516):42-3. doi: 10.1038/513042a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry &Biochemistry and the Center for the Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25186897" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Color ; Crystallization ; *Fluorescence ; Fluorescent Dyes/analysis/chemistry ; Models, Molecular ; Molecular Imaging/*methods ; *Nucleotide Motifs ; RNA/*analysis/*chemistry/genetics/metabolism ; Staining and Labeling/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-07-06
    Description: A reduction in the number of digits has evolved many times in tetrapods, particularly in cursorial mammals that travel over deserts and plains, yet the underlying developmental mechanisms have remained elusive. Here we show that digit loss can occur both during early limb patterning and at later post-patterning stages of chondrogenesis. In the 'odd-toed' jerboa (Dipus sagitta) and horse and the 'even-toed' camel, extensive cell death sculpts the tissue around the remaining toes. In contrast, digit loss in the pig is orchestrated by earlier limb patterning mechanisms including downregulation of Ptch1 expression but no increase in cell death. Together these data demonstrate remarkable plasticity in the mechanisms of vertebrate limb evolution and shed light on the complexity of morphological convergence, particularly within the artiodactyl lineage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Kimberly L -- Sears, Karen E -- Uygur, Aysu -- Maier, Jennifer -- Baczkowski, Karl-Stephan -- Brosnahan, Margaret -- Antczak, Doug -- Skidmore, Julian A -- Tabin, Clifford J -- R37 HD032443/HD/NICHD NIH HHS/ -- R37HD032443/HD/NICHD NIH HHS/ -- England -- Nature. 2014 Jul 3;511(7507):41-5. doi: 10.1038/nature13496. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA. [3]. ; 1] Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA [2]. ; 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2]. ; Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA. ; cole Normale Superieure de Lyon, 69007 Lyon, France. ; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA. ; The Camel Reproduction Centre, Dubai, United Arab Emirates. ; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Body Patterning/genetics ; Camels/anatomy & histology/embryology ; Cell Death ; *Chondrogenesis/genetics ; Extremities/*anatomy & histology/*embryology ; Fibroblast Growth Factor 8/genetics ; Gene Expression Regulation, Developmental ; Hedgehog Proteins/genetics ; Homeodomain Proteins/genetics ; Horses/anatomy & histology/embryology ; Mammals/*anatomy & histology/*embryology/genetics ; Mice ; Oncogene Proteins/genetics ; Phylogeny ; Receptors, Cell Surface/genetics ; Rodentia/anatomy & histology/embryology ; Swine/anatomy & histology/embryology ; Trans-Activators/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-11-11
    Description: The move of vertebrates to a terrestrial lifestyle required major adaptations in their locomotory apparatus and reproductive organs. While the fin-to-limb transition has received considerable attention, little is known about the developmental and evolutionary origins of external genitalia. Similarities in gene expression have been interpreted as a potential evolutionary link between the limb and genitals; however, no underlying developmental mechanism has been identified. We re-examined this question using micro-computed tomography, lineage tracing in three amniote clades, and RNA-sequencing-based transcriptional profiling. Here we show that the developmental origin of external genitalia has shifted through evolution, and in some taxa limbs and genitals share a common primordium. In squamates, the genitalia develop directly from the budding hindlimbs, or the remnants thereof, whereas in mice the genital tubercle originates from the ventral and tail bud mesenchyme. The recruitment of different cell populations for genital outgrowth follows a change in the relative position of the cloaca, the genitalia organizing centre. Ectopic grafting of the cloaca demonstrates the conserved ability of different mesenchymal cells to respond to these genitalia-inducing signals. Our results support a limb-like developmental origin of external genitalia as the ancestral condition. Moreover, they suggest that a change in the relative position of the cloacal signalling centre during evolution has led to an altered developmental route for external genitalia in mammals, while preserving parts of the ancestral limb molecular circuitry owing to a common evolutionary origin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294627/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294627/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tschopp, Patrick -- Sherratt, Emma -- Sanger, Thomas J -- Groner, Anna C -- Aspiras, Ariel C -- Hu, Jimmy K -- Pourquie, Olivier -- Gros, Jerome -- Tabin, Clifford J -- R37 HD032443/HD/NICHD NIH HHS/ -- R37-HD032443/HD/NICHD NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):391-4. doi: 10.1038/nature13819. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), 67400 Illkirch, France [3] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Developmental and Stem Cell Biology Department, Institut Pasteur, 75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Cell Lineage ; Cloaca/anatomy & histology/*embryology ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genitalia/anatomy & histology/*embryology/metabolism ; Mice ; Phylogeny ; Signal Transduction ; Snakes/embryology ; Tissue Transplantation ; X-Ray Microtomography
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-01-28
    Description: What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Chao -- Brown, Pamela J B -- Ducret, Adrien -- Brun, Yves V -- AI072992/AI/NIAID NIH HHS/ -- GM051986/GM/NIGMS NIH HHS/ -- R01 GM051986/GM/NIGMS NIH HHS/ -- S10RR028697-01/RR/NCRR NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):489-93. doi: 10.1038/nature12900. Epub 2014 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, Indiana 47405, USA. ; 1] Department of Biology, Indiana University, Bloomington, Indiana 47405, USA [2] Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463524" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*cytology/*metabolism ; Bacterial Proteins/*metabolism ; *Biological Evolution ; Caulobacter crescentus/cytology/metabolism ; Caulobacteraceae/cytology/metabolism ; Cell Membrane/metabolism ; *Cell Polarity ; Evolution, Molecular ; Models, Biological ; Molecular Sequence Data ; Phylogeny ; Protein Transport
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-04-18
    Description: The evolution of serially arranged, jointed endoskeletal supports internal to the gills--the visceral branchial arches--represents one of the key events in early jawed vertebrate (gnathostome) history, because it provided the morphological basis for the subsequent evolution of jaws. However, until now little was known about visceral arches in early gnathostomes, and theories about gill arch evolution were driven by information gleaned mostly from both modern cartilaginous (chondrichthyan) and bony (osteichthyan) fishes. New fossil discoveries can profoundly affect our understanding of evolutionary history, by revealing hitherto unseen combinations of primitive and derived characters. Here we describe a 325 million year (Myr)-old Palaeozoic shark-like fossil that represents, to our knowledge, the earliest identified chondrichthyan in which the complete gill skeleton is three-dimensionally preserved in its natural position. Its visceral arch arrangement is remarkably osteichthyan-like, suggesting that this may represent the common ancestral condition for crown gnathostomes. Our findings thus reinterpret the polarity of some arch features of the crown jawed vertebrates and invert the classic hypothesis, in which modern sharks retain the ancestral condition. This study underscores the importance of early chondrichthyans in resolving the evolutionary history of jawed vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pradel, Alan -- Maisey, John G -- Tafforeau, Paul -- Mapes, Royal H -- Mallatt, Jon -- England -- Nature. 2014 May 29;509(7502):608-11. doi: 10.1038/nature13195. Epub 2014 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Vertebrate Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA. ; European Synchrotron Radiation Facility, BP 220, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France. ; Department of Geological Sciences, Ohio University, Athens, Ohio 45701, USA. ; School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739974" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Branchial Region/anatomy & histology ; Cartilage/anatomy & histology ; *Fossils ; Gills/*anatomy & histology ; Phylogeny ; Sharks/*anatomy & histology/classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-07-22
    Description: Metabotropic glutamate receptors are class C G-protein-coupled receptors which respond to the neurotransmitter glutamate. Structural studies have been restricted to the amino-terminal extracellular domain, providing little understanding of the membrane-spanning signal transduction domain. Metabotropic glutamate receptor 5 is of considerable interest as a drug target in the treatment of fragile X syndrome, autism, depression, anxiety, addiction and movement disorders. Here we report the crystal structure of the transmembrane domain of the human receptor in complex with the negative allosteric modulator, mavoglurant. The structure provides detailed insight into the architecture of the transmembrane domain of class C receptors including the precise location of the allosteric binding site within the transmembrane domain and key micro-switches which regulate receptor signalling. This structure also provides a model for all class C G-protein-coupled receptors and may aid in the design of new small-molecule drugs for the treatment of brain disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dore, Andrew S -- Okrasa, Krzysztof -- Patel, Jayesh C -- Serrano-Vega, Maria -- Bennett, Kirstie -- Cooke, Robert M -- Errey, James C -- Jazayeri, Ali -- Khan, Samir -- Tehan, Ben -- Weir, Malcolm -- Wiggin, Giselle R -- Marshall, Fiona H -- England -- Nature. 2014 Jul 31;511(7511):557-62. doi: 10.1038/nature13396. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK [2]. ; Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25042998" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; *Models, Molecular ; Protein Structure, Tertiary ; Receptor, Metabotropic Glutamate 5/*chemistry ; Rhodopsin/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-07-22
