ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (135)
  • Protein Conformation  (89)
  • Binding Sites  (83)
  • American Association for the Advancement of Science (AAAS)  (135)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • 2010-2014  (57)
  • 2000-2004
  • 1995-1999  (78)
  • 1990-1994
  • 2011  (57)
  • 1996  (78)
Collection
  • Articles  (135)
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (135)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • Nature Publishing Group (NPG)  (58)
Years
  • 2010-2014  (57)
  • 2000-2004
  • 1995-1999  (78)
  • 1990-1994
Year
  • 1
    Publication Date: 2011-03-12
    Description: Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbalpha. Rev-erbalpha colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbalpha in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbalpha directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Dan -- Liu, Tao -- Sun, Zheng -- Bugge, Anne -- Mullican, Shannon E -- Alenghat, Theresa -- Liu, X Shirley -- Lazar, Mitchell A -- DK19525/DK/NIDDK NIH HHS/ -- DK43806/DK/NIDDK NIH HHS/ -- DK45586/DK/NIDDK NIH HHS/ -- DK49210/DK/NIDDK NIH HHS/ -- HG4069/HG/NHGRI NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- R37 DK043806-20/DK/NIDDK NIH HHS/ -- RC1 DK086239/DK/NIDDK NIH HHS/ -- RC1DK08623/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1315-9. doi: 10.1126/science.1198125.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393543" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Chromatin Immunoprecipitation ; Chronobiology Disorders/genetics/metabolism ; *Circadian Clocks ; *Circadian Rhythm ; DNA/metabolism ; Epigenesis, Genetic ; Fatty Liver/*metabolism ; Gene Expression Regulation ; *Genome ; Histone Deacetylases/*metabolism ; Histones/metabolism ; Homeostasis ; *Lipid Metabolism ; Lipogenesis/genetics ; Liver/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Nuclear Receptor Co-Repressor 1/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/metabolism ; RNA Polymerase II/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-14
    Description: We describe a general computational method for designing proteins that bind a surface patch of interest on a target macromolecule. Favorable interactions between disembodied amino acid residues and the target surface are identified and used to anchor de novo designed interfaces. The method was used to design proteins that bind a conserved surface patch on the stem of the influenza hemagglutinin (HA) from the 1918 H1N1 pandemic virus. After affinity maturation, two of the designed proteins, HB36 and HB80, bind H1 and H5 HAs with low nanomolar affinity. Further, HB80 inhibits the HA fusogenic conformational changes induced at low pH. The crystal structure of HB36 in complex with 1918/H1 HA revealed that the actual binding interface is nearly identical to that in the computational design model. Such designed binding proteins may be useful for both diagnostics and therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fleishman, Sarel J -- Whitehead, Timothy A -- Ekiert, Damian C -- Dreyfus, Cyrille -- Corn, Jacob E -- Strauch, Eva-Maria -- Wilson, Ian A -- Baker, David -- AI057141/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-07/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):816-21. doi: 10.1126/science.1202617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566186" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Binding Sites ; Computational Biology ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; *Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-19
    Description: Dyneins are microtubule-based motor proteins that power ciliary beating, transport intracellular cargos, and help to construct the mitotic spindle. Evolved from ring-shaped hexameric AAA-family adenosine triphosphatases (ATPases), dynein's large size and complexity have posed challenges for understanding its structure and mechanism. Here, we present a 6 angstrom crystal structure of a functional dimer of two ~300-kilodalton motor domains of yeast cytoplasmic dynein. The structure reveals an unusual asymmetric arrangement of ATPase domains in the ring-shaped motor domain, the manner in which the mechanical element interacts with the ATPase ring, and an unexpected interaction between two coiled coils that create a base for the microtubule binding domain. The arrangement of these elements provides clues as to how adenosine triphosphate-driven conformational changes might be transmitted across the motor domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, Andrew P -- Cho, Carol -- Jin, Lan -- Vale, Ronald D -- MC_UP_A025_1011/Medical Research Council/United Kingdom -- R01 GM097312/GM/NIGMS NIH HHS/ -- R01 GM097312-01/GM/NIGMS NIH HHS/ -- R01 GM097312-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1159-65. doi: 10.1126/science.1202393. Epub 2011 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California-San Francisco, 600 16th Street, San Francisco, CA 94158, USA. cartera@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330489" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Methionine/chemistry ; Microtubules/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-29
    Description: An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 mus and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindorff-Larsen, Kresten -- Piana, Stefano -- Dror, Ron O -- Shaw, David E -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA. kresten.lindorff-larsen@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034434" target="_blank"〉PubMed〈/a〉
    Keywords: Kinetics ; Molecular Dynamics Simulation ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-07-23
    Description: Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite-host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonkin, Michelle L -- Roques, Magali -- Lamarque, Mauld H -- Pugniere, Martine -- Douguet, Dominique -- Crawford, Joanna -- Lebrun, Maryse -- Boulanger, Martin J -- MOP82915/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):463-7. doi: 10.1126/science.1204988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778402" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Antibodies, Monoclonal/immunology ; Antibodies, Protozoan/immunology ; Antigens, Protozoan/*chemistry/genetics/immunology/*metabolism ; *Host-Parasite Interactions ; Hydrophobic and Hydrophilic Interactions ; Membrane Proteins/chemistry/immunology/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Peptide Fragments/chemistry/metabolism ; Plasmodium falciparum/chemistry/metabolism/pathogenicity ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protozoan Proteins/*chemistry/immunology/*metabolism ; Toxoplasma/chemistry/*metabolism/*pathogenicity/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-06-28
    Description: Centrosomes organize the bipolar mitotic spindle, and centrosomal defects cause chromosome instability. Protein phosphorylation modulates centrosome function, and we provide a comprehensive map of phosphorylation on intact yeast centrosomes (18 proteins). Mass spectrometry was used to identify 297 phosphorylation sites on centrosomes from different cell cycle stages. We observed different modes of phosphoregulation via specific protein kinases, phosphorylation site clustering, and conserved phosphorylated residues. Mutating all eight cyclin-dependent kinase (Cdk)-directed sites within the core component, Spc42, resulted in lethality and reduced centrosomal assembly. Alternatively, mutation of one conserved Cdk site within gamma-tubulin (Tub4-S360D) caused mitotic delay and aberrant anaphase spindle elongation. Our work establishes the extent and complexity of this prominent posttranslational modification in centrosome biology and provides specific examples of phosphorylation control in centrosome function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825980/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825980/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Binkley, Jonathan -- Chen, Daici -- Jaspersen, Sue L -- Holinger, Eric P -- Xu, Tao -- Niepel, Mario -- Rout, Michael P -- Vogel, Jackie -- Sidow, Arend -- Yates, John R 3rd -- Winey, Mark -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MOP-64404/Canadian Institutes of Health Research/Canada -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM051312-16/GM/NIGMS NIH HHS/ -- R01 GM051312-16S1/GM/NIGMS NIH HHS/ -- R01 GM062427/GM/NIGMS NIH HHS/ -- R01 HG003039/HG/NHGRI NIH HHS/ -- T32 GM008759/GM/NIGMS NIH HHS/ -- U54 RR022220/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 24;332(6037):1557-61. doi: 10.1126/science.1205193.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700874" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; CDC2 Protein Kinase/metabolism ; *Cell Cycle ; Centrosome/*metabolism/ultrastructure ; Cytoskeletal Proteins/genetics/metabolism ; Fungal Proteins/chemistry/metabolism ; Fungi/metabolism ; G1 Phase ; Mitosis ; Mutation ; Phosphoproteins/genetics/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Proteome/*metabolism ; Saccharomyces cerevisiae/cytology/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Spindle Apparatus/metabolism/ultrastructure ; Tubulin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-19
    Description: Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show that it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5'-triphosphate turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090309/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090309/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malik, Fady I -- Hartman, James J -- Elias, Kathleen A -- Morgan, Bradley P -- Rodriguez, Hector -- Brejc, Katjusa -- Anderson, Robert L -- Sueoka, Sandra H -- Lee, Kenneth H -- Finer, Jeffrey T -- Sakowicz, Roman -- Baliga, Ramesh -- Cox, David R -- Garard, Marc -- Godinez, Guillermo -- Kawas, Raja -- Kraynack, Erica -- Lenzi, David -- Lu, Pu Ping -- Muci, Alexander -- Niu, Congrong -- Qian, Xiangping -- Pierce, Daniel W -- Pokrovskii, Maria -- Suehiro, Ion -- Sylvester, Sheila -- Tochimoto, Todd -- Valdez, Corey -- Wang, Wenyue -- Katori, Tatsuo -- Kass, David A -- Shen, You-Tang -- Vatner, Stephen F -- Morgans, David J -- 1-R43-HL-66647-1/HL/NHLBI NIH HHS/ -- R01 HL106511/HL/NHLBI NIH HHS/ -- R43 HL066647/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1439-43. doi: 10.1126/science.1200113.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Preclinical Research and Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA. fmalik@cytokinetics.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415352" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actins/metabolism ; Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Adrenergic beta-Agonists/pharmacology ; Allosteric Regulation ; Animals ; Binding Sites ; Calcium/metabolism ; Cardiac Myosins/chemistry/*metabolism ; Cardiac Output/drug effects ; Dogs ; Female ; Heart Failure, Systolic/*drug therapy/physiopathology ; Isoproterenol/pharmacology ; Male ; Myocardial Contraction/*drug effects ; Myocytes, Cardiac/*drug effects/physiology ; Phosphates/metabolism ; Protein Binding ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Rats ; Rats, Sprague-Dawley ; Urea/*analogs & derivatives/chemistry/metabolism/pharmacology ; Ventricular Function, Left/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-07-30
    Description: The initiation of transcription by RNA polymerase II is a multistage process. X-ray crystal structures of transcription complexes containing short RNAs reveal three structural states: one with 2- and 3-nucleotide RNAs, in which only the 3'-end of the RNA is detectable; a second state with 4- and 5-nucleotide RNAs, with an RNA-DNA hybrid in a grossly distorted conformation; and a third state with RNAs of 6 nucleotides and longer, essentially the same as a stable elongating complex. The transition from the first to the second state correlates with a markedly reduced frequency of abortive initiation. The transition from the second to the third state correlates with partial "bubble collapse" and promoter escape. Polymerase structure is permissive for abortive initiation, thereby setting a lower limit on polymerase-promoter complex lifetime and allowing the dissociation of nonspecific complexes. Abortive initiation may be viewed as promoter proofreading, and the structural transitions as checkpoints for promoter control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Bushnell, David A -- Silva, Daniel-Adriano -- Huang, Xuhui -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 AI021144-27/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-19/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 29;333(6042):633-7. doi: 10.1126/science.1206629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798951" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-04-02
    Description: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPsigma). Here we report that RPTPsigma acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPsigma ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPsigma and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coles, Charlotte H -- Shen, Yingjie -- Tenney, Alan P -- Siebold, Christian -- Sutton, Geoffrey C -- Lu, Weixian -- Gallagher, John T -- Jones, E Yvonne -- Flanagan, John G -- Aricescu, A Radu -- 090532/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- EY11559/EY/NEI NIH HHS/ -- G0700232/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- HD29417/HD/NICHD NIH HHS/ -- R01 EY011559/EY/NEI NIH HHS/ -- R01 EY011559-19/EY/NEI NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 HD029417-20/HD/NICHD NIH HHS/ -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):484-8. doi: 10.1126/science.1200840. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Binding Sites ; Cell Membrane/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/chemistry/metabolism ; Crystallography, X-Ray ; Extracellular Matrix ; Ganglia, Spinal ; Glypicans/metabolism ; Growth Cones/metabolism ; Heparan Sulfate Proteoglycans/chemistry/*metabolism ; Heparitin Sulfate/analogs & derivatives/chemistry/metabolism ; Humans ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Neurites/physiology ; Neurocan/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*chemistry/*metabolism ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-08-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Junge, Wolfgang -- Muller, Daniel J -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):704-5. doi: 10.1126/science.1210238.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biophysics, University of Osnabruck, 49069 Osnabruck, Germany. junge@uos.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817036" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Biocatalysis ; Catalytic Domain ; *Microscopy, Atomic Force ; Models, Molecular ; Protein Conformation ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Proton-Translocating ATPases/*chemistry/*metabolism ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-13
    Description: When not transporting cargo, kinesin-1 is autoinhibited by binding of a tail region to the motor domains, but the mechanism of inhibition is unclear. We report the crystal structure of a motor domain dimer in complex with its tail domain at 2.2 angstroms and compare it with a structure of the motor domain alone at 2.7 angstroms. These structures indicate that neither an induced conformational change nor steric blocking is the cause of inhibition. Instead, the tail cross-links the motor domains at a second position, in addition to the coiled coil. This "double lockdown," by cross-linking at two positions, prevents the movement of the motor domains that is needed to undock the neck linker and release adenosine diphosphate. This autoinhibition mechanism could extend to some other kinesins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaan, Hung Yi Kristal -- Hackney, David D -- Kozielski, Frank -- NS058848/NS/NINDS NIH HHS/ -- R01 NS058848/NS/NINDS NIH HHS/ -- R01 NS058848-01A2/NS/NINDS NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):883-5. doi: 10.1126/science.1204824.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836017" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Kinesin/*antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-06
    Description: Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein-1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor-1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yasufumi -- Iketani, Masumi -- Kurihara, Yuji -- Yamaguchi, Megumi -- Yamashita, Naoya -- Nakamura, Fumio -- Arie, Yuko -- Kawasaki, Takahiko -- Hirata, Tatsumi -- Abe, Takaya -- Kiyonari, Hiroshi -- Strittmatter, Stephen M -- Goshima, Yoshio -- Takei, Kohtaro -- R37 NS033020/NS/NINDS NIH HHS/ -- R37 NS033020-19/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):769-73. doi: 10.1126/science.1204144.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Binding Sites ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; GPI-Linked Proteins/genetics/metabolism ; Growth Cones/metabolism ; Humans ; Immunohistochemistry ; Ligands ; Mice ; Mice, Inbred ICR ; Myelin Proteins/genetics/*metabolism ; Olfactory Pathways/*cytology/*growth & development/metabolism ; Prosencephalon/embryology/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-11-19
