ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Time Factors  (895)
  • Protein Structure, Tertiary  (376)
  • Nature Publishing Group (NPG)  (1,268)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplan, Karen -- England -- Nature. 2010 Sep 23;467(7314):489-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20963934" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Emigration and Immigration ; Europe ; European Union ; Faculty ; Income/statistics & numerical data ; Internationality ; *Pensions/statistics & numerical data ; Research Personnel/*economics/statistics & numerical data ; Retirement/*economics/statistics & numerical data ; Time Factors ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-15
    Description: The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alphabeta T-cell lineage differentiation. Whereas alphabetaTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant alpha-chain (pre-Talpha) that pairs with any TCR beta-chain (TCRbeta) following successful TCR beta-gene rearrangement. Here we provide the basis of pre-Talpha-TCRbeta assembly and pre-TCR dimerization. The pre-Talpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain; nevertheless, the mode of association between pre-Talpha and TCRbeta mirrored that mediated by the Calpha-Cbeta domains of the alphabetaTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Talpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the Vbeta and joining (J) beta gene families, thus mimicking the interactions at the core of the alphabetaTCR's Valpha-Vbeta interface. Disruption of this pre-Talpha-Vbeta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Talpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Talpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pang, Siew Siew -- Berry, Richard -- Chen, Zhenjun -- Kjer-Nielsen, Lars -- Perugini, Matthew A -- King, Glenn F -- Wang, Christina -- Chew, Sock Hui -- La Gruta, Nicole L -- Williams, Neal K -- Beddoe, Travis -- Tiganis, Tony -- Cowieson, Nathan P -- Godfrey, Dale I -- Purcell, Anthony W -- Wilce, Matthew C J -- McCluskey, James -- Rossjohn, Jamie -- England -- Nature. 2010 Oct 14;467(7317):844-8. doi: 10.1038/nature09448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944746" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; Models, Molecular ; Mutation ; Protein Folding ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/*chemistry/genetics/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/metabolism ; Signal Transduction ; Solutions ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-26
    Description: In physiological settings, nucleic-acid translocases must act on substrates occupied by other proteins, and an increasingly appreciated role of translocases is to catalyse protein displacement from RNA and DNA. However, little is known regarding the inevitable collisions that must occur, and the fate of protein obstacles and the mechanisms by which they are evicted from DNA remain unexplored. Here we sought to establish the mechanistic basis for protein displacement from DNA using RecBCD as a model system. Using nanofabricated curtains of DNA and multicolour single-molecule microscopy, we visualized collisions between a model translocase and different DNA-bound proteins in real time. We show that the DNA translocase RecBCD can disrupt core RNA polymerase, holoenzymes, stalled elongation complexes and transcribing RNA polymerases in either head-to-head or head-to-tail orientations, as well as EcoRI(E111Q), lac repressor and even nucleosomes. RecBCD did not pause during collisions and often pushed proteins thousands of base pairs before evicting them from DNA. We conclude that RecBCD overwhelms obstacles through direct transduction of chemomechanical force with no need for specific protein-protein interactions, and that proteins can be removed from DNA through active disruption mechanisms that act on a transition state intermediate as they are pushed from one nonspecific site to the next.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230117/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230117/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkelstein, Ilya J -- Visnapuu, Mari-Liis -- Greene, Eric C -- F32GM80864/GM/NIGMS NIH HHS/ -- GM074739/GM/NIGMS NIH HHS/ -- GM082848/GM/NIGMS NIH HHS/ -- R01 CA146940/CA/NCI NIH HHS/ -- R01 GM074739/GM/NIGMS NIH HHS/ -- R01 GM074739-01A1/GM/NIGMS NIH HHS/ -- R01 GM074739-05/GM/NIGMS NIH HHS/ -- R01 GM082848/GM/NIGMS NIH HHS/ -- R01 GM082848-01A1/GM/NIGMS NIH HHS/ -- R01 GM082848-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 16;468(7326):983-7. doi: 10.1038/nature09561. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107319" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda/genetics ; Biocatalysis ; DNA/genetics/*metabolism ; DNA, Viral/genetics/metabolism ; DNA-Binding Proteins/*metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Deoxyribonuclease EcoRI/metabolism ; Escherichia coli/enzymology ; Exodeoxyribonuclease V/*metabolism ; Holoenzymes/chemistry/metabolism ; Lac Repressors/metabolism ; Microscopy, Fluorescence ; *Movement ; Nucleosomes/metabolism ; Promoter Regions, Genetic/genetics ; Protein Binding ; Quantum Dots ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-21
    Description: MyD88, IRAK4 and IRAK2 are critical signalling mediators of the TLR/IL1-R superfamily. Here we report the crystal structure of the MyD88-IRAK4-IRAK2 death domain (DD) complex, which surprisingly reveals a left-handed helical oligomer that consists of 6 MyD88, 4 IRAK4 and 4 IRAK2 DDs. Assembly of this helical signalling tower is hierarchical, in which MyD88 recruits IRAK4 and the MyD88-IRAK4 complex recruits the IRAK4 substrates IRAK2 or the related IRAK1. Formation of these Myddosome complexes brings the kinase domains of IRAKs into proximity for phosphorylation and activation. Composite binding sites are required for recruitment of the individual DDs in the complex, which are confirmed by mutagenesis and previously identified signalling mutations. Specificities in Myddosome formation are dictated by both molecular complementarity and correspondence of surface electrostatics. The MyD88-IRAK4-IRAK2 complex provides a template for Toll signalling in Drosophila and an elegant mechanism for versatile assembly and regulation of DD complexes in signal transduction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Su-Chang -- Lo, Yu-Chih -- Wu, Hao -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI050872/AI/NIAID NIH HHS/ -- R01 AI050872-09/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):885-90. doi: 10.1038/nature09121. Epub 2010 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485341" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; *Interleukin-1 Receptor-Associated Kinases/chemistry/metabolism ; *Models, Molecular ; *Myeloid Differentiation Factor 88/chemistry/metabolism ; Protein Structure, Tertiary ; Receptors, Interleukin-1/metabolism/*physiology ; *Signal Transduction ; Toll-Like Receptors/metabolism/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luebeck, E Georg -- England -- Nature. 2010 Oct 28;467(7319):1053-5. doi: 10.1038/4671053a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981088" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Lineage/genetics ; Clone Cells/metabolism/pathology ; DNA Mutational Analysis ; Disease Progression ; Early Detection of Cancer ; *Evolution, Molecular ; Genomic Instability/*genetics ; Humans ; Models, Biological ; Mutagenesis/*genetics ; Neoplasm Metastasis/*genetics/pathology ; Pancreatic Neoplasms/classification/*genetics/*pathology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-16
    Description: Form I Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), a complex of eight large (RbcL) and eight small (RbcS) subunits, catalyses the fixation of atmospheric CO(2) in photosynthesis. The limited catalytic efficiency of Rubisco has sparked extensive efforts to re-engineer the enzyme with the goal of enhancing agricultural productivity. To facilitate such efforts we analysed the formation of cyanobacterial form I Rubisco by in vitro reconstitution and cryo-electron microscopy. We show that RbcL subunit folding by the GroEL/GroES chaperonin is tightly coupled with assembly mediated by the chaperone RbcX(2). RbcL monomers remain partially unstable and retain high affinity for GroEL until captured by RbcX(2). As revealed by the structure of a RbcL(8)-(RbcX(2))(8) assembly intermediate, RbcX(2) acts as a molecular staple in stabilizing the RbcL subunits as dimers and facilitates RbcL(8) core assembly. Finally, addition of RbcS results in RbcX(2) release and holoenzyme formation. Specific assembly chaperones may be required more generally in the formation of complex oligomeric structures when folding is closely coupled to assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Cuimin -- Young, Anna L -- Starling-Windhof, Amanda -- Bracher, Andreas -- Saschenbrecker, Sandra -- Rao, Bharathi Vasudeva -- Rao, Karnam Vasudeva -- Berninghausen, Otto -- Mielke, Thorsten -- Hartl, F Ulrich -- Beckmann, Roland -- Hayer-Hartl, Manajit -- England -- Nature. 2010 Jan 14;463(7278):197-202. doi: 10.1038/nature08651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075914" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Chaperonin 10/metabolism ; Chaperonin 60/metabolism ; Cryoelectron Microscopy ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Protein Binding ; *Protein Folding ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Ribulose-Bisphosphate Carboxylase/*chemistry/*metabolism/ultrastructure ; Synechococcus/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-05-25
    Description: The three-dimensional structures of proteins often show a modular architecture comprised of discrete structural regions or domains. Cooperative communication between these regions is important for catalysis, regulation and efficient folding; lack of coupling has been implicated in the formation of fibrils and other misfolding pathologies. How different structural regions of a protein communicate and contribute to a protein's overall energetics and folding, however, is still poorly understood. Here we use a single-molecule optical tweezers approach to induce the selective unfolding of particular regions of T4 lysozyme and monitor the effect on other regions not directly acted on by force. We investigate how the topological organization of a protein (the order of structural elements along the sequence) affects the coupling and folding cooperativity between its domains. To probe the status of the regions not directly subjected to force, we determine the free energy changes during mechanical unfolding using Crooks' fluctuation theorem. We pull on topological variants (circular permutants) and find that the topological organization of the polypeptide chain critically determines the folding cooperativity between domains and thus what parts of the folding/unfolding landscape are explored. We speculate that proteins may have evolved to select certain topologies that increase coupling between regions to avoid areas of the landscape that lead to kinetic trapping and misfolding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911970/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911970/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shank, Elizabeth A -- Cecconi, Ciro -- Dill, Jesse W -- Marqusee, Susan -- Bustamante, Carlos -- GM 32543/GM/NIGMS NIH HHS/ -- GM 50945/GM/NIGMS NIH HHS/ -- R01 GM050945/GM/NIGMS NIH HHS/ -- R01 GM050945-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 3;465(7298):637-40. doi: 10.1038/nature09021. Epub 2010 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20495548" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacteriophage T4/*enzymology ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism ; Optical Tweezers ; Probability ; Protein Denaturation ; *Protein Folding ; Protein Structure, Tertiary ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-09
    Description: Ca(2+) channels and calmodulin (CaM) are two prominent signalling hubs that synergistically affect functions as diverse as cardiac excitability, synaptic plasticity and gene transcription. It is therefore fitting that these hubs are in some sense coordinated, as the opening of Ca(V)1-2 Ca(2+) channels are regulated by a single CaM constitutively complexed with channels. The Ca(2+)-free form of CaM (apoCaM) is already pre-associated with the isoleucine-glutamine (IQ) domain on the channel carboxy terminus, and subsequent Ca(2+) binding to this 'resident' CaM drives conformational changes that then trigger regulation of channel opening. Another potential avenue for channel-CaM coordination could arise from the absence of Ca(2+) regulation in channels lacking a pre-associated CaM. Natural fluctuations in CaM concentrations might then influence the fraction of regulable channels and, thereby, the overall strength of Ca(2+) feedback. However, the prevailing view has been that the ultrastrong affinity of channels for apoCaM ensures their saturation with CaM, yielding a significant form of concentration independence between Ca(2+) channels and CaM. Here we show that significant exceptions to this autonomy exist, by combining electrophysiology (to characterize channel regulation) with optical fluorescence resonance energy transfer (FRET) sensor determination of free-apoCaM concentration in live cells. This approach translates quantitative CaM biochemistry from the traditional test-tube context into the realm of functioning holochannels within intact cells. From this perspective, we find that long splice forms of Ca(V)1.3 and Ca(V)1.4 channels include a distal carboxy tail that resembles an enzyme competitive inhibitor that retunes channel affinity for apoCaM such that natural CaM variations affect the strength of Ca(2+) feedback modulation. Given the ubiquity of these channels, the connection between ambient CaM levels and Ca(2+) entry through channels is broadly significant for Ca(2+) homeostasis. Strategies such as ours promise key advances for the in situ analysis of signalling molecules resistant to in vitro reconstitution, such as Ca(2+) channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553577/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553577/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xiaodong -- Yang, Philemon S -- Yang, Wanjun -- Yue, David T -- P30 DC005211/DC/NIDCD NIH HHS/ -- R01 DC000276/DC/NIDCD NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):968-72. doi: 10.1038/nature08766. Epub 2010 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20139964" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Apoproteins/analysis/metabolism ; Binding, Competitive/drug effects ; Calcium/analysis/metabolism/pharmacology ; Calcium Channel Blockers/*chemistry/*metabolism ; Calcium Channels/*chemistry/genetics/*metabolism ; Calmodulin/analysis/*metabolism ; Cell Line ; Cell Survival ; Electrophysiology ; *Feedback, Physiological ; Fluorescence Resonance Energy Transfer ; Humans ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-12-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernado, Pau -- Blackledge, Martin -- England -- Nature. 2010 Dec 23;468(7327):1046-8. doi: 10.1038/4681046a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179158" target="_blank"〉PubMed〈/a〉
    Keywords: *Biochemistry/methods ; Models, Chemical ; Protein Structure, Tertiary ; Proteins/*chemistry ; Proto-Oncogene Proteins c-hck/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-16
    Description: Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we use zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically relevant micromolar ligand concentrations. Translation at each codon is monitored by stable binding of transfer RNAs (tRNAs)-labelled with distinct fluorophores-to translating ribosomes, which allows direct detection of the identity of tRNA molecules bound to the ribosome and therefore the underlying messenger RNA (mRNA) sequence. We observe the transit of tRNAs on single translating ribosomes and determine the number of tRNA molecules simultaneously bound to the ribosome, at each codon of an mRNA molecule. Our results show that ribosomes are only briefly occupied by two tRNA molecules and that release of deacylated tRNA from the exit (E) site is uncoupled from binding of aminoacyl-tRNA site (A-site) tRNA and occurs rapidly after translocation. The methods outlined here have broad application to the study of mRNA sequences, and the mechanism and regulation of translation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uemura, Sotaro -- Aitken, Colin Echeverria -- Korlach, Jonas -- Flusberg, Benjamin A -- Turner, Stephen W -- Puglisi, Joseph D -- GM51266/GM/NIGMS NIH HHS/ -- R01 GM051266/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 15;464(7291):1012-7. doi: 10.1038/nature08925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393556" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Codon/*genetics ; Escherichia coli ; Fluorescence ; Kinetics ; Ligands ; Luminescent Measurements ; Optical Tweezers ; Protein Biosynthesis/genetics/*physiology ; RNA, Transfer/genetics/*metabolism ; Ribosomes/chemistry/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-04-23
