ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cricetinae
  • American Association for the Advancement of Science (AAAS)  (300)
Collection
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The metabotropic glutamate receptors (mGluRs) are widely distributed in the brain and play important roles in synaptic plasticity. Here it is shown that some types of mGluRs are activated not only by glutamate but also by extracellular Ca2+ (Ca2+o). A single amino acid residue was found to determine the sensitivity of mGluRs to Ca2+o. One of the receptors, mGluR1alpha, but not its point mutant with reduced sensitivity to Ca2+o, caused morphological changes when transfected into mammalian cells. Thus, the sensing of Ca2+o by mGluRs may be important in cells under physiological condition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubo, Y -- Miyashita, T -- Murata, Y -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1722-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Tokyo Metropolitan Institute for Neuroscience, Musashidai 2-6, Fuchu, Tokyo 183-8526, Japan. ykubo@tmin.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497291" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/ultrastructure ; Amino Acid Sequence ; Animals ; Binding Sites ; Brain/metabolism ; CHO Cells ; Calcium/*metabolism/pharmacology ; Cell Size ; Cricetinae ; Cyclic AMP/metabolism ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Glutamic Acid/metabolism/pharmacology ; Molecular Sequence Data ; Oocytes ; Point Mutation ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Rats ; Receptors, Metabotropic Glutamate/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; Transfection ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-18
    Description: During T cell activation, the engagement of costimulatory molecules is often crucial to the development of an effective immune response, but the mechanism by which this is achieved is not known. Here, it is shown that beads attached to the surface of a T cell translocate toward the interface shortly after the start of T cell activation. This movement appears to depend on myosin motor proteins and requires the engagement of the major costimulatory receptor pairs, B7-CD28 and ICAM-1-LFA-1. This suggests that the engagement of costimulatory receptors triggers an active accumulation of molecules at the interface of the T cell and the antigen-presenting cell, which then increases the overall amplitude and duration of T cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wulfing, C -- Davis, M M -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2266-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856952" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigen-Presenting Cells/immunology ; Antigens, CD/*metabolism ; Antigens, CD28/metabolism ; Antigens, CD86 ; Biotinylation ; CHO Cells ; Calcium/metabolism ; Cricetinae ; Cytoskeleton/*physiology ; Intercellular Adhesion Molecule-1/metabolism ; *Lymphocyte Activation ; Lymphocyte Function-Associated Antigen-1/metabolism ; Membrane Glycoproteins/metabolism ; Mice ; Microspheres ; Molecular Motor Proteins/physiology ; Myosins/physiology ; Phosphatidylinositol 3-Kinases/metabolism ; Receptors, Antigen, T-Cell/immunology ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism/ultrastructure ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-24
    Description: Retroviral DNA integration is catalyzed by the viral protein integrase. Here, it is shown that DNA-dependent protein kinase (DNA-PK), a host cell protein, also participates in the reaction. DNA-PK-deficient murine scid cells infected with three different retroviruses showed a substantial reduction in retroviral DNA integration and died by apoptosis. Scid cell killing was not observed after infection with an integrase-defective virus, suggesting that abortive integration is the trigger for death in these DNA repair-deficient cells. These results suggest that the initial events in retroviral integration are detected as DNA damage by the host cell and that completion of the integration process requires the DNA-PK-mediated repair pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daniel, R -- Katz, R A -- Skalka, A M -- AI40721/AI/NIAID NIH HHS/ -- AI40835/AI/NIAID NIH HHS/ -- CA71515/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):644-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213687" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; CHO Cells ; Cell Survival ; Cells, Cultured ; Cricetinae ; DNA Damage ; *DNA Repair ; DNA, Viral/*genetics/metabolism ; DNA-Activated Protein Kinase ; *DNA-Binding Proteins ; Genetic Vectors ; HIV-1/genetics ; Integrases/genetics/metabolism ; Mice ; Mutation ; Protein-Serine-Threonine Kinases/*metabolism ; Retroviridae/*genetics/physiology ; *Virus Integration ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-08-24
    Description: Clathrin-mediated endocytosis is initiated by the recruitment of the clathrin adaptor protein AP-2 to the plasma membrane where the membrane protein synaptotagmin is thought to act as a docking site. AP-2 also interacts with endocytic motifs present in other cargo proteins. Peptides with a tyrosine-based endocytic motif stimulated binding of AP-2 to synaptotagmin and enhanced AP-2 recruitment to the plasma membrane of neuronal and non-neuronal cells. This suggests a mechanism by which nucleation of clathrin-coated pits is stimulated by the loading of cargo proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haucke, V -- De Camilli, P -- CA46128/CA/NCI NIH HHS/ -- NS36252/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 20;285(5431):1268-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10455054" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex alpha Subunits ; Adaptor Proteins, Vesicular Transport ; Animals ; Binding Sites ; CHO Cells ; *Calcium-Binding Proteins ; Cattle ; Cell Membrane/metabolism ; Clathrin/*metabolism ; Coated Pits, Cell-Membrane/*metabolism ; Cricetinae ; *Endocytosis ; Membrane Glycoproteins/chemistry/*metabolism ; Membrane Proteins/*metabolism ; Nerve Tissue Proteins/chemistry/*metabolism ; Neurons/metabolism ; Oligopeptides/chemistry/metabolism/*pharmacology ; Phospholipase D/metabolism ; Protein Binding ; Rats ; Recombinant Fusion Proteins/metabolism ; Synaptic Membranes/*metabolism ; Synaptotagmins ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-05-13
    Description: To study the nuclear organization and dynamics of nucleotide excision repair (NER), the endonuclease ERCC1/XPF (for excision repair cross complementation group 1/xeroderma pigmentosum group F) was tagged with green fluorescent protein and its mobility was monitored in living Chinese hamster ovary cells. In the absence of DNA damage, the complex moved freely through the nucleus, with a diffusion coefficient (15 +/- 5 square micrometers per second) consistent with its molecular size. Ultraviolet light-induced DNA damage caused a transient dose-dependent immobilization of ERCC1/XPF, likely due to engagement of the complex in a single repair event. After 4 minutes, the complex regained mobility. These results suggest (i) that NER operates by assembly of individual NER factors at sites of DNA damage rather than by preassembly of holocomplexes and (ii) that ERCC1/XPF participates in repair of DNA damage in a distributive fashion rather than by processive scanning of large genome segments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Houtsmuller, A B -- Rademakers, S -- Nigg, A L -- Hoogstraten, D -- Hoeijmakers, J H -- Vermeulen, W -- New York, N.Y. -- Science. 1999 May 7;284(5416):958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology (Josephine Nefkens Institute, Erasmus University, Post Office Box 1738, 3000 DR Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320375" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Cricetinae ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/*metabolism ; Diffusion ; Endonucleases/*metabolism ; Fluorescence ; Green Fluorescent Proteins ; HeLa Cells ; Humans ; Luminescent Proteins ; Microscopy, Confocal ; Microscopy, Fluorescence ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-12
    Description: Erythropoietin and other cytokine receptors are thought to be activated through hormone-induced dimerization and autophosphorylation of JAK kinases associated with the receptor intracellular domains. An in vivo protein fragment complementation assay was used to obtain evidence for an alternative mechanism in which unliganded erythropoietin receptor dimers exist in a conformation that prevents activation of JAK2 but then undergo a ligand-induced conformation change that allows JAK2 to be activated. These results are consistent with crystallographic evidence of distinct dimeric configurations for unliganded and ligand-bound forms of the erythropoietin receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Remy, I -- Wilson, I A -- Michnick, S W -- GM49497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):990-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de Biochimie, Universite de Montreal, Casier Postal 6128, succursale Centre-ville, Montreal, Quebec, H3C 3J7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9974393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; COS Cells ; Cricetinae ; Dimerization ; Erythropoietin/metabolism ; Flow Cytometry ; Fluoresceins/metabolism ; Janus Kinase 2 ; Ligands ; Methotrexate/analogs & derivatives/metabolism ; Microscopy, Fluorescence ; Peptides, Cyclic/metabolism ; *Protein Conformation ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Erythropoietin/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Tetrahydrofolate Dehydrogenase/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, M -- New York, N.Y. -- Science. 2000 Sep 8;289(5485):1663-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11001722" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Domestic ; Carrier State/*veterinary ; Cattle ; Creutzfeldt-Jakob Syndrome/epidemiology/prevention & control/*transmission ; Cricetinae ; Encephalopathy, Bovine Spongiform/epidemiology/prevention & control/*transmission ; Great Britain/epidemiology ; Humans ; Mice ; Prion Diseases/*transmission ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-09-29
