ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-11-10
    Description: Reciprocal gene activation and restriction during cell type differentiation from a common lineage is a hallmark of mammalian organogenesis. A key question, then, is whether a critical transcriptional activator of cell type-specific gene targets can also restrict expression of the same genes in other cell types. Here, we show that whereas the pituitary-specific POU domain factor Pit-1 activates growth hormone gene expression in one cell type, the somatotrope, it restricts its expression from a second cell type, the lactotrope. This distinction depends on a two-base pair spacing in accommodation of the bipartite POU domains on a conserved growth hormone promoter site. The allosteric effect on Pit-1, in combination with other DNA binding factors, results in the recruitment of a corepressor complex, including nuclear receptor corepressor N-CoR, which, unexpectedly, is required for active long-term repression of the growth hormone gene in lactotropes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scully, K M -- Jacobson, E M -- Jepsen, K -- Lunyak, V -- Viadiu, H -- Carriere, C -- Rose, D W -- Hooshmand, F -- Aggarwal, A K -- Rosenfeld, M G -- R01 DK18477/DK/NIDDK NIH HHS/ -- R01 DK54802/DK/NIDDK NIH HHS/ -- R01 GM49327/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 10;290(5494):1127-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Endocrinology and Metabolism, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11073444" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Base Sequence ; Binding Sites ; Cell Line ; Conserved Sequence ; Crystallization ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Female ; *Gene Expression Regulation ; Genes, Reporter ; Growth Hormone/*genetics ; Male ; Mice ; Mice, Transgenic ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/genetics/metabolism ; Nuclear Receptor Co-Repressor 1 ; Pituitary Gland/cytology/*metabolism ; Prolactin/*genetics ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Rats ; Repressor Proteins/chemistry/genetics/*metabolism ; Transcription Factor Pit-1 ; Transcription Factors/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-06-26
    Description: DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silverstein, Timothy D -- Johnson, Robert E -- Jain, Rinku -- Prakash, Louise -- Prakash, Satya -- Aggarwal, Aneel K -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA107650/CA/NCI NIH HHS/ -- R01 CA107650-39/CA/NCI NIH HHS/ -- R01 ES017767/ES/NIEHS NIH HHS/ -- R01 ES017767-01/ES/NIEHS NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1039-43. doi: 10.1038/nature09104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577207" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Damage ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Mutation, Missense ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Pyrimidine Dimers/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Skin Neoplasms/*enzymology/genetics ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-14
    Description: While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Wen -- Tanasa, Bogdan -- Tyurina, Oksana V -- Zhou, Tian Yuan -- Gassmann, Reto -- Liu, Wei Ting -- Ohgi, Kenneth A -- Benner, Chris -- Garcia-Bassets, Ivan -- Aggarwal, Aneel K -- Desai, Arshad -- Dorrestein, Pieter C -- Glass, Christopher K -- Rosenfeld, Michael G -- R01 CA097134/CA/NCI NIH HHS/ -- R01 CA097134-09/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 DK018477-35/DK/NIDDK NIH HHS/ -- R01 DK039949/DK/NIDDK NIH HHS/ -- R01 DK039949-18/DK/NIDDK NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R01 NS034934-21/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 22;466(7305):508-12. doi: 10.1038/nature09272. Epub 2010 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20622854" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Cell Cycle/*physiology ; Cell Line ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; HeLa Cells ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/*metabolism ; Host Cell Factor C1/genetics/metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Multiprotein Complexes/chemistry/metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Transcription Factors/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-03-09
    Description: Comparison of a lambda repressor-operator complex and a 434 repressor-operator complex reveals that three conserved residues in the helix-turn-helix (HTH) region make similar contacts in each of the crystallographically determined structures. These conserved residues and their interactions with phosphodiester oxygens help establish a frame of reference within which other HTH residues make contacts that are critical for site-specific recognition. Such "positioning contacts" may be important conserved features within families of HTH proteins. In contrast, the structural comparisons appear to rule out any simple "recognition code" at the level of detailed side chain-base pair interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pabo, C O -- Aggarwal, A K -- Jordan, S R -- Beamer, L J -- Obeysekare, U R -- Harrison, S C -- GM 29109/GM/NIGMS NIH HHS/ -- GM 31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1210-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315694" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Asparagine ; Base Composition ; Base Sequence ; Binding Sites ; *DNA-Binding Proteins ; Glutamine ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; *Operator Regions, Genetic ; Protein Conformation ; Repressor Proteins/*metabolism ; Transcription Factors/*metabolism ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-10-01