    Description: The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-alpha and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC(50)) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log(10) reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Min -- Nettles, Richard E -- Belema, Makonen -- Snyder, Lawrence B -- Nguyen, Van N -- Fridell, Robert A -- Serrano-Wu, Michael H -- Langley, David R -- Sun, Jin-Hua -- O'Boyle, Donald R 2nd -- Lemm, Julie A -- Wang, Chunfu -- Knipe, Jay O -- Chien, Caly -- Colonno, Richard J -- Grasela, Dennis M -- Meanwell, Nicholas A -- Hamann, Lawrence G -- England -- Nature. 2010 May 6;465(7294):96-100. doi: 10.1038/nature08960. Epub 2010 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20410884" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Antiviral Agents/blood/chemistry/*pharmacology/therapeutic use ; Cell Line ; Cercopithecus aethiops ; Drug Resistance, Viral ; Female ; Genotype ; HeLa Cells ; Hepacivirus/*drug effects ; Hepatitis C/drug therapy/virology ; Humans ; Imidazoles/blood/chemistry/*pharmacology ; Inhibitory Concentration 50 ; Male ; Middle Aged ; Time Factors ; Vero Cells ; Viral Load/drug effects ; Viral Nonstructural Proteins/*antagonists & inhibitors ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-07-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Deborah -- Carter, Philip -- England -- Nature. 2010 Jul 15;466(7304):315. doi: 10.1038/466315a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631779" target="_blank"〉PubMed〈/a〉
    Keywords: *Conflict of Interest ; *Drug Industry ; Humans ; *Influenza A Virus, H1N1 Subtype ; Influenza Vaccines/*supply & distribution ; Influenza, Human/*epidemiology/prevention & control/virology ; Reproducibility of Results ; Time Factors ; *Vaccination ; *World Health Organization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-01-29
    Description: Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vierbuchen, Thomas -- Ostermeier, Austin -- Pang, Zhiping P -- Kokubu, Yuko -- Sudhof, Thomas C -- Wernig, Marius -- 1018438-142-PABCA/PHS HHS/ -- 5T32NS007280/NS/NINDS NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 25;463(7284):1035-41. doi: 10.1038/nature08797. Epub 2010 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, California 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20107439" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Biomarkers/analysis ; Cell Line ; *Cell Lineage ; *Cell Transdifferentiation ; Cells, Cultured ; Embryo, Mammalian/cytology ; Fibroblasts/*cytology ; Mice ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/*cytology/metabolism/*physiology ; POU Domain Factors/genetics/metabolism ; Regenerative Medicine ; Synapses/metabolism ; Tail/cytology ; Time Factors ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Francis -- England -- Nature. 2010 Dec 16;468(7326):877. doi: 10.1038/468877a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164451" target="_blank"〉PubMed〈/a〉
    Keywords: Drug Industry ; National Institutes of Health (U.S.)/economics/*organization & administration ; Time Factors ; Translational Medical Research/economics/*organization & administration/trends ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-06-26
    Description: DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silverstein, Timothy D -- Johnson, Robert E -- Jain, Rinku -- Prakash, Louise -- Prakash, Satya -- Aggarwal, Aneel K -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA107650/CA/NCI NIH HHS/ -- R01 CA107650-39/CA/NCI NIH HHS/ -- R01 ES017767/ES/NIEHS NIH HHS/ -- R01 ES017767-01/ES/NIEHS NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1039-43. doi: 10.1038/nature09104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577207" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Damage ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Mutation, Missense ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Pyrimidine Dimers/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Skin Neoplasms/*enzymology/genetics ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2009-12-18
    Description: Avian brood parasites and their hosts provide model systems for investigating links between recognition, learning, and their fitness consequences. One major evolutionary puzzle has continued to capture the attention of naturalists for centuries: why do hosts of brood parasites generally fail to recognize parasitic offspring after they have hatched from the egg, even when the host and parasitic chicks differ to almost comic degrees? One prominent theory to explain this pattern proposes that the costs of mistakenly learning to recognize the wrong offspring make recognition maladaptive. Here we show that American coots, Fulica americana, can recognize and reject parasitic chicks in their brood by using learned cues, despite the fact that the hosts and the brood parasites are of the same species. A series of chick cross-fostering experiments confirm that coots use first-hatched chicks in a brood as referents to learn to recognize their own chicks and then discriminate against later-hatched parasitic chicks in the same brood. When experimentally provided with the wrong reference chicks, coots can be induced to discriminate against their own offspring, confirming that the learning errors proposed by theory can exist. However, learning based on hatching order is reliable in naturally parasitized coot nests because host eggs hatch predictably ahead of parasite eggs. Conversely, a lack of reliable information may help to explain why the evolution of chick recognition is not more common in hosts of most interspecific brood parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shizuka, Daizaburo -- Lyon, Bruce E -- England -- Nature. 2010 Jan 14;463(7278):223-6. doi: 10.1038/nature08655. Epub 2009 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA. shizuka@biology.ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016486" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*parasitology/*physiology ; British Columbia ; Cues ; Discrimination Learning/*physiology ; Feeding Behavior/physiology ; Genetic Fitness ; Nesting Behavior/*physiology ; Ovum/growth & development ; Pattern Recognition, Visual/physiology ; Survival Rate ; Time Factors ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quirk, Gregory J -- Milad, Mohammed R -- England -- Nature. 2010 Jan 7;463(7277):36-7. doi: 10.1038/463036a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054384" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conditioning, Classical/*physiology ; Cues ; Electroshock ; Extinction, Psychological/*physiology ; Fear/*physiology/*psychology ; Humans ; Memory/*physiology ; Models, Neurological ; Models, Psychological ; Neuronal Plasticity/*physiology ; Photic Stimulation ; Rats ; Stress Disorders, Post-Traumatic/therapy ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-08-10
    Description: Mitochondrial calcium uptake has a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we use an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics. RNA interference against 13 top candidates highlighted one gene, CBARA1, that we call hereafter mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the mitochondrial inner membrane and has two canonical EF hands that are essential for its activity, indicating a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977980/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977980/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perocchi, Fabiana -- Gohil, Vishal M -- Girgis, Hany S -- Bao, X Robert -- McCombs, Janet E -- Palmer, Amy E -- Mootha, Vamsi K -- DK080261/DK/NIDDK NIH HHS/ -- GM0077465/GM/NIGMS NIH HHS/ -- GM084027/GM/NIGMS NIH HHS/ -- R01 GM077465/GM/NIGMS NIH HHS/ -- R01 GM077465-01A1/GM/NIGMS NIH HHS/ -- R01 GM077465-02/GM/NIGMS NIH HHS/ -- R01 GM077465-03/GM/NIGMS NIH HHS/ -- R01 GM077465-04/GM/NIGMS NIH HHS/ -- R01 GM077465-05/GM/NIGMS NIH HHS/ -- R01 GM077465-06/GM/NIGMS NIH HHS/ -- R01 GM084027/GM/NIGMS NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- R24 DK080261-04/DK/NIDDK NIH HHS/ -- TR2 GM08759/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 16;467(7313):291-6. doi: 10.1038/nature09358. Epub 2010 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20693986" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/*chemistry/genetics/*metabolism ; Amino Acid Sequence ; Antigens, Plant ; Calcium/*metabolism ; *Calcium Signaling ; Calcium-Binding Proteins/*chemistry/deficiency/genetics/*metabolism ; Cation Transport Proteins ; Cell Respiration ; Cytoplasm/metabolism ; DNA, Mitochondrial/analysis ; *EF Hand Motifs ; Endoplasmic Reticulum/metabolism ; Gene Knockdown Techniques ; HeLa Cells ; Homeostasis ; Humans ; Membrane Potentials ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins ; Mitochondrial Proteins/*chemistry/deficiency/genetics/*metabolism ; NAD/metabolism ; NADP/metabolism ; Oxidative Phosphorylation ; Protein Structure, Tertiary ; Protein Transport ; RNA Interference
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2009-12-23
    Description: Reprogramming of somatic cell nuclei to yield induced pluripotent stem (iPS) cells makes possible derivation of patient-specific stem cells for regenerative medicine. However, iPS cell generation is asynchronous and slow (2-3 weeks), the frequency is low (〈0.1%), and DNA demethylation constitutes a bottleneck. To determine regulatory mechanisms involved in reprogramming, we generated interspecies heterokaryons (fused mouse embryonic stem (ES) cells and human fibroblasts) that induce reprogramming synchronously, frequently and fast. Here we show that reprogramming towards pluripotency in single heterokaryons is initiated without cell division or DNA replication, rapidly (1 day) and efficiently (70%). Short interfering RNA (siRNA)-mediated knockdown showed that activation-induced cytidine deaminase (AID, also known as AICDA) is required for promoter demethylation and induction of OCT4 (also known as POU5F1) and NANOG gene expression. AID protein bound silent methylated OCT4 and NANOG promoters in fibroblasts, but not active demethylated promoters in ES cells. These data provide new evidence that mammalian AID is required for active DNA demethylation and initiation of nuclear reprogramming towards pluripotency in human somatic cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhutani, Nidhi -- Brady, Jennifer J -- Damian, Mara -- Sacco, Alessandra -- Corbel, Stephane Y -- Blau, Helen M -- AG009521/AG/NIA NIH HHS/ -- AG024987/AG/NIA NIH HHS/ -- AI007328/AI/NIAID NIH HHS/ -- R01 AG009521/AG/NIA NIH HHS/ -- R01 AG009521-25/AG/NIA NIH HHS/ -- R01 AG024987/AG/NIA NIH HHS/ -- R01 AG024987-05/AG/NIA NIH HHS/ -- T32 AI007328/AI/NIAID NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory for Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5175, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20027182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Fusion ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/genetics/*physiology ; Chromatin Immunoprecipitation ; Cytidine Deaminase/deficiency/genetics/*metabolism ; DNA/chemistry/genetics/metabolism ; *DNA Methylation ; DNA Replication ; Embryonic Stem Cells/cytology/metabolism ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; Gene Knockdown Techniques ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/*cytology/enzymology/*metabolism ; Lung/cytology/embryology ; Mice ; Models, Biological ; Octamer Transcription Factor-3/genetics ; Promoter Regions, Genetic/genetics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-01-30
    Description: Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain gamma-carboxylation of many blood coagulation factors. Here, we report the 3.6 A crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Weikai -- Schulman, Sol -- Dutton, Rachel J -- Boyd, Dana -- Beckwith, Jon -- Rapoport, Tom A -- GMO41883/PHS HHS/ -- K99 HL097083/HL/NHLBI NIH HHS/ -- K99 HL097083-01/HL/NHLBI NIH HHS/ -- K991K99HL097083/HL/NHLBI NIH HHS/ -- R00 HL097083/HL/NHLBI NIH HHS/ -- R01 GM041883/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):507-12. doi: 10.1038/nature08720.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. weikai@crystal.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticoagulants ; Bacterial Proteins/chemistry ; Catalytic Domain ; Disulfides/chemistry ; Drug Resistance/genetics ; Electron Transport ; Humans ; Membrane Proteins/chemistry ; Mixed Function Oxygenases/*chemistry/genetics ; *Models, Molecular ; Protein Structure, Tertiary ; Synechococcus/*enzymology ; Vitamin K Epoxide Reductases ; Warfarin
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-09-30
    Description: Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed beta-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Bert J C -- Robinson, Ross A -- Perez-Branguli, Francesc -- Bell, Christian H -- Mitchell, Kevin J -- Siebold, Christian -- Jones, E Yvonne -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- A10976/Cancer Research UK/United Kingdom -- A3964/Cancer Research UK/United Kingdom -- A5261/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- G0700232(82098)/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- G9900061(69203)/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/genetics/metabolism ; Binding Sites ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Cell Communication ; Crystallography, X-Ray ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; NIH 3T3 Cells ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-07-16
    Description: The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Niels -- Konevega, Andrey L -- Wintermeyer, Wolfgang -- Rodnina, Marina V -- Stark, Holger -- England -- Nature. 2010 Jul 15;466(7304):329-33. doi: 10.1038/nature09206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉3D Electron Cryomicroscopy Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631791" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Escherichia coli ; Kinetics ; Models, Molecular ; Molecular Conformation ; *Movement ; *Protein Biosynthesis ; RNA, Transfer/genetics/*metabolism ; Ribosome Subunits, Large, Bacterial/chemistry/metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/metabolism ; Ribosomes/chemistry/*metabolism ; Temperature ; Thermodynamics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-11-05
    Description: Many physiological events require transient increases in cytosolic Ca(2+) concentrations. Ryanodine receptors (RyRs) are ion channels that govern the release of Ca(2+) from the endoplasmic and sarcoplasmic reticulum. Mutations in RyRs can lead to severe genetic conditions that affect both cardiac and skeletal muscle, but locating the mutated residues in the full-length channel structure has been difficult. Here we show the 2.5 A resolution crystal structure of a region spanning three domains of RyR type 1 (RyR1), encompassing amino acid residues 1-559. The domains interact with each other through a predominantly hydrophilic interface. Docking in RyR1 electron microscopy maps unambiguously places the domains in the cytoplasmic portion of the channel, forming a 240-kDa cytoplasmic vestibule around the four-fold symmetry axis. We pinpoint the exact locations of more than 50 disease-associated mutations in full-length RyR1 and RyR2. The mutations can be classified into three groups: those that destabilize the interfaces between the three amino-terminal domains, disturb the folding of individual domains or affect one of six interfaces with other parts of the receptor. We propose a model whereby the opening of a RyR coincides with allosterically coupled motions within the N-terminal domains. This process can be affected by mutations that target various interfaces within and across subunits. The crystal structure provides a framework to understand the many disease-associated mutations in RyRs that have been studied using functional methods, and will be useful for developing new strategies to modulate RyR function in disease states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tung, Ching-Chieh -- Lobo, Paolo A -- Kimlicka, Lynn -- Van Petegem, Filip -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Nov 25;468(7323):585-8. doi: 10.1038/nature09471. Epub 2010 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Models, Molecular ; Mutation/genetics ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-05-14
