ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-04-14
    Description: Transgenic plants are an effective system for the study of regulated gene expression. Developmental control of expression can be monitored by assaying different tissues or by assaying a plant at different developmental stages. Analysis of the petunia 5-enolpyruvylshikimate-3-phosphate synthase gene, which is highly expressed in flowers, allowed identification of an upstream region that confers tissue-specific and developmentally regulated expression. The cell specificity of expression in floral tissues has been defined by histochemical localization. This expression is contrasted to that of the 35S promoter of cauliflower mosaic virus, a nominally constitutive promoter that shows a definite specificity of expression in floral tissues. Moreover, this expression differs in transgenic hosts of different species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benfey, P N -- Chua, N H -- New York, N.Y. -- Science. 1989 Apr 14;244(4901):174-81.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17835349" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-07-03
    Description: The development of multicellular organisms relies on the coordinated control of cell divisions leading to proper patterning and growth. The molecular mechanisms underlying pattern formation, particularly the regulation of formative cell divisions, remain poorly understood. In Arabidopsis, formative divisions generating the root ground tissue are controlled by SHORTROOT (SHR) and SCARECROW (SCR). Here we show, using cell-type-specific transcriptional effects of SHR and SCR combined with data from chromatin immunoprecipitation-based microarray experiments, that SHR regulates the spatiotemporal activation of specific genes involved in cell division. Coincident with the onset of a specific formative division, SHR and SCR directly activate a D-type cyclin; furthermore, altering the expression of this cyclin resulted in formative division defects. Our results indicate that proper pattern formation is achieved through transcriptional regulation of specific cell-cycle genes in a cell-type- and developmental-stage-specific context. Taken together, we provide evidence for a direct link between developmental regulators, specific components of the cell-cycle machinery and organ patterning.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sozzani, R -- Cui, H -- Moreno-Risueno, M A -- Busch, W -- Van Norman, J M -- Vernoux, T -- Brady, S M -- Dewitte, W -- Murray, J A H -- Benfey, P N -- BB/E022383/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E022383/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E022383/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- P50 GM081883/GM/NIGMS NIH HHS/ -- P50 GM081883-020003/GM/NIGMS NIH HHS/ -- P50 GM081883-030003/GM/NIGMS NIH HHS/ -- P50-GM081883/GM/NIGMS NIH HHS/ -- R01 GM043778/GM/NIGMS NIH HHS/ -- R01 GM043778-18/GM/NIGMS NIH HHS/ -- R01 GM043778-19/GM/NIGMS NIH HHS/ -- R01 GM043778-20/GM/NIGMS NIH HHS/ -- R01 GM043778-21/GM/NIGMS NIH HHS/ -- R01-GM043778/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 1;466(7302):128-32. doi: 10.1038/nature09143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596025" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/embryology/*genetics/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Body Patterning/*genetics/*physiology ; Cell Cycle/genetics/physiology ; Cell Division/genetics ; Cyclin D/genetics/metabolism ; Cyclin-Dependent Kinases/metabolism ; Gene Expression Regulation, Plant ; Genes, cdc/*physiology ; Organogenesis/genetics/physiology ; Plant Roots/cytology/embryology/genetics/growth & development ; Time Factors ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-23
    Description: A key question in developmental biology is how cells exchange positional information for proper patterning during organ development. In plant roots the radial tissue organization is highly conserved with a central vascular cylinder in which two water conducting cell types, protoxylem and metaxylem, are patterned centripetally. We show that this patterning occurs through crosstalk between the vascular cylinder and the surrounding endodermis mediated by cell-to-cell movement of a transcription factor in one direction and microRNAs in the other. SHORT ROOT, produced in the vascular cylinder, moves into the endodermis to activate SCARECROW. Together these transcription factors activate MIR165a and MIR166b. Endodermally produced microRNA165/6 then acts to degrade its target mRNAs encoding class III homeodomain-leucine zipper transcription factors in the endodermis and stele periphery. The resulting differential distribution of target mRNA in the vascular cylinder determines xylem cell types in a dosage-dependent manner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967782/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967782/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlsbecker, Annelie -- Lee, Ji-Young -- Roberts, Christina J -- Dettmer, Jan -- Lehesranta, Satu -- Zhou, Jing -- Lindgren, Ove -- Moreno-Risueno, Miguel A -- Vaten, Anne -- Thitamadee, Siripong -- Campilho, Ana -- Sebastian, Jose -- Bowman, John L -- Helariutta, Yka -- Benfey, Philip N -- R01 GM043778/GM/NIGMS NIH HHS/ -- R01 GM043778-17/GM/NIGMS NIH HHS/ -- R01 GM043778-18/GM/NIGMS NIH HHS/ -- R01 GM043778-19/GM/NIGMS NIH HHS/ -- R01 GM043778-20/GM/NIGMS NIH HHS/ -- R01 GM043778-21/GM/NIGMS NIH HHS/ -- R01-GM043778/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 May 20;465(7296):316-21. doi: 10.1038/nature08977. Epub 2010 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biotechnology/Department of Biosciences, University of Helsinki, FIN-00014, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20410882" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/metabolism ; Body Patterning ; *Cell Lineage ; Cell Movement ; Endoderm/cytology/metabolism ; *Gene Dosage ; Gene Expression Regulation, Plant ; MicroRNAs/genetics/*metabolism ; Organogenesis ; Plant Roots/*cytology/genetics/growth & development/metabolism ; RNA Transport ; RNA, Plant/genetics/*metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Xylem/cytology/growth & development/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-11-16