    Description: Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098850/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098850/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armache, Karim-Jean -- Garlick, Joseph D -- Canzio, Daniele -- Narlikar, Geeta J -- Kingston, Robert E -- GM043901/GM/NIGMS NIH HHS/ -- P41 RR012408/RR/NCRR NIH HHS/ -- R01 GM043901/GM/NIGMS NIH HHS/ -- R37 GM048405/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 18;334(6058):977-82. doi: 10.1126/science.1210915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096199" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; *Gene Silencing ; Histones/*chemistry/metabolism ; Hydrogen Bonding ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Mutant Proteins/chemistry/metabolism ; Nucleosomes/*chemistry/metabolism/ultrastructure ; Physicochemical Processes ; Protein Folding ; *Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Silent Information Regulator Proteins, Saccharomyces ; cerevisiae/*chemistry/genetics/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-20
    Description: The unfolded protein response (UPR) detects the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and adjusts the protein-folding capacity to the needs of the cell. Under conditions of ER stress, the transmembrane protein Ire1 oligomerizes to activate its cytoplasmic kinase and ribonuclease domains. It is unclear what feature of ER stress Ire1 detects. We found that the core ER-lumenal domain (cLD) of yeast Ire1 binds to unfolded proteins in yeast cells and to peptides primarily composed of basic and hydrophobic residues in vitro. Mutation of amino acid side chains exposed in a putative peptide-binding groove of Ire1 cLD impaired peptide binding. Peptide binding caused Ire1 cLD oligomerization in vitro, suggesting that direct binding to unfolded proteins activates the UPR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202989/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202989/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, Brooke M -- Walter, Peter -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1891-4. doi: 10.1126/science.1209126. Epub 2011 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852455" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cathepsin A/chemistry/metabolism ; Endoplasmic Reticulum/*metabolism ; Fluorescence Polarization ; Fungal Proteins/chemistry/metabolism ; Glutathione Transferase/metabolism ; HSP70 Heat-Shock Proteins/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Membrane Glycoproteins/*chemistry/*metabolism ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein-Serine-Threonine Kinases/*chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Stress, Physiological ; *Unfolded Protein Response
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-10-15
    Description: The 5'-leader of the HIV-1 genome regulates multiple functions during viral replication via mechanisms that have yet to be established. We developed a nuclear magnetic resonance approach that enabled direct detection of structural elements within the intact leader (712-nucleotide dimer) that are critical for genome packaging. Residues spanning the gag start codon (AUG) form a hairpin in the monomeric leader and base pair with residues of the unique-5' region (U5) in the dimer. U5:AUG formation promotes dimerization by displacing and exposing a dimer-promoting hairpin and enhances binding by the nucleocapsid (NC) protein, which is the cognate domain of the viral Gag polyprotein that directs packaging. Our findings support a packaging mechanism in which translation, dimerization, NC binding, and packaging are regulated by a common RNA structural switch.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335204/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335204/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Kun -- Heng, Xiao -- Garyu, Lianko -- Monti, Sarah -- Garcia, Eric L -- Kharytonchyk, Siarhei -- Dorjsuren, Bilguujin -- Kulandaivel, Gowry -- Jones, Simonne -- Hiremath, Atheeth -- Divakaruni, Sai Sachin -- LaCotti, Courtney -- Barton, Shawn -- Tummillo, Daniel -- Hosic, Azra -- Edme, Kedy -- Albrecht, Sara -- Telesnitsky, Alice -- Summers, Michael F -- 2T34 GM008663/GM/NIGMS NIH HHS/ -- R01 GM042561/GM/NIGMS NIH HHS/ -- R01 GM042561-21/GM/NIGMS NIH HHS/ -- R01 GM042561-22/GM/NIGMS NIH HHS/ -- R01 GM042561-23/GM/NIGMS NIH HHS/ -- R01 GM042561-24/GM/NIGMS NIH HHS/ -- R01 GM42561/GM/NIGMS NIH HHS/ -- R25 GM055036/GM/NIGMS NIH HHS/ -- R25 GM055036-14/GM/NIGMS NIH HHS/ -- R25 GM055036-15/GM/NIGMS NIH HHS/ -- R25 GM055036-16/GM/NIGMS NIH HHS/ -- R25 GM55036/GM/NIGMS NIH HHS/ -- T34 GM008663/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):242-5. doi: 10.1126/science.1210460.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998393" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Base Pairing ; Binding Sites ; Codon, Initiator ; Dimerization ; Genes, gag ; *Genome, Viral ; HIV-1/*genetics/*physiology ; Human Immunodeficiency Virus Proteins/metabolism ; Mutagenesis, Site-Directed ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Nucleocapsid Proteins/metabolism ; Protein Binding ; Protein Biosynthesis ; RNA, Viral/*chemistry/*genetics ; *Virus Assembly ; gag Gene Products, Human Immunodeficiency Virus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-04-16
    Description: The formate transporter FocA was described to switch its mode of operation from a passive export channel at high external pH to a secondary active formate/H(+) importer at low pH. The crystal structure of Salmonella typhimurium FocA at pH 4.0 shows that this switch involves a major rearrangement of the amino termini of individual protomers in the pentameric channel. The amino-terminal helices open or block transport in a concerted, cooperative action that indicates how FocA is gated in a pH-dependent way. Electrophysiological studies show that the protein acts as a specific formate channel at pH 7.0 and that it closes upon a shift of pH to 5.1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Wei -- Du, Juan -- Wacker, Tobias -- Gerbig-Smentek, Elke -- Andrade, Susana L A -- Einsle, Oliver -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):352-4. doi: 10.1126/science.1199098.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl fur Biochemie, Institut fur organische Chemie und Biochemie, Albert-Ludwigs-Universitat Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493860" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/isolation & purification/*metabolism ; Crystallization ; Crystallography, X-Ray ; Formates/*metabolism ; Hydrogen-Ion Concentration ; *Ion Channel Gating ; Ion Channels/*chemistry/isolation & purification/*metabolism ; Ion Transport ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism ; Salmonella typhimurium/*chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-06
    Description: F(1) is an adenosine triphosphate (ATP)-driven motor in which three torque-generating beta subunits in the alpha(3)beta(3) stator ring sequentially undergo conformational changes upon ATP hydrolysis to rotate the central shaft gamma unidirectionally. Although extensive experimental and theoretical work has been done, the structural basis of cooperative torque generation to realize the unidirectional rotation remains elusive. We used high-speed atomic force microscopy to show that the rotorless F(1) still "rotates"; in the isolated alpha(3)beta(3) stator ring, the three beta subunits cyclically propagate conformational states in the counterclockwise direction, similar to the rotary shaft rotation in F(1). The structural basis of unidirectionality is programmed in the stator ring. These findings have implications for cooperative interplay between subunits in other hexameric ATPases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uchihashi, Takayuki -- Iino, Ryota -- Ando, Toshio -- Noji, Hiroyuki -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):755-8. doi: 10.1126/science.1205510.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817054" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Bacillus/enzymology ; Bacterial Proton-Translocating ATPases/*chemistry/*metabolism ; Biocatalysis ; Catalytic Domain ; Hydrolysis ; *Microscopy, Atomic Force ; Protein Conformation ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-06-18
    Description: The adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates whole-body and cellular energy balance in response to energy demand and supply. AMPK is an alphabetagamma heterotrimer activated by decreasing concentrations of adenosine triphosphate (ATP) and increasing AMP concentrations. AMPK activation depends on phosphorylation of the alpha catalytic subunit on threonine-172 (Thr(172)) by kinases LKB1 or CaMKKbeta, and this is promoted by AMP binding to the gamma subunit. AMP sustains activity by inhibiting dephosphorylation of alpha-Thr(172), whereas ATP promotes dephosphorylation. Adenosine diphosphate (ADP), like AMP, bound to gamma sites 1 and 3 and stimulated alpha-Thr(172) phosphorylation. However, in contrast to AMP, ADP did not directly activate phosphorylated AMPK. In this way, both ADP/ATP and AMP/ATP ratios contribute to AMPK regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oakhill, Jonathan S -- Steel, Rohan -- Chen, Zhi-Ping -- Scott, John W -- Ling, Naomi -- Tam, Shanna -- Kemp, Bruce E -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1433-5. doi: 10.1126/science.1200094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia. joakhill@svi.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680840" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adenosine Diphosphate/*metabolism ; Adenosine Monophosphate/*metabolism ; Adenosine Triphosphate/*metabolism ; Animals ; Binding Sites ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism ; Cercopithecus aethiops ; Enzyme Activation ; Myristic Acid/metabolism ; Phosphorylation ; Protein Subunits/chemistry/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-07-19
    Description: Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheid, Johannes F -- Mouquet, Hugo -- Ueberheide, Beatrix -- Diskin, Ron -- Klein, Florian -- Oliveira, Thiago Y K -- Pietzsch, John -- Fenyo, David -- Abadir, Alexander -- Velinzon, Klara -- Hurley, Arlene -- Myung, Sunnie -- Boulad, Farid -- Poignard, Pascal -- Burton, Dennis R -- Pereyra, Florencia -- Ho, David D -- Walker, Bruce D -- Seaman, Michael S -- Bjorkman, Pamela J -- Chait, Brian T -- Nussenzweig, Michel C -- P01 AI081677/AI/NIAID NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1633-7. doi: 10.1126/science.1207227. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764753" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/immunology/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Cloning, Molecular ; Consensus Sequence ; Crystallography, X-Ray ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry ; Immunoglobulin Heavy Chains/chemistry ; Immunoglobulin Light Chains/chemistry ; Molecular Mimicry ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-02-19
    Description: Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)-dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstrom resolution and biochemical data revealing that the activated SRP:SR guanine triphosphatase (GTPase) complex binds the distal end of the SRP hairpin RNA where GTP hydrolysis is stimulated. Combined with previous findings, these results suggest that the SRP:SR GTPase complex initially assembles at the tetraloop end of the SRP RNA and then relocalizes to the opposite end of the RNA. This rearrangement provides a mechanism for coupling GTP hydrolysis to the handover of cargo to the translocon.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ataide, Sandro F -- Schmitz, Nikolaus -- Shen, Kuang -- Ke, Ailong -- Shan, Shu-ou -- Doudna, Jennifer A -- Ban, Nenad -- GM078024/GM/NIGMS NIH HHS/ -- R01 GM078024/GM/NIGMS NIH HHS/ -- R01 GM086766/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):881-6. doi: 10.1126/science.1196473.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Eidgenossische Technische Hochschule Zurich (ETH Zurich), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330537" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; GTP Phosphohydrolases/chemistry/metabolism ; Guanosine Triphosphate/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Transport ; RNA, Bacterial/*chemistry/metabolism ; Receptors, Cytoplasmic and Nuclear/*chemistry/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/metabolism ; Signal Recognition Particle/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-04-30
    Description: The interaction of complement receptor 2 (CR2)--which is present on B cells and follicular dendritic cells--with its antigen-bound ligand C3d results in an enhanced antibody response, thus providing an important link between the innate and adaptive immune systems. Although a cocrystal structure of a complex between C3d and the ligand-binding domains of CR2 has been published, several aspects of this structure, including the position in C3d of the binding interface, remained controversial because of disagreement with biochemical data. We now report a cocrystal structure of a CR2(SCR1-2):C3d complex at 3.2 angstrom resolution in which the interaction interfaces differ markedly from the previously published structure and are consistent with the biochemical data. It is likely that, in the previous structure, the interaction was influenced by the presence of zinc acetate additive in the crystallization buffer, leading to a nonphysiological complex. Detailed knowledge of the binding interface now at hand gives the potential to exploit the interaction in vaccine design or in therapeutics directed against autoreactive B cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Elsen, Jean M H -- Isenman, David E -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):608-11. doi: 10.1126/science.1201954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK. bssjmhve@bath.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21527715" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Complement C3d/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Mutagenesis, Site-Directed ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Receptors, Complement 3d/*chemistry/genetics/metabolism ; Zinc Acetate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-10-25
    Description: The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azoitei, Mihai L -- Correia, Bruno E -- Ban, Yih-En Andrew -- Carrico, Chris -- Kalyuzhniy, Oleksandr -- Chen, Lei -- Schroeter, Alexandria -- Huang, Po-Ssu -- McLellan, Jason S -- Kwong, Peter D -- Baker, David -- Strong, Roland K -- Schief, William R -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):373-6. doi: 10.1126/science.1209368.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021856" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Computational Biology ; Computer Simulation ; Crystallography, X-Ray ; Epitopes/immunology ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Surface Plasmon Resonance
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-05-14
    Description: Adenosine triphosphate (ATP)-binding cassette (ABC) transporters convert chemical energy from ATP hydrolysis to mechanical work for substrate translocation. They function by alternating between two states, exposing the substrate-binding site to either side of the membrane. A key question that remains to be addressed is how substrates initiate the transport cycle. Using x-ray crystallography, we have captured the maltose transporter in an intermediate step between the inward- and outward-facing states. We show that interactions with substrate-loaded maltose-binding protein in the periplasm induce a partial closure of the MalK dimer in the cytoplasm. ATP binding to this conformation then promotes progression to the outward-facing state. These results, interpreted in light of biochemical and functional studies, provide a structural basis to understand allosteric communication in ABC transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldham, Michael L -- Chen, Jue -- GM070515/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1202-5. doi: 10.1126/science.1200767. Epub 2011 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, Howard Hughes Medical Institute, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566157" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Binding Sites ; Biological Transport, Active ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Maltose/metabolism ; Maltose-Binding Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/*chemistry/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-05-21