    Description: MyoD regulates skeletal muscle differentiation (SMD) and is essential for repair of damaged tissue. The transcription factor nuclear factor kappa B (NF-kappaB) is activated by the cytokine tumor necrosis factor (TNF), a mediator of skeletal muscle wasting in cachexia. Here, the role of NF-kappaB in cytokine-induced muscle degeneration was explored. In differentiating C2C12 myocytes, TNF-induced activation of NF-kappaB inhibited SMD by suppressing MyoD mRNA at the posttranscriptional level. In contrast, in differentiated myotubes, TNF plus interferon-gamma (IFN-gamma) signaling was required for NF-kappaB-dependent down-regulation of MyoD and dysfunction of skeletal myofibers. MyoD mRNA was also down-regulated by TNF and IFN-gamma expression in mouse muscle in vivo. These data elucidate a possible mechanism that may underlie the skeletal muscle decay in cachexia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guttridge, D C -- Mayo, M W -- Madrid, L V -- Wang, C Y -- Baldwin, A S Jr -- AI35098/AI/NIAID NIH HHS/ -- CA72771/CA/NCI NIH HHS/ -- K01 CA78595/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 29;289(5488):2363-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, Department of Biology, University of North Carolina, Chapel Hill, Mason Farm Road, Campus Box 7295, Chapel Hill, NC, 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11009425" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cachexia/*etiology/metabolism/pathology ; Cell Differentiation ; Cell Line ; Cricetinae ; DNA-Binding Proteins/genetics/metabolism ; Down-Regulation ; *I-kappa B Proteins ; Interferon-gamma/pharmacology ; Interleukins/pharmacology ; Mice ; Mice, Inbred Strains ; Mice, Nude ; Muscle, Skeletal/*cytology/*metabolism/pathology ; MyoD Protein/*genetics/metabolism ; NF-kappa B/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Transcription Factor RelA ; Transcription, Genetic ; Transfection ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2453.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/physiology ; Circadian Rhythm/drug effects/*physiology ; Cricetinae ; Darkness ; Hypothalamus/*metabolism ; Light ; Mice ; *Motor Activity/drug effects ; Mutation ; Neurons/*metabolism ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Retinal Ganglion Cells/metabolism ; Signal Transduction ; Suprachiasmatic Nucleus/*metabolism ; Transforming Growth Factor alpha/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-04-28
    Description: The protective antigen moiety of anthrax toxin translocates the toxin's enzymic moieties to the cytosol of mammalian cells by a mechanism that depends on its ability to heptamerize and insert into membranes. We identified dominant-negative mutants of protective antigen that co-assemble with the wild-type protein and block its ability to translocate the enzymic moieties across membranes. These mutants strongly inhibited toxin action in cell culture and in an animal intoxication model, suggesting that they could be useful in therapy of anthrax.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sellman, B R -- Mourez, M -- Collier, R J -- 5T32AI07410/AI/NIAID NIH HHS/ -- R37-AI22021/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):695-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326092" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthrax/*drug therapy ; *Antigens, Bacterial ; Bacterial Toxins/*antagonists & inhibitors/*genetics/metabolism/toxicity ; CHO Cells ; Cell Membrane/metabolism ; Cricetinae ; Endocytosis ; Genes, Dominant ; Male ; *Mutation ; Protein Transport ; Rats ; Rats, Inbred F344 ; Receptors, Peptide/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2001-09-05
    Description: The developmental signaling functions of cell surface heparan sulfate proteoglycans (HSPGs) are dependent on their sulfation states. Here, we report the identification of QSulf1, the avian ortholog of an evolutionarily conserved protein family related to heparan-specific N-acetyl glucosamine sulfatases. QSulf1 expression is induced by Sonic hedgehog in myogenic somite progenitors in quail embryos and is required for the activation of MyoD, a Wnt-induced regulator of muscle specification. QSulf1 is localized on the cell surface and regulates heparan-dependent Wnt signaling in C2C12 myogenic progenitor cells through a mechanism that requires its catalytic activity, providing evidence that QSulf1 regulates Wnt signaling through desulfation of cell surface HSPGs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dhoot, G K -- Gustafsson, M K -- Ai, X -- Sun, W -- Standiford, D M -- Emerson , C P Jr -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1663-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Veterinary Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533491" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Body Patterning ; CHO Cells ; Cell Membrane/metabolism ; Cells, Cultured ; Cloning, Molecular ; Coculture Techniques ; Cricetinae ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Hedgehog Proteins ; Heparan Sulfate Proteoglycans/*metabolism ; Heparin/metabolism/pharmacology ; Heparitin Sulfate/metabolism ; Molecular Sequence Data ; Muscles/cytology/*embryology/metabolism ; Mutation ; MyoD Protein/genetics/metabolism ; Oligonucleotides, Antisense ; Proto-Oncogene Proteins/*metabolism ; Quail/*embryology ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; *Signal Transduction ; Somites/metabolism ; Stem Cells/*metabolism ; Sulfatases/chemistry/genetics/*metabolism ; Trans-Activators/genetics/metabolism ; Transfection ; Wnt Proteins ; *Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enserink, M -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1414-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cricetinae ; *Disease Models, Animal ; *Hantavirus/immunology/pathogenicity ; *Hantavirus Pulmonary Syndrome/immunology/prevention & control/virology ; Humans ; *Mesocricetus ; South America ; Viral Vaccines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2001-02-13
    Description: We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha-kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Runnels, L W -- Yue, L -- Clapham, D E -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1043-7. Epub 2001 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cardiology, Department of Neurobiology, Harvard Medical School, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161216" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Catalytic Domain ; Cations/metabolism ; Cell Line ; Cricetinae ; DNA, Complementary ; Electric Conductivity ; Humans ; Ion Channels/chemistry/*genetics/*metabolism ; *Membrane Proteins ; Mice ; Molecular Sequence Data ; Mutation ; Myelin Basic Protein/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; TRPM Cation Channels ; Transfection ; Two-Hybrid System Techniques ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2002-05-23
    Description: Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peier, Andrea M -- Reeve, Alison J -- Andersson, David A -- Moqrich, Aziz -- Earley, Taryn J -- Hergarden, Anne C -- Story, Gina M -- Colley, Sian -- Hogenesch, John B -- McIntyre, Peter -- Bevan, Stuart -- Patapoutian, Ardem -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2046-9. Epub 2002 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016205" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Newborn ; Blotting, Northern ; CHO Cells ; Capsaicin/*analogs & derivatives/pharmacology ; *Cation Transport Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; Cricetinae ; Epidermis/cytology/innervation/metabolism ; Ganglia, Spinal/metabolism ; *Hot Temperature ; Humans ; In Situ Hybridization ; Ion Channels/chemistry/genetics/*metabolism ; Keratinocytes/*metabolism ; Membrane Potentials ; Mice ; Molecular Sequence Data ; Nerve Endings/physiology ; Neurons/physiology ; Patch-Clamp Techniques ; RNA, Messenger/genetics/metabolism ; Ruthenium Red/pharmacology ; Signal Transduction ; Spinal Cord/metabolism ; TRPV Cation Channels ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2002-05-25