    Description: In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walz, Susanne -- Lorenzin, Francesca -- Morton, Jennifer -- Wiese, Katrin E -- von Eyss, Bjorn -- Herold, Steffi -- Rycak, Lukas -- Dumay-Odelot, Helene -- Karim, Saadia -- Bartkuhn, Marek -- Roels, Frederik -- Wustefeld, Torsten -- Fischer, Matthias -- Teichmann, Martin -- Zender, Lars -- Wei, Chia-Lin -- Sansom, Owen -- Wolf, Elmar -- Eilers, Martin -- England -- Nature. 2014 Jul 24;511(7510):483-7. doi: 10.1038/nature13473. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Theodor Boveri Institute, Biocenter, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany [2]. ; CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK. ; Theodor Boveri Institute, Biocenter, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany. ; Institute for Molecular Biology and Tumor Research (IMT), Emil-Mannkopff-Str.2, 35033 Marburg, Germany. ; University of Bordeaux, IECB, ARNA laboratory, Equipe Labellisee Contre le Cancer, 33600 Pessac, France. ; Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35390 Giessen, Germany. ; University Children's Hospital of Cologne, and Cologne Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany. ; University Hospital Tubingen, Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, Otfried-Mueller-Strasse 10, 72076 Tubingen, Germany. ; 1] University Hospital Tubingen, Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, Otfried-Mueller-Strasse 10, 72076 Tubingen, Germany [2] Translational Gastrointestinal Oncology Group within the German Center for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany. ; DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA. ; 1] Theodor Boveri Institute, Biocenter, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany [2] Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Wurzburg, Josef-Schneider-Str.2, 97080 Wurzburg, Germany [3]. ; 1] Theodor Boveri Institute, Biocenter, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany [2] Comprehensive Cancer Center Mainfranken, University of Wurzburg, Josef-Schneider-Str. 6, 97080 Wurzburg, Germany [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043018" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line, Tumor ; Down-Regulation/*genetics ; E-Box Elements/genetics ; Gene Expression Regulation, Neoplastic/*genetics ; Genes, myc/*genetics ; Humans ; Kruppel-Like Transcription Factors/metabolism ; Mice ; Neoplasms/*genetics ; Nuclear Proteins/metabolism ; Promoter Regions, Genetic/genetics ; Protein Inhibitors of Activated STAT/metabolism ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; RNA Polymerase II/metabolism ; *Transcriptome ; Up-Regulation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-01-31
    Description: In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wan, Yue -- Qu, Kun -- Zhang, Qiangfeng Cliff -- Flynn, Ryan A -- Manor, Ohad -- Ouyang, Zhengqing -- Zhang, Jiajing -- Spitale, Robert C -- Snyder, Michael P -- Segal, Eran -- Chang, Howard Y -- P30 CA034196/CA/NCI NIH HHS/ -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01-HG004361/HG/NHGRI NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 30;505(7485):706-9. doi: 10.1038/nature12946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Stem Cell and Development, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672 [3]. ; 1] Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel. ; 1] Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, ASB Call Box 901 Farmington, Connecticut 06030, USA. ; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476892" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Base Sequence ; Binding Sites ; Child ; Female ; Gene Expression Regulation/genetics ; Genome, Human/genetics ; Humans ; Male ; MicroRNAs/chemistry/genetics/metabolism ; *Nucleic Acid Conformation ; Open Reading Frames/genetics ; Point Mutation/genetics ; RNA/*chemistry/*genetics/metabolism ; RNA Splice Sites/genetics ; RNA-Binding Proteins/metabolism ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-08-15
    Description: Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 A structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyerson, Joel R -- Kumar, Janesh -- Chittori, Sagar -- Rao, Prashant -- Pierson, Jason -- Bartesaghi, Alberto -- Mayer, Mark L -- Subramaniam, Sriram -- Z01 BC010278-10/Intramural NIH HHS/ -- ZIA BC010826-07/Intramural NIH HHS/ -- England -- Nature. 2014 Oct 16;514(7522):328-34. doi: 10.1038/nature13603. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA. ; Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, Bethesda, Maryland 20892, USA. ; FEI Company, Hillsboro, Oregon 97124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *Cryoelectron Microscopy ; Glutamic Acid/chemistry/metabolism/pharmacology ; Ion Channel Gating/drug effects ; Ligands ; Models, Molecular ; Protein Structure, Tertiary/drug effects ; Rats ; Receptors, AMPA/antagonists & inhibitors/chemistry/*metabolism/*ultrastructure ; Receptors, Kainic Acid/chemistry/*metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-08-19
    Description: Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn(2+)-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn(2+) and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 A and 2.7 A resolution, respectively. The structures reveal a similar fold to Cu(+)-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2.Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn(2+) release as a built-in counter ion, as has been proposed for H(+)-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn(2+)-ATPases and PIII-type H(+)-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+), K(+)-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259247/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259247/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kaituo -- Sitsel, Oleg -- Meloni, Gabriele -- Autzen, Henriette Elisabeth -- Andersson, Magnus -- Klymchuk, Tetyana -- Nielsen, Anna Marie -- Rees, Douglas C -- Nissen, Poul -- Gourdon, Pontus -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 23;514(7523):518-22. doi: 10.1038/nature13618. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Solvegatan 19, SE-221 84 Lund, Sweden (P.G.). [3]. ; 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2]. ; Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. ; Science for Life Laboratory, Department of Theoretical Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, SE-171 21 Solna, Sweden. ; Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. ; 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Solvegatan 19, SE-221 84 Lund, Sweden (P.G.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132545" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Binding Sites ; Cadmium/metabolism ; Calcium-Transporting ATPases/chemistry ; Conserved Sequence ; Crystallography, X-Ray ; Lead/metabolism ; Models, Molecular ; Phosphorylation ; Proteolipids/chemistry/metabolism ; Proton-Translocating ATPases/chemistry/metabolism ; Shigella/*enzymology ; Sodium-Potassium-Exchanging ATPase/chemistry ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- England -- Nature. 2014 Dec 4;516(7529):18-9. doi: 10.1038/516018a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471860" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Birds/anatomy & histology/classification ; Body Size ; *Dinosaurs/anatomy & histology/classification ; Fossils/*anatomy & histology/radiography
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-06-10
    Description: Type-A gamma-aminobutyric acid receptors (GABAARs) are the principal mediators of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signalling triggers hyperactive neurological disorders such as insomnia, anxiety and epilepsy. Here we present the first three-dimensional structure of a GABAAR, the human beta3 homopentamer, at 3 A resolution. This structure reveals architectural elements unique to eukaryotic Cys-loop receptors, explains the mechanistic consequences of multiple human disease mutations and shows an unexpected structural role for a conserved N-linked glycan. The receptor was crystallized bound to a previously unknown agonist, benzamidine, opening a new avenue for the rational design of GABAAR modulators. The channel region forms a closed gate at the base of the pore, representative of a desensitized state. These results offer new insights into the signalling mechanisms of pentameric ligand-gated ion channels and enhance current understanding of GABAergic neurotransmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167603/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167603/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Paul S -- Aricescu, A Radu -- 084655/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- MR/L009609/1/Medical Research Council/United Kingdom -- England -- Nature. 2014 Aug 21;512(7514):270-5. doi: 10.1038/nature13293. Epub 2014 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24909990" target="_blank"〉PubMed〈/a〉
    Keywords: Benzamidines/chemistry/metabolism/pharmacology ; Binding Sites ; Cell Membrane/chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Drug Design ; GABA-A Receptor Agonists/chemistry/metabolism/pharmacology ; Genetic Predisposition to Disease ; Glycosylation ; Humans ; Models, Molecular ; Mutation/genetics ; Polysaccharides/chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, GABA-A/*chemistry/genetics ; Synaptic Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Witzany, Guenther -- Baluska, Frantisek -- England -- Nature. 2014 Nov 20;515(7527):343. doi: 10.1038/515343b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Telos-Philosophische Praxis, Burmoos, Austria. ; University of Bonn, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409819" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Developmental Biology ; *Gene-Environment Interaction ; *Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-10-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Linksvayer, Timothy -- England -- Nature. 2014 Oct 16;514(7522):308-9. doi: 10.1038/nature13755. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274299" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Aggression/*physiology ; Animals ; *Biological Evolution ; Female ; *Selection, Genetic ; Spiders/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-06-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kutschera, U -- England -- Nature. 2014 Jun 12;510(7504):218. doi: 10.1038/510218a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, University of Kassel, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919913" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Hermaphroditic Organisms ; History, 20th Century ; Humans ; Phylogeny ; Selection, Genetic ; Women's Rights/*history
