ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-25
    Description: The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927129/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927129/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Min -- Morgner, Nina -- Barrera, Nelson P -- Politis, Argyris -- Isaacson, Shoshanna C -- Matak-Vinkovic, Dijana -- Murata, Takeshi -- Bernal, Ricardo A -- Stock, Daniela -- Robinson, Carol V -- 088150/Wellcome Trust/United Kingdom -- 099141/Wellcome Trust/United Kingdom -- G1000819/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):380-5. doi: 10.1126/science.1210148.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021858" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cardiolipins/analysis/metabolism ; Enterococcus/enzymology ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Mass Spectrometry ; Membrane Lipids/analysis/*metabolism ; Models, Molecular ; Phosphatidylethanolamines/analysis/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Spectrometry, Mass, Electrospray Ionization ; Thermus thermophilus/*enzymology ; Vacuolar Proton-Translocating ATPases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...