    Description: Mice and cattle with genetic deficiencies in myostatin exhibit dramatic increases in skeletal muscle mass, suggesting that myostatin normally suppresses muscle growth. Whether this increased muscling results from prenatal or postnatal lack of myostatin activity is unknown. Here we show that myostatin circulates in the blood of adult mice in a latent form that can be activated by acid treatment. Systemic overexpression of myostatin in adult mice was found to induce profound muscle and fat loss analogous to that seen in human cachexia syndromes. These data indicate that myostatin acts systemically in adult animals and may be a useful pharmacologic target in clinical settings such as cachexia, where muscle growth is desired.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmers, Teresa A -- Davies, Monique V -- Koniaris, Leonidas G -- Haynes, Paul -- Esquela, Aurora F -- Tomkinson, Kathy N -- McPherron, Alexandra C -- Wolfman, Neil M -- Lee, Se-Jin -- 5 T32 CA09139/CA/NCI NIH HHS/ -- R01 CA88866/CA/NCI NIH HHS/ -- R01 HD35887/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 May 24;296(5572):1486-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029139" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Activins/administration & dosage/pharmacology ; Adipose Tissue/anatomy & histology/pathology ; Animals ; Body Weight ; CHO Cells ; Cachexia/*etiology/metabolism/pathology ; Cricetinae ; Eating ; Female ; Follistatin ; Liver/anatomy & histology/pathology ; Mice ; Mice, Nude ; Muscle Fibers, Skeletal/cytology/pathology ; Muscle, Skeletal/*anatomy & histology/pathology ; Myostatin ; Organ Size ; Peptide Fragments/administration & dosage/pharmacology ; Recombinant Proteins/administration & dosage ; Transforming Growth Factor beta/administration & dosage/blood/*physiology ; Wasting Syndrome/etiology/metabolism/pathology ; Weight Loss
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2002-01-19
    Description: Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations 〉20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazaris, Anthoula -- Arcidiacono, Steven -- Huang, Yue -- Zhou, Jiang-Feng -- Duguay, Francois -- Chretien, Nathalie -- Welsh, Elizabeth A -- Soares, Jason W -- Karatzas, Costas N -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):472-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nexia Biotechnologies, Vaudreuil-Dorion, Quebec J7V 8P5, Canada. alazaris@nexiabiotech.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799236" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Biopolymers ; Birefringence ; Cattle ; Cell Line ; Cloning, Molecular ; Cricetinae ; Culture Media, Conditioned ; DNA, Complementary ; Elasticity ; Epithelial Cells/metabolism ; *Fibroins ; Materials Testing ; Mechanics ; Molecular Sequence Data ; Molecular Weight ; *Protein Biosynthesis ; Protein Structure, Secondary ; Proteins/chemistry/*genetics/isolation & purification ; Recombinant Proteins/biosynthesis/chemistry/isolation & purification ; Solubility ; Spiders/*genetics/metabolism ; Stress, Mechanical ; Tensile Strength ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):419-21.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biopolymers ; Cattle ; Cell Line ; Cricetinae ; Epithelial Cells/metabolism ; *Fibroins ; Genes ; Mechanics ; Molecular Weight ; *Protein Biosynthesis ; Proteins/chemistry/*genetics/isolation & purification ; Recombinant Proteins/biosynthesis/chemistry ; Spiders/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1998-06-11
    Description: The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms and is related to transcription factors that act as heterodimers. Potential partners of CLOCK were isolated in a two-hybrid screen, and one, BMAL1, was coexpressed with CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1 heterodimers activated transcription from E-box elements, a type of transcription factor-binding site, found adjacent to the mouse per1 gene and from an identical E-box known to be important for per gene expression in Drosophila. Mutant CLOCK from the dominant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed to activate transcription. Thus, CLOCK-BMAL1 heterodimers appear to drive the positive component of per transcriptional oscillations, which are thought to underlie circadian rhythmicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gekakis, N -- Staknis, D -- Nguyen, H B -- Davis, F C -- Wilsbacher, L D -- King, D P -- Takahashi, J S -- Weitz, C J -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1564-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston MA 02115, USA. 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616112" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks ; CLOCK Proteins ; Cell Cycle Proteins ; Circadian Rhythm/genetics/*physiology ; Cloning, Molecular ; Cricetinae ; DNA/metabolism ; Dimerization ; Feedback ; Gene Expression ; Helix-Loop-Helix Motifs ; Male ; Mesocricetus ; Mice ; Mutation ; Nuclear Proteins/*genetics/metabolism ; Period Circadian Proteins ; Promoter Regions, Genetic ; Retina/metabolism ; Suprachiasmatic Nucleus/metabolism ; Trans-Activators/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1999-10-26
    Description: The transferrin receptor (TfR) undergoes multiple rounds of clathrin-mediated endocytosis and reemergence at the cell surface, importing iron-loaded transferrin (Tf) and recycling apotransferrin after discharge of iron in the endosome. The crystal structure of the dimeric ectodomain of the human TfR, determined here to 3.2 angstroms resolution, reveals a three-domain subunit. One domain closely resembles carboxy- and aminopeptidases, and features of membrane glutamate carboxypeptidase can be deduced from the TfR structure. A model is proposed for Tf binding to the receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawrence, C M -- Ray, S -- Babyonyshev, M -- Galluser, R -- Borhani, D W -- Harrison, S C -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):779-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Children's Hospital Laboratory of Molecular Medicine, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531064" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Carboxypeptidases/chemistry ; Cell Membrane/chemistry ; Conserved Sequence ; Cricetinae ; Crystallography, X-Ray ; Dimerization ; Ferric Compounds/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Transferrin/*chemistry/metabolism ; Transferrin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1999-05-13
    Description: Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, B -- Salituro, G -- Szalkowski, D -- Li, Z -- Zhang, Y -- Royo, I -- Vilella, D -- Diez, M T -- Pelaez, F -- Ruby, C -- Kendall, R L -- Mao, X -- Griffin, P -- Calaycay, J -- Zierath, J R -- Heck, J V -- Smith, R G -- Moller, D E -- New York, N.Y. -- Science. 1999 May 7;284(5416):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Endocrinology, Merck Research Laboratories, R80W250, Post Office Box 2000, Rahway, NJ 07065, USA. bei_zhang@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320380" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Ascomycota/*metabolism ; Binding Sites ; Blood Glucose/metabolism ; CHO Cells ; Cricetinae ; Diabetes Mellitus, Type 2/*drug therapy ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Enzyme Activation ; Glucose Tolerance Test ; Hyperglycemia/drug therapy ; Hypoglycemic Agents/chemistry/metabolism/*pharmacology/therapeutic use ; Indoles/chemistry/metabolism/*pharmacology/therapeutic use ; Insulin/blood/metabolism/*pharmacology ; Insulin Receptor Substrate Proteins ; Mice ; Mice, Mutant Strains ; Mice, Obese ; Molecular Mimicry ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Conformation/drug effects ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1999-08-07
    Description: Calcium-permeable, stretch-activated nonselective cation (SA Cat) channels mediate cellular responses to mechanical stimuli. However, genes encoding such channels have not been identified in eukaryotes. The yeast MID1 gene product (Mid1) is required for calcium influx in the yeast Saccharomyces cerevisiae. Functional expression of Mid1 in Chinese hamster ovary cells conferred sensitivity to mechanical stress that resulted in increases in both calcium conductance and the concentration of cytosolic free calcium. These increases were dependent on the presence of extracellular calcium and were reduced by gadolinium, a blocker of SA Cat channels. Single-channel analyses with cell-attached patches revealed that Mid1 acts as a calcium-permeable, cation-selective stretch-activated channel with a conductance of 32 picosiemens at 150 millimolar cesium chloride in the pipette. Thus, Mid1 appears to be a eukaryotic, SA Cat channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanzaki, M -- Nagasawa, M -- Kojima, I -- Sato, C -- Naruse, K -- Sokabe, M -- Iida, H -- New York, N.Y. -- Science. 1999 Aug 6;285(5429):882-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10436155" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Calcium Channels/chemistry/genetics/*metabolism ; Cations/*metabolism ; Cell Membrane/metabolism ; Cell Membrane Permeability ; Cesium/metabolism ; Chlorides/pharmacology ; Cricetinae ; Fungal Proteins/chemistry/genetics/*metabolism ; Gadolinium/pharmacology ; Ion Channels/chemistry/genetics/*metabolism ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Membrane Potentials ; Molecular Sequence Data ; Patch-Clamp Techniques ; Pressure ; Saccharomyces cerevisiae/genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; Stress, Mechanical ; Transfection ; Zinc Compounds/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-11