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-04-30
    Description: Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light-sensing kinases that control diverse cellular functions in plants, bacteria and fungi. Bacterial phytochromes consist of a photosensory core and a carboxy-terminal regulatory domain. Structures of photosensory cores are reported in the resting state and conformational responses to light activation have been proposed in the vicinity of the chromophore. However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here we report crystal and solution structures of the resting and activated states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures show an open and closed form of the dimeric protein for the activated and resting states, respectively. This nanometre-scale rearrangement is controlled by refolding of an evolutionarily conserved 'tongue', which is in contact with the chromophore. The findings reveal an unusual mechanism in which atomic-scale conformational changes around the chromophore are first amplified into an angstrom-scale distance change in the tongue, and further grow into a nanometre-scale conformational signal. The structural mechanism is a blueprint for understanding how phytochromes connect to the cellular signalling network.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015848/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015848/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takala, Heikki -- Bjorling, Alexander -- Berntsson, Oskar -- Lehtivuori, Heli -- Niebling, Stephan -- Hoernke, Maria -- Kosheleva, Irina -- Henning, Robert -- Menzel, Andreas -- Ihalainen, Janne A -- Westenhoff, Sebastian -- 1R24GM111072/GM/NIGMS NIH HHS/ -- 279944/European Research Council/International -- R24 GM111072/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 May 8;509(7499):245-8. doi: 10.1038/nature13310. Epub 2014 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Nanoscience Center, Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland [2] Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden [3]. ; 1] Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden [2]. ; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden. ; Nanoscience Center, Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland. ; Center for Advanced Radiation Sources, The University of Chicago, Illinois 60637, USA. ; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24776794" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism/radiation effects ; Binding Sites ; Crystallography, X-Ray ; Deinococcus/*chemistry ; *Light Signal Transduction/radiation effects ; Models, Molecular ; Phytochrome/chemistry/metabolism/radiation effects ; Protein Conformation/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-11-07
    Description: Cooperation is central to the emergence of multicellular life; however, the means by which the earliest collectives (groups of cells) maintained integrity in the face of destructive cheating types is unclear. One idea posits cheats as a primitive germ line in a life cycle that facilitates collective reproduction. Here we describe an experiment in which simple cooperating lineages of bacteria were propagated under a selective regime that rewarded collective-level persistence. Collectives reproduced via life cycles that either embraced, or purged, cheating types. When embraced, the life cycle alternated between phenotypic states. Selection fostered inception of a developmental switch that underpinned the emergence of collectives whose fitness, during the course of evolution, became decoupled from the fitness of constituent cells. Such development and decoupling did not occur when groups reproduced via a cheat-purging regime. Our findings capture key events in the evolution of Darwinian individuality during the transition from single cells to multicellularity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammerschmidt, Katrin -- Rose, Caroline J -- Kerr, Benjamin -- Rainey, Paul B -- England -- Nature. 2014 Nov 6;515(7525):75-9. doi: 10.1038/nature13884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology &Evolution, Massey University, Auckland 0745, New Zealand. ; Department of Biology and BEACON Center for the Study of Evolution in Action, University of Washington, Seattle, Washington 98195, USA. ; 1] New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology &Evolution, Massey University, Auckland 0745, New Zealand [2] Max Planck Institute for Evolutionary Biology, Plon 24306, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373677" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Cell Physiological Phenomena ; *Genetic Fitness ; *Life Cycle Stages ; *Models, Biological ; Phenotype ; Pseudomonas fluorescens/*cytology/growth & development/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-05-23
    Description: Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hovestadt, Volker -- Jones, David T W -- Picelli, Simone -- Wang, Wei -- Kool, Marcel -- Northcott, Paul A -- Sultan, Marc -- Stachurski, Katharina -- Ryzhova, Marina -- Warnatz, Hans-Jorg -- Ralser, Meryem -- Brun, Sonja -- Bunt, Jens -- Jager, Natalie -- Kleinheinz, Kortine -- Erkek, Serap -- Weber, Ursula D -- Bartholomae, Cynthia C -- von Kalle, Christof -- Lawerenz, Chris -- Eils, Jurgen -- Koster, Jan -- Versteeg, Rogier -- Milde, Till -- Witt, Olaf -- Schmidt, Sabine -- Wolf, Stephan -- Pietsch, Torsten -- Rutkowski, Stefan -- Scheurlen, Wolfram -- Taylor, Michael D -- Brors, Benedikt -- Felsberg, Jorg -- Reifenberger, Guido -- Borkhardt, Arndt -- Lehrach, Hans -- Wechsler-Reya, Robert J -- Eils, Roland -- Yaspo, Marie-Laure -- Landgraf, Pablo -- Korshunov, Andrey -- Zapatka, Marc -- Radlwimmer, Bernhard -- Pfister, Stefan M -- Lichter, Peter -- England -- Nature. 2014 Jun 26;510(7506):537-41. doi: 10.1038/nature13268. Epub 2014 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2]. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2]. ; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, Berlin 14195, Germany. ; Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Dusseldorf, Moorenstrasse 5, Dusseldorf 40225, Germany. ; Department of Neuropathology, NN Burdenko Neurosurgical Institute, 4th Tverskaya-Yamskaya 16, Moscow 125047, Russia. ; Tumor Initiation and Maintenance Program, National Cancer Institute (NCI)-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA. ; 1] Queensland Brain Institute, University of Queensland, QBI Building, St Lucia, Queensland 4072, Australia [2] Department of Oncogenomics, AMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands. ; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1] Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg 69117, Germany. ; 1] Division of Translational Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany. ; Data Management Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Department of Oncogenomics, AMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands. ; 1] Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, Heidelberg 69120, Germany [2] Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, Bonn 53105, Germany. ; Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany. ; Cnopf'sche Kinderklinik, Nurnberg Children's Hospital, St.-Johannis-Muhlgasse 19, Nurnberg 90419, Germany. ; 1] Program in Developmental and Stem Cell Biology, The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada [2] Division of Neurosurgery, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada [3] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Department of Neuropathology, Heinrich Heine University Dusseldorf, Moorenstrasse 5, Dusseldorf 40225, Germany [2] German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1] Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Heidelberg 69120, Germany [3] Bioquant Center, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg 69120, Germany [4] Heidelberg Center for Personalised Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1] Department of Neuropathology, University of Heidelberg, Im Neuenheimer Feld 220, Heidelberg 69120, Germany [2] Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 220-221, Heidelberg, 69120 Germany. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, Heidelberg 69120, Germany. ; 1] Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Heidelberg Center for Personalised Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847876" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line, Tumor ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; DNA Methylation/*genetics ; Female ; *Gene Expression Regulation, Neoplastic ; *Gene Silencing ; Genome/genetics ; Histones/metabolism ; Humans ; Medulloblastoma/*genetics/pathology ; Mice ; Promoter Regions, Genetic/genetics ; RNA-Binding Proteins/genetics ; Sequence Analysis, DNA/*methods ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-10-23
    Description: Bestrophin calcium-activated chloride channels (CaCCs) regulate the flow of chloride and other monovalent anions across cellular membranes in response to intracellular calcium (Ca(2+)) levels. Mutations in bestrophin 1 (BEST1) cause certain eye diseases. Here we present X-ray structures of chicken BEST1-Fab complexes, at 2.85 A resolution, with permeant anions and Ca(2+). Representing, to our knowledge, the first structure of a CaCC, the eukaryotic BEST1 channel, which recapitulates CaCC function in liposomes, is formed from a pentameric assembly of subunits. Ca(2+) binds to the channel's large cytosolic region. A single ion pore, approximately 95 A in length, is located along the central axis and contains at least 15 binding sites for anions. A hydrophobic neck within the pore probably forms the gate. Phenylalanine residues within it may coordinate permeating anions via anion-pi interactions. Conformational changes observed near the 'Ca(2+) clasp' hint at the mechanism of Ca(2+)-dependent gating. Disease-causing mutations are prevalent within the gating apparatus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454446/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454446/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kane Dickson, Veronica -- Pedi, Leanne -- Long, Stephen B -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM110396/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Dec 11;516(7530):213-8. doi: 10.1038/nature13913. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337878" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/analysis/chemistry/*metabolism/pharmacology ; *Chickens ; Chloride Channels/*chemistry/immunology/*metabolism ; Chlorides/chemistry/metabolism ; Crystallography, X-Ray ; Immunoglobulin Fab Fragments/chemistry/immunology ; Ion Channel Gating ; Ion Transport ; Liposomes/chemistry/metabolism ; Models, Molecular ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tozzi, Arturo -- England -- Nature. 2014 Nov 20;515(7527):343. doi: 10.1038/515343c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ASL Napoli 2 Nord, Naples, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Developmental Biology ; *Gene-Environment Interaction ; *Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hutchinson, John -- England -- Nature. 2014 Sep 4;513(7516):37-8. doi: 10.1038/nature13743. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162531" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Environment ; Extremities/*anatomy & histology/*growth & development ; Female ; Fishes/*anatomy & histology/*growth & development ; *Locomotion ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-12-24