    Description: Traditional robots rely for their function on computing, to store internal representations of their goals and environment and to coordinate sensing and any actuation of components required in response. Moving robotics to the single-molecule level is possible in principle, but requires facing the limited ability of individual molecules to store complex information and programs. One strategy to overcome this problem is to use systems that can obtain complex behaviour from the interaction of simple robots with their environment. A first step in this direction was the development of DNA walkers, which have developed from being non-autonomous to being capable of directed but brief motion on one-dimensional tracks. Here we demonstrate that previously developed random walkers-so-called molecular spiders that comprise a streptavidin molecule as an inert 'body' and three deoxyribozymes as catalytic 'legs'-show elementary robotic behaviour when interacting with a precisely defined environment. Single-molecule microscopy observations confirm that such walkers achieve directional movement by sensing and modifying tracks of substrate molecules laid out on a two-dimensional DNA origami landscape. When using appropriately designed DNA origami, the molecular spiders autonomously carry out sequences of actions such as 'start', 'follow', 'turn' and 'stop'. We anticipate that this strategy will result in more complex robotic behaviour at the molecular level if additional control mechanisms are incorporated. One example might be interactions between multiple molecular robots leading to collective behaviour; another might be the ability to read and transform secondary cues on the DNA origami landscape as a means of implementing Turing-universal algorithmic behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907518/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907518/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lund, Kyle -- Manzo, Anthony J -- Dabby, Nadine -- Michelotti, Nicole -- Johnson-Buck, Alexander -- Nangreave, Jeanette -- Taylor, Steven -- Pei, Renjun -- Stojanovic, Milan N -- Walter, Nils G -- Winfree, Erik -- Yan, Hao -- P41 RR017573/RR/NCRR NIH HHS/ -- P41 RR017573-086704/RR/NCRR NIH HHS/ -- R01 GM062357/GM/NIGMS NIH HHS/ -- R01 GM062357-09/GM/NIGMS NIH HHS/ -- T32 EB005582/EB/NIBIB NIH HHS/ -- T32 EB005582-05/EB/NIBIB NIH HHS/ -- T32 GM008270/GM/NIGMS NIH HHS/ -- T32 GM008270-24/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):206-10. doi: 10.1038/nature09012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463735" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Computers, Molecular ; DNA, Catalytic/*metabolism ; DNA, Single-Stranded/chemistry/*metabolism ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; *Movement/drug effects ; Nanotechnology/*methods ; Robotics ; Streptavidin/*chemistry ; Surface Plasmon Resonance ; Time Factors ; Zinc/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-07-14
    Description: While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Wen -- Tanasa, Bogdan -- Tyurina, Oksana V -- Zhou, Tian Yuan -- Gassmann, Reto -- Liu, Wei Ting -- Ohgi, Kenneth A -- Benner, Chris -- Garcia-Bassets, Ivan -- Aggarwal, Aneel K -- Desai, Arshad -- Dorrestein, Pieter C -- Glass, Christopher K -- Rosenfeld, Michael G -- R01 CA097134/CA/NCI NIH HHS/ -- R01 CA097134-09/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 DK018477-35/DK/NIDDK NIH HHS/ -- R01 DK039949/DK/NIDDK NIH HHS/ -- R01 DK039949-18/DK/NIDDK NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R01 NS034934-21/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 22;466(7305):508-12. doi: 10.1038/nature09272. Epub 2010 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20622854" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Cell Cycle/*physiology ; Cell Line ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; HeLa Cells ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/*metabolism ; Host Cell Factor C1/genetics/metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Multiprotein Complexes/chemistry/metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Transcription Factors/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-07-24
    Description: Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozgul, Arpat -- Childs, Dylan Z -- Oli, Madan K -- Armitage, Kenneth B -- Blumstein, Daniel T -- Olson, Lucretia E -- Tuljapurkar, Shripad -- Coulson, Tim -- P01 AG022500/AG/NIA NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jul 22;466(7305):482-5. doi: 10.1038/nature09210.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, Imperial College London, Ascot, Berkshire SL5 7PY, UK. a.ozgul@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20651690" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Body Weight/*physiology ; Colorado ; Female ; *Global Warming ; Hibernation/*physiology ; Marmota/*anatomy & histology/growth & development/*physiology ; Phenotype ; Population Dynamics ; Reproduction/physiology ; Survival Rate ; Time Factors ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-07-30
    Description: The post-translational methylation of alpha-amino groups was first discovered over 30 years ago on the bacterial ribosomal proteins L16 and L33 (refs 1, 2), but almost nothing is known about the function or enzymology of this modification. Several other bacterial and eukaryotic proteins have since been shown to be alpha-N-methylated. However, the Ran guanine nucleotide-exchange factor, RCC1, is the only protein for which any biological function of alpha-N-methylation has been identified. Methylation-defective mutants of RCC1 have reduced affinity for DNA and cause mitotic defects, but further characterization of this modification has been hindered by ignorance of the responsible methyltransferase. All fungal and animal N-terminally methylated proteins contain a unique N-terminal motif, Met-(Ala/Pro/Ser)-Pro-Lys, indicating that they may be targets of the same, unknown enzyme. The initiating Met is cleaved, and the exposed alpha-amino group is mono-, di- or trimethylated. Here we report the discovery of the first alpha-N-methyltransferase, which we named N-terminal RCC1 methyltransferase (NRMT). Substrate docking and mutational analysis of RCC1 defined the NRMT recognition sequence and enabled the identification of numerous new methylation targets, including SET (also known as TAF-I or PHAPII) and the retinoblastoma protein, RB. Knockdown of NRMT recapitulates the multi-spindle phenotype seen with methylation-defective RCC1 mutants, demonstrating the importance of alpha-N-methylation for normal bipolar spindle formation and chromosome segregation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tooley, Christine E Schaner -- Petkowski, Janusz J -- Muratore-Schroeder, Tara L -- Balsbaugh, Jeremy L -- Shabanowitz, Jeffrey -- Sabat, Michal -- Minor, Wladek -- Hunt, Donald F -- Macara, Ian G -- R01 GM050526/GM/NIGMS NIH HHS/ -- R01 GM050526-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1125-8. doi: 10.1038/nature09343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA. ces5g@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20668449" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; Cell Line ; Chromosome Segregation ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors/*metabolism ; HeLa Cells ; Histone Chaperones/metabolism ; Humans ; Methyltransferases/chemistry/genetics/*metabolism ; Models, Molecular ; Mutation/genetics ; Nuclear Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Retinoblastoma Protein/*metabolism ; Spindle Apparatus/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-10-29
    Description: Sex determination is a fundamental biological process, yet its mechanisms are remarkably diverse. In vertebrates, sex can be determined by inherited genetic factors or by the temperature experienced during embryonic development. However, the evolutionary causes of this diversity remain unknown. Here we show that live-bearing lizards at different climatic extremes of the species' distribution differ in their sex-determining mechanisms, with temperature-dependent sex determination in lowlands and genotypic sex determination in highlands. A theoretical model parameterized with field data accurately predicts this divergence in sex-determining systems and the consequence thereof for variation in cohort sex ratios among years. Furthermore, we show that divergent natural selection on sex determination across altitudes is caused by climatic effects on lizard life history and variation in the magnitude of between-year temperature fluctuations. Our results establish an adaptive explanation for intra-specific divergence in sex-determining systems driven by phenotypic plasticity and ecological selection, thereby providing a unifying framework for integrating the developmental, ecological and evolutionary basis for variation in vertebrate sex determination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pen, Ido -- Uller, Tobias -- Feldmeyer, Barbara -- Harts, Anna -- While, Geoffrey M -- Wapstra, Erik -- England -- Nature. 2010 Nov 18;468(7322):436-8. doi: 10.1038/nature09512. Epub 2010 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biology Group, University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands. i.r.pen@rug.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981009" target="_blank"〉PubMed〈/a〉
    Keywords: Altitude ; Animals ; Biological Evolution ; *Climate ; Female ; Genotype ; Lizards/*genetics/*physiology ; Male ; Models, Biological ; Phenotype ; Selection, Genetic ; Sex Chromosomes ; *Sex Determination Processes/genetics/physiology ; *Sex Differentiation/genetics/physiology ; Sex Ratio ; *Temperature ; Time Factors ; Viviparity, Nonmammalian/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Oct 28;467(7319):1026-7. doi: 10.1038/4671026a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981067" target="_blank"〉PubMed〈/a〉
    Keywords: Americas ; Asia ; Europe ; Genetic Predisposition to Disease ; Genetics, Population ; *Genome, Human ; Genomics/economics/*statistics & numerical data/trends ; Humans ; Precision Medicine/trends ; Sequence Analysis, DNA/economics/*statistics & numerical data/trends ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonetta, Laura -- England -- Nature. 2010 Dec 9;468(7325):854. doi: 10.1038/468854a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21151000" target="_blank"〉PubMed〈/a〉
    Keywords: California ; Protein Binding ; Protein Interaction Mapping/*methods ; RNA, Transfer/metabolism ; Ribosomes/metabolism ; Sequence Analysis, DNA/methods ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-12-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schofield, Paul N -- Tapio, Soile -- Grosche, Bernd -- England -- Nature. 2010 Dec 2;468(7324):634. doi: 10.1038/468634a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124436" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archives/*history ; Databases, Factual/history ; Europe ; History, 20th Century ; Information Storage and Retrieval ; Japan ; Radiobiology/*history ; Time Factors ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalton, Rex -- England -- Nature. 2010 Mar 18;464(7287):335. doi: 10.1038/464335a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237533" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeology ; Geography ; Hominidae/*classification ; Indonesia ; Paleontology ; *Phylogeny ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Rachel -- England -- Nature. 2010 Aug 26;466(7310):S11-2. doi: 10.1038/466S11a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739930" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomarkers ; Brain/pathology ; *Early Diagnosis ; Ethics, Medical ; Humans ; Parkinson Disease/*diagnosis/pathology ; Risk Factors ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Persons, Derek A -- England -- Nature. 2010 Sep 16;467(7313):277-8. doi: 10.1038/467277a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20844523" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Blood Cells/cytology/metabolism ; Blood Transfusion ; Clone Cells/metabolism ; *Genetic Therapy ; HMGA2 Protein/genetics/*metabolism ; Humans ; Male ; Time Factors ; Transcriptional Activation ; Young Adult ; beta-Globins/*genetics/*metabolism ; beta-Thalassemia/*genetics/metabolism/*therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-05-14
    Description: A huge variety of proteins are able to form fibrillar structures, especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand. Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal and carboxy-terminal domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation initiated by changes in ionic composition and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation. However, despite recent structural data, little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagn, Franz -- Eisoldt, Lukas -- Hardy, John G -- Vendrely, Charlotte -- Coles, Murray -- Scheibel, Thomas -- Kessler, Horst -- England -- Nature. 2010 May 13;465(7295):239-42. doi: 10.1038/nature08936.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrated Protein Science (CIPSM), Technische Universitat Munchen, 85747 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463741" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calorimetry, Differential Scanning ; Circular Dichroism ; *Conserved Sequence ; Hydrophobic and Hydrophilic Interactions ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Protein Structure, Tertiary ; Silk/*chemistry/*metabolism ; Spectrometry, Fluorescence ; Spectroscopy, Fourier Transform Infrared ; Spiders/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-07-03
    Description: The development of multicellular organisms relies on the coordinated control of cell divisions leading to proper patterning and growth. The molecular mechanisms underlying pattern formation, particularly the regulation of formative cell divisions, remain poorly understood. In Arabidopsis, formative divisions generating the root ground tissue are controlled by SHORTROOT (SHR) and SCARECROW (SCR). Here we show, using cell-type-specific transcriptional effects of SHR and SCR combined with data from chromatin immunoprecipitation-based microarray experiments, that SHR regulates the spatiotemporal activation of specific genes involved in cell division. Coincident with the onset of a specific formative division, SHR and SCR directly activate a D-type cyclin; furthermore, altering the expression of this cyclin resulted in formative division defects. Our results indicate that proper pattern formation is achieved through transcriptional regulation of specific cell-cycle genes in a cell-type- and developmental-stage-specific context. Taken together, we provide evidence for a direct link between developmental regulators, specific components of the cell-cycle machinery and organ patterning.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sozzani, R -- Cui, H -- Moreno-Risueno, M A -- Busch, W -- Van Norman, J M -- Vernoux, T -- Brady, S M -- Dewitte, W -- Murray, J A H -- Benfey, P N -- BB/E022383/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E022383/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E022383/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- P50 GM081883/GM/NIGMS NIH HHS/ -- P50 GM081883-020003/GM/NIGMS NIH HHS/ -- P50 GM081883-030003/GM/NIGMS NIH HHS/ -- P50-GM081883/GM/NIGMS NIH HHS/ -- R01 GM043778/GM/NIGMS NIH HHS/ -- R01 GM043778-18/GM/NIGMS NIH HHS/ -- R01 GM043778-19/GM/NIGMS NIH HHS/ -- R01 GM043778-20/GM/NIGMS NIH HHS/ -- R01 GM043778-21/GM/NIGMS NIH HHS/ -- R01-GM043778/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 1;466(7302):128-32. doi: 10.1038/nature09143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596025" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/embryology/*genetics/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Body Patterning/*genetics/*physiology ; Cell Cycle/genetics/physiology ; Cell Division/genetics ; Cyclin D/genetics/metabolism ; Cyclin-Dependent Kinases/metabolism ; Gene Expression Regulation, Plant ; Genes, cdc/*physiology ; Organogenesis/genetics/physiology ; Plant Roots/cytology/embryology/genetics/growth & development ; Time Factors ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tollefson, Jeff -- England -- Nature. 2010 Sep 23;467(7314):386-7. doi: 10.1038/467386a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20864970" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Brazil ; Carbon Dioxide/*analysis/metabolism ; *Ecosystem ; Environmental Monitoring/economics/*instrumentation ; Forestry ; Germany ; Global Warming ; *Greenhouse Effect ; Time Factors ; Trees/growth & development/*metabolism ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-09-28
    Description: Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Filippakopoulos, Panagis -- Qi, Jun -- Picaud, Sarah -- Shen, Yao -- Smith, William B -- Fedorov, Oleg -- Morse, Elizabeth M -- Keates, Tracey -- Hickman, Tyler T -- Felletar, Ildiko -- Philpott, Martin -- Munro, Shonagh -- McKeown, Michael R -- Wang, Yuchuan -- Christie, Amanda L -- West, Nathan -- Cameron, Michael J -- Schwartz, Brian -- Heightman, Tom D -- La Thangue, Nicholas -- French, Christopher A -- Wiest, Olaf -- Kung, Andrew L -- Knapp, Stefan -- Bradner, James E -- 13058/Cancer Research UK/United Kingdom -- G0500905/Medical Research Council/United Kingdom -- G1000807/Medical Research Council/United Kingdom -- G9400953/Medical Research Council/United Kingdom -- K08 CA128972/CA/NCI NIH HHS/ -- K08 CA128972-03/CA/NCI NIH HHS/ -- T32-075762/PHS HHS/ -- Canadian Institutes of Health Research/Canada -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Dec 23;468(7327):1067-73. doi: 10.1038/nature09504. Epub 2010 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20871596" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Azirines/chemical synthesis/chemistry/*pharmacology ; Binding Sites ; Carcinoma, Squamous Cell/physiopathology ; Cell Differentiation/drug effects ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Chromatin/metabolism ; Dihydropyridines/chemical synthesis/chemistry/*pharmacology ; Female ; Humans ; Mice ; Mice, Nude ; *Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*antagonists & inhibitors/*metabolism ; Protein Binding/drug effects ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Sequence Alignment ; Skin Neoplasms/physiopathology ; Stereoisomerism ; Transcription Factors/*antagonists & inhibitors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-06-19