    Description: In asexual populations, beneficial mutations that occur in different lineages compete with one another. This phenomenon, known as clonal interference, ensures that those beneficial mutations that do achieve fixation are of large effect. Clonal interference also increases the time between fixations, thereby slowing the adaptation of asexual populations. The effects of clonal interference were measured in the asexual RNA virus vesicular stomatitis virus; rates and average effects of beneficial mutations were quantified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miralles, R -- Gerrish, P J -- Moya, A -- Elena, S F -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1745-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de Genetica, Universitat de Valencia, Apartado 22085, 46071 Valencia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481012" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; Cell Line ; Confidence Intervals ; Cricetinae ; Gene Frequency ; Genes, Viral ; Likelihood Functions ; Models, Biological ; Models, Statistical ; *Mutation ; Vesicular stomatitis Indiana virus/genetics/*physiology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gura, T -- New York, N.Y. -- Science. 1999 May 7;284(5416):886.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10357667" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ascomycota/*metabolism ; CHO Cells ; Cricetinae ; Diabetes Mellitus, Type 2/*drug therapy ; Drug Evaluation, Preclinical ; Hypoglycemic Agents/chemistry/isolation & purification/metabolism/*therapeutic ; use ; Indoles/chemistry/isolation & purification/metabolism/*therapeutic use ; Insulin/metabolism/pharmacology ; Mice ; Mice, Mutant Strains ; Receptor, Insulin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: A variety of molecular chaperones and folding enzymes assist the folding of newly synthesized proteins in the endoplasmic reticulum. Here we investigated why some glycoproteins interact with the molecular chaperone BiP, and others with the calnexin/calreticulin pathway. The folding of Semliki forest virus glycoproteins and influenza hemagglutinin was studied in living cells. The initial choice of chaperone depended on the location of N-linked glycans in the growing nascent chain. Direct interaction with calnexin and calreticulin without prior interaction with BiP occurred if glycans were present within about 50 residues of the protein's NH2-terminus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Molinari, M -- Helenius, A -- New York, N.Y. -- Science. 2000 Apr 14;288(5464):331-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Federal Institute of Technology Zurich (ETHZ), Universitatstrasse 16, CH-8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10764645" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; CHO Cells ; Calcium-Binding Proteins/metabolism ; Calnexin ; Calreticulin ; Carrier Proteins/metabolism ; Chemical Precipitation ; Cricetinae ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; *Heat-Shock Proteins ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics/*metabolism ; Molecular Chaperones/*metabolism ; Molecular Weight ; Mutation ; Oxidation-Reduction ; Polysaccharides/chemistry ; Protein Conformation ; *Protein Folding ; Ribonucleoproteins/metabolism ; Semliki forest virus ; Viral Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2001-02-07
    Description: Somatostatin and dopamine are two major neurotransmitter systems that share a number of structural and functional characteristics. Somatostatin receptors and dopamine receptors are colocalized in neuronal subgroups, and somatostatin is involved in modulating dopamine-mediated control of motor activity. However, the molecular basis for such interaction between the two systems is unclear. Here, we show that dopamine receptor D2R and somatostatin receptor SSTR5 interact physically through hetero-oligomerization to create a novel receptor with enhanced functional activity. Our results provide evidence that receptors from different G protein (heterotrimeric guanine nucleotide binding protein)-coupled receptor families interact through oligomerization. Such direct intramembrane association defines a new level of molecular crosstalk between related G protein-coupled receptor subfamilies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rocheville, M -- Lange, D C -- Kumar, U -- Patel, S C -- Patel, R C -- Patel, Y C -- NS32160-05/NS/NINDS NIH HHS/ -- NS34339/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):154-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fraser Laboratories, Department of Medicine, McGill University and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753124" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Membrane/metabolism ; Cerebral Cortex/metabolism ; Colforsin/pharmacology ; Corpus Striatum/metabolism ; Cricetinae ; Cyclic AMP/metabolism ; Dimerization ; Dopamine D2 Receptor Antagonists ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Heterotrimeric GTP-Binding Proteins/metabolism ; Humans ; Ligands ; Male ; Neurons/metabolism ; Pyramidal Cells/metabolism ; Quinpirole/pharmacology ; Rats ; *Receptor Cross-Talk ; Receptors, Dopamine D2/agonists/genetics/*metabolism ; Receptors, Somatostatin/agonists/antagonists & inhibitors/genetics/*metabolism ; Somatostatin/metabolism/pharmacology ; Spiperone/pharmacology ; Sulpiride/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2000-01-15
    Description: Although gammadelta T cells are implicated in regulating immune responses, gammadelta T cell-ligand pairs that could mediate such regulatory functions have not been identified. Here, the expression of the major histocompatibility complex (MHC) class Ib T22 and the closely related T10 molecules is shown to be activation-induced, and they confer specificity to about 0.4% of the gammadelta T cells in normal mice. Thus, the increased expression of T22 and/or T10 might trigger immunoregulatory gammadelta T cells during immune responses. Furthermore, the fast on-rates and slow off-rates that characterize this receptor/ligand interaction would compensate for the low ligand stability and suggest a high threshold for gammadelta T cell activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crowley, M P -- Fahrer, A M -- Baumgarth, N -- Hampl, J -- Gutgemann, I -- Teyton, L -- Chien, Y -- AI33431/AI/NIAID NIH HHS/ -- AI34762-34/AI/NIAID NIH HHS/ -- AI42267/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):314-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Immunology, Department of Microbiology and Immunology, and Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634788" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cricetinae ; Dimerization ; Histocompatibility Antigens Class I/*immunology/metabolism ; Ligands ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Proteins/*immunology/metabolism ; Receptors, Antigen, T-Cell, alpha-beta/immunology/metabolism ; Receptors, Antigen, T-Cell, gamma-delta/*immunology/metabolism ; Spleen/cytology/immunology ; T-Lymphocyte Subsets/*immunology ; beta 2-Microglobulin/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2001-10-06
    Description: Although trafficking and degradation of several membrane proteins are regulated by ubiquitination catalyzed by E3 ubiquitin ligases, there has been little evidence connecting ubiquitination with regulation of mammalian G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) function. Agonist stimulation of endogenous or transfected beta2-adrenergic receptors (beta2ARs) led to rapid ubiquitination of both the receptors and the receptor regulatory protein, beta-arrestin. Moreover, proteasome inhibitors reduced receptor internalization and degradation, thus implicating a role for the ubiquitination machinery in the trafficking of the beta2AR. Receptor ubiquitination required beta-arrestin, which bound to the E3 ubiquitin ligase Mdm2. Abrogation of beta-arrestin ubiquitination, either by expression in Mdm2-null cells or by dominant-negative forms of Mdm2 lacking E3 ligase activity, inhibited receptor internalization with marginal effects on receptor degradation. However, a beta2AR mutant lacking lysine residues, which was not ubiquitinated, was internalized normally but was degraded ineffectively. These findings delineate an adapter role of beta-arrestin in mediating the ubiquitination of the beta2AR and indicate that ubiquitination of the receptor and of beta-arrestin have distinct and obligatory roles in the trafficking and degradation of this prototypic GPCR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shenoy, S K -- McDonald, P H -- Kohout, T A -- Lefkowitz, R J -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1307-13. Epub 2001 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Box 3821, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588219" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/*metabolism ; COS Cells ; Catalysis ; Cell Line ; Cricetinae ; Cricetulus ; Cysteine Endopeptidases/metabolism ; Humans ; Isoproterenol/pharmacology ; Ligases/metabolism ; Multienzyme Complexes/antagonists & inhibitors/metabolism ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Proteasome Endopeptidase Complex ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Receptors, Adrenergic, beta-2/genetics/*metabolism ; Recombinant Proteins/metabolism ; Transfection ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2001-12-18
