ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-20
    Description: Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Putnam, Nicholas H -- Butts, Thomas -- Ferrier, David E K -- Furlong, Rebecca F -- Hellsten, Uffe -- Kawashima, Takeshi -- Robinson-Rechavi, Marc -- Shoguchi, Eiichi -- Terry, Astrid -- Yu, Jr-Kai -- Benito-Gutierrez, E Lia -- Dubchak, Inna -- Garcia-Fernandez, Jordi -- Gibson-Brown, Jeremy J -- Grigoriev, Igor V -- Horton, Amy C -- de Jong, Pieter J -- Jurka, Jerzy -- Kapitonov, Vladimir V -- Kohara, Yuji -- Kuroki, Yoko -- Lindquist, Erika -- Lucas, Susan -- Osoegawa, Kazutoyo -- Pennacchio, Len A -- Salamov, Asaf A -- Satou, Yutaka -- Sauka-Spengler, Tatjana -- Schmutz, Jeremy -- Shin-I, Tadasu -- Toyoda, Atsushi -- Bronner-Fraser, Marianne -- Fujiyama, Asao -- Holland, Linda Z -- Holland, Peter W H -- Satoh, Nori -- Rokhsar, Daniel S -- BBS/B/12067/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/12067/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Jun 19;453(7198):1064-71. doi: 10.1038/nature06967.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18563158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chordata/classification/*genetics ; Conserved Sequence ; DNA Transposable Elements/genetics ; *Evolution, Molecular ; Gene Duplication ; Genes/genetics ; Genetic Linkage ; Genome/*genetics ; Humans ; Introns/genetics ; Karyotyping ; Multigene Family ; Phylogeny ; Polymorphism, Genetic/genetics ; Proteins/genetics ; Synteny ; Time Factors ; Vertebrates/classification/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-01-11
    Description: Thermoelectric materials interconvert thermal gradients and electric fields for power generation or for refrigeration. Thermoelectrics currently find only niche applications because of their limited efficiency, which is measured by the dimensionless parameter ZT-a function of the Seebeck coefficient or thermoelectric power, and of the electrical and thermal conductivities. Maximizing ZT is challenging because optimizing one physical parameter often adversely affects another. Several groups have achieved significant improvements in ZT through multi-component nanostructured thermoelectrics, such as Bi(2)Te(3)/Sb(2)Te(3) thin-film superlattices, or embedded PbSeTe quantum dot superlattices. Here we report efficient thermoelectric performance from the single-component system of silicon nanowires for cross-sectional areas of 10 nm x 20 nm and 20 nm x 20 nm. By varying the nanowire size and impurity doping levels, ZT values representing an approximately 100-fold improvement over bulk Si are achieved over a broad temperature range, including ZT approximately 1 at 200 K. Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects. These results are expected to apply to other classes of semiconductor nanomaterials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boukai, Akram I -- Bunimovich, Yuri -- Tahir-Kheli, Jamil -- Yu, Jen-Kan -- Goddard, William A 3rd -- Heath, James R -- England -- Nature. 2008 Jan 10;451(7175):168-71. doi: 10.1038/nature06458.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, MC 127-72, 1200 East California Blvd, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18185583" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-05
    Description: Related-key attacks (RKAs) are a flavor of powerful physical attacks, which allow an adversary to modify the secret key stored in a cryptographic device and subsequently observe the effect of such modifications on the output of the device. Designing secure encryption schemes against such attacks is a challenging task, especially for a large class of such physical attacks which are usually captured by related-key derivation functions. In this work, we achieve the security of public key encryptions (PKEs) against a new and broad function class that consists of almost all efficiently invertible functions in two different ways. Specifically, we first give a generic construction of PKE which is proven secure against such a broad function class under the standard chosen-ciphertext security. Moreover, we present two practical concrete constructions, both of which are shown to be secure against such function class under standard assumptions in the standard model. At last, we give a detailed performance analysis, which shows that our constructions can not only resist to a large class of RKAs but also achieve a good efficiency.