    Description: Transcription of eukaryotic messenger RNA (mRNA) encoding genes by RNA polymerase II (Pol II) is triggered by the binding of transactivating proteins to enhancer DNA, which stimulates the recruitment of general transcription factors (TFIIA, B, D, E, F, H) and Pol II on the cis-linked promoter, leading to pre-initiation complex formation and transcription. In TFIID-dependent activation pathways, this general transcription factor containing TATA-box-binding protein is first recruited on the promoter through interaction with activators and cooperates with TFIIA to form a committed pre-initiation complex. However, neither the mechanisms by which activation signals are communicated between these factors nor the structural organization of the activated pre-initiation complex are known. Here we used cryo-electron microscopy to determine the architecture of nucleoprotein complexes composed of TFIID, TFIIA, the transcriptional activator Rap1 and yeast enhancer-promoter DNA. These structures revealed the mode of binding of Rap1 and TFIIA to TFIID, as well as a reorganization of TFIIA induced by its interaction with Rap1. We propose that this change in position increases the exposure of TATA-box-binding protein within TFIID, consequently enhancing its ability to interact with the promoter. A large Rap1-dependent DNA loop forms between the activator-binding site and the proximal promoter region. This loop is topologically locked by a TFIIA-Rap1 protein bridge that folds over the DNA. These results highlight the role of TFIIA in transcriptional activation, define a molecular mechanism for enhancer-promoter communication and provide structural insights into the pathways of intramolecular communication that convey transcription activation signals through the TFIID complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900199/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900199/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papai, Gabor -- Tripathi, Manish K -- Ruhlmann, Christine -- Layer, Justin H -- Weil, P Anthony -- Schultz, Patrick -- GM52461/GM/NIGMS NIH HHS/ -- R01 GM052461/GM/NIGMS NIH HHS/ -- R01 GM052461-14/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):956-60. doi: 10.1038/nature09080.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology and Genomics, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, 67404 Illkirch, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559389" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; *Models, Molecular ; Nucleoproteins/chemistry/ultrastructure ; Protein Structure, Tertiary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism/ultrastructure ; Telomere-Binding Proteins/chemistry/*metabolism/ultrastructure ; Transcription Factor TFIIA/chemistry/*metabolism ; Transcription Factor TFIID/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism/ultrastructure ; *Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2009-12-17
    Description: Recent research on changing fears has examined targeting reconsolidation. During reconsolidation, stored information is rendered labile after being retrieved. Pharmacological manipulations at this stage result in an inability to retrieve the memories at later times, suggesting that they are erased or persistently inhibited. Unfortunately, the use of these pharmacological manipulations in humans can be problematic. Here we introduce a non-invasive technique to target the reconsolidation of fear memories in humans. We provide evidence that old fear memories can be updated with non-fearful information provided during the reconsolidation window. As a consequence, fear responses are no longer expressed, an effect that lasted at least a year and was selective only to reactivated memories without affecting others. These findings demonstrate the adaptive role of reconsolidation as a window of opportunity to rewrite emotional memories, and suggest a non-invasive technique that can be used safely in humans to prevent the return of fear.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640262/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640262/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schiller, Daniela -- Monfils, Marie-H -- Raio, Candace M -- Johnson, David C -- Ledoux, Joseph E -- Phelps, Elizabeth A -- K05 MH067048/MH/NIMH NIH HHS/ -- P50 MH058911/MH/NIMH NIH HHS/ -- R01 MH038774/MH/NIMH NIH HHS/ -- R01 MH046516/MH/NIMH NIH HHS/ -- R21 MH072279/MH/NIMH NIH HHS/ -- R37 MH038774/MH/NIMH NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Jan 7;463(7277):49-53. doi: 10.1038/nature08637. Epub 2009 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neural Science, New York University, New York, New York 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010606" target="_blank"〉PubMed〈/a〉
    Keywords: Conditioning, Classical/*physiology ; Cues ; Electrodes ; Electroshock ; Extinction, Psychological/*physiology ; Fear/*physiology/*psychology ; Humans ; Memory/*physiology ; Models, Neurological ; Models, Psychological ; Neuronal Plasticity/*physiology ; Photic Stimulation ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-09-25
    Description: Origins of replication are activated throughout the S phase of the cell cycle such that some origins fire early and others fire late to ensure that each chromosome is completely replicated in a timely fashion. However, in response to DNA damage or replication fork stalling, eukaryotic cells block activation of unfired origins. Human cells derived from patients with ataxia telangiectasia are deficient in this process due to the lack of a functional ataxia telangiectasia mutated (ATM) kinase and elicit radioresistant DNA synthesis after gamma-irradiation(2). This effect is conserved in budding yeast, as yeast cells lacking the related kinase Mec1 (ATM and Rad3-related (ATR in humans)) also fail to inhibit DNA synthesis in the presence of DNA damage. This intra-S-phase checkpoint actively regulates DNA synthesis by inhibiting the firing of late replicating origins, and this inhibition requires both Mec1 and the downstream checkpoint kinase Rad53 (Chk2 in humans). However, the Rad53 substrate(s) whose phosphorylation is required to mediate this function has remained unknown. Here we show that the replication initiation protein Sld3 is phosphorylated by Rad53, and that this phosphorylation, along with phosphorylation of the Cdc7 kinase regulatory subunit Dbf4, blocks late origin firing in Saccharomyces cerevisiae. Upon exposure to DNA-damaging agents, cells expressing non-phosphorylatable alleles of SLD3 and DBF4 (SLD3-m25 and dbf4-m25, respectively) proceed through the S phase faster than wild-type cells by inappropriately firing late origins of replication. SLD3-m25 dbf4-m25 cells grow poorly in the presence of the replication inhibitor hydroxyurea and accumulate multiple Rad52 foci. Moreover, SLD3-m25 dbf4-m25 cells are delayed in recovering from transient blocks to replication and subsequently arrest at the DNA damage checkpoint. These data indicate that the intra-S-phase checkpoint functions to block late origin firing in adverse conditions to prevent genomic instability and maximize cell survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393088/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393088/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez-Mosqueda, Jaime -- Maas, Nancy L -- Jonsson, Zophonias O -- Defazio-Eli, Lisa G -- Wohlschlegel, James -- Toczyski, David P -- GM059691/GM/NIGMS NIH HHS/ -- R01 GM059691/GM/NIGMS NIH HHS/ -- R01 GM059691-09/GM/NIGMS NIH HHS/ -- R01 GM059691-10/GM/NIGMS NIH HHS/ -- R01 GM059691-11/GM/NIGMS NIH HHS/ -- R01 GM059691-12/GM/NIGMS NIH HHS/ -- R01 GM089778/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):479-83. doi: 10.1038/nature09377.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158-9001, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865002" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/genetics/*metabolism ; Checkpoint Kinase 2 ; DNA Damage/*physiology ; DNA Replication/drug effects/*physiology ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Hydroxyurea/pharmacology ; Phosphorylation/drug effects ; Protein-Serine-Threonine Kinases ; Rad52 DNA Repair and Recombination Protein/metabolism ; Replication Origin/drug effects/*physiology ; *S Phase/drug effects/physiology ; Saccharomyces cerevisiae/cytology/drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-11-16
    Description: The chemotaxis signalling network in Escherichia coli that controls the locomotion of bacteria is a classic model system for signal transduction. This pathway modulates the behaviour of flagellar motors to propel bacteria towards sources of chemical attractants. Although this system relaxes to a steady state in response to environmental changes, the signalling events within the chemotaxis network are noisy and cause large temporal variations of the motor behaviour even in the absence of stimulus. That the same signalling network governs both behavioural variability and cellular response raises the question of whether these two traits are independent. Here, we experimentally establish a fluctuation-response relationship in the chemotaxis system of living bacteria. Using this relationship, we demonstrate the possibility of inferring the cellular response from the behavioural variability measured before stimulus. In monitoring the pre- and post-stimulus switching behaviour of individual bacterial motors, we found that variability scales linearly with the response time for different functioning states of the cell. This study highlights that the fundamental relationship between fluctuation and response is not constrained to physical systems at thermodynamic equilibrium but is extensible to living cells. Such a relationship not only implies that behavioural variability and cellular response can be coupled traits, but it also provides a general framework within which we can examine how the selection of a network design shapes this interdependence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230254/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230254/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Heungwon -- Pontius, William -- Guet, Calin C -- Marko, John F -- Emonet, Thierry -- Cluzel, Philippe -- 1U54CA143869-01/CA/NCI NIH HHS/ -- P50 GM081892/GM/NIGMS NIH HHS/ -- P50 GM081892-04/GM/NIGMS NIH HHS/ -- R01 AI059195-03/AI/NIAID NIH HHS/ -- R01AI059195-03/AI/NIAID NIH HHS/ -- U54 CA143869/CA/NCI NIH HHS/ -- U54 CA143869-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 9;468(7325):819-23. doi: 10.1038/nature09551. Epub 2010 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The James Franck Institute, The Institute for Biophysical Dynamics, and The Department of Physics, University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21076396" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/metabolism/pharmacology ; Calibration ; Chemotaxis/drug effects/*physiology ; Chromatography, High Pressure Liquid ; *Environment ; Escherichia coli/*cytology/drug effects/*physiology ; Flagella/drug effects/physiology ; Molecular Motor Proteins/metabolism ; Rotation ; *Signal Transduction/drug effects ; Stochastic Processes ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-12-18
    Description: Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Wen-Wei -- Wang, Zhanxin -- Yiu, Teresa T -- Akdemir, Kadir C -- Xia, Weiya -- Winter, Stefan -- Tsai, Cheng-Yu -- Shi, Xiaobing -- Schwarzer, Dirk -- Plunkett, William -- Aronow, Bruce -- Gozani, Or -- Fischle, Wolfgang -- Hung, Mien-Chie -- Patel, Dinshaw J -- Barton, Michelle Craig -- GM079641/GM/NIGMS NIH HHS/ -- GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627-010003/GM/NIGMS NIH HHS/ -- P01 GM081627-020003/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30DK078392-01/DK/NIDDK NIH HHS/ -- T32 HD07325/HD/NICHD NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):927-32. doi: 10.1038/nature09542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164480" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Breast Neoplasms/*genetics/*metabolism/pathology ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line, Tumor ; Chromatin/metabolism ; Chromatin Assembly and Disassembly ; Crystallography, X-Ray ; Estrogen Receptor alpha/metabolism ; Estrogens/metabolism ; *Gene Expression Regulation, Neoplastic/genetics ; HEK293 Cells ; Histones/chemistry/*metabolism ; Humans ; Methylation ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Substrate Specificity ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-11-05
    Description: Stroke is a leading cause of disability, but no pharmacological therapy is currently available for promoting recovery. The brain region adjacent to stroke damage-the peri-infarct zone-is critical for rehabilitation, as it shows heightened neuroplasticity, allowing sensorimotor functions to re-map from damaged areas. Thus, understanding the neuronal properties constraining this plasticity is important for the development of new treatments. Here we show that after a stroke in mice, tonic neuronal inhibition is increased in the peri-infarct zone. This increased tonic inhibition is mediated by extrasynaptic GABA(A) receptors and is caused by an impairment in GABA (gamma-aminobutyric acid) transporter (GAT-3/GAT-4) function. To counteract the heightened inhibition, we administered in vivo a benzodiazepine inverse agonist specific for alpha5-subunit-containing extrasynaptic GABA(A) receptors at a delay after stroke. This treatment produced an early and sustained recovery of motor function. Genetically lowering the number of alpha5- or delta-subunit-containing GABA(A) receptors responsible for tonic inhibition also proved beneficial for recovery after stroke, consistent with the therapeutic potential of diminishing extrasynaptic GABA(A) receptor function. Together, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clarkson, Andrew N -- Huang, Ben S -- Macisaac, Sarah E -- Mody, Istvan -- Carmichael, S Thomas -- NS30549/NS/NINDS NIH HHS/ -- R01 NS030549/NS/NINDS NIH HHS/ -- R01 NS030549-18/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Nov 11;468(7321):305-9. doi: 10.1038/nature09511. Epub 2010 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzodiazepines/pharmacology ; Cerebral Infarction/metabolism/pathology/physiopathology ; Disease Models, Animal ; Drug Inverse Agonism ; GABA Antagonists/pharmacology ; GABA Plasma Membrane Transport Proteins/metabolism ; Imidazoles/pharmacology ; Male ; Membrane Potentials/drug effects ; Mice ; Mice, Inbred C57BL ; Motor Cortex/metabolism/pathology/*physiology/*physiopathology ; Neuronal Plasticity/physiology ; Receptors, GABA/deficiency/genetics/metabolism ; Recovery of Function/*physiology ; Stroke/drug therapy/*metabolism/pathology ; Synapses/metabolism ; Time Factors ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-04-22
    Description: 'Brain training', or the goal of improved cognitive function through the regular use of computerized tests, is a multimillion-pound industry, yet in our view scientific evidence to support its efficacy is lacking. Modest effects have been reported in some studies of older individuals and preschool children, and video-game players outperform non-players on some tests of visual attention. However, the widely held belief that commercially available computerized brain-training programs improve general cognitive function in the wider population in our opinion lacks empirical support. The central question is not whether performance on cognitive tests can be improved by training, but rather, whether those benefits transfer to other untrained tasks or lead to any general improvement in the level of cognitive functioning. Here we report the results of a six-week online study in which 11,430 participants trained several times each week on cognitive tasks designed to improve reasoning, memory, planning, visuospatial skills and attention. Although improvements were observed in every one of the cognitive tasks that were trained, no evidence was found for transfer effects to untrained tasks, even when those tasks were cognitively closely related.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen, Adrian M -- Hampshire, Adam -- Grahn, Jessica A -- Stenton, Robert -- Dajani, Said -- Burns, Alistair S -- Howard, Robert J -- Ballard, Clive G -- MC_U105559837/Medical Research Council/United Kingdom -- MC_U105559847/Medical Research Council/United Kingdom -- U.1055.01.002.00001.01/Medical Research Council/United Kingdom -- U.1055.01.002.00001.01(80449)/Medical Research Council/United Kingdom -- U.1055.01.003.00001.01/Medical Research Council/United Kingdom -- England -- Nature. 2010 Jun 10;465(7299):775-8. doi: 10.1038/nature09042.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK. adrian.owen@mrc-cbu.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20407435" target="_blank"〉PubMed〈/a〉
    Keywords: Attention/physiology ; Brain/*physiology ; Cognition/*physiology ; Computers ; Exercise/*physiology ; Humans ; Memory/physiology ; Task Performance and Analysis ; Thinking/physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-01-30