    Description: All known internal covalent cross-links in proteins involve functionalized groups having oxygen, nitrogen, or sulfur atoms present to facilitate their formation. Here, we report a carbon-carbon cross-link between two unfunctionalized side chains. This valine-phenyalanine cross-link, produced in an oxygen-dependent reaction, is generated by its own carboxylate-bridged diiron center and serves to stabilize the metallocenter. This finding opens the door to new types of posttranslational modifications, and it demonstrates new catalytic potential of diiron centers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736988/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736988/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooley, Richard B -- Rhoads, Timothy W -- Arp, Daniel J -- Karplus, P Andrew -- ES00210/ES/NIEHS NIH HHS/ -- GM R01-083136/GM/NIGMS NIH HHS/ -- R01 GM083136/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):929. doi: 10.1126/science.1205687.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, 2011 Agriculture and Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596985" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Cyanophora/*chemistry/metabolism ; Iron/*chemistry ; Metalloproteins/*chemistry/metabolism ; Oxygen/chemistry ; Phenylalanine/*chemistry ; Plant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Valine/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-10-15
    Description: The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short beta-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificity. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pejchal, Robert -- Doores, Katie J -- Walker, Laura M -- Khayat, Reza -- Huang, Po-Ssu -- Wang, Sheng-Kai -- Stanfield, Robyn L -- Julien, Jean-Philippe -- Ramos, Alejandra -- Crispin, Max -- Depetris, Rafael -- Katpally, Umesh -- Marozsan, Andre -- Cupo, Albert -- Maloveste, Sebastien -- Liu, Yan -- McBride, Ryan -- Ito, Yukishige -- Sanders, Rogier W -- Ogohara, Cassandra -- Paulson, James C -- Feizi, Ten -- Scanlan, Christopher N -- Wong, Chi-Huey -- Moore, John P -- Olson, William C -- Ward, Andrew B -- Poignard, Pascal -- Schief, William R -- Burton, Dennis R -- Wilson, Ian A -- AI082362/AI/NIAID NIH HHS/ -- AI33292/AI/NIAID NIH HHS/ -- AI74372/AI/NIAID NIH HHS/ -- AI84817/AI/NIAID NIH HHS/ -- F32 AI074372-03/AI/NIAID NIH HHS/ -- HFE-224662/Canadian Institutes of Health Research/Canada -- P01 AI082362/AI/NIAID NIH HHS/ -- P01 AI082362-03/AI/NIAID NIH HHS/ -- P01 AI082362-04/AI/NIAID NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI033292-14/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R01 AI084817-04/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U01 CA128416/CA/NCI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1097-103. doi: 10.1126/science.1213256. Epub 2011 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Skaggs Institute for Chemical Biology and International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, nhe Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998254" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry/genetics/*immunology/metabolism ; Antibody Specificity ; Binding Sites, Antibody ; Carbohydrate Conformation ; Cell Line ; Crystallography, X-Ray ; Disaccharides/chemistry/metabolism ; Epitopes ; Glycosylation ; HIV Antibodies/chemistry/genetics/*immunology/*metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology/physiology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Mannose/chemistry/immunology/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Mutation ; Oligosaccharides/chemistry/*immunology/metabolism ; Polysaccharides/chemistry/*immunology/*metabolism ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-12-24
    Description: Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of adenosine triphosphatases (ATPases). We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydrolyzed in one subunit and suggests that clamp closure and ejection of the loader involves disruption of the ATP-dependent match in symmetry. The structures explain how synergy among the loader, the clamp, and DNA can trigger ATP hydrolysis and release of the closed clamp on DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281585/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281585/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelch, Brian A -- Makino, Debora L -- O'Donnell, Mike -- Kuriyan, John -- F32 GM087888/GM/NIGMS NIH HHS/ -- F32 GM087888-02/GM/NIGMS NIH HHS/ -- F32-087888/PHS HHS/ -- R01 GM038839/GM/NIGMS NIH HHS/ -- R01 GM038839-26/GM/NIGMS NIH HHS/ -- R01 GM045547/GM/NIGMS NIH HHS/ -- R01 GM045547-20/GM/NIGMS NIH HHS/ -- R01-GM308839/GM/NIGMS NIH HHS/ -- R01-GM45547/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1675-80. doi: 10.1126/science.1211884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194570" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Bacteriophage T4 ; Binding Sites ; Crystallography, X-Ray ; DNA, A-Form/*chemistry/metabolism ; DNA, Viral/*chemistry/metabolism ; DNA-Directed DNA Polymerase/chemistry/*metabolism ; Hydrolysis ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; Templates, Genetic ; Trans-Activators/*chemistry/metabolism ; Viral Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-09-10
    Description: Bacterial chromosomes are confined in submicrometer-sized nucleoids. Chromosome organization is facilitated by nucleoid-associated proteins (NAPs), but the mechanisms of action remain elusive. In this work, we used super-resolution fluorescence microscopy, in combination with a chromosome-conformation capture assay, to study the distributions of major NAPs in live Escherichia coli cells. Four NAPs--HU, Fis, IHF, and StpA--were largely scattered throughout the nucleoid. In contrast, H-NS, a global transcriptional silencer, formed two compact clusters per chromosome, driven by oligomerization of DNA-bound H-NS through interactions mediated by the amino-terminal domain of the protein. H-NS sequestered the regulated operons into these clusters and juxtaposed numerous DNA segments broadly distributed throughout the chromosome. Deleting H-NS led to substantial chromosome reorganization. These observations demonstrate that H-NS plays a key role in global chromosome organization in bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Wenqin -- Li, Gene-Wei -- Chen, Chongyi -- Xie, X Sunney -- Zhuang, Xiaowei -- GM 096450/GM/NIGMS NIH HHS/ -- R01 GM096450/GM/NIGMS NIH HHS/ -- R01 GM096450-03/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1445-9. doi: 10.1126/science.1204697.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903814" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Division ; Chromosomes, Bacterial/*metabolism/*ultrastructure ; DNA, Bacterial/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Escherichia coli K12/genetics/metabolism/*ultrastructure ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Factor For Inversion Stimulation Protein/metabolism ; Fimbriae Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; Genetic Loci ; Genome, Bacterial ; Integration Host Factors/metabolism ; Molecular Chaperones/metabolism ; Nucleic Acid Conformation ; Operon ; Protein Multimerization ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-04-09
    Description: Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhabha, Gira -- Lee, Jeeyeon -- Ekiert, Damian C -- Gam, Jongsik -- Wilson, Ian A -- Dyson, H Jane -- Benkovic, Stephen J -- Wright, Peter E -- GM080209/GM/NIGMS NIH HHS/ -- GM75995/GM/NIGMS NIH HHS/ -- R01 GM075995/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):234-8. doi: 10.1126/science.1198542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474759" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Folic Acid/chemistry ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; NADP/chemistry ; Protein Conformation ; Tetrahydrofolate Dehydrogenase/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Fumin -- Lemmon, Mark A -- New York, N.Y. -- Science. 2011 May 27;332(6033):1043-4. doi: 10.1126/science.1208063.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617065" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Catalytic Domain ; Cell Membrane/enzymology ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/*metabolism ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-raf/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-02-12
    Description: After partitioning of cytoplasmic contents by cleavage furrow ingression, animal cells remain connected by an intercellular bridge, which subsequently splits by abscission. Here, we examined intermediate stages of abscission in human cells by using live imaging, three-dimensional structured illumination microscopy, and electron tomography. We identified helices of 17-nanometer-diameter filaments, which narrowed the cortex of the intercellular bridge to a single stalk. The endosomal sorting complex required for transport (ESCRT)-III co-localized with constriction zones and was required for assembly of 17-nanometer-diameter filaments. Simultaneous spastin-mediated removal of underlying microtubules enabled full constriction at the abscission site. The identification of contractile filament helices at the intercellular bridge has broad implications for the understanding of cell division and of ESCRT-III-mediated fission of large membrane structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guizetti, Julien -- Schermelleh, Lothar -- Mantler, Jana -- Maar, Sandra -- Poser, Ina -- Leonhardt, Heinrich -- Muller-Reichert, Thomas -- Gerlich, Daniel W -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1616-20. doi: 10.1126/science.1201847. Epub 2011 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstrasse 18, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21310966" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Adenosine Triphosphatases/genetics/metabolism ; Calcium-Binding Proteins/metabolism ; Cell Cycle Proteins/metabolism ; *Cell Division ; Cell Membrane/metabolism/ultrastructure ; Electron Microscope Tomography ; Endosomal Sorting Complexes Required for ; Transport/*chemistry/genetics/*metabolism ; HeLa Cells ; Humans ; Imaging, Three-Dimensional ; Microscopy, Electron ; Microtubules/*metabolism/*ultrastructure ; Nuclear Proteins/metabolism ; Protein Conformation ; Protein Multimerization ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-11-15
    Description: The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruz-Migoni, Abimael -- Hautbergue, Guillaume M -- Artymiuk, Peter J -- Baker, Patrick J -- Bokori-Brown, Monika -- Chang, Chung-Te -- Dickman, Mark J -- Essex-Lopresti, Angela -- Harding, Sarah V -- Mahadi, Nor Muhammad -- Marshall, Laura E -- Mobbs, George W -- Mohamed, Rahmah -- Nathan, Sheila -- Ngugi, Sarah A -- Ong, Catherine -- Ooi, Wen Fong -- Partridge, Lynda J -- Phillips, Helen L -- Raih, M Firdaus -- Ruzheinikov, Sergei -- Sarkar-Tyson, Mitali -- Sedelnikova, Svetlana E -- Smither, Sophie J -- Tan, Patrick -- Titball, Richard W -- Wilson, Stuart A -- Rice, David W -- 085162/Wellcome Trust/United Kingdom -- BB/D011795/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D524975/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E025293/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT085162AIA/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):821-4. doi: 10.1126/science.1211915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076380" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Bacterial Proteins/*chemistry/genetics/metabolism/*toxicity ; Bacterial Toxins/*chemistry/genetics/metabolism/*toxicity ; Burkholderia pseudomallei/*chemistry/*pathogenicity ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Cytotoxins/chemistry/genetics/metabolism/toxicity ; Escherichia coli Proteins/chemistry ; Eukaryotic Initiation Factor-4A/*antagonists & inhibitors/metabolism ; Glutamine/metabolism ; Humans ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Mutant Proteins/toxicity ; Peptide Chain Initiation, Translational/drug effects ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-02-05
    Description: N-glycosylation of eukaryotic proteins helps them fold and traverse the cellular secretory pathway and can increase their stability, although the molecular basis for stabilization is poorly understood. Glycosylation of proteins at naive sites (ones that normally are not glycosylated) could be useful for therapeutic and research applications but currently results in unpredictable changes to protein stability. We show that placing a phenylalanine residue two or three positions before a glycosylated asparagine in distinct reverse turns facilitates stabilizing interactions between the aromatic side chain and the first N-acetylglucosamine of the glycan. Glycosylating this portable structural module, an enhanced aromatic sequon, in three different proteins stabilizes their native states by -0.7 to -2.0 kilocalories per mole and increases cellular glycosylation efficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099596/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099596/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culyba, Elizabeth K -- Price, Joshua L -- Hanson, Sarah R -- Dhar, Apratim -- Wong, Chi-Huey -- Gruebele, Martin -- Powers, Evan T -- Kelly, Jeffery W -- AI072155/AI/NIAID NIH HHS/ -- F32 GM086039/GM/NIGMS NIH HHS/ -- F32 GM086039-03/GM/NIGMS NIH HHS/ -- GM051105/GM/NIGMS NIH HHS/ -- R01 AI072155/AI/NIAID NIH HHS/ -- R01 AI072155-04/AI/NIAID NIH HHS/ -- R01 GM051105/GM/NIGMS NIH HHS/ -- R01 GM051105-15/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):571-5. doi: 10.1126/science.1198461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292975" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry ; Acid Anhydride Hydrolases/*chemistry ; Amino Acid Sequence ; Animals ; Antigens, CD2/*chemistry ; Asparagine/chemistry ; Glycosylation ; Humans ; Models, Molecular ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Phenylalanine/chemistry ; Polysaccharides/chemistry ; Protein Conformation ; Protein Engineering ; Protein Folding ; *Protein Stability ; Protein Structure, Tertiary ; Rats ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-10-29
    Description: Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diskin, Ron -- Scheid, Johannes F -- Marcovecchio, Paola M -- West, Anthony P Jr -- Klein, Florian -- Gao, Han -- Gnanapragasam, Priyanthi N P -- Abadir, Alexander -- Seaman, Michael S -- Nussenzweig, Michel C -- Bjorkman, Pamela J -- P01 AI081677-01/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1289-93. doi: 10.1126/science.1213782. Epub 2011 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22033520" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antibody Affinity ; Antigens, CD4/chemistry/metabolism ; Binding Sites ; Complementarity Determining Regions ; Crystallography, X-Ray ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology/metabolism ; Molecular Mimicry ; Molecular Sequence Data ; Mutant Proteins/chemistry/immunology/metabolism ; Protein Conformation ; *Protein Engineering ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spudich, James A -- R01 GM033289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1143-4. doi: 10.1126/science.1203978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry Department, Stanford University, Stanford, CA 94305, USA. jspudich@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385703" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Crystallography, X-Ray ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Microtubules/*metabolism ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-01-06
    Description: Eukaryotic ribosomes are substantially larger and more complex than their bacterial counterparts. Although their core function is conserved, bacterial and eukaryotic protein synthesis differ considerably at the level of initiation. The eukaryotic small ribosomal subunit (40S) plays a central role in this process; it binds initiation factors that facilitate scanning of messenger RNAs and initiation of protein synthesis. We have determined the crystal structure of the Tetrahymena thermophila 40S ribosomal subunit in complex with eukaryotic initiation factor 1 (eIF1) at a resolution of 3.9 angstroms. The structure reveals the fold of the entire 18S ribosomal RNA and of all ribosomal proteins of the 40S subunit, and defines the interactions with eIF1. It provides insights into the eukaryotic-specific aspects of protein synthesis, including the function of eIF1 as well as signaling and regulation mediated by the ribosomal proteins RACK1 and rpS6e.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabl, Julius -- Leibundgut, Marc -- Ataide, Sandro F -- Haag, Andrea -- Ban, Nenad -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):730-6. doi: 10.1126/science.1198308. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205638" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallization ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-1/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; Protozoan Proteins/chemistry/metabolism ; RNA, Messenger/chemistry ; RNA, Protozoan/chemistry ; RNA, Ribosomal, 18S/*chemistry ; Ribosomal Proteins/*chemistry/metabolism ; Ribosome Subunits, Small, Eukaryotic/*chemistry/metabolism/*ultrastructure ; Signal Transduction ; Tetrahymena thermophila/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raiborg, Camilla -- Stenmark, Harald -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1533-4. doi: 10.1126/science.1204208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436431" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Calcium-Binding Proteins/metabolism ; Cell Cycle Proteins/metabolism ; *Cell Division ; Cell Membrane/metabolism ; Endosomal Sorting Complexes Required for Transport/*chemistry/*metabolism ; Humans ; Microscopy, Electron ; Microtubules/*metabolism/*ultrastructure ; Models, Biological ; Nuclear Proteins/metabolism ; Protein Conformation ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-07-02