    Description: Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLPhi motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded beta-domain that sequesters the helical YXXXXLPhi motif into a partly buried beta-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bah, Alaji -- Vernon, Robert M -- Siddiqui, Zeba -- Krzeminski, Mickael -- Muhandiram, Ranjith -- Zhao, Charlie -- Sonenberg, Nahum -- Kay, Lewis E -- Forman-Kay, Julie D -- MOP-114985/Canadian Institutes of Health Research/Canada -- MOP-119579/Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Mar 5;519(7541):106-9. doi: 10.1038/nature13999. Epub 2014 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada. ; 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4] Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533957" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Eukaryotic Initiation Factor-4E/*chemistry/*metabolism ; Eukaryotic Initiation Factors/*chemistry/*metabolism ; Humans ; Intrinsically Disordered Proteins/*chemistry/*metabolism ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Protein Binding ; *Protein Folding ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-07-22
    Description: Programmed -1 ribosomal frameshift (-1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a -1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated -1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA-miRNA interaction suggests that formation of a triplex RNA structure stimulates -1 PRF. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional -1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369343/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369343/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belew, Ashton Trey -- Meskauskas, Arturas -- Musalgaonkar, Sharmishtha -- Advani, Vivek M -- Sulima, Sergey O -- Kasprzak, Wojciech K -- Shapiro, Bruce A -- Dinman, Jonathan D -- 5 R01GM058859/GM/NIGMS NIH HHS/ -- HHSN261200800001/PHS HHS/ -- R01 GM058859/GM/NIGMS NIH HHS/ -- R01 HL119439/HL/NHLBI NIH HHS/ -- R21 GM068123/GM/NIGMS NIH HHS/ -- R21GM068123/GM/NIGMS NIH HHS/ -- T32 AI051967/AI/NIAID NIH HHS/ -- T32AI051967/AI/NIAID NIH HHS/ -- T32GM080201/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Aug 21;512(7514):265-9. doi: 10.1038/nature13429. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA [2]. ; 1] Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA [2] Department of Biotechnology and Microbiology, Vilnius University, Vilnius, LT 03101, Lithuania [3]. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA. ; 1] Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA [2] VIB Center for the Biology of Disease, KU Leuven, Campus Gasthuisberg, Herestraat 49, bus 602, 3000 Leuven, Belgium. ; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Basic Research Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Cell Survival ; Codon, Nonsense/genetics ; Frameshifting, Ribosomal/*genetics ; HeLa Cells ; Humans ; MicroRNAs/*genetics ; Models, Molecular ; Molecular Sequence Data ; *Nonsense Mediated mRNA Decay ; Nucleic Acid Conformation ; RNA, Messenger/chemistry/*genetics/*metabolism ; Receptors, CCR5/*genetics ; Receptors, Interleukin/genetics ; Regulatory Sequences, Ribonucleic Acid ; Ribosomes/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-11-14
    Description: Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A 'domestic' form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, 'forest' form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognizes a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialize on humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286346/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286346/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McBride, Carolyn S -- Baier, Felix -- Omondi, Aman B -- Spitzer, Sarabeth A -- Lutomiah, Joel -- Sang, Rosemary -- Ignell, Rickard -- Vosshall, Leslie B -- 5UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900039C/AI/NIAID NIH HHS/ -- HHSN272200900039C/PHS HHS/ -- K99 DC012069/DC/NIDCD NIH HHS/ -- R00 DC012069/DC/NIDCD NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Nov 13;515(7526):222-7. doi: 10.1038/nature13964.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York 10065, USA. ; Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Sundsvagen 14, 230 53 Alnarp, Sweden. ; Center for Virus Research, Kenya Medical Research Institute, PO Box 54840 - 00200, Off Mbagathi Way, Nairobi, Kenya.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25391959" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/*physiology ; Alleles ; Animals ; Arthropod Antennae/metabolism ; *Biological Evolution ; Female ; Forests ; Gene Expression Profiling ; Host Specificity ; Humans ; Ketones/analysis/metabolism ; Ligands ; Male ; Molecular Sequence Data ; Receptors, Odorant/*metabolism ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-10-03
    Description: Group selection may be defined as selection caused by the differential extinction or proliferation of groups. The socially polymorphic spider Anelosimus studiosus exhibits a behavioural polymorphism in which females exhibit either a 'docile' or 'aggressive' behavioural phenotype. Natural colonies are composed of a mixture of related docile and aggressive individuals, and populations differ in colonies' characteristic docile:aggressive ratios. Using experimentally constructed colonies of known composition, here we demonstrate that population-level divergence in docile:aggressive ratios is driven by site-specific selection at the group level--certain ratios yield high survivorship at some sites but not others. Our data also indicate that colonies responded to the risk of extinction: perturbed colonies tended to adjust their composition over two generations to match the ratio characteristic of their native site, thus promoting their long-term survival in their natal habitat. However, colonies of displaced individuals continued to shift their compositions towards mixtures that would have promoted their survival had they remained at their home sites, regardless of their contemporary environment. Thus, the regulatory mechanisms that colonies use to adjust their composition appear to be locally adapted. Our data provide experimental evidence of group selection driving collective traits in wild populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pruitt, Jonathan N -- Goodnight, Charles J -- England -- Nature. 2014 Oct 16;514(7522):359-62. doi: 10.1038/nature13811. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA. ; Department of Biology, University of Vermont, Burlington, Vermont 05405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274310" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Aggression/*physiology ; Animals ; *Biological Evolution ; Ecosystem ; Extinction, Biological ; Female ; Phenotype ; Population Dynamics ; *Selection, Genetic ; Spiders/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-11-20
    Description: The influenza virus polymerase transcribes or replicates the segmented RNA genome (viral RNA) into viral messenger RNA or full-length copies. To initiate RNA synthesis, the polymerase binds to the conserved 3' and 5' extremities of the viral RNA. Here we present the crystal structure of the heterotrimeric bat influenza A polymerase, comprising subunits PA, PB1 and PB2, bound to its viral RNA promoter. PB1 contains a canonical RNA polymerase fold that is stabilized by large interfaces with PA and PB2. The PA endonuclease and the PB2 cap-binding domain, involved in transcription by cap-snatching, form protrusions facing each other across a solvent channel. The 5' extremity of the promoter folds into a compact hook that is bound in a pocket formed by PB1 and PA close to the polymerase active site. This structure lays the basis for an atomic-level mechanistic understanding of the many functions of influenza polymerase, and opens new opportunities for anti-influenza drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pflug, Alexander -- Guilligay, Delphine -- Reich, Stefan -- Cusack, Stephen -- England -- Nature. 2014 Dec 18;516(7531):355-60. doi: 10.1038/nature14008. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409142" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; DNA-Directed RNA Polymerases/*chemistry ; Influenza A virus/*enzymology ; Models, Molecular ; Promoter Regions, Genetic ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-02-28
    Description: Tripartite Tc toxin complexes of bacterial pathogens perforate the host membrane and translocate toxic enzymes into the host cell, including in humans. The underlying mechanism is complex but poorly understood. Here we report the first, to our knowledge, high-resolution structures of a TcA subunit in its prepore and pore state and of a complete 1.7 megadalton Tc complex. The structures reveal that, in addition to a translocation channel, TcA forms four receptor-binding sites and a neuraminidase-like region, which are important for its host specificity. pH-induced opening of the shell releases an entropic spring that drives the injection of the TcA channel into the membrane. Binding of TcB/TcC to TcA opens a gate formed by a six-bladed beta-propeller and results in a continuous protein translocation channel, whose architecture and properties suggest a novel mode of protein unfolding and translocation. Our results allow us to understand key steps of infections involving Tc toxins at the molecular level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meusch, Dominic -- Gatsogiannis, Christos -- Efremov, Rouslan G -- Lang, Alexander E -- Hofnagel, Oliver -- Vetter, Ingrid R -- Aktories, Klaus -- Raunser, Stefan -- England -- Nature. 2014 Apr 3;508(7494):61-5. doi: 10.1038/nature13015. Epub 2014 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany [2]. ; Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany. ; Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. ; Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. ; 1] Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany. ; 1] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany [2] Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Thielallee 63, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572368" target="_blank"〉PubMed〈/a〉