    Description: The processes controlling the carbon flux and carbon storage of the atmosphere, ocean and terrestrial biosphere are temperature sensitive and are likely to provide a positive feedback leading to amplified anthropogenic warming. Owing to this feedback, at timescales ranging from interannual to the 20-100-kyr cycles of Earth's orbital variations, warming of the climate system causes a net release of CO(2) into the atmosphere; this in turn amplifies warming. But the magnitude of the climate sensitivity of the global carbon cycle (termed gamma), and thus of its positive feedback strength, is under debate, giving rise to large uncertainties in global warming projections. Here we quantify the median gamma as 7.7 p.p.m.v. CO(2) per degrees C warming, with a likely range of 1.7-21.4 p.p.m.v. CO(2) per degrees C. Sensitivity experiments exclude significant influence of pre-industrial land-use change on these estimates. Our results, based on the coupling of a probabilistic approach with an ensemble of proxy-based temperature reconstructions and pre-industrial CO(2) data from three ice cores, provide robust constraints for gamma on the policy-relevant multi-decadal to centennial timescales. By using an ensemble of 〉200,000 members, quantification of gamma is not only improved, but also likelihoods can be assigned, thereby providing a benchmark for future model simulations. Although uncertainties do not at present allow exclusion of gamma calculated from any of ten coupled carbon-climate models, we find that gamma is about twice as likely to fall in the lowermost than in the uppermost quartile of their range. Our results are incompatibly lower (P 〈 0.05) than recent pre-industrial empirical estimates of approximately 40 p.p.m.v. CO(2) per degrees C (refs 6, 7), and correspondingly suggest approximately 80% less potential amplification of ongoing global warming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, David C -- Esper, Jan -- Raible, Christoph C -- Buntgen, Ulf -- Trouet, Valerie -- Stocker, Benjamin -- Joos, Fortunat -- England -- Nature. 2010 Jan 28;463(7280):527-30. doi: 10.1038/nature08769.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Federal Research Institute WSL, Zurcherstrasse 111, CH-8903 Birmensdorf, Switzerland. david.frank@wsl.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110999" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/*metabolism ; Carbon Dioxide/analysis ; *Climate Change ; Ice/analysis ; *Models, Theoretical ; Temperature ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-01-08
    Description: Eukaryotic DNA replication uses kinase regulatory pathways to facilitate coordination with other processes during cell division cycles and response to environmental cues. At least two cell cycle-regulated protein kinase systems, the S-phase-specific cyclin-dependent protein kinases (S-CDKs) and the Dbf4-Cdc7 kinase (DDK, Dbf4-dependent protein kinase) are essential activators for initiation of DNA replication. Although the essential mechanism of CDK activation of DNA replication in Saccharomyces cerevisiae has been established, exactly how DDK acts has been unclear. Here we show that the amino terminal serine/threonine-rich domain (NSD) of Mcm4 has both inhibitory and facilitating roles in DNA replication control and that the sole essential function of DDK is to relieve an inhibitory activity residing within the NSD. By combining an mcm4 mutant lacking the inhibitory activity with mutations that bypass the requirement for CDKs for initiation of DNA replication, we show that DNA synthesis can occur in G1 phase when CDKs and DDK are limited. However, DDK is still required for efficient S phase progression. In the absence of DDK, CDK phosphorylation at the distal part of the Mcm4 NSD becomes crucial. Moreover, DDK-null cells fail to activate the intra-S-phase checkpoint in the presence of hydroxyurea-induced DNA damage and are unable to survive this challenge. Our studies establish that the eukaryote-specific NSD of Mcm4 has evolved to integrate several protein kinase regulatory signals for progression through S phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheu, Yi-Jun -- Stillman, Bruce -- R01 GM045436/GM/NIGMS NIH HHS/ -- R01 GM045436-18/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):113-7. doi: 10.1038/nature08647.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054399" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/antagonists & inhibitors/chemistry/genetics/*metabolism ; Cell Proliferation/drug effects ; DNA Damage ; DNA-Binding Proteins/antagonists & inhibitors/chemistry/genetics/*metabolism ; G1 Phase/drug effects ; Genes, Essential ; Hydroxyurea/pharmacology ; Microbial Viability/drug effects ; Minichromosome Maintenance Complex Component 4 ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; S Phase/drug effects/*physiology ; Saccharomyces cerevisiae/*cytology/enzymology/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Sequence Deletion ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Apr 1;464(7289):649-50. doi: 10.1038/464649a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360688" target="_blank"〉PubMed〈/a〉
    Keywords: Data Collection ; Genetic Testing/trends ; Genetics, Medical/*trends ; Genome, Human/*genetics ; Genomics/economics/*history/trends ; Haplotypes/genetics ; History, 20th Century ; History, 21st Century ; Human Genome Project/*history ; Humans ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-04-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brakmann, Susanne -- England -- Nature. 2010 Apr 15;464(7291):987-8. doi: 10.1038/464987a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393548" target="_blank"〉PubMed〈/a〉
    Keywords: Codon/*genetics ; Fluorescence ; Ligands ; Protein Biosynthesis/genetics/*physiology ; RNA, Transfer/genetics/*metabolism ; Ribosomes/chemistry/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Francis -- England -- Nature. 2010 Oct 7;467(7316):635. doi: 10.1038/467635a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20930798" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Aptitude ; Awards and Prizes ; *Career Mobility ; Creativity ; Financing, Organized/economics ; *Freedom ; Humans ; Laboratories/economics/manpower ; National Institutes of Health (U.S.) ; Pilot Projects ; *Research/education/manpower ; *Research Personnel/education ; Research Support as Topic/economics/organization & administration ; Time Factors ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-07-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Visser, Marcel E -- England -- Nature. 2010 Jul 22;466(7305):445-7. doi: 10.1038/466445a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20651679" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Body Weight/*physiology ; Colorado ; *Global Warming ; Hibernation/*physiology ; Marmota/*anatomy & histology/growth & development/*physiology ; Population Dynamics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Aug 19;466(7309):903. doi: 10.1038/466903a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724996" target="_blank"〉PubMed〈/a〉
    Keywords: Astronomy/economics/instrumentation/trends ; Budgets/trends ; *Data Collection ; Program Evaluation ; Research/economics/trends ; Time Factors ; United States ; United States National Aeronautics and Space Administration/*economics/trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katsnelson, Alla -- England -- Nature. 2010 Apr 22;464(7292):1111. doi: 10.1038/4641111a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20414280" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Brain/*physiology ; Exercise/physiology ; Humans ; Mental Processes/*physiology ; Middle Aged ; Time Factors ; Treatment Failure ; *Video Games ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khosla, Ashok -- Marton-Lefevre, Julia -- England -- Nature. 2010 Jan 7;463(7277):25. doi: 10.1038/463025c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054377" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Conservation of Natural Resources/*trends ; Extinction, Biological ; Politics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-01-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kilner, Rebecca -- England -- Nature. 2010 Jan 14;463(7278):165-7. doi: 10.1038/463165a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075907" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Birds/*parasitology/*physiology ; Cues ; Discrimination Learning/*physiology ; Models, Biological ; Nesting Behavior/*physiology ; Pattern Recognition, Visual/physiology ; Survival Rate ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2008-11-14
    Description: Many complex behaviours, like speech or music, have a hierarchical organization with structure on many timescales, but it is not known how the brain controls the timing of behavioural sequences, or whether different circuits control different timescales of the behaviour. Here we address these issues by using temperature to manipulate the biophysical dynamics in different regions of the songbird forebrain involved in song production. We find that cooling the premotor nucleus HVC (formerly known as the high vocal centre) slows song speed across all timescales by up to 45 per cent but only slightly alters the acoustic structure, whereas cooling the downstream motor nucleus RA (robust nucleus of the arcopallium) has no observable effect on song timing. Our observations suggest that dynamics within HVC are involved in the control of song timing, perhaps through a chain-like organization. Local manipulation of brain temperature should be broadly applicable to the identification of neural circuitry that controls the timing of behavioural sequences and, more generally, to the study of the origin and role of oscillatory and other forms of brain dynamics in neural systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Michael A -- Fee, Michale S -- DC009280/DC/NIDCD NIH HHS/ -- K99 DC009280/DC/NIDCD NIH HHS/ -- K99 DC009280-02/DC/NIDCD NIH HHS/ -- MH067105/MH/NIMH NIH HHS/ -- R01 MH067105/MH/NIMH NIH HHS/ -- R01 MH067105-04/MH/NIMH NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):189-94. doi: 10.1038/nature07448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19005546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cold Temperature ; Efferent Pathways/physiology ; Finches/*physiology ; High Vocal Center/*physiology ; Neurons/physiology ; Prosencephalon/*physiology/radiography ; Time Factors ; Vocalization, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadman, Meredith -- England -- Nature. 2008 Apr 17;452(7189):788. doi: 10.1038/452788b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18431822" target="_blank"〉PubMed〈/a〉
    Keywords: Genetic Counseling/trends ; *Genome, Human ; Genomics/economics/*trends ; History, 21st Century ; Humans ; Individuality ; Male ; Reference Standards ; Sequence Analysis, DNA/economics/*trends ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2008-05-16
    Description: Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loulergue, Laetitia -- Schilt, Adrian -- Spahni, Renato -- Masson-Delmotte, Valerie -- Blunier, Thomas -- Lemieux, Benedicte -- Barnola, Jean-Marc -- Raynaud, Dominique -- Stocker, Thomas F -- Chappellaz, Jerome -- England -- Nature. 2008 May 15;453(7193):383-6. doi: 10.1038/nature06950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Glaciologie et Geophysique de l'Environnement, CNRS-Universite Joseph Fourier Grenoble, 54 Rue Moliere, 38402 St Martin d'Heres, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480822" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Greenhouse Effect ; History, Ancient ; Ice Cover ; Methane/*analysis ; Temperature ; Time Factors ; Tropical Climate ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hugenholtz, Philip -- Tyson, Gene W -- England -- Nature. 2008 Sep 25;455(7212):481-3. doi: 10.1038/455481a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818648" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; Computational Biology/trends ; *Ecosystem ; *Environmental Microbiology ; Eukaryotic Cells/metabolism ; Evolution, Molecular ; *Genetics, Microbial/methods ; Genome/genetics ; *Genomics/economics/methods/trends ; Humans ; Marine Biology ; Prokaryotic Cells/metabolism ; Sequence Analysis, DNA/economics ; Time Factors ; Viruses/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2008-02-08
    Description: Rates of atmospheric deposition of biologically active nitrogen (N) are two to seven times the pre-industrial rates in many developed nations because of combustion of fossil fuels and agricultural fertilization. They are expected to increase similarly over the next 50 years in industrializing nations of Asia and South America. Although the environmental impacts of high rates of nitrogen addition have been well studied, this is not so for the lower, chronic rates that characterize much of the globe. Here we present results of the first multi-decadal experiment to examine the impacts of chronic, experimental nitrogen addition as low as 10 kg N ha(-1) yr(-1) above ambient atmospheric nitrogen deposition (6 kg N ha(-1) yr(-1) at our site). This total input rate is comparable to terrestrial nitrogen deposition in many industrialized nations. We found that this chronic low-level nitrogen addition rate reduced plant species numbers by 17% relative to controls receiving ambient N deposition. Moreover, species numbers were reduced more per unit of added nitrogen at lower addition rates, suggesting that chronic but low-level nitrogen deposition may have a greater impact on diversity than previously thought. A second experiment showed that a decade after cessation of nitrogen addition, relative plant species number, although not species abundances, had recovered, demonstrating that some effects of nitrogen addition are reversible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Christopher M -- Tilman, David -- England -- Nature. 2008 Feb 7;451(7179):712-5. doi: 10.1038/nature06503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, 100 Ecology, 1987 Upper Buford Circle, University of Minnesota, St. Paul, Minnesota 55108, USA. clark134@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18256670" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Biomass ; *Ecosystem ; Nitrogen/*metabolism ; Plants/classification/*metabolism ; *Poaceae/metabolism ; Random Allocation ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2008-02-08
    Description: Biosignatures and structures in the geological record indicate that microbial life has inhabited Earth for the past 3.5 billion years or so. Research in the physical sciences has been able to generate statements about the ancient environment that hosted this life. These include the chemical compositions and temperatures of the early ocean and atmosphere. Only recently have the natural sciences been able to provide experimental results describing the environments of ancient life. Our previous work with resurrected proteins indicated that ancient life lived in a hot environment. Here we expand the timescale of resurrected proteins to provide a palaeotemperature trend of the environments that hosted life from 3.5 to 0.5 billion years ago. The thermostability of more than 25 phylogenetically dispersed ancestral elongation factors suggest that the environment supporting ancient life cooled progressively by 30 degrees C during that period. Here we show that our results are robust to potential statistical bias associated with the posterior distribution of inferred character states, phylogenetic ambiguity, and uncertainties in the amino-acid equilibrium frequencies used by evolutionary models. Our results are further supported by a nearly identical cooling trend for the ancient ocean as inferred from the deposition of oxygen isotopes. The convergence of results from natural and physical sciences suggest that ancient life has continually adapted to changes in environmental temperatures throughout its evolutionary history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaucher, Eric A -- Govindarajan, Sridhar -- Ganesh, Omjoy K -- England -- Nature. 2008 Feb 7;451(7179):704-7. doi: 10.1038/nature06510.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18256669" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Bacteria/classification/*metabolism ; Bacterial Proteins/analysis/*chemistry ; *Biological Evolution ; Enzyme Stability ; History, Ancient ; Hot Temperature ; Peptide Elongation Factor Tu/analysis/chemistry ; Phylogeny ; Seawater/*microbiology ; *Temperature ; Time Factors ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2008-03-14
    Description: Genetic data from two or more species provide information about the process of speciation. In their analysis of DNA from humans, chimpanzees, gorillas, orangutans and macaques (HCGOM), Patterson et al. suggest that the apparently short divergence time between humans and chimpanzees on the X chromosome is explained by a massive interspecific hybridization event in the ancestry of these two species. However, Patterson et al. do not statistically test their own null model of simple speciation before concluding that speciation was complex, and--even if the null model could be rejected--they do not consider other explanations of a short divergence time on the X chromosome. These include natural selection on the X chromosome in the common ancestor of humans and chimpanzees, changes in the ratio of male-to-female mutation rates over time, and less extreme versions of divergence with gene flow (see ref. 2, for example). I therefore believe that their claim of hybridization is unwarranted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wakeley, John -- England -- Nature. 2008 Mar 13;452(7184):E3-4; discussion E4. doi: 10.1038/nature06805.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA. wakeley@fas.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337768" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/genetics ; Female ; *Genetic Speciation ; Humans ; Male ; *Models, Genetic ; Mutagenesis/genetics ; Pan troglodytes/*genetics ; Phylogeny ; Reproducibility of Results ; Selection, Genetic ; Sex Characteristics ; Time Factors ; X Chromosome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2008-08-30
