ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-16
    Description: The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Patrick J -- Haire, Lesley F -- Lin, Yi Pu -- Liu, Junfeng -- Russell, Rupert J -- Walker, Philip A -- Skehel, John J -- Martin, Stephen R -- Hay, Alan J -- Gamblin, Steven J -- MC_U117512711/Medical Research Council/United Kingdom -- MC_U117512723/Medical Research Council/United Kingdom -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117584222/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2008 Jun 26;453(7199):1258-61. doi: 10.1038/nature06956. Epub 2008 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480754" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; *Drug Resistance, Viral ; Enzyme Inhibitors/chemistry/metabolism/pharmacology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology/genetics ; Influenza A Virus, H5N1 Subtype/*drug effects/*enzymology/genetics ; Influenza, Human/virology ; Kinetics ; Models, Molecular ; Molecular Conformation ; Mutation/*genetics ; Neuraminidase/antagonists & inhibitors/*chemistry/*genetics/metabolism ; Oseltamivir/chemistry/metabolism/*pharmacology ; Protein Binding ; Zanamivir/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-02-07
    Description: The 1918 influenza pandemic resulted in about 20 million deaths. This enormous impact, coupled with renewed interest in emerging infections, makes characterization of the virus involved a priority. Receptor binding, the initial event in virus infection, is a major determinant of virus transmissibility that, for influenza viruses, is mediated by the hemagglutinin (HA) membrane glycoprotein. We have determined the crystal structures of the HA from the 1918 virus and two closely related HAs in complex with receptor analogs. They explain how the 1918 HA, while retaining receptor binding site amino acids characteristic of an avian precursor HA, is able to bind human receptors and how, as a consequence, the virus was able to spread in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gamblin, S J -- Haire, L F -- Russell, R J -- Stevens, D J -- Xiao, B -- Ha, Y -- Vasisht, N -- Steinhauer, D A -- Daniels, R S -- Elliot, A -- Wiley, D C -- Skehel, J J -- AI-13654/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1838-42. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764886" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; History, 20th Century ; Humans ; Hydrogen Bonding ; Influenza A virus/*immunology/metabolism/pathogenicity ; Influenza, Human/epidemiology/history/*virology ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Virus/*metabolism ; Sequence Alignment ; Sialic Acids/metabolism ; Species Specificity ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-08
    Description: SAMHD1, an analogue of the murine interferon (IFN)-gamma-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction. SAMHD1 is also associated with Aicardi-Goutieres syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-alpha. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldstone, David C -- Ennis-Adeniran, Valerie -- Hedden, Joseph J -- Groom, Harriet C T -- Rice, Gillian I -- Christodoulou, Evangelos -- Walker, Philip A -- Kelly, Geoff -- Haire, Lesley F -- Yap, Melvyn W -- de Carvalho, Luiz Pedro S -- Stoye, Jonathan P -- Crow, Yanick J -- Taylor, Ian A -- Webb, Michelle -- MC_U117512710/Medical Research Council/United Kingdom -- MC_U117533887/Medical Research Council/United Kingdom -- MC_U117565647/Medical Research Council/United Kingdom -- MC_UP_A253_1111/Medical Research Council/United Kingdom -- U117512710/Medical Research Council/United Kingdom -- U117565647/Medical Research Council/United Kingdom -- England -- Nature. 2011 Nov 6;480(7377):379-82. doi: 10.1038/nature10623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Structure, MRC National Institute for Medical Research, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22056990" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Dendritic Cells/metabolism/virology ; Deoxyadenine Nucleotides/metabolism ; Deoxycytosine Nucleotides/metabolism ; Deoxyguanine Nucleotides/metabolism ; HIV-1/*physiology ; Humans ; Hydrolysis ; Models, Biological ; Models, Molecular ; Monomeric GTP-Binding Proteins/*chemistry/genetics/*metabolism ; Myeloid Cells/virology ; Nucleoside-Triphosphatase/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Reverse Transcription ; Thymine Nucleotides/metabolism ; Viral Regulatory and Accessory Proteins/metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-15
    Description: The heterotrimeric AMP-activated protein kinase (AMPK) has a key role in regulating cellular energy metabolism; in response to a fall in intracellular ATP levels it activates energy-producing pathways and inhibits energy-consuming processes. AMPK has been implicated in a number of diseases related to energy metabolism including type 2 diabetes, obesity and, most recently, cancer. AMPK is converted from an inactive form to a catalytically competent form by phosphorylation of the activation loop within the kinase domain: AMP binding to the gamma-regulatory domain promotes phosphorylation by the upstream kinase, protects the enzyme against dephosphorylation, as well as causing allosteric activation. Here we show that ADP binding to just one of the two exchangeable AXP (AMP/ADP/ATP) binding sites on the regulatory domain protects the enzyme from dephosphorylation, although it does not lead to allosteric activation. Our studies show that active mammalian AMPK displays significantly tighter binding