    Description: The pore-forming subunits of canonical voltage-gated sodium and calcium channels are encoded by four repeated domains of six-transmembrane (6TM) segments. We expressed and characterized a bacterial ion channel (NaChBac) from Bacillus halodurans that is encoded by one 6TM segment. The sequence, especially in the pore region, is similar to that of voltage-gated calcium channels. The expressed channel was activated by voltage and was blocked by calcium channel blockers. However, the channel was selective for sodium. The identification of NaChBac as a functionally expressed bacterial voltage-sensitive ion-selective channel provides insight into both voltage-dependent activation and divalent cation selectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, D -- Navarro, B -- Xu, H -- Yue, L -- Shi, Q -- Clapham, D E -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2372-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Enders 1309, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743207" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacillus/*chemistry/genetics/metabolism ; *Bacterial Proteins ; CHO Cells ; COS Cells ; Calcium/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels/chemistry/metabolism ; Cricetinae ; Dihydropyridines/pharmacology ; Genes, Bacterial ; Ion Channel Gating ; Membrane Potentials ; Molecular Sequence Data ; Molecular Weight ; Open Reading Frames ; Patch-Clamp Techniques ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Sodium/*metabolism ; Sodium Channels/chemistry/*genetics/*metabolism ; Tetrodotoxin/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2001-06-26
    Description: Outer hair cells (OHCs) of the mammalian cochlea actively change their cell length in response to changes in membrane potential. This electromotility, thought to be the basis of cochlear amplification, is mediated by a voltage-sensitive motor molecule recently identified as the membrane protein prestin. Here, we show that voltage sensitivity is conferred to prestin by the intracellular anions chloride and bicarbonate. Removal of these anions abolished fast voltage-dependent motility, as well as the characteristic nonlinear charge movement ("gating currents") driving the underlying structural rearrangements of the protein. The results support a model in which anions act as extrinsic voltage sensors, which bind to the prestin molecule and thus trigger the conformational changes required for motility of OHCs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oliver, D -- He, D Z -- Klocker, N -- Ludwig, J -- Schulte, U -- Waldegger, S -- Ruppersberg, J P -- Dallos, P -- Fakler, B -- DC00089/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2340-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology II, University of Tubingen, 72074 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423665" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Anion Transport Proteins ; Anions/pharmacology ; Bicarbonates/*metabolism/pharmacology ; CHO Cells ; Cations/pharmacology ; Cell Membrane/metabolism ; Chlorides/*metabolism/pharmacology ; Cricetinae ; Electric Conductivity ; Electrophysiology ; Hair Cells, Auditory, Outer/*physiology ; Models, Biological ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Proteins/chemistry/genetics/*metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2002-04-20
    Description: Cadherins are transmembrane proteins that mediate adhesion between cells in the solid tissues of animals. Here we present the 3.1 angstrom resolution crystal structure of the whole, functional extracellular domain from C-cadherin, a representative "classical" cadherin. The structure suggests a molecular mechanism for adhesion between cells by classical cadherins, and it provides a new framework for understanding both cis (same cell) and trans (juxtaposed cell) cadherin interactions. The trans adhesive interface is a twofold symmetric interaction defined by a conserved tryptophan side chain at the membrane-distal end of a cadherin molecule from one cell, which inserts into a hydrophobic pocket at the membrane-distal end of a cadherin molecule from the opposing cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boggon, Titus J -- Murray, John -- Chappuis-Flament, Sophie -- Wong, Ellen -- Gumbiner, Barry M -- Shapiro, Lawrence -- NCI-P30-CA-08784/CI/NCPDCID CDC HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- R01 GM52717/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1308-13. Epub 2002 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964443" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CHO Cells ; Cadherins/*chemistry/genetics/metabolism ; *Cell Adhesion ; Cricetinae ; Crystallography, X-Ray ; Dimerization ; Glycosylation ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Tryptophan/chemistry ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1999-02-19
    Description: Gap junction membrane channels mediate electrical and metabolic coupling between adjacent cells. The structure of a recombinant cardiac gap junction channel was determined by electron crystallography at resolutions of 7.5 angstroms in the membrane plane and 21 angstroms in the vertical direction. The dodecameric channel was formed by the end-to-end docking of two hexamers, each of which displayed 24 rods of density in the membrane interior, which is consistent with an alpha-helical conformation for the four transmembrane domains of each connexin subunit. The transmembrane alpha-helical rods contrasted with the double-layered appearance of the extracellular domains. Although not indicative for a particular type of secondary structure, the protein density that formed the extracellular vestibule provided a tight seal to exclude the exchange of substances with the extracellular milieu.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Unger, V M -- Kumar, N M -- Gilula, N B -- Yeager, M -- New York, N.Y. -- Science. 1999 Feb 19;283(5405):1176-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, Division of Cardiovascular Diseases, Scripps Clinic, 10666 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10024245" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Connexin 43/*chemistry ; Cricetinae ; Crystallography ; Gap Junctions/*chemistry/ultrastructure ; Lipid Bilayers/chemistry ; Models, Molecular ; Mutation ; Myocardium/*chemistry/ultrastructure ; Protein Conformation ; *Protein Structure, Secondary ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1999-07-10
    Description: The specialized junction between a T lymphocyte and an antigen-presenting cell, the immunological synapse, consists of a central cluster of T cell receptors surrounded by a ring of adhesion molecules. Immunological synapse formation is now shown to be an active and dynamic mechanism that allows T cells to distinguish potential antigenic ligands. Initially, T cell receptor ligands were engaged in an outermost ring of the nascent synapse. Transport of these complexes into the central cluster was dependent on T cell receptor-ligand interaction kinetics. Finally, formation of a stable central cluster at the heart of the synapse was a determinative event for T cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grakoui, A -- Bromley, S K -- Sumen, C -- Davis, M M -- Shaw, A S -- Allen, P M -- Dustin, M L -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):221-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology and the Department of Pathology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398592" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology/metabolism ; Antigens, CD4/immunology/metabolism ; CHO Cells ; Cell Movement ; Cricetinae ; Cytochrome c Group/immunology/metabolism ; Fluorescence ; Histocompatibility Antigens/immunology/*metabolism ; Intercellular Adhesion Molecule-1/immunology/metabolism ; Ligands ; Lipid Bilayers ; *Lymphocyte Activation ; Mice ; Mice, Transgenic ; Microscopy, Interference ; Models, Immunological ; Peptides/immunology/metabolism ; Receptors, Antigen, T-Cell/immunology/*metabolism ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2000-09-01