    Description: It is thought that the Northern Hemisphere experienced only ephemeral glaciations from the Late Eocene to the Early Pliocene epochs (about 38 to 4 million years ago), and that the onset of extensive glaciations did not occur until about 3 million years ago. Several hypotheses have been proposed to explain this increase in Northern Hemisphere glaciation during the Late Pliocene. Here we use a fully coupled atmosphere-ocean general circulation model and an ice-sheet model to assess the impact of the proposed driving mechanisms for glaciation and the influence of orbital variations on the development of the Greenland ice sheet in particular. We find that Greenland glaciation is mainly controlled by a decrease in atmospheric carbon dioxide during the Late Pliocene. By contrast, our model results suggest that climatic shifts associated with the tectonically driven closure of the Panama seaway, with the termination of a permanent El Nino state or with tectonic uplift are not large enough to contribute significantly to the growth of the Greenland ice sheet; moreover, we find that none of these processes acted as a priming mechanism for glacial inception triggered by variations in the Earth's orbit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunt, Daniel J -- Foster, Gavin L -- Haywood, Alan M -- Stone, Emma J -- England -- Nature. 2008 Aug 28;454(7208):1102-5. doi: 10.1038/nature07223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BRIDGE, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK. d.j.lunt@bristol.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18756254" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Carbon Dioxide/analysis/*metabolism ; Climate ; Greenland ; History, Ancient ; *Ice Cover ; North America ; Rain ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2008-11-04
    Description: The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrovic, Milan -- Hummel, Thomas -- England -- Nature. 2008 Dec 11;456(7223):800-3. doi: 10.1038/nature07407. Epub 2008 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Neurobiologie, Universitat Munster, Badestrasse 9, D-48149 Munster, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18978776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism/physiology ; Cadherins/metabolism ; Compound Eye, Arthropod/growth & development ; DNA-Binding Proteins/genetics/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/genetics/*growth & development/*metabolism ; Gene Expression Regulation, Developmental ; Nerve Tissue Proteins/genetics/metabolism ; Photoreceptor Cells, Invertebrate/metabolism/physiology ; Protein Transport ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2008-01-22
    Description: The future paths of population ageing result from specific combinations of declining fertility and increasing life expectancies in different parts of the world. Here we measure the speed of population ageing by using conventional measures and new ones that take changes in longevity into account for the world as a whole and for 13 major regions. We report on future levels of indicators of ageing and the speed at which they change. We show how these depend on whether changes in life expectancy are taken into account. We also show that the speed of ageing is likely to increase over the coming decades and to decelerate in most regions by mid-century. All our measures indicate a continuous ageing of the world's population throughout the century. The median age of the world's population increases from 26.6 years in 2000 to 37.3 years in 2050 and then to 45.6 years in 2100, when it is not adjusted for longevity increase. When increases in life expectancy are taken into account, the adjusted median age rises from 26.6 in 2000 to 31.1 in 2050 and only to 32.9 in 2100, slightly less than what it was in the China region in 2005. There are large differences in the regional patterns of ageing. In North America, the median age adjusted for life expectancy change falls throughout almost the entire century, whereas the conventional median age increases significantly. Our assessment of trends in ageing is based on new probabilistic population forecasts. The probability that growth in the world's population will end during this century is 88%, somewhat higher than previously assessed. After mid-century, lower rates of population growth are likely to coincide with slower rates of ageing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutz, Wolfgang -- Sanderson, Warren -- Scherbov, Sergei -- England -- Nature. 2008 Feb 7;451(7179):716-9. doi: 10.1038/nature06516. Epub 2008 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉World Population Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria. lutz@iiasa.ac.at〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18204438" target="_blank"〉PubMed〈/a〉
    Keywords: Age Distribution ; Aged ; Aged, 80 and over ; Aging/physiology ; Emigration and Immigration ; *Geography ; Humans ; *Internationality ; Life Expectancy/ethnology/*trends ; Longevity ; Middle Aged ; Mortality/trends ; Population Density ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2008-05-27
    Description: Relapse to cocaine use after prolonged abstinence is an important clinical problem. This relapse is often induced by exposure to cues associated with cocaine use. To account for the persistent propensity for relapse, it has been suggested that cue-induced cocaine craving increases over the first several weeks of abstinence and remains high for extended periods. We and others identified an analogous phenomenon in rats that was termed 'incubation of cocaine craving': time-dependent increases in cue-induced cocaine-seeking over the first months after withdrawal from self-administered cocaine. Cocaine-seeking requires the activation of glutamate projections that excite receptors for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in the nucleus accumbens. Here we show that the number of synaptic AMPA receptors in the accumbens is increased after prolonged withdrawal from cocaine self-administration by the addition of new AMPA receptors lacking glutamate receptor 2 (GluR2). Furthermore, we show that these new receptors mediate the incubation of cocaine craving. Our results indicate that GluR2-lacking AMPA receptors could be a new target for drug development for the treatment of cocaine addiction. We propose that after prolonged withdrawal from cocaine, increased numbers of synaptic AMPA receptors combined with the higher conductance of GluR2-lacking AMPA receptors causes increased reactivity of accumbens neurons to cocaine-related cues, leading to an intensification of drug craving and relapse.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574981/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574981/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, Kelly L -- Tseng, Kuei Y -- Uejima, Jamie L -- Reimers, Jeremy M -- Heng, Li-Jun -- Shaham, Yavin -- Marinelli, Michela -- Wolf, Marina E -- DA00453/DA/NIDA NIH HHS/ -- DA015835/DA/NIDA NIH HHS/ -- DA020654/DA/NIDA NIH HHS/ -- DA09621/DA/NIDA NIH HHS/ -- Z01 DA000434-08/Intramural NIH HHS/ -- England -- Nature. 2008 Jul 3;454(7200):118-21. doi: 10.1038/nature06995. Epub 2008 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18500330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cocaine ; Cocaine-Related Disorders/genetics/metabolism/*physiopathology ; Cues ; Gene Expression Regulation ; Male ; Nucleus Accumbens/*metabolism/physiopathology ; Rats ; Rats, Long-Evans ; Rats, Sprague-Dawley ; Receptors, AMPA/deficiency/genetics/*metabolism ; Self Administration ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lynch, Clifford -- England -- Nature. 2008 Sep 4;455(7209):28-9. doi: 10.1038/455028a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Coalition for Networked Information, 21 Dupont Circle, Washington DC 20036, USA. cliff@cni.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18769419" target="_blank"〉PubMed〈/a〉
    Keywords: Archives ; Databases, Factual/economics/standards ; Humans ; Information Management/economics/*methods/organization & ; administration/*standards ; Information Storage and Retrieval/economics/methods/standards ; Research/economics/organization & administration/standards ; *Research Design ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2008-07-25
    Description: Statistical dependencies in the responses of sensory neurons govern both the amount of stimulus information conveyed and the means by which downstream neurons can extract it. Although a variety of measurements indicate the existence of such dependencies, their origin and importance for neural coding are poorly understood. Here we analyse the functional significance of correlated firing in a complete population of macaque parasol retinal ganglion cells using a model of multi-neuron spike responses. The model, with parameters fit directly to physiological data, simultaneously captures both the stimulus dependence and detailed spatio-temporal correlations in population responses, and provides two insights into the structure of the neural code. First, neural encoding at the population level is less noisy than one would expect from the variability of individual neurons: spike times are more precise, and can be predicted more accurately when the spiking of neighbouring neurons is taken into account. Second, correlations provide additional sensory information: optimal, model-based decoding that exploits the response correlation structure extracts 20% more information about the visual scene than decoding under the assumption of independence, and preserves 40% more visual information than optimal linear decoding. This model-based approach reveals the role of correlated activity in the retinal coding of visual stimuli, and provides a general framework for understanding the importance of correlated activity in populations of neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684455/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684455/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pillow, Jonathan W -- Shlens, Jonathon -- Paninski, Liam -- Sher, Alexander -- Litke, Alan M -- Chichilnisky, E J -- Simoncelli, Eero P -- EY018003/EY/NEI NIH HHS/ -- R01 EY018003/EY/NEI NIH HHS/ -- R01 EY018003-01/EY/NEI NIH HHS/ -- R01 EY018003-02/EY/NEI NIH HHS/ -- R01 EY018003-03/EY/NEI NIH HHS/ -- England -- Nature. 2008 Aug 21;454(7207):995-9. doi: 10.1038/nature07140. Epub 2008 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gatsby Computational Neuroscience Unit, UCL, 17 Queen Square, London WC1N 3AR, UK. pillow@gatsby.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18650810" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Macaca mulatta/*physiology ; *Models, Neurological ; Photic Stimulation ; Retinal Ganglion Cells/*physiology ; Time Factors ; Vision, Ocular/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2008-09-12
    Description: Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luyssaert, Sebastiaan -- Schulze, E-Detlef -- Borner, Annett -- Knohl, Alexander -- Hessenmoller, Dominik -- Law, Beverly E -- Ciais, Philippe -- Grace, John -- England -- Nature. 2008 Sep 11;455(7210):213-5. doi: 10.1038/nature07276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium. sebastiaan.luyssaert@ua.ac.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18784722" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/chemistry ; Biomass ; Carbon/*metabolism ; Carbon Dioxide/metabolism ; Databases, Factual ; Disasters ; *Ecosystem ; History, 15th Century ; History, 16th Century ; History, 17th Century ; History, 18th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; History, Ancient ; History, Medieval ; Human Activities ; Time Factors ; Trees/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2008-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inglis, Stephen -- Wood, John -- Minor, Philip -- England -- Nature. 2008 Aug 21;454(7207):939. doi: 10.1038/454939c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719565" target="_blank"〉PubMed〈/a〉
    Keywords: Drug Industry/organization & administration/standards ; Humans ; Influenza Vaccines/classification/standards/*supply & distribution ; Orthomyxoviridae/physiology ; Orthomyxoviridae Infections/prevention & control ; Time Factors ; Virus Cultivation ; World Health Organization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-06-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, Nicholas -- England -- Nature. 2008 Jun 26;453(7199):1186-7. doi: 10.1038/4531186a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉AHRC Research Centre for the History and Analysis of Recorded Music, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18580933" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Humans ; Music/*psychology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2008-07-11
    Description: Polo-like kinase-1 (PLK1) is an essential mitotic kinase regulating multiple aspects of the cell division process. Activation of PLK1 requires phosphorylation of a conserved threonine residue (Thr 210) in the T-loop of the PLK1 kinase domain, but the kinase responsible for this has not yet been affirmatively identified. Here we show that in human cells PLK1 activation occurs several hours before entry into mitosis, and requires aurora A (AURKA, also known as STK6)-dependent phosphorylation of Thr 210. We find that aurora A can directly phosphorylate PLK1 on Thr 210, and that activity of aurora A towards PLK1 is greatly enhanced by Bora (also known as C13orf34 and FLJ22624), a known cofactor for aurora A (ref. 7). We show that Bora/aurora-A-dependent phosphorylation is a prerequisite for PLK1 to promote mitotic entry after a checkpoint-dependent arrest. Importantly, expression of a PLK1-T210D phospho-mimicking mutant partially overcomes the requirement for aurora A in checkpoint recovery. Taken together, these data demonstrate that the initial activation of PLK1 is a primary function of aurora A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macurek, Libor -- Lindqvist, Arne -- Lim, Dan -- Lampson, Michael A -- Klompmaker, Rob -- Freire, Raimundo -- Clouin, Christophe -- Taylor, Stephen S -- Yaffe, Michael B -- Medema, Rene H -- CA112967/CA/NCI NIH HHS/ -- GM-60594/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Sep 4;455(7209):119-23. doi: 10.1038/nature07185. Epub 2008 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, University Medical Center Utrecht, Utrecht 3584CG, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615013" target="_blank"〉PubMed〈/a〉
    Keywords: Aurora Kinase A ; Aurora Kinases ; Cell Cycle/*physiology ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; DNA Damage ; Enzyme Activation ; Humans ; Mitosis ; Molecular Sequence Data ; Phosphorylation ; Phosphothreonine/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2008-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corrales, Antonieta -- England -- Nature. 2008 May 29;453(7195):586. doi: 10.1038/453586b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18509417" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/economics/organization & administration/standards/*trends ; Costa Rica ; European Union/economics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2008-01-04
    Description: Synthesis of proteins containing errors (mistranslation) is prevented by aminoacyl transfer RNA synthetases through their accurate aminoacylation of cognate tRNAs and their ability to correct occasional errors of aminoacylation by editing reactions. A principal source of mistranslation comes from mistaking glycine or serine for alanine, which can lead to serious cell and animal pathologies, including neurodegeneration. A single specific G.U base pair (G3.U70) marks a tRNA for aminoacylation by alanyl-tRNA synthetase. Mistranslation occurs when glycine or serine is joined to the G3.U70-containing tRNAs, and is prevented by the editing activity that clears the mischarged amino acid. Previously it was assumed that the specificity for recognition of tRNA(Ala) for editing was provided by the same structural determinants as used for aminoacylation. Here we show that the editing site of alanyl-tRNA synthetase, as an artificial recombinant fragment, targets mischarged tRNA(Ala) using a structural motif unrelated to that for aminoacylation so that, remarkably, two motifs (one for aminoacylation and one for editing) in the same enzyme independently can provide determinants for tRNA(Ala) recognition. The structural motif for editing is also found naturally in genome-encoded protein fragments that are widely distributed in evolution. These also recognize mischarged tRNA(Ala). Thus, through evolution, three different complexes with the same tRNA can guard against mistaking glycine or serine for alanine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beebe, Kirk -- Mock, Marissa -- Merriman, Eve -- Schimmel, Paul -- England -- Nature. 2008 Jan 3;451(7174):90-3. doi: 10.1038/nature06454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172502" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine-tRNA Ligase/*chemistry/*metabolism ; Amino Acid Motifs ; *Base Pairing ; Binding Sites ; Escherichia coli/enzymology ; Peptide Fragments/chemistry/metabolism ; Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Transfer, Ala/*chemistry/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2008-08-30