    Description: Tail-anchored (TA) proteins are involved in cellular processes including trafficking, degradation, and apoptosis. They contain a C-terminal membrane anchor and are posttranslationally delivered to the endoplasmic reticulum (ER) membrane by the Get3 adenosine triphosphatase interacting with the hetero-oligomeric Get1/2 receptor. We have determined crystal structures of Get3 in complex with the cytosolic domains of Get1 and Get2 in different functional states at 3.0, 3.2, and 4.6 angstrom resolution. The structural data, together with biochemical experiments, show that Get1 and Get2 use adjacent, partially overlapping binding sites and that both can bind simultaneously to Get3. Docking to the Get1/2 complex allows for conformational changes in Get3 that are required for TA protein insertion. These data suggest a molecular mechanism for nucleotide-regulated delivery of TA proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601824/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601824/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stefer, Susanne -- Reitz, Simon -- Wang, Fei -- Wild, Klemens -- Pang, Yin-Yuin -- Schwarz, Daniel -- Bomke, Jorg -- Hein, Christopher -- Lohr, Frank -- Bernhard, Frank -- Denic, Vladimir -- Dotsch, Volker -- Sinning, Irmgard -- R01 GM099943/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):758-62. doi: 10.1126/science.1207125. Epub 2011 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, D-60325 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21719644" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/*chemistry/*metabolism ; Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Cytosol/chemistry ; Endoplasmic Reticulum/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/*metabolism ; Membrane Proteins/*chemistry/*metabolism ; Microsomes/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-06-28
    Description: The rules of nucleic acid base-pairing have been used to construct nanoscale architectures and organize biomolecules, but little has been done to apply this technology in vivo. We designed and assembled multidimensional RNA structures and used them as scaffolds for the spatial organization of bacterial metabolism. Engineered RNA modules were assembled into discrete, one-dimensional, and two-dimensional scaffolds with distinct protein-docking sites and used to control the spatial organization of a hydrogen-producing pathway. We increased hydrogen output as a function of scaffold architecture. Rationally designed RNA assemblies can thus be used to construct functional architectures in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delebecque, Camille J -- Lindner, Ariel B -- Silver, Pamela A -- Aldaye, Faisal A -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):470-4. doi: 10.1126/science.1206938. Epub 2011 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, Department of Systems Biology, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700839" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/chemistry/metabolism ; *Biosynthetic Pathways ; Escherichia coli/growth & development/*metabolism ; Ferredoxins/chemistry/*metabolism ; Hydrogen/*metabolism ; Hydrogenase/chemistry/*metabolism ; Iron-Sulfur Proteins/chemistry/*metabolism ; Microscopy, Atomic Force ; Nanostructures ; Protein Binding ; Protein Conformation ; RNA/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Synthetic Biology/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-02-12
    Description: The unconventional myosin VIIa (MYO7A) is one of the five proteins that form a network of complexes involved in formation of stereocilia. Defects in these proteins cause syndromic deaf-blindness in humans [Usher syndrome I (USH1)]. Many disease-causing mutations occur in myosin tail homology 4-protein 4.1, ezrin, radixin, moesin (MyTH4-FERM) domains in the myosin tail that binds to another USH1 protein, Sans. We report the crystal structure of MYO7A MyTH4-FERM domains in complex with the central domain (CEN) of Sans at 2.8 angstrom resolution. The MyTH4 and FERM domains form an integral structural and functional supramodule binding to two highly conserved segments (CEN1 and 2) of Sans. The MyTH4-FERM/CEN complex structure provides mechanistic explanations for known deafness-causing mutations in MYO7A MyTH4-FERM. The structure will also facilitate mechanistic and functional studies of MyTH4-FERM domains in other myosins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Lin -- Pan, Lifeng -- Wei, Zhiyi -- Zhang, Mingjie -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):757-60. doi: 10.1126/science.1198848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311020" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation, Missense ; Myosins/*chemistry/metabolism ; Nerve Tissue Proteins/*chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Der, Bryan S -- Kuhlman, Brian -- New York, N.Y. -- Science. 2011 May 13;332(6031):801-2. doi: 10.1126/science.1207082.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA. bder@email.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korber, Bette -- Gnanakaran, S -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1589-90. doi: 10.1126/science.1211919.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. btk@lanl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921189" target="_blank"〉PubMed〈/a〉
    Keywords: *AIDS Vaccines ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antibody Affinity ; Antigens, CD4/chemistry/immunology/metabolism ; Binding Sites ; Binding Sites, Antibody ; Complementarity Determining Regions/genetics ; Crystallography, X-Ray ; Epitopes ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; Humans ; Models, Molecular ; Molecular Mimicry ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-13
    Description: Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Xueling -- Zhou, Tongqing -- Zhu, Jiang -- Zhang, Baoshan -- Georgiev, Ivelin -- Wang, Charlene -- Chen, Xuejun -- Longo, Nancy S -- Louder, Mark -- McKee, Krisha -- O'Dell, Sijy -- Perfetto, Stephen -- Schmidt, Stephen D -- Shi, Wei -- Wu, Lan -- Yang, Yongping -- Yang, Zhi-Yong -- Yang, Zhongjia -- Zhang, Zhenhai -- Bonsignori, Mattia -- Crump, John A -- Kapiga, Saidi H -- Sam, Noel E -- Haynes, Barton F -- Simek, Melissa -- Burton, Dennis R -- Koff, Wayne C -- Doria-Rose, Nicole A -- Connors, Mark -- NISC Comparative Sequencing Program -- Mullikin, James C -- Nabel, Gary J -- Roederer, Mario -- Shapiro, Lawrence -- Kwong, Peter D -- Mascola, John R -- 5U19 AI 067854-06/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1593-602. doi: 10.1126/science.1207532. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835983" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Base Sequence ; Binding Sites ; Binding Sites, Antibody ; Complementarity Determining Regions/genetics ; Crystallography, X-Ray ; Epitopes ; *Evolution, Molecular ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; HIV-1/chemistry/*immunology ; High-Throughput Nucleotide Sequencing ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin J-Chains/genetics ; Immunoglobulin Light Chains/chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-01-06
    Description: Activation of the complement cascade induces inflammatory responses and marks cells for immune clearance. In the central complement-amplification step, a complex consisting of surface-bound C3b and factor B is cleaved by factor D to generate active convertases on targeted surfaces. We present crystal structures of the pro-convertase C3bB at 4 angstrom resolution and its complex with factor D at 3.5 angstrom resolution. Our data show how factor B binding to C3b forms an open "activation" state of C3bB. Factor D specifically binds the open conformation of factor B through a site distant from the catalytic center and is activated by the substrate, which displaces factor D's self-inhibitory loop. This concerted proteolytic mechanism, which is cofactor-dependent and substrate-induced, restricts complement amplification to C3b-tagged target cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087196/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087196/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forneris, Federico -- Ricklin, Daniel -- Wu, Jin -- Tzekou, Apostolia -- Wallace, Rachel S -- Lambris, John D -- Gros, Piet -- AI030040/AI/NIAID NIH HHS/ -- AI068730/AI/NIAID NIH HHS/ -- AI072106/AI/NIAID NIH HHS/ -- GM062134/GM/NIGMS NIH HHS/ -- P01 AI068730/AI/NIAID NIH HHS/ -- P01 AI068730-04/AI/NIAID NIH HHS/ -- R01 AI030040/AI/NIAID NIH HHS/ -- R01 AI030040-14/AI/NIAID NIH HHS/ -- R01 AI072106/AI/NIAID NIH HHS/ -- R01 AI072106-04/AI/NIAID NIH HHS/ -- R01 GM062134/GM/NIGMS NIH HHS/ -- R01 GM062134-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1816-20. doi: 10.1126/science.1195821.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205667" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Complement C3 Convertase, Alternative Pathway/*chemistry/metabolism ; Complement C3b/*chemistry/metabolism ; Complement Factor B/*chemistry/metabolism ; Complement Factor D/*chemistry/metabolism ; Complement Pathway, Alternative ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Mutant Proteins/chemistry ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-07-09
    Description: Current flu vaccines provide only limited coverage against seasonal strains of influenza viruses. The identification of V(H)1-69 antibodies that broadly neutralize almost all influenza A group 1 viruses constituted a breakthrough in the influenza field. Here, we report the isolation and characterization of a human monoclonal antibody CR8020 with broad neutralizing activity against most group 2 viruses, including H3N2 and H7N7, which cause severe human infection. The crystal structure of Fab CR8020 with the 1968 pandemic H3 hemagglutinin (HA) reveals a highly conserved epitope in the HA stalk distinct from the epitope recognized by the V(H)1-69 group 1 antibodies. Thus, a cocktail of two antibodies may be sufficient to neutralize most influenza A subtypes and, hence, enable development of a universal flu vaccine and broad-spectrum antibody therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210727/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210727/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ekiert, Damian C -- Friesen, Robert H E -- Bhabha, Gira -- Kwaks, Ted -- Jongeneelen, Mandy -- Yu, Wenli -- Ophorst, Carla -- Cox, Freek -- Korse, Hans J W M -- Brandenburg, Boerries -- Vogels, Ronald -- Brakenhoff, Just P J -- Kompier, Ronald -- Koldijk, Martin H -- Cornelissen, Lisette A H M -- Poon, Leo L M -- Peiris, Malik -- Koudstaal, Wouter -- Wilson, Ian A -- Goudsmit, Jaap -- GM080209/GM/NIGMS NIH HHS/ -- HHSN272200900060C/PHS HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- T32 GM080209-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):843-50. doi: 10.1126/science.1204839. Epub 2011 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21737702" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/*immunology/isolation & purification ; Antibodies, Neutralizing/*immunology/isolation & purification ; Antibodies, Viral/*immunology/isolation & purification ; Antibody Specificity ; Antigens, Viral/chemistry/genetics/*immunology ; Binding Sites, Antibody ; Conserved Sequence ; Crystallography, X-Ray ; Epitopes/immunology ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics/*immunology ; Humans ; Influenza A Virus, H3N2 Subtype/immunology ; Influenza A Virus, H7N7 Subtype/genetics/immunology ; Influenza A virus/*immunology ; Influenza Vaccines/immunology ; Influenza, Human/immunology/prevention & control/therapy ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neutralization Tests ; Orthomyxoviridae Infections/immunology/prevention & control ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-10-25
    Description: The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927129/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927129/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Min -- Morgner, Nina -- Barrera, Nelson P -- Politis, Argyris -- Isaacson, Shoshanna C -- Matak-Vinkovic, Dijana -- Murata, Takeshi -- Bernal, Ricardo A -- Stock, Daniela -- Robinson, Carol V -- 088150/Wellcome Trust/United Kingdom -- 099141/Wellcome Trust/United Kingdom -- G1000819/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):380-5. doi: 10.1126/science.1210148.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021858" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cardiolipins/analysis/metabolism ; Enterococcus/enzymology ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Mass Spectrometry ; Membrane Lipids/analysis/*metabolism ; Models, Molecular ; Phosphatidylethanolamines/analysis/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Spectrometry, Mass, Electrospray Ionization ; Thermus thermophilus/*enzymology ; Vacuolar Proton-Translocating ATPases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-13
    Description: Ribosome assembly in eukaryotes requires approximately 200 essential assembly factors (AFs) and occurs through ordered events that initiate in the nucleolus and culminate in the cytoplasm. Here, we present the electron cryo-microscopy (cryo-EM) structure of a late cytoplasmic 40S ribosome assembly intermediate from Saccharomyces cerevisiae at 18 angstrom resolution. We obtained cryo-EM reconstructions of preribosomal complexes lacking individual components to define the positions of all seven AFs bound to this intermediate. These late-binding AFs are positioned to prevent each step in the translation initiation pathway. Together, they obstruct the binding sites for initiation factors, prevent the opening of the messenger RNA channel, block 60S subunit joining, and disrupt the decoding site. These redundant mechanisms probably ensure that pre-40S particles do not enter the translation pathway, which would result in their rapid degradation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strunk, Bethany S -- Loucks, Cherisse R -- Su, Min -- Vashisth, Harish -- Cheng, Shanshan -- Schilling, Justin -- Brooks, Charles L 3rd -- Karbstein, Katrin -- Skiniotis, Georgios -- P41 RR012255/RR/NCRR NIH HHS/ -- R01 GM086451/GM/NIGMS NIH HHS/ -- R01-GM086451/GM/NIGMS NIH HHS/ -- RR12255/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1449-53. doi: 10.1126/science.1208245. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835981" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Eukaryotic Initiation Factor-1/chemistry/metabolism ; Eukaryotic Initiation Factor-3/chemistry/metabolism ; Image Processing, Computer-Assisted ; Methyltransferases/chemistry/metabolism ; Models, Molecular ; Nuclear Proteins/chemistry/metabolism ; *Peptide Chain Initiation, Translational ; Protein-Serine-Threonine Kinases/chemistry/metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosome Subunits, Small, Eukaryotic/chemistry/*metabolism/ultrastructure ; Saccharomyces cerevisiae/chemistry/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, David D -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1275-6. doi: 10.1126/science.1203194.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. moore@bcm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393533" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Chronobiology Disorders/*metabolism ; *Circadian Clocks ; *Circadian Rhythm ; DNA/metabolism ; Epigenesis, Genetic ; Fatty Liver/*metabolism ; Gene Expression Regulation ; Histone Deacetylases/*metabolism ; Histones/metabolism ; *Lipid Metabolism ; Lipogenesis ; Liver/*metabolism ; Mice ; Nuclear Receptor Co-Repressor 1/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-07-19
    Description: Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the ~300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joo, Woo -- Xu, Guozhou -- Persky, Nicole S -- Smogorzewska, Agata -- Rudge, Derek G -- Buzovetsky, Olga -- Elledge, Stephen J -- Pavletich, Nikola P -- R01 GM044664/GM/NIGMS NIH HHS/ -- R01 GM044664-10/GM/NIGMS NIH HHS/ -- R37 GM044664/GM/NIGMS NIH HHS/ -- T32 CA009216/CA/NCI NIH HHS/ -- T32 CA009216-32/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):312-6. doi: 10.1126/science.1205805.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Repair ; DNA, Single-Stranded/chemistry/metabolism ; Fanconi Anemia/genetics ; Fanconi Anemia Complementation Group D2 Protein/*chemistry/metabolism ; Fanconi Anemia Complementation Group Proteins/*chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity ; Ubiquitin/chemistry ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-03-10