    Description: The Rev1 DNA polymerase is highly specialized for the incorporation of C opposite template G. We present here the crystal structure of yeast Rev1 bound to template G and incoming 2'-deoxycytidine 5'-triphosphate (dCTP), which reveals that the polymerase itself dictates the identity of the incoming nucleotide, as well as the identity of the templating base. Template G and incoming dCTP do not pair with each other. Instead, the template G is evicted from the DNA helix, and it makes optimal hydrogen bonds with a segment of Rev1. Also, unlike other DNA polymerases, incoming dCTP pairs with an arginine rather than the templating base, which ensures the incorporation of dCTP over other incoming nucleotides. This mechanism provides an elegant means for promoting proficient and error-free synthesis through N2-adducted guanines that obstruct replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nair, Deepak T -- Johnson, Robert E -- Prakash, Louise -- Prakash, Satya -- Aggarwal, Aneel K -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195463" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/metabolism ; Base Pairing ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; *DNA Replication ; DNA, Fungal/*biosynthesis ; Deoxycytosine Nucleotides/chemistry/*metabolism ; Guanine/chemistry/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nucleotidyltransferases/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-08-04
    Description: The crystal structure of restriction endonuclease Bam HI complexed to DNA has been determined at 2.2 angstrom resolution. The DNA binds in the cleft and retains a B-DNA type of conformation. The enzyme, however, undergoes a series of conformational changes, including rotation of subunits and folding of disordered regions. The most striking conformational change is the unraveling of carboxyl-terminal alpha helices to form partially disordered "arms." The arm from one subunit fits into the minor groove while the arm from the symmetry related subunit follows the DNA sugar-phosphate backbone. Recognition of DNA base pairs occurs primarily in the major groove, with a few interactions occurring in the minor groove. Tightly bound water molecules play an equally important role as side chain and main chain atoms in the recognition of base pairs. The complex also provides new insights into the mechanism by which the enzyme catalyzes the hydrolysis of DNA phosphodiester groups.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newman, M -- Strzelecka, T -- Dorner, L F -- Schildkraut, I -- Aggarwal, A K -- GM-44006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Aug 4;269(5224):656-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7624794" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; Computer Graphics ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; Deoxyribonuclease BamHI/*chemistry/*metabolism ; Deoxyribonuclease EcoRI/chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-11-11
    Description: The repressors of temperate bacteriophages such as 434 and lambda control transcription by binding to a set of DNA operator sites. The different affinity of repressor for each of these sites ensures efficient regulation. High-resolution x-ray crystallography was used to study the DNA-binding domain of phage 434 repressor in complex with a synthetic DNA operator. The structure shows recognition of the operator by direct interactions with base pairs in the major groove, combined with the sequence-dependent ability of DNA to adopt the required conformation on binding repressor. In particular, a network of three-centered bifurcated hydrogen bonds among base pairs in the operator helps explain why 434 repressor prefers certain sites over others. These bonds, which stabilize the conformation of the bound DNA, can form only with certain sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aggarwal, A K -- Rodgers, D W -- Drottar, M -- Ptashne, M -- Harrison, S C -- GMS-29109/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):899-907.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3187531" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; DNA/*metabolism ; *DNA-Binding Proteins ; Hydrogen Bonding ; Molecular Structure ; Nucleic Acid Conformation ; *Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Repressor Proteins/*metabolism ; Software ; Transcription Factors/*metabolism ; Viral Proteins/*metabolism ; Viral Regulatory and Accessory Proteins ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 59 (1990), S. 933-969 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 67 (1996), S. 2014-2016 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The current–voltage characteristics of logarithmic amplifiers depend considerably on the ambient temperature. A theoretical correction has been estimated considering the temperature dependence of various parameters in the diode equation. A log electrometer using light-emitting diodes has been fabricated and its I–V characteristics are obtained experimentally for calibration and also to determine the device constant. If a measurement is obtained at a temperature other than the one for which calibration has been done, the theoretical correction can be applied to get the correct value. It has been shown that the theoretically corrected readings lie within ±4% of the experimentally obtained data in the temperature range of 5–60 °C for the operating current range of 10−12–10−4 A. The alternative can be to introduce temperature compensation circuitry into the logarithmic amplifier. However, this makes the electrometer circuit more complex. The proposed theoretical correction method may find applications where space and power are at a premium and the accuracy requirement is not very stringent. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 368 (1994), S. 660-664 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] BamHI binds as a dimer to the symmetrical DNA sequence 5'-GGATCC-3', which differs from the EcoRI recognition sequence 5'-GAATTC-3' by only one base pair in each half site. Both enzymes cleave DNA at identical positions, following the 5'G on each strand. The structure of BamHI was solved by ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...