    Print ISSN: 0010-4620
    Electronic ISSN: 1460-2067
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-10
    Description: A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jandzik, David -- Garnett, Aaron T -- Square, Tyler A -- Cattell, Maria V -- Yu, Jr-Kai -- Medeiros, Daniel M -- England -- Nature. 2015 Feb 26;518(7540):534-7. doi: 10.1038/nature14000. Epub 2014 Dec 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA [2] Department of Zoology, Comenius University, Bratislava 84215, Slovakia. ; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. ; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Cartilage/cytology/metabolism ; Fibroblast Growth Factors/metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental/genetics ; Genes, Reporter/genetics ; *Head ; Lancelets/*anatomy & histology/cytology/*growth & development ; Larva/anatomy & histology/cytology ; Models, Biological ; Mouth/anatomy & histology ; Neural Crest/cytology ; SOXE Transcription Factors/genetics/metabolism ; Signal Transduction ; *Skull/cytology/metabolism ; Vertebrates/*anatomy & histology ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-19
    Description: Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729200/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729200/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simakov, Oleg -- Kawashima, Takeshi -- Marletaz, Ferdinand -- Jenkins, Jerry -- Koyanagi, Ryo -- Mitros, Therese -- Hisata, Kanako -- Bredeson, Jessen -- Shoguchi, Eiichi -- Gyoja, Fuki -- Yue, Jia-Xing -- Chen, Yi-Chih -- Freeman, Robert M Jr -- Sasaki, Akane -- Hikosaka-Katayama, Tomoe -- Sato, Atsuko -- Fujie, Manabu -- Baughman, Kenneth W -- Levine, Judith -- Gonzalez, Paul -- Cameron, Christopher -- Fritzenwanker, Jens H -- Pani, Ariel M -- Goto, Hiroki -- Kanda, Miyuki -- Arakaki, Nana -- Yamasaki, Shinichi -- Qu, Jiaxin -- Cree, Andrew -- Ding, Yan -- Dinh, Huyen H -- Dugan, Shannon -- Holder, Michael -- Jhangiani, Shalini N -- Kovar, Christie L -- Lee, Sandra L -- Lewis, Lora R -- Morton, Donna -- Nazareth, Lynne V -- Okwuonu, Geoffrey -- Santibanez, Jireh -- Chen, Rui -- Richards, Stephen -- Muzny, Donna M -- Gillis, Andrew -- Peshkin, Leonid -- Wu, Michael -- Humphreys, Tom -- Su, Yi-Hsien -- Putnam, Nicholas H -- Schmutz, Jeremy -- Fujiyama, Asao -- Yu, Jr-Kai -- Tagawa, Kunifumi -- Worley, Kim C -- Gibbs, Richard A -- Kirschner, Marc W -- Lowe, Christopher J -- Satoh, Noriyuki -- Rokhsar, Daniel S -- Gerhart, John -- HD37277/HD/NICHD NIH HHS/ -- HD42724/HD/NICHD NIH HHS/ -- R01 HD037277/HD/NICHD NIH HHS/ -- R01 HD073104/HD/NICHD NIH HHS/ -- R01HD073104/HD/NICHD NIH HHS/ -- T32 HD055164/HD/NICHD NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Nov 26;527(7579):459-65. doi: 10.1038/nature16150. Epub 2015 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan. ; Department of Molecular Evolution, Centre for Organismal Studies, University of Heidelberg, 69115 Heidelberg, Germany. ; Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan. ; Department of Zoology, University of Oxford, Oxford OX1 3PS, UK. ; HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA. ; DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan. ; Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA. ; Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA. ; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan. ; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan. ; Natural Science Center for Basic Research and Development, Gene Science Division, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan. ; Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK. ; Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA. ; Department de sciences biologiques, University of Montreal, Quebec H3C 3J7, Canada. ; University of North Caroline at Chapel Hill, North Carolina 27599, USA. ; Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA. ; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. ; Institute for Biogenesis Research, University of Hawaii, Hawaii 96822, USA. ; National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. ; US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26580012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chordata, Nonvertebrate/classification/*genetics ; Conserved Sequence/genetics ; Echinodermata/classification/genetics ; *Evolution, Molecular ; Genome/*genetics ; Multigene Family/genetics ; Phylogeny ; Signal Transduction ; Synteny/genetics ; Transforming Growth Factor beta