    Description: Type III secretion systems (T3SSs) are essential virulence factors used by many Gram-negative bacteria to inject proteins that make eukaryotic host cells accessible to invasion. The T3SS core structure, the needle complex (NC), is a ~3.5 megadalton-sized, oligomeric, membrane-embedded complex. Analyzing cryo-electron microscopy images of top views of NCs or NC substructures from Salmonella typhimurium revealed a 24-fold symmetry for the inner rings and a 15-fold symmetry for the outer rings, giving an overall C3 symmetry. Local refinement and averaging showed the organization of the central core and allowed us to reconstruct a subnanometer composite structure of the NC, which together with confident docking of atomic structures reveal insights into its overall organization and structural requirements during assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schraidt, Oliver -- Marlovits, Thomas C -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1192-5. doi: 10.1126/science.1199358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385715" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/ultrastructure ; *Bacterial Secretion Systems ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Membrane Proteins/*chemistry/ultrastructure ; Membrane Transport Proteins/*chemistry/ultrastructure ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Structure, Tertiary ; Salmonella typhimurium/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-06-18
    Description: Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Velasquez, Silvia M -- Ricardi, Martiniano M -- Dorosz, Javier Gloazzo -- Fernandez, Paula V -- Nadra, Alejandro D -- Pol-Fachin, Laercio -- Egelund, Jack -- Gille, Sascha -- Harholt, Jesper -- Ciancia, Marina -- Verli, Hugo -- Pauly, Markus -- Bacic, Antony -- Olsen, Carl Erik -- Ulvskov, Peter -- Petersen, Bent Larsen -- Somerville, Chris -- Iusem, Norberto D -- Estevez, Jose M -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1401-3. doi: 10.1126/science.1206657.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Fisiologia, Biologia Molecular y Neurociencias-Consejo Nacional de Investigaciones Cientificas y Tecnicas (IFIByNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680836" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Arabinose/metabolism ; Carbohydrate Conformation ; Cell Wall/*metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; Glycosyltransferases/genetics/metabolism ; Hydroxylation ; Hydroxyproline/*metabolism ; Models, Biological ; Mutation ; Pentosyltransferases/chemistry/metabolism ; Phenotype ; Plant Proteins/chemistry/*metabolism ; Plant Roots/cytology/*growth & development/metabolism ; Polysaccharides/chemistry ; Procollagen-Proline Dioxygenase/genetics/*metabolism ; Proline/metabolism ; Protein Conformation ; Protein Processing, Post-Translational ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-05-28
    Description: There is a general need for the engineering of protein-like molecules that organize into geometrically specific superstructures on molecular surfaces, directing further functionalization to create richly textured, multilayered assemblies. Here we describe a computational approach whereby the surface properties and symmetry of a targeted surface define the sequence and superstructure of surface-organizing peptides. Computational design proceeds in a series of steps that encode both surface recognition and favorable intersubunit packing interactions. This procedure is exemplified in the design of peptides that assemble into a tubular structure surrounding single-walled carbon nanotubes (SWNTs). The geometrically defined, virus-like coating created by these peptides converts the smooth surfaces of SWNTs into highly textured assemblies with long-scale order, capable of directing the assembly of gold nanoparticles into helical arrays along the SWNT axis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264056/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264056/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grigoryan, Gevorg -- Kim, Yong Ho -- Acharya, Rudresh -- Axelrod, Kevin -- Jain, Rishabh M -- Willis, Lauren -- Drndic, Marija -- Kikkawa, James M -- DeGrado, William F -- 5F32GM084631-02/GM/NIGMS NIH HHS/ -- F32 GM084631/GM/NIGMS NIH HHS/ -- F32 GM084631-02/GM/NIGMS NIH HHS/ -- GM54616/GM/NIGMS NIH HHS/ -- R37 GM054616/GM/NIGMS NIH HHS/ -- R37 GM054616-17/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 27;332(6033):1071-6. doi: 10.1126/science.1198841.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617073" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Computer Simulation ; Gold ; Metal Nanoparticles ; Models, Molecular ; *Nanotubes, Carbon ; Peptides/*chemistry ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Stability ; Protein Structure, Secondary ; Solubility ; Surface Properties ; Viruses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-03-12
    Description: Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Fei -- Wu, Huixian -- Katritch, Vsevolod -- Han, Gye Won -- Jacobson, Kenneth A -- Gao, Zhan-Guo -- Cherezov, Vadim -- Stevens, Raymond C -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54 GM094618-01/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):322-7. doi: 10.1126/science.1202793. Epub 2011 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393508" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/chemistry/metabolism ; Adenosine A2 Receptor Agonists/chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Opsins/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptor, Adenosine A2A/*chemistry/*metabolism ; Rhodopsin/chemistry/metabolism ; Triazines/chemistry/metabolism ; Triazoles/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-10-29
    Description: Ultralow molecular weight (ULMW) heparins are sulfated glycans that are clinically used to treat thrombotic disorders. ULMW heparins range from 1500 to 3000 daltons, corresponding from 5 to 10 saccharide units. The commercial drug Arixtra (fondaparinux sodium) is a structurally homogeneous ULMW heparin pentasaccharide that is synthesized through a lengthy chemical process. Here, we report 10- and 12-step chemoenzymatic syntheses of two structurally homogeneous ULMW heparins (MW = 1778.5 and 1816.5) in 45 and 37% overall yield, respectively, starting from a simple disaccharide. These ULMW heparins display excellent in vitro anticoagulant activity and comparable pharmacokinetic properties to Arixtra, as demonstrated in a rabbit model. The chemoenzymatic approach is scalable and shows promise for a more efficient route to synthesize this important class of medicinal agent.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425363/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425363/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Yongmei -- Masuko, Sayaka -- Takieddin, Majde -- Xu, Haoming -- Liu, Renpeng -- Jing, Juliana -- Mousa, Shaker A -- Linhardt, Robert J -- Liu, Jian -- AI074775/AI/NIAID NIH HHS/ -- AI50050/AI/NIAID NIH HHS/ -- GM38060/GM/NIGMS NIH HHS/ -- HL094463/HL/NHLBI NIH HHS/ -- HL096972/HL/NHLBI NIH HHS/ -- HL62244/HL/NHLBI NIH HHS/ -- R01 AI050050/AI/NIAID NIH HHS/ -- R01 GM038060/GM/NIGMS NIH HHS/ -- R01 HL062244/HL/NHLBI NIH HHS/ -- R01 HL094463/HL/NHLBI NIH HHS/ -- R01 HL096972/HL/NHLBI NIH HHS/ -- R21 AI074775/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):498-501. doi: 10.1126/science.1207478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034431" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticoagulants/*chemical synthesis/chemistry/pharmacokinetics/pharmacology ; Antithrombins/chemistry/metabolism ; Binding Sites ; Chemical Processes ; Glycosyltransferases/metabolism ; Heparin, Low-Molecular-Weight/*chemical ; synthesis/chemistry/pharmacokinetics/pharmacology ; Molecular Structure ; Molecular Weight ; N-Acetylglucosaminyltransferases/metabolism ; Oligosaccharides/chemistry ; Polysaccharides/chemistry/pharmacokinetics/pharmacology ; Rabbits ; Racemases and Epimerases/metabolism ; Spectrometry, Mass, Electrospray Ionization ; Substrate Specificity ; Sulfotransferases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-11-05
    Description: Protein synthesis in all organisms is catalyzed by ribosomes. In comparison to their prokaryotic counterparts, eukaryotic ribosomes are considerably larger and are subject to more complex regulation. The large ribosomal subunit (60S) catalyzes peptide bond formation and contains the nascent polypeptide exit tunnel. We present the structure of the 60S ribosomal subunit from Tetrahymena thermophila in complex with eukaryotic initiation factor 6 (eIF6), cocrystallized with the antibiotic cycloheximide (a eukaryotic-specific inhibitor of protein synthesis), at a resolution of 3.5 angstroms. The structure illustrates the complex functional architecture of the eukaryotic 60S subunit, which comprises an intricate network of interactions between eukaryotic-specific ribosomal protein features and RNA expansion segments. It reveals the roles of eukaryotic ribosomal protein elements in the stabilization of the active site and the extent of eukaryotic-specific differences in other functional regions of the subunit. Furthermore, it elucidates the molecular basis of the interaction with eIF6 and provides a structural framework for further studies of ribosome-associated diseases and the role of the 60S subunit in the initiation of protein synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klinge, Sebastian -- Voigts-Hoffmann, Felix -- Leibundgut, Marc -- Arpagaus, Sofia -- Ban, Nenad -- New York, N.Y. -- Science. 2011 Nov 18;334(6058):941-8. doi: 10.1126/science.1211204. Epub 2011 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22052974" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/metabolism ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cycloheximide/metabolism ; Eukaryotic Initiation Factors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Chain Initiation, Translational ; Protein Conformation ; Protein Structure, Secondary ; Protozoan Proteins/chemistry/metabolism ; RNA, Protozoan/chemistry/metabolism ; RNA, Ribosomal/chemistry/metabolism ; RNA, Ribosomal, 5.8S/chemistry/metabolism ; Ribosomal Proteins/*chemistry/metabolism ; Ribosome Subunits, Large, Eukaryotic/*chemistry/metabolism/ultrastructure ; Tetrahymena thermophila/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-04-30
    Description: The radical S-adenosyl-L-methionine (SAM) enzymes RlmN and Cfr methylate 23S ribosomal RNA, modifying the C2 or C8 position of adenosine 2503. The methyl groups are installed by a two-step sequence involving initial methylation of a conserved Cys residue (RlmN Cys(355)) by SAM. Methyl transfer to the substrate requires reductive cleavage of a second equivalent of SAM. Crystal structures of RlmN and RlmN with SAM show that a single molecule of SAM coordinates the [4Fe-4S] cluster. Residue Cys(355) is S-methylated and located proximal to the SAM methyl group, suggesting the SAM that is involved in the initial methyl transfer binds at the same site. Thus, RlmN accomplishes its complex reaction with structural economy, harnessing the two most important reactivities of SAM within a single site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506250/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506250/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boal, Amie K -- Grove, Tyler L -- McLaughlin, Monica I -- Yennawar, Neela H -- Booker, Squire J -- Rosenzweig, Amy C -- GM58518/GM/NIGMS NIH HHS/ -- GM63847/GM/NIGMS NIH HHS/ -- K99 GM100011/GM/NIGMS NIH HHS/ -- R01 GM058518/GM/NIGMS NIH HHS/ -- R01 GM063847/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 27;332(6033):1089-92. doi: 10.1126/science.1205358. Epub 2011 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21527678" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Cysteine/chemistry ; Escherichia coli/enzymology/growth & development ; Escherichia coli Proteins/*chemistry/*metabolism ; Evolution, Molecular ; Hydrogen Bonding ; Methylation ; Methyltransferases/*chemistry/*metabolism ; Models, Molecular ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Bacterial/metabolism ; RNA, Ribosomal, 23S/metabolism ; S-Adenosylmethionine/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-10-29
    Description: Direct observation of the detailed conformational fluctuations of a single protein molecule en route to its folded state has so far been realized only in silico. We have used single-molecule force spectroscopy to study the folding transitions of single calmodulin molecules. High-resolution optical tweezers assays in combination with hidden Markov analysis reveal a complex network of on- and off-pathway intermediates. Cooperative and anticooperative interactions across domain boundaries can be observed directly. The folding network involves four intermediates. Two off-pathway intermediates exhibit non-native interdomain interactions and compete with the ultrafast productive folding pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stigler, Johannes -- Ziegler, Fabian -- Gieseke, Anja -- Gebhardt, J Christof M -- Rief, Matthias -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):512-6. doi: 10.1126/science.1207598.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, 85748 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034433" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/chemistry ; Calmodulin/*chemistry ; Kinetics ; Markov Chains ; Optical Tweezers ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-10-25
    Description: Inhibitor of apoptosis (IAP) proteins are negative regulators of cell death. IAP family members contain RING domains that impart E3 ubiquitin ligase activity. Binding of endogenous or small-molecule antagonists to select baculovirus IAP repeat (BIR) domains within cellular IAP (cIAP) proteins promotes autoubiquitination and proteasomal degradation and so releases inhibition of apoptosis mediated by cIAP. Although the molecular details of antagonist-BIR domain interactions are well understood, it is not clear how this binding event influences the activity of the RING domain. Here biochemical and structural studies reveal that the unliganded, multidomain cIAP1 sequesters the RING domain within a compact, monomeric structure that prevents RING dimerization. Antagonist binding induces conformational rearrangements that enable RING dimerization and formation of the active E3 ligase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dueber, Erin C -- Schoeffler, Allyn J -- Lingel, Andreas -- Elliott, J Michael -- Fedorova, Anna V -- Giannetti, Anthony M -- Zobel, Kerry -- Maurer, Brigitte -- Varfolomeev, Eugene -- Wu, Ping -- Wallweber, Heidi J A -- Hymowitz, Sarah G -- Deshayes, Kurt -- Vucic, Domagoj -- Fairbrother, Wayne J -- P41RR001209/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):376-80. doi: 10.1126/science.1207862.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021857" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Line, Tumor ; Cloning, Molecular ; Humans ; Hydrophobic and Hydrophilic Interactions ; Inhibitor of Apoptosis Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Proteasome Endopeptidase Complex/metabolism ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Scattering, Small Angle ; Ubiquitin-Protein Ligases/chemistry/metabolism ; Ubiquitinated Proteins/chemistry/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1996-07-26
    Description: The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen-Hughes, T -- Utley, R T -- Cote, J -- Peterson, C L -- Workman, J L -- GM47867/GM/NIGMS NIH HHS/ -- R01 GM049650/GM/NIGMS NIH HHS/ -- R37 GM049650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802-4500, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; DNA, Fungal/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; Fungal Proteins/*metabolism ; Histones/metabolism ; Molecular Sequence Data ; *Nuclear Proteins ; Nucleosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1996-06-07
    Description: Molecular chaperones in the eukaryotic cytosol were shown to interact differently with chemically denatured proteins and their newly translated counterparts. During refolding from denaturant, actin partitioned freely between 70-kilodalton heat shock protein, the bulk cytosol, and the chaperonin TCP1-ring complex. In contrast, during cell-free translation, the chaperones were recruited to the elongating polypeptide and protected it from exposure to the bulk cytosol during folding. Posttranslational cycling between chaperone-bound and free states was observed with subunits of oligomeric proteins and with aberrant polypeptides; this cycling allowed the subunits to assemble and the aberrant polypeptides to be degraded. Thus, folding, oligomerization, and degradation are linked hierarchically to ensure the correct fate of newly synthesized polypeptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frydman, J -- Hartl, F U -- New York, N.Y. -- Science. 1996 Jun 7;272(5267):1497-502.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8633246" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/genetics/metabolism ; Adenosine Triphosphate/metabolism ; Cell Extracts ; Chaperonin 60/chemistry/metabolism ; Chaperonin Containing TCP-1 ; Chaperonins/chemistry/metabolism ; HSP70 Heat-Shock Proteins/chemistry/metabolism ; Luciferases/*chemistry/genetics/metabolism ; Molecular Chaperones/chemistry/*metabolism ; Peptides/chemistry/metabolism ; *Protein Biosynthesis ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Reticulocytes ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perros, M -- Steitz, T A -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1929-30; author reply 1931-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8984647" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Crystallography, X-Ray ; Cyclic AMP Receptor Protein/*metabolism ; DNA, Bacterial/chemistry/*metabolism ; Escherichia coli/genetics ; *Lac Operon ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Operator Regions, Genetic ; *Promoter Regions, Genetic ; Protein Binding ; Protein Conformation ; Repressor Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1996-08-09