    Keywords: ADP Ribose Transferases/metabolism ; Bacterial Toxins/*chemistry/*metabolism ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Host Specificity ; Hydrogen-Ion Concentration ; Models, Molecular ; Neuraminidase/chemistry ; Photorhabdus/*chemistry ; Porosity ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protein Transport ; Protein Unfolding ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-08-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheldon, Ben C -- Mangel, Marc -- England -- Nature. 2014 Aug 28;512(7515):381-2. doi: 10.1038/512381a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK. ; Center for Stock Assessment Research, University of California, Santa Cruz, Santa Cruz, California 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164746" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Female ; Male ; *Models, Biological ; *Sexual Behavior, Animal
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-07-22
    Description: The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of Escherichia coli. Its transport site receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux. This membrane protein is a well-characterized member of the family of cation diffusion facilitators that occurs at all phylogenetic levels. Here we show, using X-ray-mediated hydroxyl radical labelling of YiiP and mass spectrometry, that Zn(II) binding triggers a highly localized, all-or-nothing change of water accessibility to the transport site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics reveal a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical re-orientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport site enables a stationary proton gradient to facilitate the conversion of zinc-binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active-transport reaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144069/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144069/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, Sayan -- Chai, Jin -- Cheng, Jie -- D'Mello, Rhijuta -- Chance, Mark R -- Fu, Dax -- P30 DK089502/DK/NIDDK NIH HHS/ -- P30-EB-09998/EB/NIBIB NIH HHS/ -- R01 GM065137/GM/NIGMS NIH HHS/ -- R01-EB-09688/EB/NIBIB NIH HHS/ -- R01GM065137/GM/NIGMS NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Aug 7;512(7512):101-4. doi: 10.1038/nature13382. Epub 2014 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Synchrotron Biosciences and Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44109, USA [2] Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA. ; Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. ; Center for Synchrotron Biosciences and Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44109, USA. ; 1] Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA [2] Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043033" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Biological Transport, Active ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Hydroxyl Radical ; Ion Transport ; Kinetics ; Mass Spectrometry ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; *Protons ; Pulse Radiolysis ; Water/metabolism ; X-Rays ; Zinc/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-08-19
    Description: Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host-parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wright, Katherine E -- Hjerrild, Kathryn A -- Bartlett, Jonathan -- Douglas, Alexander D -- Jin, Jing -- Brown, Rebecca E -- Illingworth, Joseph J -- Ashfield, Rebecca -- Clemmensen, Stine B -- de Jongh, Willem A -- Draper, Simon J -- Higgins, Matthew K -- 089455/2/09/z/Wellcome Trust/United Kingdom -- 101020/Wellcome Trust/United Kingdom -- 101020/Z/13/Z/Wellcome Trust/United Kingdom -- G1000527/Medical Research Council/United Kingdom -- MR/K025554/1/Medical Research Council/United Kingdom -- England -- Nature. 2014 Nov 20;515(7527):427-30. doi: 10.1038/nature13715. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK. ; ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Alle 1, DK-2970 Horsholm, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132548" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Blocking/*chemistry/immunology ; Antigens, CD147/*chemistry/immunology ; Antigens, Protozoan/chemistry/immunology ; Binding Sites ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; Erythrocytes/*chemistry ; Host-Parasite Interactions/immunology ; Humans ; *Malaria/parasitology ; Models, Molecular ; Plasmodium falciparum/*chemistry/immunology ; Protozoan Proteins/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-09-12
    Description: Genetic equality between males and females is established by chromosome-wide dosage-compensation mechanisms. In the fruitfly Drosophila melanogaster, the dosage-compensation complex promotes twofold hypertranscription of the single male X-chromosome and is silenced in females by inhibition of the translation of msl2, which codes for the limiting component of the dosage-compensation complex. The female-specific protein Sex-lethal (Sxl) recruits Upstream-of-N-ras (Unr) to the 3' untranslated region of msl2 messenger RNA, preventing the engagement of the small ribosomal subunit. Here we report the 2.8 A crystal structure, NMR and small-angle X-ray and neutron scattering data of the ternary Sxl-Unr-msl2 ribonucleoprotein complex featuring unprecedented intertwined interactions of two Sxl RNA recognition motifs, a Unr cold-shock domain and RNA. Cooperative complex formation is associated with a 1,000-fold increase of RNA binding affinity for the Unr cold-shock domain and involves novel ternary interactions, as well as non-canonical RNA contacts by the alpha1 helix of Sxl RNA recognition motif 1. Our results suggest that repression of dosage compensation, necessary for female viability, is triggered by specific, cooperative molecular interactions that lock a ribonucleoprotein switch to regulate translation. The structure serves as a paradigm for how a combination of general and widespread RNA binding domains expands the code for specific single-stranded RNA recognition in the regulation of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hennig, Janosch -- Militti, Cristina -- Popowicz, Grzegorz M -- Wang, Iren -- Sonntag, Miriam -- Geerlof, Arie -- Gabel, Frank -- Gebauer, Fatima -- Sattler, Michael -- England -- Nature. 2014 Nov 13;515(7526):287-90. doi: 10.1038/nature13693. Epub 2014 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Structural Biology, Helmholtz Zentrum Munchen, Ingolstadter Landstrasse 1, DE-85764, Germany [2] Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universitat Munchen, Lichtenbergstr. 4, DE-85747 Garching, Germany. ; 1] Centre for Genomic Regulation, Gene Regulation, Stem Cells and Cancer Programme, Dr Aiguader 88, 08003 Barcelona, Spain [2] Universisty Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain. ; Institute of Structural Biology, Helmholtz Zentrum Munchen, Ingolstadter Landstrasse 1, DE-85764, Germany. ; 1] Universite Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France [2] Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France [3] Commissariat a l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France [4] Institut Laue-Langevin, F-38042 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209665" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Cold-Shock Response ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/*metabolism ; Dosage Compensation, Genetic ; Drosophila Proteins/*chemistry/*metabolism ; Drosophila melanogaster/*chemistry/genetics ; Female ; Gene Expression Regulation ; Male ; Models, Molecular ; Neutron Diffraction ; Nuclear Magnetic Resonance, Biomolecular ; Nucleotide Motifs ; *Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Messenger/chemistry/*metabolism ; RNA-Binding Proteins/*chemistry/*metabolism ; Ribonucleoproteins/chemistry/metabolism ; Scattering, Small Angle ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laland, Kevin -- Uller, Tobias -- Feldman, Marc -- Sterelny, Kim -- Muller, Gerd B -- Moczek, Armin -- Jablonka, Eva -- Odling-Smee, John -- Wray, Gregory A -- Hoekstra, Hopi E -- Futuyma, Douglas J -- Lenski, Richard E -- Mackay, Trudy F C -- Schluter, Dolph -- Strassmann, Joan E -- England -- Nature. 2014 Oct 9;514(7521):161-4. doi: 10.1038/514161a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25297418" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics ; Animals ; *Biological Evolution ; *Developmental Biology/trends ; Ecosystem ; Epigenesis, Genetic ; *Gene-Environment Interaction ; Genetic Speciation ; *Models, Biological ; Models, Genetic ; Phenotype ; Reproducibility of Results ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-08-01
    Description: The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character inter-dependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character-state transitions used in evolutionary studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harjunmaa, Enni -- Seidel, Kerstin -- Hakkinen, Teemu -- Renvoise, Elodie -- Corfe, Ian J -- Kallonen, Aki -- Zhang, Zhao-Qun -- Evans, Alistair R -- Mikkola, Marja L -- Salazar-Ciudad, Isaac -- Klein, Ophir D -- Jernvall, Jukka -- DP2 OD007191/OD/NIH HHS/ -- DP2-OD007191/OD/NIH HHS/ -- K99 DE024214/DE/NIDCR NIH HHS/ -- R01 DE021420/DE/NIDCR NIH HHS/ -- R01-DE021420/DE/NIDCR NIH HHS/ -- England -- Nature. 2014 Aug 7;512(7512):44-8. doi: 10.1038/nature13613. Epub 2014 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland. ; 1] Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco, San Francisco, California 94114, USA [2] Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California 94114, USA. ; Division of Materials Physics, Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. ; Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. ; 1] School of Biological Sciences, Monash University, Victoria 3800, Australia [2] Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia. ; 1] Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland [2] Genomics, Bioinformatics and Evolution Group. Department de Genetica i Microbiologia, Universitat Autonoma de Barcelona, Cerdanyola del Valles 08193, Spain. ; 1] Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco, San Francisco, California 94114, USA [2] Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California 94114, USA [3] Department of Pediatrics, University of California, San Francisco, San Francisco, California 94114, USA [4] Institute for Human Genetics, University of California, San Francisco, San Francisco, California 94114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079326" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Computer Simulation ; Ectodysplasins/deficiency/genetics/pharmacology ; Female ; *Fossils ; Gene Deletion ; Hedgehog Proteins/antagonists & inhibitors/genetics ; In Vitro Techniques ; Male ; Mice ; Molar/anatomy & histology/drug effects/growth & development ; Phenotype ; Signal Transduction/drug effects ; Tooth/*anatomy & histology/drug effects/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-08-28
