ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-12
    Description: In order to operate in a coordinated fashion, multisubunit enzymes use cooperative interactions intrinsic to their enzymatic cycle, but this process remains poorly understood. Accordingly, ATP number distributions in various hydrolyzed states have been obtained for single copies of the mammalian double-ring multisubunit chaperonin TRiC/CCT in free solution using the emission from chaperonin-bound fluorescent nucleotides and closed-loop feedback trapping provided by an Anti-Brownian ELectrokinetic trap. Observations of the 16-subunit complexes as ADP molecules are dissociating shows a peak in the bound ADP number distribution at 8 ADP, whose height falls over time with little shift in the position of the peak, indicating a highly cooperative ADP release process which would be difficult to observe by ensemble-averaged methods. When AlFx is added to produce ATP hydrolysis transition state mimics (ADP·AlFx) locked to the complex, the peak at 8 nucleotides dominates for all but the lowest incubation concentrations. Although ensemble averages of the single-molecule data show agreement with standard cooperativity models, surprisingly, the observed number distributions depart from standard models, illustrating the value of these single-molecule observations in constraining the mechanism of cooperativity. While a complete alternative microscopic model cannot be defined at present, the addition of subunit-occupancy-dependent cooperativity in hydrolysis yields distributions consistent with the data.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-30
    Description: The accumulation of misfolded proteins in intracellular amyloid inclusions, typical of many neurodegenerative disorders including Huntington's and prion disease, is thought to occur after failure of the cellular protein quality control mechanisms. Here we examine the formation of misfolded protein inclusions in the eukaryotic cytosol of yeast and mammalian cell culture models. We identify two intracellular compartments for the sequestration of misfolded cytosolic proteins. Partition of quality control substrates to either compartment seems to depend on their ubiquitination status and aggregation state. Soluble ubiquitinated misfolded proteins accumulate in a juxtanuclear compartment where proteasomes are concentrated. In contrast, terminally aggregated proteins are sequestered in a perivacuolar inclusion. Notably, disease-associated Huntingtin and prion proteins are preferentially directed to the perivacuolar compartment. Enhancing ubiquitination of a prion protein suffices to promote its delivery to the juxtanuclear inclusion. Our findings provide a framework for understanding the preferential accumulation of amyloidogenic proteins in inclusions linked to human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746971/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746971/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaganovich, Daniel -- Kopito, Ron -- Frydman, Judith -- R01 GM056433/GM/NIGMS NIH HHS/ -- R01 GM056433-03/GM/NIGMS NIH HHS/ -- R01 GM056433-04/GM/NIGMS NIH HHS/ -- R01 GM056433-05/GM/NIGMS NIH HHS/ -- R01 GM056433-06/GM/NIGMS NIH HHS/ -- R01 GM056433-07/GM/NIGMS NIH HHS/ -- R01 GM056433-08/GM/NIGMS NIH HHS/ -- R01 NS042842/NS/NINDS NIH HHS/ -- R01 NS042842-07/NS/NINDS NIH HHS/ -- England -- Nature. 2008 Aug 28;454(7208):1088-95. doi: 10.1038/nature07195.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and BioX Program, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18756251" target="_blank"〉PubMed〈/a〉
    Keywords: Cytosol/metabolism ; HeLa Cells ; Humans ; Prions/metabolism ; Proteasome Endopeptidase Complex/metabolism ; *Protein Folding ; Proteins/chemistry/*metabolism ; Saccharomyces cerevisiae/cytology/genetics/metabolism ; Solubility ; Ubiquitin-Conjugating Enzymes/genetics/metabolism ; Ubiquitination ; Von Hippel-Lindau Tumor Suppressor Protein/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-01-22
    Description: Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadalton, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in lid, which is triggered by ATP hydrolysis. The structural rearrangements and molecular events leading to lid closure are still unknown. Here we report four single particle cryo-electron microscopy (cryo-EM) structures of Mm-cpn, an archaeal group II chaperonin, in the nucleotide-free (open) and nucleotide-induced (closed) states. The 4.3 A resolution of the closed conformation allowed building of the first ever atomic model directly from the single particle cryo-EM density map, in which we were able to visualize the nucleotide and more than 70% of the side chains. The model of the open conformation was obtained by using the deformable elastic network modelling