    Description: STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, X -- Sun, Y L -- Hoey, T -- New York, N.Y. -- Science. 1996 Aug 9;273(5276):794-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8670419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/immunology/*metabolism ; Interferon-gamma/genetics ; Introns ; Molecular Sequence Data ; Mutation ; Oligodeoxyribonucleotides/metabolism ; Promoter Regions, Genetic ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; Sequence Deletion ; Signal Transduction ; Trans-Activators/chemistry/immunology/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1996-03-15
    Description: Iron must cross biological membranes to reach essential intracellular enzymes. Two proteins in the plasma membrane of yeast--a multicopper oxidase, encoded by the FET3 gene, and a permease, encoded by the FTR1 gene--were shown to mediate high-affinity iron uptake. FET3 expression was required for FTR1 protein to be transported to the plasma membrane. FTR1 expression was required for apo-FET3 protein to be loaded with copper and thus acquire oxidase activity. FTR1 protein also played a direct role in iron transport. Mutations in a conserved sequence motif of FTR1 specifically blocked iron transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stearman, R -- Yuan, D S -- Yamaguchi-Iwai, Y -- Klausner, R D -- Dancis, A -- New York, N.Y. -- Science. 1996 Mar 15;271(5255):1552-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Biological Transport ; Carrier Proteins/chemistry/*genetics/*metabolism ; Cell Membrane/metabolism ; *Ceruloplasmin ; Copper/metabolism/pharmacology ; Endoplasmic Reticulum/metabolism ; Ferric Compounds/metabolism ; Ferritins/chemistry/metabolism ; Ferrous Compounds/metabolism ; Genes, Fungal ; Golgi Apparatus/metabolism ; Iron/*metabolism ; Membrane Transport Proteins/chemistry/*genetics/*metabolism ; Models, Biological ; Molecular Sequence Data ; Multienzyme Complexes/*metabolism ; Mutation ; Open Reading Frames ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1996-04-26
    Description: Electrostatic interactions between charges on ligands and charges on proteins that are remote from the binding interface can influence the free energy of binding (delta Gb). The binding affinities between charged ligands and the members of a charge ladder of bovine carbonic anhydrase (CAII) constructed by random acetylation of the amino groups on its surface were measured by affinity capillary electrophoresis (ACE). The values of delta Gb derived from this analysis correlated approximately linearly with the charge. Opposite charges on the ligand and the members of the charge ladder of CAII were stabilizing; like charges were destabilizing. The combination of ACE and protein charge ladders provides a tool for quantitatively examining the contributions of electrostatics to free energies of molecular recognition in biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, J -- Mammen, M -- Whitesides, G M -- GM51559/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Apr 26;272(5261):535-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614800" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Binding Sites ; Carbonic Anhydrases/*chemistry/*metabolism ; Cattle ; Electrochemistry ; Electrophoresis, Capillary ; Ligands ; Models, Chemical ; Molecular Weight ; Protein Conformation ; Sulfonamides/metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1996-09-20
    Description: Group I self-splicing introns catalyze their own excision from precursor RNAs by way of a two-step transesterification reaction. The catalytic core of these ribozymes is formed by two structural domains. The 2.8-angstrom crystal structure of one of these, the P4-P6 domain of the Tetrahymena thermophila intron, is described. In the 160-nucleotide domain, a sharp bend allows stacked helices of the conserved core to pack alongside helices of an adjacent region. Two specific long-range interactions clamp the two halves of the domain together: a two-Mg2+-coordinated adenosine-rich corkscrew plugs into the minor groove of a helix, and a GAAA hairpin loop binds to a conserved 11-nucleotide internal loop. Metal- and ribose-mediated backbone contacts further stabilize the close side-by-side helical packing. The structure indicates the extent of RNA packing required for the function of large ribozymes, the spliceosome, and the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cate, J H -- Gooding, A R -- Podell, E -- Zhou, K -- Golden, B L -- Kundrot, C E -- Cech, T R -- Doudna, J A -- 5T32GM08283-07/GM/NIGMS NIH HHS/ -- GM22778-21/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Sep 20;273(5282):1678-85.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA. doudna@csb.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8781224" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry ; Animals ; Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Hydrogen Bonding ; *Introns ; Magnesium/chemistry ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phosphates/chemistry ; Phylogeny ; RNA Splicing ; RNA, Catalytic/*chemistry/metabolism ; RNA, Protozoan/*chemistry/metabolism ; Ribose/chemistry ; Tetrahymena thermophila/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1996-07-12
    Description: The three-dimensional structure of the amino-terminal core domain (residues 1 through 151) of the human immunodeficiency virus-type 1 (HIV-1) capsid protein has been solved by multidimensional heteronuclear magnetic resonance spectroscopy. The structure is unlike those of previously characterized viral coat proteins and is composed of seven alpha helices, two beta hairpins, and an exposed partially ordered loop. The domain is shaped like an arrowhead, with the beta hairpins and loop exposed at the trailing edge and the carboxyl-terminal helix projecting from the tip. The proline residue Pro1 forms a salt bridge with a conserved, buried aspartate residue (Asp51), which suggests that the amino terminus of the protein rearranges upon proteolytic maturation. The binding site for cyclophilin A, a cellular rotamase that is packaged into the HIV-1 virion, is located on the exposed loop and encompasses the essential proline residue Pro90. In the free monomeric domain, Pro90 adopts kinetically trapped cis and trans conformations, raising the possibility that cyclophilin A catalyzes interconversion of the cis- and trans-Pro90 loop structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gitti, R K -- Lee, B M -- Walker, J -- Summers, M F -- Yoo, S -- Sundquist, W I -- AI30917/AI/NIAID NIH HHS/ -- CA 42014/CA/NCI NIH HHS/ -- GM 42561/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):231-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21228, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662505" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Amino Acid Sequence ; Aspartic Acid/chemistry ; Binding Sites ; Capsid/*chemistry/metabolism ; Carrier Proteins/metabolism ; HIV Core Protein p24/*chemistry/metabolism ; HIV-1/*chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptidylprolyl Isomerase ; Proline/chemistry ; Protein Conformation ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Virion/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1996-10-04
    Description: Afg3p and Rca1p are adenosine triphosphate (ATP)-dependent metalloproteases in yeast mitochondria. Cells lacking both proteins exhibit defects in respiration-dependent growth, degradation of mitochondrially synthesized proteins, and assembly of inner-membrane complexes. Defects in growth and protein assembly, but not in degradation, were suppressed by overproduction of yeast mitochondrial Lon, an ATP-dependent serine protease. Suppression by Lon was enhanced by inactivation of the proteolytic site and was prevented by mutation of the ATP-binding site. It is suggested that the mitochondrial proteases Lon, Afg3p, and Rca1p can also serve a chaperone-like function in the assembly of mitochondrial protein complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rep, M -- van Dijl, J M -- Suda, K -- Schatz, G -- Grivell, L A -- Suzuki, C K -- New York, N.Y. -- Science. 1996 Oct 4;274(5284):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cell Biology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8810243" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Dependent Proteases ; Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Electron Transport Complex IV/metabolism ; Fungal Proteins/*metabolism ; Heat-Shock Proteins/genetics/*metabolism ; Membrane Proteins/*metabolism ; *Metalloendopeptidases ; Mitochondria/*metabolism ; Mitochondrial Proteins ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Proton-Translocating ATPases/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; *Saccharomyces cerevisiae Proteins ; Serine Endopeptidases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-08
    Description: Domain 5 is an essential active-site component of group II intron ribozymes. The role of backbone substituents in D5 function was explored through synthesis of a series of derivatives containing deoxynucleotides at each position along the D5 strand. Kinetic screens revealed that eight 2'-hydroxyl groups were likely to be critical for activity of D5. Through two separate methods, including competitive inhibition and direct kinetic analysis, effects on binding and chemistry were distinguished. Depending on their function, important 2'-hydroxyl groups lie on opposite faces of the molecule, defining distinct loci for molecular recognition and catalysis by D5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abramovitz, D L -- Friedman, R A -- Pyle, A M -- GM41371/GM/NIGMS NIH HHS/ -- GM50313/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596912" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; Exons ; Hydrogen Bonding ; Hydroxyl Radical/chemistry ; *Introns ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/metabolism ; RNA/metabolism ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1996-07-12
    Description: Rapamycin, a potent immunosuppressive agent, binds two proteins: the FK506-binding protein (FKBP12) and the FKBP-rapamycin-associated protein (FRAP). A crystal structure of the ternary complex of human FKBP12, rapamycin, and the FKBP12-rapamycin-binding (FRB) domain of human FRAP at a resolution of 2.7 angstroms revealed the two proteins bound together as a result of the ability of rapamycin to occupy two different hydrophobic binding pockets simultaneously. The structure shows extensive interactions between rapamycin and both proteins, but fewer interactions between the proteins. The structure of the FRB domain of FRAP clarifies both rapamycin-independent and -dependent effects observed for mutants of FRAP and its homologs in the family of proteins related to the ataxia-telangiectasia mutant gene product, and it illustrates how a small cell-permeable molecule can mediate protein dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, J -- Chen, J -- Schreiber, S L -- Clardy, J -- CA59021/CA/NCI NIH HHS/ -- GM38625/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662507" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/*metabolism ; Heat-Shock Proteins/chemistry/*metabolism ; Humans ; *Immunophilins ; Models, Molecular ; Mutation ; *Phosphotransferases (Alcohol Group Acceptor) ; Polyenes/*chemistry/*metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Sirolimus ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1996-12-20
    Description: Enoyl reductase (ENR), an enzyme involved in fatty acid biosynthesis, is the target for antibacterial diazaborines and the front-line antituberculosis drug isoniazid. Analysis of the structures of complexes of Escherichia coli ENR with nicotinamide adenine dinucleotide and either thienodiazaborine or benzodiazaborine revealed the formation of a covalent bond between the 2' hydroxyl of the nicotinamide ribose and a boron atom in the drugs to generate a tight, noncovalently bound bisubstrate analog. This analysis has implications for the structure-based design of inhibitors of ENR, and similarities to other oxidoreductases suggest that mimicking this molecular linkage may have generic applications in other areas of medicinal chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldock, C -- Rafferty, J B -- Sedelnikova, S E -- Baker, P J -- Stuitje, A R -- Slabas, A R -- Hawkes, T R -- Rice, D W -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK. D.Rice@sheffield.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953047" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*metabolism/pharmacology ; Binding Sites ; Boron Compounds/*metabolism/pharmacology ; Crystallography, X-Ray ; Drug Design ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Enzyme Inhibitors/*metabolism/pharmacology ; Escherichia coli/enzymology ; Escherichia coli Proteins ; Fatty Acid Synthase, Type II ; Fatty Acid Synthases/antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; NAD/*metabolism ; Oxidoreductases/antagonists & inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-25
    Description: Human leukocyte antigen (HLA)-DM is a critical participant in antigen presentation that catalyzes the release of class II-associated invariant chain-derived peptides (CLIP) from newly synthesized class II histocompatibility molecules, freeing the peptide-binding site for acquisition of antigenic peptides. The mechanism for the selective release of CLIP but not other peptides is unknown. DM was found to enhance the rate of peptide dissociation to an extent directly proportional to the intrinsic rate of peptide dissociation from HLA-DR, regardless of peptide sequence. Thus, CLIP is rapidly released in the presence of DM, because its intrinsic rate of dissociation is relatively high. In antigen presentation, DM has the potential to markedly enhance the rate of peptide exchange, favoring the presentation of peptides with slower intrinsic rates of dissociation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, D A -- Evavold, B D -- Jensen, P E -- AI30554/AI/NIAID NIH HHS/ -- AI33614/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):618-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849454" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigen Presentation ; Antigens, Differentiation, B-Lymphocyte/*metabolism ; Binding Sites ; HLA-D Antigens/*metabolism ; HLA-DR Antigens/immunology/*metabolism ; Histocompatibility Antigens Class II/*metabolism ; Humans ; Kinetics ; Molecular Sequence Data ; Peptides/immunology/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engelman, D M -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1850-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics, Yale University, New Haven, CT 06520, USA. don@paradigm.csb.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8984645" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Toxins/*chemistry/metabolism ; Colicins/chemistry ; Hemolysin Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Lipid Bilayers/*chemistry/metabolism ; Membrane Proteins/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobson, R H -- Tjian, R -- New York, N.Y. -- Science. 1996 May 10;272(5263):827-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629011" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Humans ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; TATA Box ; TATA-Box Binding Protein ; Transcription Factor TFIIA ; Transcription Factor TFIID ; Transcription Factors/*chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, I A -- New York, N.Y. -- Science. 1996 May 17;272(5264):973-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigens/chemistry/*metabolism ; Antigens, Differentiation, B-Lymphocyte/chemistry/*metabolism ; HLA-DR1 Antigen/chemistry/metabolism ; Histocompatibility Antigens Class II/chemistry/immunology/*metabolism ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Mice ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1996-01-05