    Description: The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson-Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas two critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5'-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3'-end-binding pocket made up of the PAZ domain show little effect.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689319/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689319/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yanli -- Sheng, Gang -- Juranek, Stefan -- Tuschl, Thomas -- Patel, Dinshaw J -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI068776/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Nov 13;456(7219):209-13. doi: 10.1038/nature07315. Epub 2008 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18754009" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/metabolism ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; *Gene Silencing ; Hydrogen Bonding ; *Models, Molecular ; Mutation ; Protein Structure, Tertiary ; RNA/metabolism ; Thermus thermophilus/*chemistry/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2008-09-02
    Description: A common hallmark of human cancers is the overexpression of telomerase, a ribonucleoprotein complex that is responsible for maintaining the length and integrity of chromosome ends. Telomere length deregulation and telomerase activation is an early, and perhaps necessary, step in cancer cell evolution. Here we present the high-resolution structure of the Tribolium castaneum catalytic subunit of telomerase, TERT. The protein consists of three highly conserved domains, organized into a ring-like structure that shares common features with retroviral reverse transcriptases, viral RNA polymerases and B-family DNA polymerases. Domain organization places motifs implicated in substrate binding and catalysis in the interior of the ring, which can accommodate seven to eight bases of double-stranded nucleic acid. Modelling of an RNA-DNA heteroduplex in the interior of this ring demonstrates a perfect fit between the protein and the nucleic acid substrate, and positions the 3'-end of the DNA primer at the active site of the enzyme, providing evidence for the formation of an active telomerase elongation complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gillis, Andrew J -- Schuller, Anthony P -- Skordalakes, Emmanuel -- England -- Nature. 2008 Oct 2;455(7213):633-7. doi: 10.1038/nature07283. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Binding Sites ; Catalysis ; Catalytic Domain ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Nucleotides/metabolism ; Protein Structure, Tertiary ; Telomerase/*chemistry/metabolism ; Tribolium/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2008-08-22
    Description: Genome stability requires one, and only one, DNA duplication at each S phase. The mechanisms preventing origin firing on newly replicated DNA are well documented, but much less is known about the mechanisms controlling the spacing of initiation events(2,3), namely the completion of DNA replication. Here we show that origin use in Chinese hamster cells depends on both the movement of the replication forks and the organization of chromatin loops. We found that slowing the replication speed triggers the recruitment of latent origins within minutes, allowing the completion of S phase in a timely fashion. When slowly replicating cells are shifted to conditions of fast fork progression, although the decrease in the overall number of active origins occurs within 2 h, the cells still have to go through a complete cell cycle before the efficiency specific to each origin is restored. We observed a strict correlation between replication speed during a given S phase and the size of chromatin loops in the next G1 phase. Furthermore, we found that origins located at or near sites of anchorage of chromatin loops in G1 are activated preferentially in the following S phase. These data suggest a mechanism of origin programming in which replication speed determines the spacing of anchorage regions of chromatin loops, that, in turn, controls the choice of initiation sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Courbet, Sylvain -- Gay, Sophie -- Arnoult, Nausica -- Wronka, Gerd -- Anglana, Mauro -- Brison, Olivier -- Debatisse, Michelle -- England -- Nature. 2008 Sep 25;455(7212):557-60. doi: 10.1038/nature07233. Epub 2008 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Univ. Paris 06, F-75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18716622" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromatin/genetics/*metabolism ; Cricetinae ; Cricetulus ; DNA/biosynthesis/genetics ; DNA Replication/*physiology ; G1 Phase ; *Movement ; Nuclear Matrix/metabolism ; Replication Origin/*genetics ; S Phase ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-05-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Courtland, Rachel -- England -- Nature. 2008 May 22;453(7194):432-3. doi: 10.1038/453432a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497777" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arctic Regions ; Conservation of Natural Resources/*legislation & jurisprudence/trends ; *Greenhouse Effect ; *Ice Cover ; Internationality ; Population Density ; Time Factors ; United States ; Ursidae/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-11-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glaze, Chris M -- Troyer, Todd -- England -- Nature. 2008 Nov 13;456(7219):187-8. doi: 10.1038/456187a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19005545" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cold Temperature ; Finches/*physiology ; High Vocal Center/physiology ; Time Factors ; Vocalization, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2008-02-15
    Description: Mathematical models predict that species interactions such as competition and predation can generate chaos. However, experimental demonstrations of chaos in ecology are scarce, and have been limited to simple laboratory systems with a short duration and artificial species combinations. Here, we present the first experimental demonstration of chaos in a long-term experiment with a complex food web. Our food web was isolated from the Baltic Sea, and consisted of bacteria, several phytoplankton species, herbivorous and predatory zooplankton species, and detritivores. The food web was cultured in a laboratory mesocosm, and sampled twice a week for more than 2,300 days. Despite constant external conditions, the species abundances showed striking fluctuations over several orders of magnitude. These fluctuations displayed a variety of different periodicities, which could be attributed to different species interactions in the food web. The population dynamics were characterized by positive Lyapunov exponents of similar magnitude for each species. Predictability was limited to a time horizon of 15-30 days, only slightly longer than the local weather forecast. Hence, our results demonstrate that species interactions in food webs can generate chaos. This implies that stability is not required for the persistence of complex food webs, and that the long-term prediction of species abundances can be fundamentally impossible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beninca, Elisa -- Huisman, Jef -- Heerkloss, Reinhard -- Johnk, Klaus D -- Branco, Pedro -- Van Nes, Egbert H -- Scheffer, Marten -- Ellner, Stephen P -- England -- Nature. 2008 Feb 14;451(7180):822-5. doi: 10.1038/nature06512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18273017" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/metabolism ; *Food Chain ; Models, Biological ; *Nonlinear Dynamics ; Oceans and Seas ; Plankton/*metabolism ; Population Dynamics ; Species Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wassarman, Paul M -- England -- Nature. 2008 Dec 4;456(7222):586-7. doi: 10.1038/456586a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19052615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conserved Sequence ; Crystallography, X-Ray ; Egg Proteins/*chemistry/genetics/*metabolism ; Female ; Fertilization/physiology ; Male ; Membrane Glycoproteins/*chemistry/genetics/*metabolism ; Mice ; Ovum/*chemistry/*metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Spermatozoa/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Courtland, Rachel -- England -- Nature. 2008 Jan 31;451(7178):508. doi: 10.1038/451508a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235463" target="_blank"〉PubMed〈/a〉
    Keywords: Environmental Monitoring/instrumentation/*legislation & jurisprudence ; *Law Enforcement ; New York City ; Police/*legislation & jurisprudence ; Security Measures/legislation & jurisprudence ; Terrorism/prevention & control ; Time Factors ; United States ; United States Department of Homeland Security/legislation & jurisprudence
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2008-08-16
    Description: For a wide variety of microbial pathogens, the outcome of the infection is indeterminate. In some individuals the microbe is cleared, but in others it establishes a chronic infection, and the factors that tip this balance are often unknown. In a widely used model of chronic viral infection, C57BL/6 mice clear the Armstrong strain of lymphocytic choriomeningitis virus (LCMV), but the clone 13 strain persists. Here we show that the Armstrong strain induces a profound lymphopenia at days 1-3 after infection, but the clone 13 strain does not. If we transiently augment lymphopenia by treating the clone-13-infected mice with the drug FTY720 at days 0-2 after infection, the mice successfully clear the infection by day 30. Clearance does not occur when CD4 T cells are absent at the time of treatment, indicating that the drug is not exerting direct antiviral effects. Notably, FTY720 treatment of an already established persistent infection also leads to viral clearance. In both models, FTY720 treatment preserves or augments LCMV-specific CD4 and CD8 T-cell responses, a result that is counter-intuitive because FTY720 is generally regarded as a new immunosuppressive agent. Because FTY720 targets host pathways that are completely evolutionarily conserved, our results may be translatable into new immunotherapies for the treatment of chronic microbial infections in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Premenko-Lanier, Mary -- Moseley, Nelson B -- Pruett, Sarah T -- Romagnoli, Pablo A -- Altman, John D -- 5F32AI062002/AI/NIAID NIH HHS/ -- AI042373/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Aug 14;454(7206):894-8. doi: 10.1038/nature07199.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center and Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory University School of Medicine, 954 Gatewood Road, Atlanta, Georgia 30329, USA. mflanie@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18704087" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chronic Disease ; Fingolimod Hydrochloride ; Lymphocytic Choriomeningitis/complications/*drug therapy/*immunology/prevention & ; control ; Lymphocytic choriomeningitis virus/*immunology/physiology ; Lymphopenia/etiology ; Mice ; Mice, Inbred C57BL ; Propylene Glycols/administration & dosage/*pharmacology/*therapeutic use ; Sphingosine/administration & dosage/*analogs & ; derivatives/pharmacology/therapeutic use ; T-Lymphocytes/drug effects/immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2008-06-06
    Description: Contemporary phospholipid-based cell membranes are formidable barriers to the uptake of polar and charged molecules ranging from metal ions to complex nutrients. Modern cells therefore require sophisticated protein channels and pumps to mediate the exchange of molecules with their environment. The strong barrier function of membranes has made it difficult to understand the origin of cellular life and has been thought to preclude a heterotrophic lifestyle for primitive cells. Although nucleotides can cross dimyristoyl phosphatidylcholine membranes through defects formed at the gel-to-liquid transition temperature, phospholipid membranes lack the dynamic properties required for membrane growth. Fatty acids and their corresponding alcohols and glycerol monoesters are attractive candidates for the components of protocell membranes because they are simple amphiphiles that form bilayer membrane vesicles that retain encapsulated oligonucleotides and are capable of growth and division. Here we show that such membranes allow the passage of charged molecules such as nucleotides, so that activated nucleotides added to the outside of a model protocell spontaneously cross the membrane and take part in efficient template copying in the protocell interior. The permeability properties of prebiotically plausible membranes suggest that primitive protocells could have acquired complex nutrients from their environment in the absence of any macromolecular transport machinery; that is, they could have been obligate heterotrophs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743009/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743009/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mansy, Sheref S -- Schrum, Jason P -- Krishnamurthy, Mathangi -- Tobe, Sylvia -- Treco, Douglas A -- Szostak, Jack W -- F32 GM074506-01/GM/NIGMS NIH HHS/ -- F32 GM07450601/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Jul 3;454(7200):122-5. doi: 10.1038/nature07018. Epub 2008 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and the Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18528332" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport ; Cell Membrane/chemistry/*metabolism ; Cell Membrane Permeability/physiology ; *Cell Physiological Phenomena ; Fatty Acids/metabolism ; Heterotrophic Processes ; *Models, Biological ; Nucleotides/metabolism ; Oligonucleotides/*metabolism ; Ribose/metabolism ; Templates, Genetic ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldston, David -- England -- Nature. 2008 Aug 7;454(7205):680. doi: 10.1038/454680a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉House Committee on Science. partyofonecolumn@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18685673" target="_blank"〉PubMed〈/a〉
    Keywords: Budgets/*legislation & jurisprudence/*trends ; *Federal Government ; *Politics ; Research Support as Topic/economics/*legislation & jurisprudence ; Science/*economics/legislation & jurisprudence ; Time Factors ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Speakman, John -- England -- Nature. 2008 Feb 14;451(7180):774-5. doi: 10.1038/451774a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18270540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Chiroptera/anatomy & histology/*physiology ; Cochlea/anatomy & histology/physiology ; Darkness ; Echolocation/*physiology ; Extremities/anatomy & histology/physiology ; Flight, Animal/*physiology ; Fossils ; Models, Biological ; Time Factors ; Wyoming
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2008-03-11
    Description: We have followed individual ribosomes as they translate single messenger RNA hairpins tethered by the ends to optical tweezers. Here we reveal that translation occurs through successive translocation--and-pause cycles. The distribution of pause lengths, with a median of 2.8 s, indicates that at least two rate-determining processes control each pause. Each translocation step measures three bases--one codon-and occurs in less than 0.1 s. Analysis of the times required for translocation reveals, surprisingly, that there are three substeps in each step. Pause lengths, and thus the overall rate of translation, depend on the secondary structure of the mRNA; the applied force destabilizes secondary structure and decreases pause durations, but does not affect translocation times. Translocation and RNA unwinding are strictly coupled ribosomal functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556548/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556548/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Jin-Der -- Lancaster, Laura -- Hodges, Courtney -- Zeri, Ana-Carolina -- Yoshimura, Shige H -- Noller, Harry F -- Bustamante, Carlos -- Tinoco, Ignacio -- R01 GM010840/GM/NIGMS NIH HHS/ -- R01 GM010840-49/GM/NIGMS NIH HHS/ -- R01 GM010840-50/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 3;452(7187):598-603. doi: 10.1038/nature06716. Epub 2008 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18327250" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoacylation ; Base Pairing ; Codon/*genetics ; Kinetics ; *Optical Tweezers ; Protein Biosynthesis/*physiology ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Transfer/genetics/metabolism ; Ribosomes/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2008-09-23