    Description: The origin of tetrapods from their fish antecedents, approximately 400 million years ago, was coupled with the origin of terrestrial locomotion and the evolution of supporting limbs. Polypterus is a member of the basal-most group of ray-finned fish (actinopterygians) and has many plesiomorphic morphologies that are comparable to elpistostegid fishes, which are stem tetrapods. Polypterus therefore serves as an extant analogue of stem tetrapods, allowing us to examine how developmental plasticity affects the 'terrestrialization' of fish. We measured the developmental plasticity of anatomical and biomechanical responses in Polypterus reared on land. Here we show the remarkable correspondence between the environmentally induced phenotypes of terrestrialized Polypterus and the ancient anatomical changes in stem tetrapods, and we provide insight into stem tetrapod behavioural evolution. Our results raise the possibility that environmentally induced developmental plasticity facilitated the origin of the terrestrial traits that led to tetrapods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Standen, Emily M -- Du, Trina Y -- Larsson, Hans C E -- England -- Nature. 2014 Sep 4;513(7516):54-8. doi: 10.1038/nature13708. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, University of Ottawa, Gendron Hall, 30 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada. ; Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec H3A 0C4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162530" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Fins/anatomy & histology/physiology ; Animals ; *Biological Evolution ; Biomechanical Phenomena ; Bone and Bones/anatomy & histology/physiology ; *Environment ; Extremities/*anatomy & histology/*growth & development ; Female ; Fishes/*anatomy & histology/classification/*growth & development/physiology ; *Locomotion ; Male ; Models, Animal ; Muscles/anatomy & histology/physiology ; Phylogeny ; Swimming/physiology ; Time Factors ; Walking/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-01-28
    Description: Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christophorou, Maria A -- Castelo-Branco, Goncalo -- Halley-Stott, Richard P -- Oliveira, Clara Slade -- Loos, Remco -- Radzisheuskaya, Aliaksandra -- Mowen, Kerri A -- Bertone, Paul -- Silva, Jose C R -- Zernicka-Goetz, Magdalena -- Nielsen, Michael L -- Gurdon, John B -- Kouzarides, Tony -- 092096/Wellcome Trust/United Kingdom -- 101050/Wellcome Trust/United Kingdom -- 101861/Wellcome Trust/United Kingdom -- AI099728/AI/NIAID NIH HHS/ -- G1001690/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Mar 6;507(7490):104-8. doi: 10.1038/nature12942. Epub 2014 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2]. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden [3]. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] EMBRAPA Dairy Cattle Research Center, Juiz de Fora, Brazil [3] Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK. ; 1] Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK [2] Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK. ; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK [2] Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK [3] Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; Department of proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health Sciences, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/chemistry/metabolism ; Binding Sites ; Cellular Reprogramming/genetics ; Chromatin/chemistry/*metabolism ; *Chromatin Assembly and Disassembly ; Citrulline/*metabolism ; DNA/metabolism ; Embryo, Mammalian/cytology/metabolism ; Gene Expression Regulation ; Histones/*chemistry/*metabolism ; Hydrolases/metabolism ; Mice ; Pluripotent Stem Cells/cytology/*metabolism ; Protein Binding ; *Protein Processing, Post-Translational ; Proteomics ; Substrate Specificity ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-07-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Bau-Lin -- Mackem, Susan -- England -- Nature. 2014 Jul 3;511(7507):34-5. doi: 10.1038/nature13509. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990735" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Body Patterning ; *Chondrogenesis ; Extremities/*anatomy & histology/*embryology ; Female ; Hedgehog Proteins/*metabolism ; Male ; Mammals/*anatomy & histology/*embryology ; Receptors, Cell Surface/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baell, Jonathan -- Walters, Michael A -- England -- Nature. 2014 Sep 25;513(7519):481-3. doi: 10.1038/513481a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25254460" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Artifacts ; Binding Sites ; Drug Discovery/methods/*standards ; Humans ; Pharmacology/methods/*standards ; Protein Binding ; Reproducibility of Results ; Research Personnel/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, Zhe-Xi -- England -- Nature. 2014 Aug 7;512(7512):36-7. doi: 10.1038/nature13651. Epub 2014 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Female ; *Fossils ; Male ; Tooth/*anatomy & histology/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-05-23
    Description: Growing evidence suggests that close appositions between the endoplasmic reticulum (ER) and other membranes, including appositions with the plasma membrane (PM), mediate exchange of lipids between these bilayers. The mechanisms of such exchange, which allows lipid transfer independently of vesicular transport, remain poorly understood. The presence of a synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain, a proposed lipid-binding module, in several proteins localized at membrane contact sites has raised the possibility that such domains may be implicated in lipid transport. SMP-containing proteins include components of the ERMES complex, an ER-mitochondrial tether, and the extended synaptotagmins (known as tricalbins in yeast), which are ER-PM tethers. Here we present at 2.44 A resolution the crystal structure of a fragment of human extended synaptotagmin 2 (E-SYT2), including an SMP domain and two adjacent C2 domains. The SMP domain has a beta-barrel structure like protein modules in the tubular-lipid-binding (TULIP) superfamily. It dimerizes to form an approximately 90-A-long cylinder traversed by a channel lined entirely with hydrophobic residues, with the two C2A-C2B fragments forming arched structures flexibly linked to the SMP domain. Importantly, structural analysis complemented by mass spectrometry revealed the presence of glycerophospholipids in the E-SYT2 SMP channel, indicating a direct role for E-SYTs in lipid transport. These findings provide strong evidence for a role of SMP-domain-containing proteins in the control of lipid transfer at membrane contact sites and have broad implications beyond the field of ER-to-PM appositions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135724/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135724/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schauder, Curtis M -- Wu, Xudong -- Saheki, Yasunori -- Narayanaswamy, Pradeep -- Torta, Federico -- Wenk, Markus R -- De Camilli, Pietro -- Reinisch, Karin M -- DK082700/DK/NIDDK NIH HHS/ -- GM080616/GM/NIGMS NIH HHS/ -- P30 DA018343/DA/NIDA NIH HHS/ -- R01 DK082700/DK/NIDDK NIH HHS/ -- R01 GM080616/GM/NIGMS NIH HHS/ -- R37 NS036251/NS/NINDS NIH HHS/ -- R37NS36251/NS/NINDS NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 26;510(7506):552-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847877" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Endoplasmic Reticulum/metabolism ; Glycerophospholipids/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Lipid Metabolism ; *Lipids ; Mitochondria/metabolism ; Mitochondrial Proteins/chemistry/metabolism ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Synaptotagmins/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-05-30
    Description: H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility. Our results show, first, that the H10 virus possesses high avidity for human receptors and second, from the crystal structure of the complex formed by avian H10 haemagglutinin with human receptor, it is clear that the conformation of the bound receptor has characteristics of both the 1918 H1N1 pandemic virus and the human H7 viruses isolated from patients in 2013 (ref. 3). We conclude that avian H10N8 virus has sufficient avidity for human receptors to account for its infection of humans but that its preference for avian receptors should make avian-receptor-rich human airway mucins an effective block to widespread infection. In terms of surveillance, particular attention will be paid to the detection of mutations in the receptor-binding site of the H10 haemagglutinin that decrease its avidity for avian receptor, and could enable it to be more readily transmitted between humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vachieri, Sebastien G -- Xiong, Xiaoli -- Collins, Patrick J -- Walker, Philip A -- Martin, Stephen R -- Haire, Lesley F -- Zhang, Ying -- McCauley, John W -- Gamblin, Steven J -- Skehel, John J -- MC_U117512723/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117584222/Medical Research Council/United Kingdom -- U117585868/Medical Research Council/United Kingdom -- England -- Nature. 2014 Jul 24;511(7510):475-7. doi: 10.1038/nature13443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2]. ; MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds/*virology ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/chemistry ; Influenza A Virus, H7N9 Subtype/chemistry ; Models, Molecular ; Orthomyxoviridae/*chemistry/*metabolism ; Receptors, Virus/*chemistry/*metabolism ; Zoonoses/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-05-23