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 133 (1999), S. 21-28 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The genetic structure of Mycedium elephantotus (Pallas, 1766) populations from three regions around Taiwan was examined using allozyme electrophoresis. Eight loci were scored from seven enzyme systems. Seven loci were polymorphic under the 95% criterion. The high ratio of observed to expected genotypic diversities at the collection sites (G O:G E=0.8 to 1.0) indicate that M. elephantotus propagates predominantly by sexual reproduction. Allele frequencies of M. elephantotus differed significantly among regions (D=0.024 to 0.256, F ST=0.032 to 0.218, p 〈 0.001), while populations among collection sites within each region were homogeneous (D=0.000 to 0.015, F ST=0.010 to 0.022, p 〉 0.05). Genetic differentiation between populations from southern Taiwan and the Penghu Islands is greater than that between southern and northern Taiwan populations, although the former two regions are much closer geographically. The UPGMA dendrogram based on Nei's unbiased genetic distance showed a clear subdivision of populations into two groupings, northern Taiwan/Penghu Islands and southern Taiwan. A higher level of gene flow was found between M. elephantotus populations in northern Taiwan and the Penghu Islands (N m=7.56) than that between populations in southern Taiwan and other regions (N m=0.90 to 1.72). The pattern of genetic subdivision among regions is consistent with the pattern of ocean currents, indicating that genetic differentiation is likely driven by surface circulation vicariance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 29 (1994), S. 2641-2647 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A functionally gradient coating on carbon fibre for casting C/Al composites with an ultimate tensile strength up to 1250 MPa (V f=0.35) has been produced. The coating consisted of three layers: an inner pyrocarbon layer, an outer silicon layer and an intermediate gradient layer C/SiC/Si, and their optimum thicknesses were 0.1–0.15, 0.1 and 0.2 μm, respectively. This coating was fabricated by chemical vapour deposition and the C/Al composite was performed by pressure-regulated infiltration. Auger electron spectroscopy and X-ray diffraction analyses confirmed that the structure of the coating was in keeping with its design. The excellent ultimate tensile strength of the C/Al composite also proves that the functionally gradient coating has many functions, including wetting agent, diffusion and reaction barrier, releaser of residual thermal stresses, and tailor of interfacial shear strength. According to the mechanical, physical and chemical coordination between fibre and matrix, the functionally gradient coating can solve nearly all the problems of the interface during fabrication and service.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-05-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-27
    Description: Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5'-end of truncated transfer RNA (tRNA) species in a Watson-Crick template–dependent manner. The reaction proceeds in two steps: the activation of the 5'-end by adenosine 5'-triphosphate (ATP)/guanosine 5'-triphosphate (GTP), followed by nucleotide addition. Structural analyses of the TLP and its reaction intermediates have revealed the atomic detail of the template-dependent elongation reaction in the 3'-5' direction. The enzyme creates two substrate binding sites for the first- and second-step reactions in the vicinity of one reaction center consisting of two Mg 2+ ions, and the two reactions are executed at the same reaction center in a stepwise fashion. When the incoming nucleotide is bound to the second binding site with Watson-Crick hydrogen bonds, the 3'-OH of the incoming nucleotide and the 5'-triphosphate of the tRNA are moved to the reaction center where the first reaction has occurred. That the 3'-5' elongation enzyme performs this elaborate two-step reaction in one catalytic center suggests that these two reactions have been inseparable throughout the process of protein evolution. Although TLP and Thg1 have similar tetrameric organization, the tRNA binding mode of TLP is different from that of Thg1, a tRNA His -specific G –1 addition enzyme. Each tRNA His binds to three of the four Thg1 tetramer subunits, whereas in TLP, tRNA only binds to a dimer interface and the elongation reaction is terminated by measuring the accepter stem length through the flexible β-hairpin. Furthermore, mutational analyses show that tRNA His is bound to TLP in a similar manner as Thg1, thus indicating that TLP has a dual binding mode.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-07-26
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...