    Description: Appropriate regulation of transcription in higher plants requires specific cis elements in the regulatory regions of genes and their corresponding trans-acting proteins. Analysis of the cauliflower mosaic virus (CaMV) 35S promoter has contributed to the understanding of transcriptional regulatory mechanisms. The intact 35S promoter confers constitutive expression upon heterologous genes in most plants. Dissection into subdomains that are able to confer tissue-specific gene expression has demonstrated that the promoter has a modular organization. When selected subdomains are combined, they confer expression not detected from the isolated subdomains, suggesting that synergistic interactions occur among cis elements. The expression patterns conferred by specific combinations of 35S subdomains differ in tobacco and petunia. This indicates that a combinatorial code of cisregulatory elements may be interpreted differently in different species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benfey, P N -- Chua, N H -- New York, N.Y. -- Science. 1990 Nov 16;250(4983):959-66.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17746920" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-11-03
    Description: Transcriptional programs that regulate development are exquisitely controlled in space and time. Elucidating these programs that underlie development is essential to understanding the acquisition of cell and tissue identity. We present microarray expression profiles of a high-resolution set of developmental time points within a single Arabidopsis root and a comprehensive map of nearly all root cell types. These cell type-specific transcriptional signatures often predict previously unknown cellular functions. A computational pipeline identified dominant expression patterns that demonstrate transcriptional similarity between disparate cell types. Dominant expression patterns along the root's longitudinal axis do not strictly correlate with previously defined developmental zones, and in many cases, we observed expression fluctuation along this axis. Both robust co-regulation of gene expression and potential phasing of gene expression were identified between individual roots. Methods that combine these profiles demonstrate transcriptionally rich and complex programs that define Arabidopsis root development in both space and time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brady, Siobhan M -- Orlando, David A -- Lee, Ji-Young -- Wang, Jean Y -- Koch, Jeremy -- Dinneny, Jose R -- Mace, Daniel -- Ohler, Uwe -- Benfey, Philip N -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):801-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Duke University, Durham, NC 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975066" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*genetics/growth & development ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; *Gene Expression Regulation, Plant ; Green Fluorescent Proteins ; Oligonucleotide Array Sequence Analysis ; Plant Roots/cytology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-10-25
    Description: During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Smet, Ive -- Vassileva, Valya -- De Rybel, Bert -- Levesque, Mitchell P -- Grunewald, Wim -- Van Damme, Daniel -- Van Noorden, Giel -- Naudts, Mirande -- Van Isterdael, Gert -- De Clercq, Rebecca -- Wang, Jean Y -- Meuli, Nicholas -- Vanneste, Steffen -- Friml, Jiri -- Hilson, Pierre -- Jurgens, Gerd -- Ingram, Gwyneth C -- Inze, Dirk -- Benfey, Philip N -- Beeckman, Tom -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):594-7. doi: 10.1126/science.1160158.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948541" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/*enzymology/genetics/growth & development ; Arabidopsis Proteins/*genetics/*metabolism ; *Cell Division ; Cell Lineage ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Meristem/*cytology/enzymology/growth & development ; Mutation ; Plant Roots/*cytology/enzymology/growth & development ; Protein-Serine-Threonine Kinases ; Receptors, Cell Surface/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-04-26