to ADP than to Mg-ATP, explaining how the enzyme is regulated under physiological conditions where the concentration of Mg-ATP is higher than that of ADP and much higher than that of AMP. We have determined the crystal structure of an active AMPK complex. The structure shows how the activation loop of the kinase domain is stabilized by the regulatory domain and how the kinase linker region interacts with the regulatory nucleotide-binding site that mediates protection against dephosphorylation. From our biochemical and structural data we develop a model for how the energy status of a cell regulates AMPK activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078618/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078618/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiao, Bing -- Sanders, Matthew J -- Underwood, Elizabeth -- Heath, Richard -- Mayer, Faith V -- Carmena, David -- Jing, Chun -- Walker, Philip A -- Eccleston, John F -- Haire, Lesley F -- Saiu, Peter -- Howell, Steven A -- Aasland, Rein -- Martin, Stephen R -- Carling, David -- Gamblin, Steven J -- MC_U117584222/Medical Research Council/United Kingdom -- MC_U120027537/Medical Research Council/United Kingdom -- U.1175.03.004.00008(60522)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2011 Apr 14;472(7342):230-3. doi: 10.1038/nature09932. Epub 2011 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21399626" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*chemistry/genetics/*metabolism ; Adenosine Diphosphate/*metabolism/*pharmacology ; Adenosine Monophosphate/metabolism/pharmacology ; Adenosine Triphosphate/metabolism/pharmacology ; Allosteric Regulation/drug effects/genetics ; Animals ; Binding Sites ; Crystallography, X-Ray ; Enzyme Activation/drug effects/genetics ; Kinetics ; Magnesium/metabolism ; Mammals ; Models, Molecular ; Phosphorylation/drug effects/genetics ; Protein Binding ; Protein Structure, Tertiary/drug effects/genetics ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-22
    Description: Of the 132 people known to have been infected with H7N9 influenza viruses in China, 37 died, and many were severely ill. Infection seems to have involved contact with infected poultry. We have examined the receptor-binding properties of this H7N9 virus and compared them with those of an avian H7N3 virus. We find that the human H7 virus has significantly higher affinity for alpha-2,6-linked sialic acid analogues ('human receptor') than avian H7 while retaining the strong binding to alpha-2,3-linked sialic acid analogues ('avian receptor') characteristic of avian viruses. The human H7 virus does not, therefore, have the preference for human versus avian receptors characteristic of pandemic viruses. X-ray crystallography of the receptor-binding protein, haemagglutinin (HA), in complex with receptor analogues indicates that both human and avian receptors adopt different conformations when bound to human H7 HA than they do when bound to avian H7 HA. Human receptor bound to human H7 HA exits the binding site in a different direction to that seen in complexes formed by HAs from pandemic viruses and from an aerosol-transmissible H5 mutant. The human-receptor-binding properties of human H7 probably arise from the introduction of two bulky hydrophobic residues by the substitutions Gln226Leu and Gly186Val. The former is shared with the 1957 H2 and 1968 H3 pandemic viruses and with the aerosol-transmissible H5 mutant. We conclude that the human H7 virus has acquired some of the receptor-binding characteristics that are typical of pandemic viruses, but its retained preference for avian receptor may restrict its further evolution towards a virus that could transmit efficiently between humans, perhaps by binding to avian-receptor-rich mucins in the human respiratory tract rather than to cellular receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, Xiaoli -- Martin, Stephen R -- Haire, Lesley F -- Wharton, Stephen A -- Daniels, Rodney S -- Bennett, Michael S -- McCauley, John W -- Collins, Patrick J -- Walker, Philip A -- Skehel, John J -- Gamblin, Steven J -- MC_U117584222/Medical Research Council/United Kingdom -- MC_U117585868/Medical Research Council/United Kingdom -- U117512723/PHS HHS/ -- U117570592/PHS HHS/ -- U117584222/PHS HHS/ -- U117585868/PHS HHS/ -- England -- Nature. 2013 Jul 25;499(7459):496-9. doi: 10.1038/nature12372.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23787694" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds/metabolism/virology ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/metabolism ; Humans ; Influenza A Virus, H7N3 Subtype/metabolism ; Influenza A virus/chemistry/isolation & purification/*metabolism ; Influenza, Human/*virology ; Models, Molecular ; Mucins/chemistry/metabolism ; N-Acetylneuraminic Acid/analogs & derivatives/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Receptors, Virus/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-30