    Description: Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142213/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142213/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maianti, Juan Pablo -- McFedries, Amanda -- Foda, Zachariah H -- Kleiner, Ralph E -- Du, Xiu Quan -- Leissring, Malcolm A -- Tang, Wei-Jen -- Charron, Maureen J -- Seeliger, Markus A -- Saghatelian, Alan -- Liu, David R -- DP2 OD002374/OD/NIH HHS/ -- F30 CA174152/CA/NCI NIH HHS/ -- P30 DK057521/DK/NIDDK NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- R00 GM080097/GM/NIGMS NIH HHS/ -- R01 GM065865/GM/NIGMS NIH HHS/ -- R01 GM081539/GM/NIGMS NIH HHS/ -- R01 GM81539/GM/NIGMS NIH HHS/ -- T32 GM007598/GM/NIGMS NIH HHS/ -- T32 GM008444/GM/NIGMS NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 3;511(7507):94-8. doi: 10.1038/nature13297. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA. ; Department of Pharmacological Sciences, Stony Brook University, 1 Circle Road, Stony Brook, New York 11794, USA. ; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA. ; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3204 Biological Sciences III, Irvine, California 92697, USA. ; Ben-May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; 1] Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847884" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Blood Glucose/metabolism ; Catalytic Domain ; Diabetes Mellitus, Type 2/drug therapy/genetics ; Disease Models, Animal ; Gastric Emptying/drug effects ; Genetic Predisposition to Disease ; Glucagon/*metabolism ; Glucose Tolerance Test ; Hypoglycemic Agents/chemistry/*pharmacology/therapeutic use ; Insulin/*metabolism ; Insulysin/*antagonists & inhibitors/chemistry/genetics/metabolism ; Islet Amyloid Polypeptide/*metabolism ; Macrocyclic Compounds/chemistry/*pharmacology/therapeutic use ; Male ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Obesity/drug therapy/metabolism ; Signal Transduction/drug effects ; Thinness/drug therapy/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-10-04
    Description: Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle cryogenic electron microscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including recruitment of mitochondrial valine transfer RNA (tRNA(Val)) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246062/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246062/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Alan -- Amunts, Alexey -- Bai, Xiao-chen -- Sugimoto, Yoichiro -- Edwards, Patricia C -- Murshudov, Garib -- Scheres, Sjors H W -- Ramakrishnan, V -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A025_1012/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):718-22. doi: 10.1126/science.1258026. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ramak@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278503" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Humans ; Mitochondria/genetics/*metabolism ; Mitochondrial Proteins/chemistry/ultrastructure ; Mutation ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Transfer, Val/analysis/*chemistry ; Ribosome Subunits/*chemistry/genetics/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-05-31
    Description: Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kbeta (PI4KIIIbeta) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIbeta interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIbeta coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIbeta to combat malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, John E -- Inglis, Alison J -- Perisic, Olga -- Masson, Glenn R -- McLaughlin, Stephen H -- Rutaganira, Florentine -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- PG11/109/29247/British Heart Foundation/United Kingdom -- R01AI099245/AI/NIAID NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1035-8. doi: 10.1126/science.1253397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. jeburke@uvic.ca rlw@mrc-lmb.cam.ac.uk. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antimalarials/chemistry/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drug Design ; Humans ; I-kappa B Kinase/*chemistry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/*chemistry/genetics ; Plasmodium/drug effects/growth & development ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; rab GTP-Binding Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-08-02
    Description: Recent discoveries have highlighted the dramatic evolutionary transformation of massive, ground-dwelling theropod dinosaurs into light, volant birds. Here, we apply Bayesian approaches (originally developed for inferring geographic spread and rates of molecular evolution in viruses) in a different context: to infer size changes and rates of anatomical innovation (across up to 1549 skeletal characters) in fossils. These approaches identify two drivers underlying the dinosaur-bird transition. The theropod lineage directly ancestral to birds undergoes sustained miniaturization across 50 million years and at least 12 consecutive branches (internodes) and evolves skeletal adaptations four times faster than other dinosaurs. The distinct, prolonged phase of miniaturization along the bird stem would have facilitated the evolution of many novelties associated with small body size, such as reorientation of body mass, increased aerial ability, and paedomorphic skulls with reduced snouts but enlarged eyes and brains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Michael S Y -- Cau, Andrea -- Naish, Darren -- Dyke, Gareth J -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):562-6. doi: 10.1126/science.1252243.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Section, South Australian Museum, North Terrace, Adelaide 5000, Australia. School of Earth and Environmental Sciences, University of Adelaide 5005, Australia. mike.lee@samuseum.sa.gov.au. ; Museo Geologico e Paleontologico "Giovanni Capellini," Via Zamboni 63, 40126 Bologna, Italy. Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum Universita di Bologna, 40126 Bologna, Italy. ; Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK. ; Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK. MTA-DE Lendulet Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Egyetem ter 1, Hungary.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; *Biological Evolution ; Birds/*anatomy & histology ; *Body Size ; Dinosaurs/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-16
    Description: Parenting behaviors, such as the provisioning of food by parents to offspring, are known to be highly responsive to changes in environment. However, we currently know little about how such flexibility affects the ways in which parenting is adapted and evolves in response to environmental variation. This is because few studies quantify how individuals vary in their response to changing environments, especially social environments created by other individuals with which parents interact. Social environmental factors differ from nonsocial factors, such as food availability, because parents and offspring both contribute and respond to the social environment they experience. This interdependence leads to the coevolution of flexible behaviors involved in parenting, which could, paradoxically, constrain the ability of individuals to rapidly adapt to changes in their nonsocial environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royle, Nick J -- Russell, Andrew F -- Wilson, Alastair J -- BB/G022976/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):776-81. doi: 10.1126/science.1253294. Epub 2014 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK. n.j.royle@exeter.ac.uk. ; Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124432" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; *Biological Evolution ; Environment ; Female ; Male ; *Maternal Behavior ; *Parenting ; *Paternal Behavior ; Social Environment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-05-09
    Description: Molecular chaperones prevent aggregation and misfolding of proteins, but scarcity of structural data has impeded an understanding of the recognition and antiaggregation mechanisms. We report the solution structure, dynamics, and energetics of three trigger factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. Nuclear magnetic resonance (NMR) relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion, but as the number and length of the PhoA regions engaged by TF increase, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and, by acting as unfoldases and holdases, prevent the aggregation and premature (mis)folding of unfolded proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saio, Tomohide -- Guan, Xiao -- Rossi, Paolo -- Economou, Anastassios -- Kalodimos, Charalampos G -- GM073854/GM/NIGMS NIH HHS/ -- R01 GM073854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):1250494. doi: 10.1126/science.1250494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812405" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/*chemistry ; Binding Sites ; Escherichia coli Proteins/*chemistry ; Hydrophobic and Hydrophilic Interactions ; Intrinsically Disordered Proteins/*chemistry ; Molecular Chaperones/*chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Peptides/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Protein Binding ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-04-12
    Description: Primordial germ cell (PGC) specification occurs either by induction from pluripotent cells (epigenesis) or by a cell-autonomous mechanism mediated by germ plasm (preformation). Among vertebrates, epigenesis is basal, whereas germ plasm has evolved convergently across lineages and is associated with greater speciation. We compared protein-coding sequences of vertebrate species that employ preformation with their sister taxa that use epigenesis and demonstrate that genes evolve more rapidly in species containing germ plasm. Furthermore, differences in rates of evolution appear to cause phylogenetic incongruence in protein-coding sequence comparisons between vertebrate taxa. Our results support the hypothesis that germ plasm liberates constraints on somatic development and that enhanced evolvability drives the evolution of germ plasm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Evans, Teri -- Wade, Christopher M -- Chapman, Frank A -- Johnson, Andrew D -- Loose, Matthew -- G1100025/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 11;344(6180):200-3. doi: 10.1126/science.1249325.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24723612" target="_blank"〉PubMed〈/a〉