    Description: The promise that came with genome sequencing was that we would soon know what genes do, particularly genes involved in human diseases and those of importance to agriculture. We now have the full genomic sequence of human, chimpanzee, mouse, chicken, dog, worm, fly, rice, and cress, as well as those for a wide variety of other species, and yet we still have a lot of trouble figuring out what genes do. Mapping genes to their function is called the "genotype-to-phenotype problem," where phenotype is whatever is changed in the organism when a gene's function is altered.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727942/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727942/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benfey, Philip N -- Mitchell-Olds, Thomas -- P50 GM081883/GM/NIGMS NIH HHS/ -- P50 GM081883-01/GM/NIGMS NIH HHS/ -- P50 GM081883-010003/GM/NIGMS NIH HHS/ -- P50 GM081883-02/GM/NIGMS NIH HHS/ -- P50 GM081883-020003/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):495-7. doi: 10.1126/science.1153716.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Duke University, Durham, NC 27708, USA. philip.benfey@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18436781" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Epistasis, Genetic ; Gene Regulatory Networks ; Genetic Techniques ; *Genetic Variation ; Genomics ; *Genotype ; Humans ; Metabolic Networks and Pathways ; Models, Genetic ; *Phenotype ; Plants/*genetics ; Polymorphism, Genetic ; Quantitative Trait Loci ; *Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-09-11
    Description: Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock-driven activities in animal species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976612/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976612/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moreno-Risueno, Miguel A -- Van Norman, Jaimie M -- Moreno, Antonio -- Zhang, Jingyuan -- Ahnert, Sebastian E -- Benfey, Philip N -- R01 GM043778/GM/NIGMS NIH HHS/ -- R01 GM043778-19/GM/NIGMS NIH HHS/ -- R01 GM043778-20/GM/NIGMS NIH HHS/ -- R01 GM043778-21/GM/NIGMS NIH HHS/ -- R01-GM043778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1306-11. doi: 10.1126/science.1191937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829477" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Plant ; Gene Regulatory Networks ; Genes, Plant ; Genes, Reporter ; Gravitation ; Indoleacetic Acids/metabolism/pharmacology ; Meristem/*genetics/*growth & development/metabolism ; Oligonucleotide Array Sequence Analysis ; Phthalimides/pharmacology ; Plant Roots/cytology/genetics/*growth & development ; Promoter Regions, Genetic ; Signal Transduction ; Temperature ; Time Factors ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-12-13
    Description: A global map of gene expression within an organ can identify genes with coordinated expression in localized domains, thereby relating gene activity to cell fate and tissue specialization. Here, we present localization of expression of more than 22,000 genes in the Arabidopsis root. Gene expression was mapped to 15 different zones of the root that correspond to cell types and tissues at progressive developmental stages. Patterns of gene expression traverse traditional anatomical boundaries and show cassettes of hormonal response. Chromosomal clustering defined some coregulated genes. This expression map correlates groups of genes to specific cell fates and should serve to guide reverse genetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birnbaum, Kenneth -- Shasha, Dennis E -- Wang, Jean Y -- Jung, Jee W -- Lambert, Georgina M -- Galbraith, David W -- Benfey, Philip N -- 5 F32 GM20716-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1956-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, New York University, New York, NY 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671301" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*genetics/growth & development/metabolism ; Cell Separation ; Chromosome Mapping ; Chromosomes, Plant/genetics ; *Gene Expression ; *Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Green Fluorescent Proteins ; Luminescent Proteins/analysis ; Meristem/cytology/genetics/growth & development/metabolism ; Oligonucleotide Array Sequence Analysis ; Plant Growth Regulators/physiology ; Plant Root Cap/cytology/genetics/growth & development/metabolism ; Plant Roots/cytology/*genetics/growth & development/metabolism ; Protoplasts ; RNA, Messenger/analysis/genetics ; RNA, Plant/analysis/genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction/genetics ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-04-21
    Description: Intercellular protein movement plays a critical role in animal and plant development. SHORTROOT (SHR) is a moving transcription factor essential for endodermis specification in the Arabidopsis root. Unlike diffusible animal morphogens, which form a gradient across multiple cell layers, SHR movement is limited to essentially one cell layer. However, the molecular mechanism is unknown. We show that SCARECROW (SCR) blocks SHR movement by sequestering it into the nucleus through protein-protein interaction and a safeguard mechanism that relies on a SHR/SCR-dependent positive feedback loop for SCR transcription. Our studies with SHR and SCR homologs from rice suggest that this mechanism is evolutionarily conserved, providing a plausible explanation why nearly all plants have a single layer of endodermis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cui, Hongchang -- Levesque, Mitchell P -- Vernoux, Teva -- Jung, Jee W -- Paquette, Alice J -- Gallagher, Kimberly L -- Wang, Jean Y -- Blilou, Ikram -- Scheres, Ben -- Benfey, Philip N -- R01-GM043778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):421-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446396" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Biological Evolution ; Cell Nucleus/metabolism ; Feedback, Physiological ; Gene Expression ; Genes, Plant ; Models, Biological ; Oligonucleotide Array Sequence Analysis ; Oryza/genetics/metabolism ; Plant Proteins/genetics/metabolism ; Plant Roots/*cytology/genetics/growth & development/*metabolism ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protein Binding ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...