    Description: Type 1 diabetes (T1D) is a debilitating autoimmune disease that results from T-cell-mediated destruction of insulin-producing beta-cells. Its incidence has increased during the past several decades in developed countries, suggesting that changes in the environment (including the human microbial environment) may influence disease pathogenesis. The incidence of spontaneous T1D in non-obese diabetic (NOD) mice can be affected by the microbial environment in the animal housing facility or by exposure to microbial stimuli, such as injection with mycobacteria or various microbial products. Here we show that specific pathogen-free NOD mice lacking MyD88 protein (an adaptor for multiple innate immune receptors that recognize microbial stimuli) do not develop T1D. The effect is dependent on commensal microbes because germ-free MyD88-negative NOD mice develop robust diabetes, whereas colonization of these germ-free MyD88-negative NOD mice with a defined microbial consortium (representing bacterial phyla normally present in human gut) attenuates T1D. We also find that MyD88 deficiency changes the composition of the distal gut microbiota, and that exposure to the microbiota of specific pathogen-free MyD88-negative NOD donors attenuates T1D in germ-free NOD recipients. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a critical epigenetic factor modifying T1D predisposition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Li -- Ley, Ruth E -- Volchkov, Pavel Yu -- Stranges, Peter B -- Avanesyan, Lia -- Stonebraker, Austin C -- Hu, Changyun -- Wong, F Susan -- Szot, Gregory L -- Bluestone, Jeffrey A -- Gordon, Jeffrey I -- Chervonsky, Alexander V -- DK063452/DK/NIDDK NIH HHS/ -- DK30292/DK/NIDDK NIH HHS/ -- DK42086/DK/NIDDK NIH HHS/ -- DK45735/DK/NIDDK NIH HHS/ -- DK70977/DK/NIDDK NIH HHS/ -- P30 DK042086/DK/NIDDK NIH HHS/ -- P30 DK042086-16/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- P30 DK045735-10/DK/NIDDK NIH HHS/ -- P30 DK045735-119006/DK/NIDDK NIH HHS/ -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-07/DK/NIDDK NIH HHS/ -- P30 DK056341-08/DK/NIDDK NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- P30 DK063720-01/DK/NIDDK NIH HHS/ -- P30 DK63720/DK/NIDDK NIH HHS/ -- R01 DK030292/DK/NIDDK NIH HHS/ -- R01 DK030292-24/DK/NIDDK NIH HHS/ -- R01 DK070977/DK/NIDDK NIH HHS/ -- R01 DK070977-04/DK/NIDDK NIH HHS/ -- R21 DK063452/DK/NIDDK NIH HHS/ -- R21 DK063452-02/DK/NIDDK NIH HHS/ -- R37 AI046643/AI/NIAID NIH HHS/ -- R37 AI046643-10/AI/NIAID NIH HHS/ -- R37 AI46643/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1109-13. doi: 10.1038/nature07336. Epub 2008 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18806780" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/classification/genetics/*immunology/isolation & purification ; CD8-Positive T-Lymphocytes/immunology ; Diabetes Mellitus, Type 1/genetics/*immunology/*microbiology ; Female ; Immunity, Innate/genetics/*immunology ; Interferon-gamma/immunology ; Intestines/*microbiology ; Islets of Langerhans/pathology ; Male ; Mice ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; Molecular Sequence Data ; Myeloid Differentiation Factor 88/genetics ; Phylogeny ; Specific Pathogen-Free Organisms ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-04-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldston, David -- England -- Nature. 2008 Apr 3;452(7187):519. doi: 10.1038/452519a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard University's Center for the Environment. partyofonecolumn@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18385707" target="_blank"〉PubMed〈/a〉
    Keywords: Air Pollution/analysis/*legislation & jurisprudence/prevention & control ; *Federal Government ; Humans ; Ozone/analysis/toxicity ; Plants/drug effects ; Smog/analysis/prevention & control ; Time Factors ; Uncertainty ; United States ; United States Environmental Protection Agency/*legislation & jurisprudence
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2008-06-20
    Description: Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Putnam, Nicholas H -- Butts, Thomas -- Ferrier, David E K -- Furlong, Rebecca F -- Hellsten, Uffe -- Kawashima, Takeshi -- Robinson-Rechavi, Marc -- Shoguchi, Eiichi -- Terry, Astrid -- Yu, Jr-Kai -- Benito-Gutierrez, E Lia -- Dubchak, Inna -- Garcia-Fernandez, Jordi -- Gibson-Brown, Jeremy J -- Grigoriev, Igor V -- Horton, Amy C -- de Jong, Pieter J -- Jurka, Jerzy -- Kapitonov, Vladimir V -- Kohara, Yuji -- Kuroki, Yoko -- Lindquist, Erika -- Lucas, Susan -- Osoegawa, Kazutoyo -- Pennacchio, Len A -- Salamov, Asaf A -- Satou, Yutaka -- Sauka-Spengler, Tatjana -- Schmutz, Jeremy -- Shin-I, Tadasu -- Toyoda, Atsushi -- Bronner-Fraser, Marianne -- Fujiyama, Asao -- Holland, Linda Z -- Holland, Peter W H -- Satoh, Nori -- Rokhsar, Daniel S -- BBS/B/12067/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/12067/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Jun 19;453(7198):1064-71. doi: 10.1038/nature06967.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18563158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chordata/classification/*genetics ; Conserved Sequence ; DNA Transposable Elements/genetics ; *Evolution, Molecular ; Gene Duplication ; Genes/genetics ; Genetic Linkage ; Genome/*genetics ; Humans ; Introns/genetics ; Karyotyping ; Multigene Family ; Phylogeny ; Polymorphism, Genetic/genetics ; Proteins/genetics ; Synteny ; Time Factors ; Vertebrates/classification/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marris, Emma -- England -- Nature. 2008 Sep 18;455(7211):277-80. doi: 10.1038/455277a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18800107" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/methods ; *Ecosystem ; Human Activities ; Models, Biological ; Nature ; Poland ; Time Factors ; *Trees/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2008-09-06
    Description: Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multi-dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas--the most common type of adult brain cancer--and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol-3-OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671642/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671642/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cancer Genome Atlas Research Network -- R01 CA099041/CA/NCI NIH HHS/ -- R01 CA099041-05/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U24 CA126543-01/CA/NCI NIH HHS/ -- U24 CA126544/CA/NCI NIH HHS/ -- U24 CA126544-01/CA/NCI NIH HHS/ -- U24 CA126546/CA/NCI NIH HHS/ -- U24 CA126546-01/CA/NCI NIH HHS/ -- U24 CA126551-01/CA/NCI NIH HHS/ -- U24 CA126554/CA/NCI NIH HHS/ -- U24 CA126554-01/CA/NCI NIH HHS/ -- U24 CA126561/CA/NCI NIH HHS/ -- U24 CA126561-01/CA/NCI NIH HHS/ -- U24 CA126563/CA/NCI NIH HHS/ -- U24 CA126563-01/CA/NCI NIH HHS/ -- U24CA126543/CA/NCI NIH HHS/ -- U24CA126544/CA/NCI NIH HHS/ -- U24CA126546/CA/NCI NIH HHS/ -- U24CA126551/CA/NCI NIH HHS/ -- U24CA126554/CA/NCI NIH HHS/ -- U24CA126561/CA/NCI NIH HHS/ -- U24CA126563/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-01/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-05/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- U54 HG003273-01/HG/NHGRI NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- U54HG003079/HG/NHGRI NIH HHS/ -- U54HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772890" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; Brain Neoplasms/*genetics ; DNA Methylation ; DNA Modification Methylases/genetics ; DNA Repair/genetics ; DNA Repair Enzymes/genetics ; Female ; Gene Dosage ; *Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor ; Genes, erbB-1/genetics ; Genome, Human/genetics ; *Genomics ; Glioblastoma/*genetics ; Humans ; Male ; Middle Aged ; Models, Molecular ; Mutation/genetics ; Neurofibromin 1/genetics ; Phosphatidylinositol 3-Kinases/genetics ; Protein Structure, Tertiary ; Retrospective Studies ; Signal Transduction/genetics ; Tumor Suppressor Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2008-06-20
    Description: The vertebrate body axis is subdivided into repeated segments, best exemplified by the vertebrae that derive from embryonic somites. The number of somites is precisely defined for any given species but varies widely from one species to another. To determine the mechanism controlling somite number, we have compared somitogenesis in zebrafish, chicken, mouse and corn snake embryos. Here we present evidence that in all of these species a similar 'clock-and-wavefront' mechanism operates to control somitogenesis; in all of them, somitogenesis is brought to an end through a process in which the presomitic mesoderm, having first increased in size, gradually shrinks until it is exhausted, terminating somite formation. In snake embryos, however, the segmentation clock rate is much faster relative to developmental rate than in other amniotes, leading to a greatly increased number of smaller-sized somites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gomez, Celine -- Ozbudak, Ertugrul M -- Wunderlich, Joshua -- Baumann, Diana -- Lewis, Julian -- Pourquie, Olivier -- Cancer Research UK/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Jul 17;454(7202):335-9. doi: 10.1038/nature07020. Epub 2008 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18563087" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning/genetics ; Chick Embryo/*embryology ; Gene Expression Regulation, Developmental ; Mice/*embryology ; Molecular Sequence Data ; Snakes/*embryology ; Somites/*embryology ; Time Factors ; Zebrafish/*embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cyranoski, David -- England -- Nature. 2008 Dec 4;456(7222):550-1. doi: 10.1038/456550a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19052587" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; China ; Commerce/economics ; Indicators and Reagents/*supply & distribution ; Mice ; *Postal Service/economics ; Science/economics/*instrumentation ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2008-05-27
    Description: Observations of individual virions in live cells have led to the characterization of their attachment, entry and intracellular transport. However, the assembly of individual virions has never been observed in real time. Insights into this process have come primarily from biochemical analyses of populations of virions or from microscopic studies of fixed infected cells. Thus, some assembly properties, such as kinetics and location, are either unknown or controversial. Here we describe quantitatively the genesis of individual virions in real time, from initiation of assembly to budding and release. We studied fluorescently tagged derivatives of Gag, the major structural component of HIV-1-which is sufficient to drive the assembly of virus-like particles-with the use of fluorescence resonance energy transfer, fluorescence recovery after photobleaching and total-internal-reflection fluorescent microscopy in living cells. Virions appeared individually at the plasma membrane, their assembly rate accelerated as Gag protein accumulated in cells, and typically 5-6 min was required to complete the assembly of a single virion. These approaches allow a previously unobserved view of the genesis of individual virions and the determination of parameters of viral assembly that are inaccessible with conventional techniques.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708942/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708942/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jouvenet, Nolwenn -- Bieniasz, Paul D -- Simon, Sanford M -- P20 GM072015/GM/NIGMS NIH HHS/ -- P20 GM072015-01/GM/NIGMS NIH HHS/ -- P20 GM072015-02/GM/NIGMS NIH HHS/ -- P20 GM072015-02S1/GM/NIGMS NIH HHS/ -- P20 GM072015-03/GM/NIGMS NIH HHS/ -- P20 GM072015-04/GM/NIGMS NIH HHS/ -- P20 GM072015-04S1/GM/NIGMS NIH HHS/ -- R01 AI089844/AI/NIAID NIH HHS/ -- R01 GM087977/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jul 10;454(7201):236-40. doi: 10.1038/nature06998. Epub 2008 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18500329" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Cell Survival ; Fluorescence Recovery After Photobleaching ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes/*analysis ; HIV-1/genetics/*growth & development/metabolism ; HeLa Cells ; Humans ; Kinetics ; Microscopy, Fluorescence ; Time Factors ; Virion/*growth & development/metabolism ; *Virus Replication ; gag Gene Products, Human Immunodeficiency Virus/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2008-07-04
    Description: Neurotrophins (NTs) are important regulators for the survival, differentiation and maintenance of different peripheral and central neurons. NTs bind to two distinct classes of glycosylated receptor: the p75 neurotrophin receptor (p75(NTR)) and tyrosine kinase receptors (Trks). Whereas p75(NTR) binds to all NTs, the Trk subtypes are specific for each NT. The question of whether NTs stimulate p75(NTR) by inducing receptor homodimerization is still under debate. Here we report the 2.6-A resolution crystal structure of neurotrophin-3 (NT-3) complexed to the ectodomain of glycosylated p75(NTR). In contrast to the previously reported asymmetric complex structure, which contains a dimer of nerve growth factor (NGF) bound to a single ectodomain of deglycosylated p75(NTR) (ref. 3), we show that NT-3 forms a central homodimer around which two glycosylated p75(NTR) molecules bind symmetrically. Symmetrical binding occurs along the NT-3 interfaces, resulting in a 2:2 ligand-receptor cluster. A comparison of the symmetrical and asymmetric structures reveals significant differences in ligand-receptor interactions and p75(NTR) conformations. Biochemical experiments indicate that both NT-3 and NGF bind to p75(NTR) with 2:2 stoichiometry in solution, whereas the 2:1 complexes are the result of artificial deglycosylation. We therefore propose that the symmetrical 2:2 complex reflects a native state of p75(NTR) activation at the cell surface. These results provide a model for NTs-p75(NTR) recognition and signal generation, as well as insights into coordination between p75(NTR) and Trks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Yong -- Cao, Peng -- Yu, Hong-jun -- Jiang, Tao -- England -- Nature. 2008 Aug 7;454(7205):789-93. doi: 10.1038/nature07089. Epub 2008 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18596692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallography, X-Ray ; Dimerization ; Glycosylation ; Humans ; Ligands ; Models, Molecular ; Neurotrophin 3/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptor, Nerve Growth Factor/*chemistry/genetics/*metabolism ; Spodoptera
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2008-02-26
    Description: The psychosis associated with schizophrenia is characterized by alterations in sensory processing and perception. Some antipsychotic drugs were identified by their high affinity for serotonin 5-HT2A receptors (2AR). Drugs that interact with metabotropic glutamate receptors (mGluR) also have potential for the treatment of schizophrenia. The effects of hallucinogenic drugs, such as psilocybin and lysergic acid diethylamide, require the 2AR and resemble some of the core symptoms of schizophrenia. Here we show that the mGluR2 interacts through specific transmembrane helix domains with the 2AR, a member of an unrelated G-protein-coupled receptor family, to form functional complexes in brain cortex. The 2AR-mGluR2 complex triggers unique cellular responses when targeted by hallucinogenic drugs, and activation of mGluR2 abolishes hallucinogen-specific signalling and behavioural responses. In post-mortem human brain from untreated schizophrenic subjects, the 2AR is upregulated and the mGluR2 is downregulated, a pattern that could predispose to psychosis. These regulatory changes indicate that the 2AR-mGluR2 complex may be involved in the altered cortical processes of schizophrenia, and this complex is therefore a promising new target for the treatment of psychosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743172/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743172/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Maeso, Javier -- Ang, Rosalind L -- Yuen, Tony -- Chan, Pokman -- Weisstaub, Noelia V -- Lopez-Gimenez, Juan F -- Zhou, Mingming -- Okawa, Yuuya -- Callado, Luis F -- Milligan, Graeme -- Gingrich, Jay A -- Filizola, Marta -- Meana, J Javier -- Sealfon, Stuart C -- G9811527/Medical Research Council/United Kingdom -- P01 DA012923/DA/NIDA NIH HHS/ -- P01 DA012923-06A10004/DA/NIDA NIH HHS/ -- T32 DA007135/DA/NIDA NIH HHS/ -- T32 DA007135-25S1/DA/NIDA NIH HHS/ -- T32 GM062754/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Mar 6;452(7183):93-7. doi: 10.1038/nature06612. Epub 2008 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA. javier.maeso@mssm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18297054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/metabolism ; Cell Line ; Cells, Cultured ; Down-Regulation ; Hallucinogens/metabolism/pharmacology ; Humans ; Mice ; Models, Molecular ; Multiprotein Complexes/chemistry/genetics/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Psychotic Disorders/drug therapy/genetics/*metabolism ; Receptor, Serotonin, 5-HT2A/analysis/deficiency/genetics/*metabolism ; Receptors, Metabotropic Glutamate/analysis/antagonists & ; inhibitors/genetics/*metabolism ; Schizophrenia/metabolism ; Signal Transduction/drug effects ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cyranoski, David -- England -- Nature. 2008 Sep 18;455(7211):269. doi: 10.1038/455269b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18800093" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/physiology ; Animals ; Humans ; Internationality ; Japan ; Mice ; Patents as Topic/*legislation & jurisprudence ; *Pluripotent Stem Cells/cytology ; Time Factors ; United States ; Universities
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...