    Keywords: Amphibians ; Animals ; *Biological Evolution ; Cytoplasm/*physiology ; Germ Cells/*physiology ; Phylogeny ; Vertebrates/*classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-09-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patek, S N -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1448-9. doi: 10.1126/science.1256617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Duke University, Durham, NC 27708, USA. snp2@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237086" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Biomimetic Materials ; *Biomimetics ; *Lizards ; *Skin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-07-06
    Description: Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anton, Susan C -- Potts, Richard -- Aiello, Leslie C -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):1236828. doi: 10.1126/science.1236828.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Human Origins, Department of Anthropology, New York University, Rufus D. Smith Hall, 25 Waverly Place, New York, NY 10003, USA. E-mail: susan.anton@nyu.edu. ; Human Origins Program, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. E-mail: pottsr@si.edu. ; Wenner-Gren Foundation, 470 Park Avenue South, 8th Floor, New York, NY 10016, USA. E-mail: laiello@wennergren.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994657" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Behavior ; *Biological Evolution ; Body Size ; Brain/anatomy & histology/growth & development ; Climate Change ; Cognition ; Diet ; Ecology ; *Hominidae/anatomy & histology/genetics/growth & development ; Humans ; Organ Size ; Skull/anatomy & histology ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-11-02
    Description: The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Planavsky, Noah J -- Reinhard, Christopher T -- Wang, Xiangli -- Thomson, Danielle -- McGoldrick, Peter -- Rainbird, Robert H -- Johnson, Thomas -- Fischer, Woodward W -- Lyons, Timothy W -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):635-8. doi: 10.1126/science.1258410.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department Geology and Geophysics, Yale University, CT, USA. noah.planavsky@yale.edu chris.reinhard@eas.gatech.edu. ; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA, USA. noah.planavsky@yale.edu chris.reinhard@eas.gatech.edu. ; Department Geology and Geophysics, Yale University, CT, USA. Department of Geology, University of Illinois, Champaign, IL, USA. ; Department of Earth Science, Carleton University, Ottawa, ON, Canada. ; Centre for Ore Deposit and Exploration Science, University of Tasmania, TAS, Australia. ; Geological Survey of Canada, Ottawa, ON, Canada. ; Department of Geology, University of Illinois, Champaign, IL, USA. ; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA. ; Department of Earth Sciences, University of California, Riverside, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359975" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; *Biological Evolution ; Chromium Isotopes/chemistry ; Earth (Planet) ; Geologic Sediments/chemistry ; Oxidation-Reduction ; Oxygen/*analysis ; Paleontology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-11-15
    Description: In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mansour, Marc R -- Abraham, Brian J -- Anders, Lars -- Berezovskaya, Alla -- Gutierrez, Alejandro -- Durbin, Adam D -- Etchin, Julia -- Lawton, Lee -- Sallan, Stephen E -- Silverman, Lewis B -- Loh, Mignon L -- Hunger, Stephen P -- Sanda, Takaomi -- Young, Richard A -- Look, A Thomas -- 1R01CA176746-01/CA/NCI NIH HHS/ -- 5P01CA109901-08/CA/NCI NIH HHS/ -- 5P01CA68484/CA/NCI NIH HHS/ -- CA114766/CA/NCI NIH HHS/ -- CA120215/CA/NCI NIH HHS/ -- CA167124/CA/NCI NIH HHS/ -- CA29139/CA/NCI NIH HHS/ -- CA30969/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1373-7. doi: 10.1126/science.1259037. Epub 2014 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, UK. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. ; Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, CA 94143, USA. ; Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA. ; Cancer Science Institute of Singapore, National University of Singapore, and Department of Medicine, Yong Loo Lin School of Medicine, 117599, Singapore. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25394790" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Basic Helix-Loop-Helix Transcription Factors/*genetics ; Binding Sites ; Cell Line, Tumor ; *DNA, Intergenic ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Neoplastic ; Histones/metabolism ; Humans ; *INDEL Mutation ; Molecular Sequence Data ; *Mutation ; Oncogenes ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*genetics ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-myb/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-31
    Description: N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karakas, Erkan -- Furukawa, Hiro -- MH085926/MH/NIMH NIH HHS/ -- R01 GM105730/GM/NIGMS NIH HHS/ -- R01 MH085926/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):992-7. doi: 10.1126/science.1251915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. ; Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. furukawa@cshl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876489" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/chemistry/metabolism ; Crystallography, X-Ray ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, N-Methyl-D-Aspartate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):532-3. doi: 10.1126/science.346.6209.532.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bacteria ; *Biological Evolution ; Cells/*microbiology/*ultrastructure ; *Chloroplasts ; Hemiptera/microbiology/ultrastructure ; Humans ; *Mitochondria ; Plants/microbiology/ultrastructure ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):611-3. doi: 10.1126/science.345.6197.611.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104366" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/*genetics ; *Biological Evolution ; Breeding ; Gene Flow ; Genome, Insect ; *Genomic Islands ; Plants/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):609-10. doi: 10.1126/science.345.6197.609.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104364" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bees ; *Behavior, Animal ; *Biological Evolution ; Birds ; *Cognition ; Reproduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-10-18
    Description: Potassium channels selectively conduct K(+) ions across cellular membranes with extraordinary efficiency. Their selectivity filter exhibits four binding sites with approximately equal electron density in crystal structures with high K(+) concentrations, previously thought to reflect a superposition of alternating ion- and water-occupied states. Consequently, cotranslocation of ions with water has become a widely accepted ion conduction mechanism for potassium channels. By analyzing more than 1300 permeation events from molecular dynamics simulations at physiological voltages, we observed instead that permeation occurs via ion-ion contacts between neighboring K(+) ions. Coulomb repulsion between adjacent ions is found to be the key to high-efficiency K(+) conduction. Crystallographic data are consistent with directly neighboring K(+) ions in the selectivity filter, and our model offers an intuitive explanation for the high throughput rates of K(+) channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kopfer, David A -- Song, Chen -- Gruene, Tim -- Sheldrick, George M -- Zachariae, Ulrich -- de Groot, Bert L -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):352-5. doi: 10.1126/science.1254840.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de. ; Department of Structural Chemistry, University of Gottingen, 37077 Gottingen, Germany. ; School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK. College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de. ; Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324389" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Molecular Dynamics Simulation ; Potassium/*metabolism ; Potassium Channels/*chemistry/metabolism ; Protein Conformation ; *Static Electricity ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benton, Michael J -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):508-9. doi: 10.1126/science.1257633. Epub 2014 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. mike.benton@bristol.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082682" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology ; *Body Size ; Dinosaurs/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-07-26
    Description: Middle Jurassic to Early Cretaceous deposits from northeastern China have yielded varied theropod dinosaurs bearing feathers. Filamentous integumentary structures have also been described in ornithischian dinosaurs, but whether these filaments can be regarded as part of the evolutionary lineage toward feathers remains controversial. Here we describe a new basal neornithischian dinosaur from the Jurassic of Siberia with small scales around the distal hindlimb, larger imbricated scales around the tail, monofilaments around the head and the thorax, and more complex featherlike structures around the humerus, the femur, and the tibia. The discovery of these branched integumentary structures outside theropods suggests that featherlike structures coexisted with scales and were potentially widespread among the entire dinosaur clade; feathers may thus have been present in the earliest dinosaurs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godefroit, Pascal -- Sinitsa, Sofia M -- Dhouailly, Danielle -- Bolotsky, Yuri L -- Sizov, Alexander V -- McNamara, Maria E -- Benton, Michael J -- Spagna, Paul -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):451-5. doi: 10.1126/science.1253351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Directorate 'Earth and History of Life,' Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. pascal.godefroit@naturalsciences.be. ; Institute of Natural Resources, Ecology and Cryology, 26 Butin Street, 672 014 Chita, Russia. ; UJF-CNRS FRE 3405, AGIM, Universite Joseph Fourier, Site Sante, 38 706 La Tronche, France. ; Institute of Geology and Nature Management, FEB RAS, 1 Relochny Street 675 000, Blagoveschensk, Russia. ; Institute of the Earth Crust, SB RAS, 128 Lermontov Street, Irkutsk, 664 033 Irkutsk, Russia. ; School of Biological, Earth and Environmental Science, University College Cork, Cork, Ireland. School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. ; School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. ; Directorate 'Earth and History of Life,' Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Bone and Bones/anatomy & histology ; Dinosaurs/*anatomy & histology ; Epidermis/*anatomy & histology ; Feathers/*anatomy & histology ; Hindlimb/anatomy & histology ; Siberia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...