ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-11
    Description: We have followed individual ribosomes as they translate single messenger RNA hairpins tethered by the ends to optical tweezers. Here we reveal that translation occurs through successive translocation--and-pause cycles. The distribution of pause lengths, with a median of 2.8 s, indicates that at least two rate-determining processes control each pause. Each translocation step measures three bases--one codon-and occurs in less than 0.1 s. Analysis of the times required for translocation reveals, surprisingly, that there are three substeps in each step. Pause lengths, and thus the overall rate of translation, depend on the secondary structure of the mRNA; the applied force destabilizes secondary structure and decreases pause durations, but does not affect translocation times. Translocation and RNA unwinding are strictly coupled ribosomal functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556548/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556548/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Jin-Der -- Lancaster, Laura -- Hodges, Courtney -- Zeri, Ana-Carolina -- Yoshimura, Shige H -- Noller, Harry F -- Bustamante, Carlos -- Tinoco, Ignacio -- R01 GM010840/GM/NIGMS NIH HHS/ -- R01 GM010840-49/GM/NIGMS NIH HHS/ -- R01 GM010840-50/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 3;452(7187):598-603. doi: 10.1038/nature06716. Epub 2008 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18327250" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoacylation ; Base Pairing ; Codon/*genetics ; Kinetics ; *Optical Tweezers ; Protein Biosynthesis/*physiology ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Transfer/genetics/metabolism ; Ribosomes/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-08
    Description: The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170678/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170678/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qu, Xiaohui -- Wen, Jin-Der -- Lancaster, Laura -- Noller, Harry F -- Bustamante, Carlos -- Tinoco, Ignacio Jr -- R01 GM010840/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jul 6;475(7354):118-21. doi: 10.1038/nature10126.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jason L. Choy Laboratory of Single Molecule Biophysics and QB3 Institute, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21734708" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Codon/genetics ; GC Rich Sequence/genetics ; HIV Reverse Transcriptase/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Optical Tweezers ; Peptide Chain Elongation, Translational ; *Protein Biosynthesis ; RNA Helicases/chemistry/metabolism ; RNA, Messenger/*chemistry/*genetics/metabolism ; Ribosomes/chemistry/enzymology/*metabolism ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Movement of the conductive earth medium in the ambient geomagnetic field can generate an electromotive force and a motional induction current, which further cause the disturbances of the electromagnetic (EM) fields. Such a mechanoelectric coupling is known as the motional induction (MI) effect and has been proposed to be a possible mechanism for the generation of the observed EM signals during earthquakes. In this paper, we study the EM responses to an earthquake source due to such a MI effect in a 2-D horizontally layered model. First we transform the governing equations that couple the elastodynamic equations and Maxwell equations into a set of first-order ordinary depth-dependent differential equations. Then we solve the seismic and EM responses to a moment tensor source. Finally, we transform the 2-D seismic and EM responses to 3-D responses using a simple amplitude correction method. We conduct several numerical examples to investigate the properties of the EM signals generated by the earthquake source. The results show that two types of EM signals can be observed. The first one is the coseismic electric/magnetic field that accompanies the seismic 〈span〉P〈/span〉 and 〈span〉S〈/span〉 waves as well as the Rayleigh wave. The second one is the early EM signal which arrives before the 〈span〉P〈/span〉 wave. The numerical results show that the EM signals change with the inclination angle of the geomagnetic field, the azimuth angle between the wave propagation plane and the geomagnetic vertical plane, and the medium conductivity. Increase in the conductivity can enhance the coseismic electric and magnetic signals. Our simulation also shows that an EM wave can be generated by a seismic wave at the interface separating two different media. The radiation pattern of the interface EM wave generated by a 〈span〉P〈/span〉 wave is similar to that of a horizontal electric dipole located on the interface.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-15
    Description: Folding messenger RNA into specific structures is a common regulatory mechanism involved in translation. In Escherichia coli , the operator of the rpsO gene transcript folds into a pseudoknot or double-hairpin conformation. S15, the gene product, binds only to the pseudoknot, thereby repressing its own synthesis when it is present in excess in the cell. The two RNA conformations have been proposed to exist in equilibrium. However, it remained unclear how structural changes can be achieved between these two topologically distinct conformations. We used optical tweezers to study the structural dynamics and rearrangements of the rpsO operator RNA at the single-molecule level. We discovered that the two RNA structures can be interchanged spontaneously and the pseudoknot can exist in conformations that exhibit various levels of stability. Conversion from the double hairpin to a pseudoknot through potential hairpin–hairpin interactions favoured the high-stability conformation. By contrast, mutations that blocked the formation of a hairpin typically resulted in alternative low-stability pseudoknots. These results demonstrate that specific tertiary interactions of RNA can be established and modulated based on the interactions and rearrangements between secondary structural components. Our findings provide new insight into the RNA folding pathway that leads to a regulatory conformation for target protein binding.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-29
    Description: Author(s): Surendra Singh, J. T. Haraldsen, J. Xiong, E. M. Choi, P. Lu, D. Yi, X.-D. Wen, J. Liu, H. Wang, Z. Bi, P. Yu, M. R. Fitzsimmons, J. L. MacManus-Driscoll, R. Ramesh, A. V. Balatsky, Jian-Xin Zhu, and Q. X. Jia Using polarized neutron reflectometry, we observe an induced magnetization of 75±25  kA/m at 10 K in a La0.7Sr0.3MnO3 (LSMO)/BiFeO3 superlattice extending from the interface through several atomic layers of the BiFeO3 (BFO). The induced magnetization in BFO is explained by density functional theory,... [Phys. Rev. Lett. 113, 047204] Published Thu Jul 24, 2014
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Movement of the conductive earth medium in the ambient geomagnetic field can generate an electromotive force and a motional induction current, which further cause the disturbances of the electromagnetic (EM) fields. Such a mechanoelectric coupling is known as the motional induction (MI) effect and has been proposed to be a possible mechanism for the generation of the observed EM signals during earthquakes. In this paper we study the EM responses to an earthquake source due to such a MI effect in a 2D horizontally-layered model. First we transform the governing equations that couple the elastodynamic equations and Maxwell equations into a set of first-order ordinary depth-dependent differential equations. Then we solve the seismic and EM responses to a moment tensor source. Finally, we transform the 2D seismic and EM responses to 3D responses using a simple amplitude correction method. We conduct several numerical examples to investigate the properties of the EM signals generated by the earthquake source. The results show that two types of EM signals can be observed. The first one is the coseismic electric/magnetic field that accompanies the seismic P and S waves as well as the Rayleigh wave. The second one is the early EM signal which arrives before the P wave. The numerical results show that the EM signals change with the inclination angle of the geomagnetic field, the azimuth angle between the wave propagation plane and the geomagnetic vertical plane, and the medium conductivity. Increase in the conductivity can enhance the coseismic electric and magnetic signals. Our simulation also shows that an EM wave can be generated by a seismic wave at the interface separating two different media. The radiation pattern of the interface EM wave generated by a P wave is similar to that of a horizontal electric dipole located on the interface.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-08-01
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-05-01
    Print ISSN: 0006-3495
    Electronic ISSN: 1542-0086
    Topics: Biology , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-14
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...