    Description: Several nuclear hormone receptors involved in lipid metabolism form obligate heterodimers with retinoid X receptors (RXRs) and are activated by RXR agonists such as rexinoids. Animals treated with rexinoids exhibited marked changes in cholesterol balance, including inhibition of cholesterol absorption and repressed bile acid synthesis. Studies with receptor-selective agonists revealed that oxysterol receptors (LXRs) and the bile acid receptor (FXR) are the RXR heterodimeric partners that mediate these effects by regulating expression of the reverse cholesterol transporter, ABC1, and the rate-limiting enzyme of bile acid synthesis, CYP7A1, respectively. Thus, these RXR heterodimers serve as key regulators of cholesterol homeostasis by governing reverse cholesterol transport from peripheral tissues, bile acid synthesis in liver, and cholesterol absorption in intestine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Repa, J J -- Turley, S D -- Lobaccaro, J A -- Medina, J -- Li, L -- Lustig, K -- Shan, B -- Heyman, R A -- Dietschy, J M -- Mangelsdorf, D J -- R37 HL 09610/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1524-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968783" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters/genetics/*metabolism ; Animals ; Bile Acids and Salts/biosynthesis ; Biological Transport/drug effects ; Cholesterol/*metabolism ; Cholesterol 7-alpha-Hydroxylase/metabolism ; Cholesterol, Dietary/administration & dosage ; Cricetinae ; DNA-Binding Proteins/metabolism ; Dimerization ; Gene Expression Regulation/drug effects ; Glycoproteins/genetics/*metabolism ; Homeostasis/drug effects ; Intestinal Absorption/*drug effects ; Intestine, Small/*metabolism ; Ligands ; Liver/*metabolism ; Macrophages, Peritoneal/metabolism ; Male ; Mesocricetus ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Orphan Nuclear Receptors ; *Receptors, Cytoplasmic and Nuclear ; Receptors, Retinoic Acid/agonists/genetics/*metabolism ; Receptors, Thyroid Hormone/agonists/genetics/metabolism ; Retinoid X Receptors ; Transcription Factors/agonists/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, M W -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):451-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics and National Science Foundation Center for Biological Timing, The Rockefeller University, New York, NY 10021. young@rockvax.rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10798982" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks/genetics ; *Casein Kinase Iepsilon ; Casein Kinases ; Cell Cycle Proteins ; *Circadian Rhythm/genetics ; Cloning, Molecular ; Cricetinae ; Drosophila/genetics ; *Drosophila Proteins ; Genes, Insect ; Humans ; Intracellular Signaling Peptides and Proteins ; Mesocricetus ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phosphorylation ; Point Mutation ; Protein Kinases/chemistry/*genetics/*metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-26
    Description: The axonal chemoattractant netrin-1 guides spinal commissural axons by activating its receptor DCC (Deleted in Colorectal Cancer). We have found that chemical inhibitors of metalloproteases potentiate netrin-mediated axon outgrowth in vitro. We have also found that DCC is a substrate for metalloprotease-dependent ectodomain shedding, and that the inhibitors block proteolytic processing of DCC and cause an increase in DCC protein levels on axons within spinal cord explants. Thus, potentiation of netrin activity by inhibitors may result from stabilization of DCC on the axons, and proteolytic activity may regulate axon migration by controlling the number of functional extracellular axon guidance receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galko, M J -- Tessier-Lavigne, M -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1365-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958786" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; CHO Cells ; Cell Adhesion Molecules/chemistry/*metabolism ; Cricetinae ; Culture Techniques ; Growth Cones/physiology ; Metalloendopeptidases/antagonists & inhibitors/*metabolism ; Nerve Growth Factors/*metabolism ; Phenanthrolines/pharmacology ; Protease Inhibitors/pharmacology ; Rats ; Spinal Cord/*cytology/*enzymology/metabolism ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2000-04-25
    Description: The tau mutation is a semidominant autosomal allele that dramatically shortens period length of circadian rhythms in Syrian hamsters. We report the molecular identification of the tau locus using genetically directed representational difference analysis to define a region of conserved synteny in hamsters with both the mouse and human genomes. The tau locus is encoded by casein kinase I epsilon (CKIepsilon), a homolog of the Drosophila circadian gene double-time. In vitro expression and functional studies of wild-type and tau mutant CKIepsilon enzyme reveal that the mutant enzyme has a markedly reduced maximal velocity and autophosphorylation state. In addition, in vitro CKIepsilon can interact with mammalian PERIOD proteins, and the mutant enzyme is deficient in its ability to phosphorylate PERIOD. We conclude that tau is an allele of hamster CKIepsilon and propose a mechanism by which the mutation leads to the observed aberrant circadian phenotype in mutant animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869379/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869379/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lowrey, P L -- Shimomura, K -- Antoch, M P -- Yamazaki, S -- Zemenides, P D -- Ralph, M R -- Menaker, M -- Takahashi, J S -- R01MH56647/MH/NIMH NIH HHS/ -- R37MH39592/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):483-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Physiology, Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10775102" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Casein Kinases ; Cell Cycle Proteins ; Chromosome Mapping ; *Circadian Rhythm/genetics ; Cloning, Molecular ; Cricetinae ; Female ; Heterozygote ; Humans ; Male ; Mesocricetus ; Mice ; Microsatellite Repeats ; Molecular Sequence Data ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phenotype ; Phosphorylation ; *Point Mutation ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Protein Kinases/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Suprachiasmatic Nucleus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2000-12-23
    Description: Niemann-Pick type C2 disease (NP-C2) is a fatal hereditary disorder of unknown etiology characterized by defective egress of cholesterol from lysosomes. Here we show that the disease is caused by a deficiency in HE1, a ubiquitously expressed lysosomal protein identified previously as a cholesterol-binding protein. HE1 was undetectable in fibroblasts from NP-C2 patients but present in fibroblasts from unaffected controls and NP-C1 patients. Mutations in the HE1 gene, which maps to chromosome 14q24.3, were found in NP-C2 patients but not in controls. Treatment of NP-C2 fibroblasts with exogenous recombinant HE1 protein ameliorated lysosomal accumulation of low density lipoprotein-derived cholesterol.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naureckiene, S -- Sleat, D E -- Lackland, H -- Fensom, A -- Vanier, M T -- Wattiaux, R -- Jadot, M -- Lobel, P -- DK45992/DK/NIDDK NIH HHS/ -- DK54317/DK/NIDDK NIH HHS/ -- NS37918/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125141" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport ; CHO Cells ; *Carrier Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; Cholesterol/*metabolism ; Cricetinae ; Culture Media, Conditioned ; Fibroblasts/metabolism ; Glycoproteins/chemistry/*genetics/*metabolism/pharmacology ; Humans ; Lysosomes/*metabolism ; Molecular Sequence Data ; Mutation ; Niemann-Pick Diseases/*genetics/metabolism ; Rats ; Receptor, IGF Type 2/metabolism ; Recombinant Proteins/metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2001-12-26
    Description: The circadian clock in the suprachiasmatic nucleus (SCN) is thought to drive daily rhythms of behavior by secreting factors that act locally within the hypothalamus. In a systematic screen, we identified transforming growth factor-alpha (TGF-alpha) as a likely SCN inhibitor of locomotion. TGF-alpha is expressed rhythmically in the SCN, and when infused into the third ventricle it reversibly inhibited locomotor activity and disrupted circadian sleep-wake cycles. These actions are mediated by epidermal growth factor (EGF) receptors on neurons in the hypothalamic subparaventricular zone. Mice with a hypomorphic EGF receptor mutation exhibited excessive daytime locomotor activity and failed to suppress activity when exposed to light. These results implicate EGF receptor signaling in the daily control of locomotor activity, and identify a neural circuit in the hypothalamus that likely mediates the regulation of behavior both by the SCN and the retina.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kramer, A -- Yang, F C -- Snodgrass, P -- Li, X -- Scammell, T E -- Davis, F C -- Weitz, C J -- HD-18686/HD/NICHD NIH HHS/ -- MH62589/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2511-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/drug effects/physiology ; Body Temperature/drug effects ; Cerebral Ventricles/metabolism ; Circadian Rhythm/drug effects/*physiology ; Cricetinae ; Darkness ; Epidermal Growth Factor/pharmacology ; Female ; Hypothalamus/*metabolism ; Ligands ; Light ; Male ; Mesocricetus ; Mice ; *Motor Activity/drug effects ; Neural Pathways/physiology ; Neurons/metabolism ; Point Mutation ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Retina/metabolism ; Retinal Ganglion Cells/metabolism ; Signal Transduction ; Sleep/drug effects/*physiology ; Suprachiasmatic Nucleus/*metabolism ; Transforming Growth Factor alpha/administration & ; dosage/genetics/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2001-05-08