    Description: H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility. Our results show, first, that the H10 virus possesses high avidity for human receptors and second, from the crystal structure of the complex formed by avian H10 haemagglutinin with human receptor, it is clear that the conformation of the bound receptor has characteristics of both the 1918 H1N1 pandemic virus and the human H7 viruses isolated from patients in 2013 (ref. 3). We conclude that avian H10N8 virus has sufficient avidity for human receptors to account for its infection of humans but that its preference for avian receptors should make avian-receptor-rich human airway mucins an effective block to widespread infection. In terms of surveillance, particular attention will be paid to the detection of mutations in the receptor-binding site of the H10 haemagglutinin that decrease its avidity for avian receptor, and could enable it to be more readily transmitted between humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vachieri, Sebastien G -- Xiong, Xiaoli -- Collins, Patrick J -- Walker, Philip A -- Martin, Stephen R -- Haire, Lesley F -- Zhang, Ying -- McCauley, John W -- Gamblin, Steven J -- Skehel, John J -- MC_U117512723/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117584222/Medical Research Council/United Kingdom -- U117585868/Medical Research Council/United Kingdom -- England -- Nature. 2014 Jul 24;511(7510):475-7. doi: 10.1038/nature13443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2]. ; MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds/*virology ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/chemistry ; Influenza A Virus, H7N9 Subtype/chemistry ; Models, Molecular ; Orthomyxoviridae/*chemistry/*metabolism ; Receptors, Virus/*chemistry/*metabolism ; Zoonoses/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-07-30
    Description: The isolation of broadly neutralizing antibodies against influenza A viruses has been a long-sought goal for therapeutic approaches and vaccine design. Using a single-cell culture method for screening large numbers of human plasma cells, we isolated a neutralizing monoclonal antibody that recognized the hemagglutinin (HA) glycoprotein of all 16 subtypes and neutralized both group 1 and group 2 influenza A viruses. Passive transfer of this antibody conferred protection to mice and ferrets. Complexes with HAs from the group 1 H1 and the group 2 H3 subtypes analyzed by x-ray crystallography showed that the antibody bound to a conserved epitope in the F subdomain. This antibody may be used for passive protection and to inform vaccine design because of its broad specificity and neutralization potency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corti, Davide -- Voss, Jarrod -- Gamblin, Steven J -- Codoni, Giosiana -- Macagno, Annalisa -- Jarrossay, David -- Vachieri, Sebastien G -- Pinna, Debora -- Minola, Andrea -- Vanzetta, Fabrizia -- Silacci, Chiara -- Fernandez-Rodriguez, Blanca M -- Agatic, Gloria -- Bianchi, Siro -- Giacchetto-Sasselli, Isabella -- Calder, Lesley -- Sallusto, Federica -- Collins, Patrick -- Haire, Lesley F -- Temperton, Nigel -- Langedijk, Johannes P M -- Skehel, John J -- Lanzavecchia, Antonio -- G0600369/Medical Research Council/United Kingdom -- MC_U117584222/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):850-6. doi: 10.1126/science.1205669. Epub 2011 Jul 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798894" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/*immunology/isolation & purification ; Antibodies, Viral/*immunology/isolation & purification ; Antibody Specificity ; Antigens, Viral/*immunology ; Cells, Cultured ; Cross Reactions ; Crystallography, X-Ray ; Epitopes/immunology ; Ferrets ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza Virus/*immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunization, Passive ; Immunoglobulin Variable Region/immunology ; Influenza A Virus, H1N1 Subtype/immunology ; Influenza A virus/*immunology ; Influenza B virus/immunology ; Influenza, Human/immunology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Orthomyxoviridae Infections/immunology/prevention & control/therapy ; Plasma Cells/immunology ; Protein Multimerization ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 56 (2000), S. 64-66 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: N-utilizing substance B (NusB) is a protein which forms part of a complex assembly in transcriptional antitermination in Mycobacterium tuberculosis. It forms a heterodimer with the product of the NusE gene (identical to the ribosomal protein S10) and mediates the process of transcriptional antitermination by forming the core complex with the nut site of the ribosomal RNA along with other protein factors. NusB has been cloned and overexpressed in Escherichia coli and crystallized using the hanging-drop vapour-diffusion method. The space group is P212121, with unit-cell parameters a = 46.6, b = 64.2, c = 90.1 Å. A native data set complete to 1.6 Å resolution has been collected from a single crystal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-14
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-05-13
    Description: Mdc1 is a large modular phosphoprotein scaffold that maintains signaling and repair complexes at double-stranded DNA break sites. Mdc1 is anchored to damaged chromatin through interaction of its C-terminal BRCT-repeat domain with the tail of H2AX following DNA damage, but the role of the N-terminal forkhead-associated (FHA) domain remains unclear. We show that a major binding target of the Mdc1 FHA domain is a previously unidentified DNA damage and ATM-dependent phosphorylation site near the N-terminus of Mdc1 itself. Binding to this motif stabilizes a weak self-association of the FHA domain to form a tight dimer. X-ray structures of free and complexed Mdc1 FHA domain reveal a ‘head-to-tail’ dimerization mechanism that is closely related to that seen in pre-activated forms of the Chk2 DNA damage kinase, and which both positively and negatively influences Mdc1 FHA domain-mediated interactions in human cells prior to and following DNA damage.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...