    Description: The molecular origin of the exceptional mechanical properties of spider silk is unclear. This paper presents solid-state 2H nuclear magnetic resonance data from unoriented, oriented, and supercontracted fibers, indicating that the crystalline fraction of dragline silk consists of two types of alanine-rich regions, one that is highly oriented and one that is poorly oriented and less densely packed. A new model for the molecular-level structure of individual silk molecules and their arrangement in the fibers is proposed. These data suggest that it will be necessary to control the secondary structure of individual polymer molecules in order to obtain optimum properties in bio-inspired polymers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simmons, A H -- Michal, C A -- Jelinski, L W -- New York, N.Y. -- Science. 1996 Jan 5;271(5245):84-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Technology in Biotechnology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539605" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/analysis ; Algorithms ; Amino Acid Sequence ; Animals ; Crystallization ; Crystallography, X-Ray ; *Fibroins ; Glycine/analysis ; *Insect Proteins ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptides/analysis ; Protein Conformation ; Protein Structure, Secondary ; Proteins/*chemistry ; Silk ; Spiders/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-06-14
    Description: Mitogen-activated protein kinase (MAPK) cascades, termed MAPK modules, channel extracellular signals into specific cellular responses. Chimeric molecules were constructed between p38 and p44 MAPKs, which transduce stress and growth factor signals, respectively. A discrete region of 40 residues located in the amono-terminal p38MAPK lobe directed the specificity of response to extracellular signals, whereas the p44MAPK chimera, expressed in vivo, redirected stress signals into early mitogenic responses, demonstrating the functional independence of these domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunet, A -- Pouyssegur, J -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1652-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Biochemie-CNRS, UMR134, Parc Valrose, Faculte des Sciences, Nice, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658140" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anisomycin/pharmacology ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism ; Cell Division ; Cell Line ; Cricetinae ; Cricetulus ; Enzyme Activation ; Gene Expression Regulation ; Genes, fos ; Growth Substances/metabolism ; Mice ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation/drug effects ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Ribosomal Protein S6 Kinases ; Signal Transduction ; Sorbitol/pharmacology ; Substrate Specificity ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1996-12-06
    Description: Molecular chaperones are essential proteins that participate in the regulation of steroid receptors in eukaryotes. The steroid aporeceptor complex contains the molecular chaperones Hsp90 and Hsp70, p48, the cyclophilin Cyp-40, and the associated proteins p23 and p60. In vitro folding assays showed that Cyp-40 and p23 functioned as molecular chaperones in a manner similar to that of Hsp90 or Hsp70. Although neither Cyp-40 nor p23 could completely refold an unfolded substrate, both proteins interacted with the substrate to maintain a nonnative folding-competent intermediate. Thus, the steroid aporeceptor complexes have multiple chaperone components that maintain substrates in an intermediate folded state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freeman, B C -- Toft, D O -- Morimoto, R I -- GM38109/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1718-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, 2153 North Campus Drive, Evanston, IL 60208, USA. r-morimoto@nwu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8939864" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism/*physiology ; Carrier Proteins/metabolism/*physiology ; *Cyclophilins ; HSC70 Heat-Shock Proteins ; HSP40 Heat-Shock Proteins ; HSP70 Heat-Shock Proteins/metabolism ; Heat-Shock Proteins/metabolism ; Hot Temperature ; Molecular Chaperones/metabolism/*physiology ; *Peptidylprolyl Isomerase ; Phosphoproteins/metabolism/*physiology ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Solubility ; beta-Galactosidase/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1996-02-23
    Description: Transmembrane signaling by bacterial chemotaxis receptors appears to require a conformational change within a receptor dimer. Dimers were engineered of the cytoplasmic domain of the Escherichia coli aspartate receptor that stimulated the kinase CheA in vitro. The folding free energy of the leucine-zipper dimerization domain was harnessed to twist the dimer interface of the receptor, which markedly affected the extent of CheA activation. Response to this twist was attenuated by modification of receptor regulatory sites, in the same manner as adaptation resets sensitivity to ligand in vivo. These results suggest that the normal allosteric activation of the chemotaxis receptor has been mimicked in a system that lacks both ligand-binding and transmembrane domains. The most stimulatory receptor dimer formed a species of tetrameric size.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cochran, A G -- Kim, P S -- T32 AI07348-07/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*metabolism ; Chemoreceptor Cells ; Chemotaxis ; Cytoplasm/metabolism ; Enzyme Activation ; Escherichia coli/*metabolism ; *Escherichia coli Proteins ; Leucine Zippers ; Ligands ; Membrane Proteins/chemistry/*metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinases/metabolism ; Protein Structure, Secondary ; Receptors, Amino Acid/chemistry/*metabolism ; *Receptors, Cell Surface ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, J -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):502.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8928003" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD4/*metabolism ; Cell Membrane/metabolism/virology ; HIV/*metabolism ; HIV Envelope Protein gp120/metabolism ; HIV Envelope Protein gp41/metabolism ; Humans ; Membrane Proteins/*metabolism ; Protein Conformation ; Receptors, CCR5 ; Receptors, CXCR4 ; Receptors, Cytokine/metabolism ; Receptors, HIV/*metabolism ; T-Lymphocytes/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1996-03-08
    Description: Glutamic acid-203 of the alpha subunit of transducin (alphaT) resides within a domain that undergoes a guanosine triphosphate (GTP)-induced conformational change that is essential for effector recognition. Changing the glutamic acid to an alanine in bovine alpha(T) yielded an alpha subunit (alpha(T)E203A) that was fully dependent on rhodopsin for GTP-guanosine diphosphate (GDP) exchange and showed GTP hydrolytic activity similar to that measured for wild-type alpha(T). However, unlike the wild-type protein, the GDP-bound form of alpha(T)E203A was constitutively active toward the effector of transducin, the cyclic guanosine monophosphate phosphodiesterase. Thus, the alpha(T)E203A mutant represents a short-circuited protein switch that no longer requires GTP for the activation of the effector target phosphodiesterase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mittal, R -- Erickson, J W -- Cerione, R A -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1413-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Cornell University, Ithaca, NY 14853-6401, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596913" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-GMP Phosphodiesterases/*metabolism ; Adenosine Diphosphate Ribose/metabolism ; Alanine/chemistry ; Animals ; Base Sequence ; Cattle ; Enzyme Activation ; Glutamic Acid/chemistry ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*metabolism ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins ; Rhodopsin/metabolism ; Transducin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-08
    Description: Mutations in the p53 tumor suppressor are among the most frequently observed genetic alterations in human cancer and map to the 200-amino acid core domain of the protein. The core domain contains the sequence-specific DNA binding activity and the in vitro 53BP2 protein binding activity of p53. The crystal structure of the p53 core domain bound to the 53BP2 protein, which contains an SH3 (Src homology 3) domain and four ankyrin repeats, revealed that (i) the SH3 domain binds the L3 loop of p53 in a manner distinct from that of previously characterized SH3-polyproline peptide complexes, and (ii) an ankyrin repeat, which forms an L-shaped structure consisting of a beta hairpin and two alpha helices, binds the L2 loop of p53. The structure of the complex shows that the 53BP2 binding site on the p53 core domain consists of evolutionarily conserved regions that are frequently mutated in cancer and that it overlaps the site of DNA binding. The six most frequently observed p53 mutations disrupt 53BP2 binding in vitro. The structure provides evidence that the 53BP2-p53 complex forms in vivo and may have a critical role in the p53 pathway of tumor suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gorina, S -- Pavletich, N P -- CA65698/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 8;274(5289):1001-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8875926" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ankyrins/*chemistry ; Apoptosis Regulatory Proteins ; Binding Sites ; Carrier Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; DNA/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neoplasms/genetics ; Protein Binding ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Tumor Suppressor Protein p53/*chemistry/genetics/metabolism ; *src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1996-02-02
    Description: Hydrogen-deuterium exchange of 39 amide protons of Bacillus amyloliquefaciens ribonuclease (barnase) was analyzed by two-dimensional nuclear magnetic resonance in the presence of micromolar concentrations of the molecular chaperones GroEL and SecB. Both chaperones bound to native barnase under physiological conditions and catalyzed exchange of deeply buried amide protons with solvent. Such exchange required complete unfolding of barnase, which occurred in the complex with the chaperones. Subsequent collapse of unfolded barnase to the exchange-protected folding intermediate was markedly slowed in the presence of GroEL or SecB. Thus, both chaperones have the potential to correct misfolding in proteins by annealing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zahn, R -- Perrett, S -- Stenberg, G -- Fersht, A R -- New York, N.Y. -- Science. 1996 Feb 2;271(5249):642-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8571125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/pharmacology ; Amides ; Bacterial Proteins/*metabolism ; Catalysis ; Chaperonin 60/*metabolism ; Hydrogen-Ion Concentration ; Kinetics ; Magnetic Resonance Spectroscopy ; Molecular Chaperones/*metabolism ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; *Protons ; Ribonucleases/*chemistry/metabolism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplan, J -- O'Halloran, T V -- R01 GM038784/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 15;271(5255):1510-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Utah School of Medicine, Salt Lake City, 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599104" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Biological Transport ; Carrier Proteins/genetics/*metabolism ; Ceruloplasmin/chemistry/*metabolism ; Copper/metabolism ; Ferric Compounds/metabolism ; Ferrous Compounds/metabolism ; Iron/*metabolism ; Membrane Transport Proteins/genetics/*metabolism ; Models, Molecular ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Protein Conformation ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1996-02-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lavigne, P -- Sonnichsen, F D -- Kay, C M -- Hodges, R S -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1136-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599093" target="_blank"〉PubMed〈/a〉
    Keywords: *DNA-Binding Proteins ; Fungal Proteins/*chemistry ; Glutamic Acid/chemistry ; Glutamine/chemistry ; *Leucine Zippers ; Lysine/chemistry ; Protein Conformation ; Protein Folding ; Protein Kinases/*chemistry ; *Protein Structure, Secondary ; *Saccharomyces cerevisiae Proteins ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-12
    Description: Cations bind to the pi face of an aromatic structure through a surprisingly strong, non-covalent force termed the cation-pi interaction. The magnitude and generality of the effect have been established by gas-phase measurements and by studies of model receptors in aqueous media. To first order, the interaction can be considered an electrostatic attraction between a positive charge and the quadrupole moment of the aromatic. A great deal of direct and circumstantial evidence indicates that cation-pi interactions are important in a variety of proteins that bind cationic ligands or substrates. In this context, the amino acids phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp) can be viewed as polar, yet hydrophobic, residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dougherty, D A -- GM43936/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 12;271(5246):163-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539615" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Benzene/chemistry/*metabolism ; Binding Sites ; Cations/chemistry/*metabolism ; Chemistry, Physical ; Ion Channels/metabolism ; Phenylalanine/chemistry/*metabolism ; Physicochemical Phenomena ; Proteins/*metabolism ; Receptors, Cholinergic/metabolism ; Steroids/biosynthesis ; Tryptophan/chemistry/*metabolism ; Tyrosine/chemistry/*metabolism ; Water/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-01
    Description: The RepA protein of plasmid pC194 initiates and terminates rolling circle replication. At initiation, it forms a 5'-phosphotyrosyl DNA link, whereas at termination, a glutamate residue directs hydrolytic cleavage of the newly synthesized origin, and the resulting 3'-hydroxyl group undergoes transesterification with the phosphotyrosine link. The protein is thus released from DNA, and the termination is uncoupled from reinitiation of replication. Replacement of the glutamate with tyrosine in RepA altered this mechanism, so that termination occurred by two successive transesterifications and became coupled to reinitiation. This result suggests that various enzymes involved in DNA cleavage and rejoining may have similar mechanistic and evolutionary roots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noirot-Gros, M F -- Ehrlich, S D -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):777-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864116" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage phi X 174 ; Binding Sites ; *DNA Helicases ; *DNA Replication ; DNA, Bacterial/*metabolism ; DNA, Single-Stranded/metabolism ; DNA, Viral/metabolism ; *DNA-Binding Proteins ; Esterification ; Evolution, Molecular ; Glutamic Acid/metabolism ; Hydrolysis ; Mutation ; Plasmids ; Proteins/chemistry/genetics/*metabolism ; *Trans-Activators ; Tyrosine/metabolism ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-10
    Description: The molecular structure of the Escherichia coli RecA protein in the absence of DNA revealed two disordered or mobile loops that were proposed to be DNA binding sites. A short peptide spanning one of these loops was shown to carry out the key reaction mediated by the whole RecA protein: pairing (targeting) of a single-stranded DNA to its homologous site on a duplex DNA. In the course of the reaction the peptide bound to both substrate DNAs, unstacked the single-stranded DNA, and assumed a beta structure. These events probably recapitulate the underlying molecular pathway or mechanism used by homologous recombination proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voloshin, O N -- Wang, L -- Camerini-Otero, R D -- New York, N.Y. -- Science. 1996 May 10;272(5263):868-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1810, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629021" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA, Single-Stranded/chemistry/genetics/*metabolism ; DNA, Superhelical/chemistry/genetics/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Peptide Fragments/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Rec A Recombinases/chemistry/*metabolism ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-06-14
    Description: Cysteine residues were introduced into three different positions distributed on the surface of ribosomal protein S5, to serve as targets for derivatization with an Fe(II)-ethyl-enediaminetetraacetic acid linker. Hydroxyl radicals generated locally from the tethered Fe(II) in intermediate ribonucleoprotein particles or in 30S ribosomal subunits reconstituted from derivatized S5 caused cleavage of the RNA, resulting in characteristically different cleavage patterns for the three different tethering positions. These findings provide constraints for the three-dimensional folding of 16S ribosomal RNA (rRNA) and for the orientation of S5 in the 30S subunit, and they further suggest that antibiotic resistance and accuracy mutations in S5 may involve perturbation of 16S rRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heilek, G M -- Noller, H F -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658142" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Cloning, Molecular ; Cysteine/chemistry ; Edetic Acid/analogs & derivatives ; Escherichia coli ; Ferrous Compounds/chemistry ; Hydroxyl Radical/*chemistry ; Models, Molecular ; Molecular Probes ; Mutagenesis, Site-Directed ; Nucleic Acid Conformation ; Organometallic Compounds ; Protein Conformation ; RNA, Ribosomal/*chemistry ; RNA, Ribosomal, 16S/chemistry/drug effects ; Ribosomal Proteins/*chemistry/genetics ; Spectinomycin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1996-06-14