with the 8 A resolution open-state cryo-EM density restraints. Together, the open and closed structures show how local conformational changes triggered by ATP hydrolysis lead to an alteration of intersubunit contacts within and across the rings, ultimately causing a rocking motion that closes the ring. Our analyses show that there is an intricate and unforeseen set of interactions controlling allosteric communication and inter-ring signalling, driving the conformational cycle of group II chaperonins. Beyond this, we anticipate that our methodology of combining single particle cryo-EM and computational modelling will become a powerful tool in the determination of atomic details involved in the dynamic processes of macromolecular machines in solution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834796/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834796/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Junjie -- Baker, Matthew L -- Schroder, Gunnar F -- Douglas, Nicholai R -- Reissmann, Stefanie -- Jakana, Joanita -- Dougherty, Matthew -- Fu, Caroline J -- Levitt, Michael -- Ludtke, Steven J -- Frydman, Judith -- Chiu, Wah -- P41 RR002250/RR/NCRR NIH HHS/ -- P41 RR002250-23/RR/NCRR NIH HHS/ -- P41 RR002250-237254/RR/NCRR NIH HHS/ -- P41 RR002250-24/RR/NCRR NIH HHS/ -- P41 RR002250-247897/RR/NCRR NIH HHS/ -- PN2 EY016525/EY/NEI NIH HHS/ -- PN2 EY016525-02S1/EY/NEI NIH HHS/ -- PN2 EY016525-03/EY/NEI NIH HHS/ -- PN2 EY016525-04/EY/NEI NIH HHS/ -- PN2 EY016525-05/EY/NEI NIH HHS/ -- R01 GM063817/GM/NIGMS NIH HHS/ -- R01 GM079429/GM/NIGMS NIH HHS/ -- R01 GM079429-03/GM/NIGMS NIH HHS/ -- R01 GM080139/GM/NIGMS NIH HHS/ -- R01 GM080139-03/GM/NIGMS NIH HHS/ -- R01 GM080139-04/GM/NIGMS NIH HHS/ -- R90 DK071504/DK/NIDDK NIH HHS/ -- R90 DK071504-03/DK/NIDDK NIH HHS/ -- T32 GM007276-30/GM/NIGMS NIH HHS/ -- T32 GM007276-31/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 21;463(7279):379-83. doi: 10.1038/nature08701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20090755" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/chemistry/metabolism/pharmacology ; Allosteric Regulation ; Binding Sites ; Cryoelectron Microscopy ; Group II Chaperonins/*chemistry/*metabolism/ultrastructure ; Hydrolysis/drug effects ; Methanococcus/*chemistry ; Models, Molecular ; Protein Binding ; Protein Conformation/drug effects ; *Protein Folding ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-06-07
    Description: Molecular chaperones in the eukaryotic cytosol were shown to interact differently with chemically denatured proteins and their newly translated counterparts. During refolding from denaturant, actin partitioned freely between 70-kilodalton heat shock protein, the bulk cytosol, and the chaperonin TCP1-ring complex. In contrast, during cell-free translation, the chaperones were recruited to the elongating polypeptide and protected it from exposure to the bulk cytosol during folding. Posttranslational cycling between chaperone-bound and free states was observed with subunits of oligomeric proteins and with aberrant polypeptides; this cycling allowed the subunits to assemble and the aberrant polypeptides to be degraded. Thus, folding, oligomerization, and degradation are linked hierarchically to ensure the correct fate of newly synthesized polypeptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frydman, J -- Hartl, F U -- New York, N.Y. -- Science. 1996 Jun 7;272(5267):1497-502.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8633246" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/genetics/metabolism ; Adenosine Triphosphate/metabolism ; Cell Extracts ; Chaperonin 60/chemistry/metabolism ; Chaperonin Containing TCP-1 ; Chaperonins/chemistry/metabolism ; HSP70 Heat-Shock Proteins/chemistry/metabolism ; Luciferases/*chemistry/genetics/metabolism ; Molecular Chaperones/chemistry/*metabolism ; Peptides/chemistry/metabolism ; *Protein Biosynthesis ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Reticulocytes ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Archives of Biochemistry and Biophysics 286 (1991), S. 610-617 
    ISSN: 0003-9861
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular 1076 (1991), S. 321-329 
    ISSN: 0167-4838
    Keywords: (Rat liver) ; Biliverdin reductase ; Heme catabolism ; Oxidative stress ; Protein antigenicity ; Thiol-disulfide regulation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular 1040 (1990), S. 119-129 
    ISSN: 0167-4838
    Keywords: (Rat liver) ; Biliverdin ; Dehydrogenase ; Molecular form ; NADPH binding ; Thiol residue
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 263 (1990), S. 38-42 
    ISSN: 0014-5793
    Keywords: Biliverdin reductase ; Diamide ; Phenylhydrazine ; Protein oxidation ; Rat liver ; Thiol regulation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...