    Description: We demonstrate controlled rotation of optically trapped objects in a spiral interference pattern. This pattern is generated by interfering an annular shaped laser beam with a reference beam. Objects are trapped in the spiral arms of the pattern. Changing the optical path length causes this pattern, and thus the trapped objects, to rotate. Structures of silica microspheres, microscopic glass rods, and chromosomes are set into rotation at rates in excess of 5 hertz. This technique does not depend on intrinsic properties of the trapped particle and thus offers important applications in optical and biological micromachines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paterson, L -- MacDonald, M P -- Arlt, J -- Sibbett, W -- Bryant, P E -- Dholakia, K -- New York, N.Y. -- Science. 2001 May 4;292(5518):912-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Physics and Astronomy, St. Andrews University, North Haugh, St. Andrews, Fife KY16 9SS, Scotland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11340200" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chromosomes ; Cricetinae ; Cricetulus ; Glass ; *Lasers ; *Micromanipulation ; Microspheres ; Optics and Photonics ; *Rotation ; Silicon Dioxide
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2002-08-17
    Description: In striated muscle, the plasma membrane forms tubular invaginations (transverse tubules or T-tubules) that function in depolarization-contraction coupling. Caveolin-3 and amphiphysin were implicated in their biogenesis. Amphiphysin isoforms have a putative role in membrane deformation at endocytic sites. An isoform of amphiphysin 2 concentrated at T-tubules induced tubular plasma membrane invaginations when expressed in nonmuscle cells. This property required exon 10, a phosphoinositide-binding module. In developing myotubes, amphiphysin 2 and caveolin-3 segregated in tubular and vesicular portions of the T-tubule system, respectively. These findings support a role of the bilayer-deforming properties of amphiphysin at T-tubules and, more generally, a physiological role of amphiphysin in membrane deformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Eunkyung -- Marcucci, Melissa -- Daniell, Laurie -- Pypaert, Marc -- Weisz, Ora A -- Ochoa, Gian-Carlo -- Farsad, Khashayar -- Wenk, Markus R -- De Camilli, Pietro -- CA46128/CA/NCI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1193-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183633" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Caveolin 3 ; Caveolins/metabolism ; Cell Differentiation ; Cell Line ; Cell Membrane/metabolism ; Cell Membrane Structures/metabolism/*ultrastructure ; Cricetinae ; Dynamins ; Exons ; GTP Phosphohydrolases/metabolism ; Liposomes/metabolism ; Mice ; Microscopy, Electron ; Morphogenesis ; *Muscle Development ; Muscle, Skeletal/metabolism/*ultrastructure ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Protein Isoforms ; Protein Structure, Tertiary ; RNA, Small Interfering ; RNA, Untranslated/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2002-01-19
    Description: The separate components of nucleocytoplasmic transport have been well characterized, including the key regulatory role of Ran, a guanine nucleotide triphosphatase. However, the overall system behavior in intact cells is difficult to analyze because the dynamics of these components are interdependent. We used a combined experimental and computational approach to study Ran transport in vivo. The resulting model provides the first quantitative picture of Ran flux between the nuclear and cytoplasmic compartments in eukaryotic cells. The model predicts that the Ran exchange factor RCC1, and not the flux capacity of the nuclear pore complex (NPC), is the crucial regulator of steady-state flux across the NPC. Moreover, it provides the first estimate of the total in vivo flux (520 molecules per NPC per second and predicts that the transport system is robust.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Alicia E -- Slepchenko, Boris M -- Schaff, James C -- Loew, Leslie M -- Macara, Ian G -- GM-50526/GM/NIGMS NIH HHS/ -- NCRR-RR13186/RR/NCRR NIH HHS/ -- NIH-GM-20438/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):488-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cell Signaling, Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799242" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; *Cell Cycle Proteins ; Cell Line ; Cell Nucleus/metabolism ; *Computer Simulation ; Cricetinae ; Cytoplasm/metabolism ; Diffusion ; Fluorescence ; Guanine Nucleotide Exchange Factors/metabolism ; Guanosine Triphosphate/metabolism ; Kinetics ; Mathematics ; *Models, Biological ; Mutation ; Nuclear Pore/*metabolism ; *Nuclear Proteins ; Nucleocytoplasmic Transport Proteins/metabolism ; Recombinant Proteins/metabolism ; Temperature ; ran GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1998-06-11
    Description: A human member of the immunoglobulin superfamily was shown to mediate entry of several alphaherpesviruses, including herpes simplex viruses (HSV) 1 and 2, porcine pseudorabies virus (PRV), and bovine herpesvirus 1 (BHV-1). This membrane glycoprotein is poliovirus receptor-related protein 1 (Prr1), designated here as HveC. Incubation of HSV-1 with a secreted form of HveC inhibited subsequent infection of a variety of cell lines, suggesting that HveC interacts directly with the virus. Poliovirus receptor (Pvr) itself mediated entry of PRV and BHV-1 but not of the HSV strains tested. HveC was expressed in human cells of epithelial and neuronal origin; it is the prime candidate for the coreceptor that allows both HSV-1 and HSV-2 to infect epithelial cells on mucosal surfaces and spread to cells of the nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geraghty, R J -- Krummenacher, C -- Cohen, G H -- Eisenberg, R J -- Spear, P G -- NS-30606/NS/NINDS NIH HHS/ -- NS-36731/NS/NINDS NIH HHS/ -- R01 AI 36293/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1618-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616127" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaherpesvirinae/*physiology ; Animals ; Base Sequence ; CHO Cells ; Cell Adhesion Molecules/genetics/*physiology ; Cells, Cultured ; Cricetinae ; Epithelial Cells/virology ; Gene Expression ; Herpesvirus 1, Bovine/physiology ; Herpesvirus 1, Human/*physiology ; Herpesvirus 1, Suid/physiology ; Herpesvirus 2, Human/*physiology ; Humans ; *Membrane Proteins ; Molecular Sequence Data ; Neurons/virology ; Polymerase Chain Reaction ; *Receptors, Virus ; Transfection ; Tumor Cells, Cultured ; Viral Envelope Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2000-01-05
    Description: The mitogen-activated protein (MAP) kinase cascade is inactivated at the level of MAP kinase by members of the MAP kinase phosphatase (MKP) family, including MKP-1. MKP-1 was a labile protein in CCL39 hamster fibroblasts; its degradation was attenuated by inhibitors of the ubiquitin-directed proteasome complex. MKP-1 was a target in vivo and in vitro for p42(MAPK) or p44(MAPK), which phosphorylates MKP-1 on two carboxyl-terminal serine residues, Serine 359 and Serine 364. This phosphorylation did not modify MKP-1's intrinsic ability to dephosphorylate p44(MAPK) but led to stabilization of the protein. These results illustrate the importance of regulated protein degradation in the control of mitogenic signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brondello, J M -- Pouyssegur, J -- McKenzie, F R -- GM26939/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2514-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 33 Avenue de Valombrose, Nice 06189, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617468" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood ; *Cell Cycle Proteins ; Cell Division ; Cell Line ; Cricetinae ; Culture Media ; Cysteine Endopeptidases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Dual Specificity Phosphatase 1 ; Estradiol/pharmacology ; Humans ; Immediate-Early Proteins/chemistry/*metabolism ; Leucine/analogs & derivatives/pharmacology ; Leupeptins/pharmacology ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 1/*metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/*metabolism ; Multienzyme Complexes/metabolism ; Mutation ; Nitrophenols/metabolism ; Organophosphorus Compounds/metabolism ; *Phosphoprotein Phosphatases ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/chemistry/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1999-03-26