    Description: The molybdoenzyme dimethylsulfoxide (DMSO) reductase contributes to the release of dimethylsulfide, a compound that has been implicated in cloud nucleation and global climate regulation. The crystal structure of DMSO reductase from Rhodobacter sphaeroides reveals a monooxo molybdenum cofactor containing two molybdopterin guanine dinucleotides that asymmetrically coordinate the molybdenum through their dithiolene groups. One of the pterins exhibits different coordination modes to the molybdenum between the oxidized and reduced states, whereas the side chain oxygen of Ser147 coordinates the metal in both states. The change in pterin coordination between the Mo(VI) and Mo(IV) forms suggests a mechanism for substrate binding and reduction by this enzyme. Sequence comparisons of DMSO reductase with a family of bacterial oxotransferases containing molybdopterin guanine dinucleotide indicate a similar polypeptide fold and active site with two molybdopterins within this family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schindelin, H -- Kisker, C -- Hilton, J -- Rajagopalan, K V -- Rees, D C -- GM00091/GM/NIGMS NIH HHS/ -- GM50775/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1615-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658134" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Coenzymes/*chemistry ; Crystallography, X-Ray ; *Iron-Sulfur Proteins ; Metalloproteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases/*chemistry/metabolism ; Protein Conformation ; Pteridines/*chemistry ; Rhodobacter sphaeroides/*enzymology ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berendsen, H J -- New York, N.Y. -- Science. 1996 Feb 16;271(5251):954-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysical Chemistry, University of Groningen, Netherlands. berendsen@chem.rug.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8584930" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Biotin/*chemistry ; Chemistry, Physical ; Computer Graphics ; *Computer Simulation ; Hydrogen Bonding ; Microscopy, Atomic Force ; *Models, Chemical ; Models, Molecular ; Molecular Conformation ; Physicochemical Phenomena ; Protein Conformation ; Streptavidin ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1996-03-01
    Description: The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-beta-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewis, M -- Chang, G -- Horton, N C -- Kercher, M A -- Pace, H C -- Schumacher, M A -- Brennan, R G -- Lu, P -- 2-T32-GM082745/GM/NIGMS NIH HHS/ -- GM44617/GM/NIGMS NIH HHS/ -- P41-RR06017/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1247-54.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johnson Research Foundation, University of Pennsylvania, Philadelphia 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638105" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacterial Proteins/*chemistry/genetics/metabolism ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Cyclic AMP Receptor Protein/metabolism ; DNA, Bacterial/chemistry/*metabolism ; *Escherichia coli Proteins ; Hydrogen Bonding ; Isopropyl Thiogalactoside/*metabolism ; *Lac Operon ; Lac Repressors ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Point Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1996-09-06
    Description: A modulator of the enzymatic activity of human thrombin, designated LY254603, was identified that enhances the thrombin-catalyzed generation of the anticoagulant factor activated protein C, yet inhibits thrombin-dependent fibrinogen clotting. By means of mutant substrates, it was shown that LY254603 mediates the change in enzymatic substrate specificity through an alteration in thrombin's S3 substrate recognition site, a mechanism that appeared to be independent of allosteric changes induced by either sodium ions or by thrombomodulin. This compound may represent the prototype of a class of agents that specifically modulates the balance between thrombin's procoagulant and anticoagulant functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berg, D T -- Wiley, M R -- Grinnell, B W -- New York, N.Y. -- Science. 1996 Sep 6;273(5280):1389-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Division, Lilly Research Laboratories, Indianapolis, IN 46285-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703074" target="_blank"〉PubMed〈/a〉
    Keywords: Blood Coagulation/drug effects ; Calcium/pharmacology ; Choline/pharmacology ; Dose-Response Relationship, Drug ; Enzyme Activation ; Fibrinogen/*metabolism ; Humans ; Naphthalenes/chemistry/*pharmacology ; Partial Thromboplastin Time ; Phenyl Ethers/chemistry/*pharmacology ; Protein C/chemistry/*metabolism ; Protein Conformation ; Recombinant Proteins/metabolism ; Sodium Chloride/pharmacology ; Substrate Specificity/drug effects ; Thrombin/*pharmacology ; Thrombomodulin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-23
    Description: Zinc ions are key structural components of a large number of proteins. The binding of zinc stabilizes the folded conformations of domains so that they may facilitate interactions between the proteins and other macromolecules such as DNA. The modular nature of some of these zinc-containing proteins has allowed the rational design of site-specific DNA binding proteins. The ability of zinc to be bound specifically within a range of tetrahedral sites appears to be responsible for the evolution of the side range of zinc-stabilized structural domains now known to exist. The lack of redox activity for the zinc ion and its binding and exchange kinetics also may be important in the use of zinc for specific functional roles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berg, J M -- Shi, Y -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1081-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599083" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA/metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Engineering ; Transcription Factors/chemistry/*metabolism ; Zinc/chemistry/metabolism/*physiology ; Zinc Fingers/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1996-03-29
    Description: Genetically encoded libraries of peptides and oligonucleotides are well suited for the identification of ligands for many macromolecules. A major drawback of these techniques is that the resultant ligands are subject to degradation by naturally occurring enzymes. Here, a method is described that uses a biologically encoded library for the identification of D-peptide ligands, which should be resistant to proteolytic degradation. In this approach, a protein is synthesized in the D-amino acid configuration and used to select peptides from a phage display library expressing random L-amino acid peptides. For reasons of symmetry, the mirror images of these phage-displayed peptides interact with the target protein of the natural handedness. The value of this approach was demonstrated by the identification of a cyclic D-peptide that interacts with the Src homology 3 domain of c- SRC. Nuclear magnetic resonance studies indicate that the binding site for this D-peptide partially overlaps the site for the physiological ligands of this domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, T N -- Mayr, L M -- Minor, D L Jr -- Milhollen, M A -- Burgess, M W -- Kim, P S -- New York, N.Y. -- Science. 1996 Mar 29;271(5257):1854-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596952" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteriophages ; Base Sequence ; Binding Sites ; Chickens ; Cloning, Molecular ; Gene Library ; Ligands ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Peptides/chemistry/genetics/*metabolism ; Peptides, Cyclic/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins pp60(c-src)/chemistry/*metabolism ; Stereoisomerism ; *src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1996-08-23
    Description: A previously unknown redox cofactor has been identified in the active site of lysyl oxidase from the bovine aorta. Edman sequencing, mass spectrometry, ultraviolet-visible spectra, and resonance Raman studies showed that this cofactor is a quinone. Its structure is derived from the crosslinking of the epsilon-amino group of a peptidyl lysine with the modified side chain of a tyrosyl residue, and it has been designated lysine tyrosylquinone. This quinone appears to be the only example of a mammalian cofactor formed from the crosslinking of two amino acid side chains. This discovery expands the range of known quino-cofactor structures and has implications for the mechanism of their biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, S X -- Mure, M -- Medzihradszky, K F -- Burlingame, A L -- Brown, D E -- Dooley, D M -- Smith, A J -- Kagan, H M -- Klinman, J P -- GM27659/GM/NIGMS NIH HHS/ -- GM39296/GM/NIGMS NIH HHS/ -- P41 RR01614/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Aug 23;273(5278):1078-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688089" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aorta/enzymology ; Binding Sites ; Cattle ; Chromatography, High Pressure Liquid ; Lysine/*analogs & derivatives/chemistry/metabolism ; Mass Spectrometry ; Molecular Sequence Data ; Molecular Weight ; Mutagenesis, Site-Directed ; Oxidation-Reduction ; Protein-Lysine 6-Oxidase/*chemistry/genetics/isolation & purification/metabolism ; Quinones/*chemistry/metabolism ; Spectrophotometry, Ultraviolet ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1996-01-26
    Description: A subset of individuals with familial amyotrophic lateral sclerosis (FALS) possesses dominantly inherited mutations in the gene that encodes copper-zinc superoxide dismutase (CuZnSOD). A4V and G93A, two of the mutant enzymes associated with FALS, were shown to catalyze the oxidation of a model substrate (spin trap 5,5'-dimethyl-1-pyrroline N-oxide) by hydrogen peroxide at a higher rate than that seen with the wild-type enzyme. Catalysis of this reaction by A4V and G93A was more sensitive to inhibition by the copper chelators diethyldithiocarbamate and penicillamine than was catalysis by wild-type CuZnSOD. The same two chelators reversed the apoptosis-inducing effect of mutant enzymes expressed in a neural cell line. These results suggest that oxidative reactions catalyzed by mutant CuZnSOD enzymes initiate the neuropathologic changes in FALS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wiedau-Pazos, M -- Goto, J J -- Rabizadeh, S -- Gralla, E B -- Roe, J A -- Lee, M K -- Valentine, J S -- Bredesen, D E -- AG12282/AG/NIA NIH HHS/ -- DK46828/DK/NIDDK NIH HHS/ -- GM28222/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 26;271(5248):515-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8560268" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/*enzymology/genetics ; Animals ; Apoptosis/drug effects ; Binding Sites ; Catalysis ; Cell Line ; Chelating Agents/pharmacology ; Copper/metabolism ; Cyclic N-Oxides/metabolism ; Ditiocarb/pharmacology ; Humans ; Hydrogen Peroxide/metabolism ; Mutation ; Oxidation-Reduction ; Penicillamine/pharmacology ; Rats ; Superoxide Dismutase/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1613-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8984629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/physiology ; Carrier Proteins/*physiology ; *Cyclophilins ; DNA-Binding Proteins/physiology ; Fungal Proteins/*physiology ; HSP90 Heat-Shock Proteins/physiology ; Heat-Shock Proteins/physiology ; Molecular Chaperones/*physiology ; *Peptidylprolyl Isomerase ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Signal Transduction ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, R F -- New York, N.Y. -- Science. 1996 Oct 11;274(5285):176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8927977" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Crystallography, X-Ray ; Drosophila melanogaster ; H-2 Antigens/*chemistry/immunology/metabolism ; Killer Cells, Natural/immunology ; *Major Histocompatibility Complex ; Models, Molecular ; Peptides/immunology/metabolism ; Protein Conformation ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/immunology/metabolism ; Recombinant Proteins/chemistry ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1996-11-08
    Description: Lipid A constitutes the outer monolayer of the outer membrane of Gram-negative bacteria and is essential for bacterial growth. Synthetic antibacterials were identified that inhibit the second enzyme (a unique deacetylase) of lipid A biosynthesis. The inhibitors are chiral hydroxamic acids bearing certain hydrophobic aromatic moieties. They may bind to a metal in the active site of the deacetylase. The most potent analog (with an inhibition constant of about 50 nM) displayed a minimal inhibitory concentration of about 1 microgram per milliliter against Escherichia coli, caused three logs of bacterial killing in 4 hours, and cured mice infected with a lethal intraperitoneal dose of E. coli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Onishi, H R -- Pelak, B A -- Gerckens, L S -- Silver, L L -- Kahan, F M -- Chen, M H -- Patchett, A A -- Galloway, S M -- Hyland, S A -- Anderson, M S -- Raetz, C R -- New York, N.Y. -- Science. 1996 Nov 8;274(5289):980-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Merck Research Laboratories, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8875939" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/*antagonists & inhibitors/metabolism ; Animals ; Anti-Bacterial Agents/chemistry/*pharmacology ; Binding Sites ; Escherichia coli/drug effects ; Escherichia coli Infections/drug therapy ; Gram-Negative Bacteria/*drug effects ; Hydroxamic Acids/chemistry/*pharmacology ; Lipid A/*biosynthesis ; Mice ; Microbial Sensitivity Tests ; Oxazoles/chemistry/pharmacology ; Pseudomonas/drug effects ; Serratia/drug effects ; Stereoisomerism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1996-06-14
    Description: DnaK and other members of the 70-kilodalton heat-shock protein (hsp70) family promote protein folding, interaction, and translocation, both constitutively and in response to stress, by binding to unfolded polypeptide segments. These proteins have two functional units: a substrate-binding portion binds the polypeptide, and an adenosine triphosphatase portion facilitates substrate exchange. The crystal structure of a peptide complex with the substrate-binding unit of DnaK has now been determined at 2.0 angstroms resolution. The structure consists of a beta-sandwich subdomain followed by alpha-helical segments. The peptide is bound to DnaK in an extended conformation through a channel defined by loops from the beta sandwich. An alpha-helical domain stabilizes the complex, but does not contact the peptide directly. This domain is rotated in the molecules of a second crystal lattice, which suggests a model of conformation-dependent substrate binding that features a latch mechanism for maintaining long lifetime complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, X -- Zhao, X -- Burkholder, W F -- Gragerov, A -- Ogata, C M -- Gottesman, M E -- Hendrickson, W A -- GM 34102/GM/NIGMS NIH HHS/ -- GM 37219/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1606-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658133" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chaperonins/chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli ; *Escherichia coli Proteins ; HSP70 Heat-Shock Proteins/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Peptides/metabolism ; Protein Binding ; Protein Conformation ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1996-02-16
    Description: Transfer RNA (tRNA) molecules play a crucial role in protein biosynthesis in all organisms. Their interactions with ribosomes mediate the translation of genetic messages into polypeptides. Three tRNAs bound to the Escherichia coli 70S ribosome were visualized directly with cryoelectron microscopy and three-dimensional reconstruction. The detailed arrangement of A- and P-site tRNAs inferred from this study allows localization of the sites for anticodon interaction and peptide bond formation on the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agrawal, R K -- Penczek, P -- Grassucci, R A -- Li, Y -- Leith, A -- Nierhaus, K H -- Frank, J -- 1R01 GM29169/GM/NIGMS NIH HHS/ -- P41 RR01219/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 16;271(5251):1000-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8584922" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon ; Binding Sites ; Codon ; Escherichia coli/*metabolism ; Image Processing, Computer-Assisted ; Microscopy, Electron ; Models, Molecular ; Nucleic Acid Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; RNA, Transfer, Amino Acyl/*chemistry/metabolism ; RNA, Transfer, Phe/*chemistry/metabolism ; Ribosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...