    Description: p21-activated kinases (PAKs) are implicated in the cytoskeletal changes induced by the Rho family of guanosine triphosphatases. Cytoskeletal dynamics are primarily modulated by interactions of actin and myosin II that are regulated by myosin light chain kinase (MLCK)-mediated phosphorylation of the regulatory myosin light chain (MLC). p21-activated kinase 1 (PAK1) phosphorylates MLCK, resulting in decreased MLCK activity. MLCK activity and MLC phosphorylation were decreased, and cell spreading was inhibited in baby hamster kidney-21 and HeLa cells expressing constitutively active PAK1. These data indicate that MLCK is a target for PAKs and that PAKs may regulate cytoskeletal dynamics by decreasing MLCK activity and MLC phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanders, L C -- Matsumura, F -- Bokoch, G M -- de Lanerolle, P -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2083-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Immunology and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Movement ; Cell Size ; Cricetinae ; Cytoskeleton/*physiology ; Diacetyl/analogs & derivatives/pharmacology ; GTP Phosphohydrolases/metabolism ; GTP-Binding Proteins/metabolism ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins ; Myosin Light Chains/*metabolism ; Myosin-Light-Chain Kinase/*antagonists & inhibitors/metabolism ; Myosins/physiology ; Phosphorylation ; Phosphoserine/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Signal Transduction ; cdc42 GTP-Binding Protein ; p21-Activated Kinases ; rac GTP-Binding Proteins ; rho-Associated Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: The transmissible spongiform encephalopathies (TSEs) are fatal, neurodegenerative diseases for which no effective treatments are available. The likelihood that a bovine form of TSE has crossed species barriers and infected humans underscores the urgent need to identify anti-TSE drugs. Certain cyclic tetrapyrroles (porphyrins and phthalocyanines) have recently been shown to inhibit the in vitro formation of PrP-res, a protease-resistant protein critical for TSE pathogenesis. We now report that treatment of TSE-infected animals with three such compounds increased survival time from 50 to 300%. The significant inhibition of TSE disease by structurally dissimilar tetrapyrroles identifies these compounds as anti-TSE drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Priola, S A -- Raines, A -- Caughey, W S -- AG04342/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1503-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. spriola@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688802" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/drug effects/metabolism ; Cricetinae ; Deuteroporphyrins/chemistry/metabolism/*pharmacology/therapeutic use ; Disease Progression ; Ferric Compounds/chemistry/metabolism/*pharmacology/therapeutic use ; Indoles/chemistry/metabolism/*pharmacology/therapeutic use ; Metalloporphyrins/chemistry/metabolism/*pharmacology/therapeutic use ; Mice ; Mice, Transgenic ; Porphyrins/chemistry/metabolism/*pharmacology/therapeutic use ; PrPSc Proteins/*drug effects/metabolism ; Scrapie/*drug therapy ; Spleen/drug effects ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2000-10-29
    Description: An unusual property of the circadian timekeeping systems of animals is rhythm "splitting," in which a single daily period of physical activity (usually measured as wheel running) dissociates into two stably coupled components about 12 hours apart; this behavior has been ascribed to a clock composed of two circadian oscillators cycling in antiphase. We analyzed gene expression in the hypothalamic circadian clock, the suprachiasmatic nucleus (SCN), of behaviorally "split" hamsters housed in constant light. The results show that the two oscillators underlying the split condition correspond to the left and right sides of the bilaterally paired SCN.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de la Iglesia, H O -- Meyer, J -- Carpino, A Jr -- Schwartz, W J -- R01 NS24542/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):799-801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA. hacho@bio.umass.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11052942" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Arginine Vasopressin/genetics/metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks/*physiology ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Cricetinae ; *Gene Expression ; Helix-Loop-Helix Motifs ; In Situ Hybridization ; Light ; Male ; Mesocricetus ; Motor Activity ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Suprachiasmatic Nucleus/metabolism/*physiology ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2002-01-19
    Description: Sympathetic nervous system (SNS) regulation of cardiac action potential duration (APD) is mediated by beta adrenergic receptor (betaAR) activation, which increases the slow outward potassium ion current (IKS). Mutations in two human I(KS) channel subunits, hKCNQ1 and hKCNE1, prolong APD and cause inherited cardiac arrhythmias known as LQTS (long QT syndrome). We show that betaAR modulation of I(KS) requires targeting of adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) and protein phosphatase 1 (PP1) to hKCNQ1 through the targeting protein yotiao. Yotiao binds to hKCNQ1 by a leucine zipper motif, which is disrupted by an LQTS mutation (hKCNQ1-G589D). Identification of the hKCNQ1 macromolecular complex provides a mechanism for SNS modulation of cardiac APD through IKS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Steven O -- Kurokawa, Junko -- Reiken, Steven -- Motoike, Howard -- D'Armiento, Jeanine -- Marks, Andrew R -- Kass, Robert S -- P01HL67849-01/HL/NHLBI NIH HHS/ -- R01-AI39794/AI/NIAID NIH HHS/ -- R01-HL44365-07/HL/NHLBI NIH HHS/ -- R01-HL56180/HL/NHLBI NIH HHS/ -- R01-HL56810-05/HL/NHLBI NIH HHS/ -- R01-HL61503/HL/NHLBI NIH HHS/ -- R01-HL68093/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):496-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Center for Molecular Cardiology, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799244" target="_blank"〉PubMed〈/a〉
    Keywords: 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; A Kinase Anchor Proteins ; Action Potentials ; *Adaptor Proteins, Signal Transducing ; Amino Acid Substitution ; Animals ; CHO Cells ; Carrier Proteins/*metabolism ; Cricetinae ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/*metabolism ; Cytoskeletal Proteins/*metabolism ; Humans ; KCNQ Potassium Channels ; KCNQ1 Potassium Channel ; Leucine Zippers ; Macromolecular Substances ; Mice ; Mice, Transgenic ; Mutation ; Myocardium/cytology/*metabolism ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Potassium/metabolism ; Potassium Channels/chemistry/genetics/*metabolism ; *Potassium Channels, Voltage-Gated ; Protein Phosphatase 1 ; Receptors, Adrenergic, beta/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2002-12-10
    Description: The Frizzled-2 receptor (Rfz2) from rat binds Wnt proteins and can signal by activating calcium release from intracellular stores. We show that wild-type Rfz2 and a chimeric receptor consisting of the extracellular and transmembrane portions of the beta2-adrenergic receptor with cytoplasmic domains of Rfz2 also signaled through modulation of cyclic guanosine 3',5'-monophosphate (cGMP). Activation of either receptor led to a decline in the intracellular concentration of cGMP, a process that was inhibited in cells treated with pertussis toxin, reduced by suppression of the expression of the heterotrimeric GTP-binding protein (G protein) transducin, and suppressed through inhibition of cGMP-specific phosphodiesterase (PDE) activity. Moreover, PDE inhibitors blocked Rfz2-induced calcium transients in zebrafish embryos. Thus, Frizzled-2 appears to couple to PDEs and calcium transients through G proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahumada, Adriana -- Slusarski, Diane C -- Liu, Xunxian -- Moon, Randall T -- Malbon, Craig C -- Wang, Hsien-yu -- T32-DK07521/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):2006-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Center, University Medical Center, SUNY-Stony Brook, Stony Brook, NY 11794-8651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471263" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Cricetinae ; Culture Media, Conditioned ; Cyclic GMP/*metabolism ; Embryo, Nonmammalian/metabolism ; Frizzled Receptors ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Molecular Sequence Data ; Pertussis Toxin/pharmacology ; Phosphodiesterase Inhibitors/pharmacology ; Phosphoric Diester Hydrolases/*metabolism ; Rats ; Receptors, Adrenergic, beta-2/chemistry/metabolism ; Receptors, G-Protein-Coupled ; Receptors, Neurotransmitter/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; *Signal Transduction ; Transducin/genetics/metabolism ; Transfection ; Tumor Cells, Cultured ; Zebrafish
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1997-06-20
    Description: A leucine-rich nuclear export signal (NES) allows rapid export of proteins from cell nuclei. Microinjection studies revealed a role for the guanosine triphosphatase (GTPase) Ran in NES-mediated export. Nuclear injection of a Ran mutant (Thr24 --〉 Asn) blocked protein export but not import, whereas depletion of the Ran nucleotide exchange factor RCC1 blocked protein import but not export. However, injection of Ran GTPase-activating protein (RanGAP) into RCC1-depleted cell nuclei inhibited export. Coinjection with Ran mutants insensitive to RanGAP prevented this inhibition. Therefore, NES-mediated protein export appears to require a Ran-GTP complex but does not require Ran-dependent GTP hydrolysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richards, S A -- Carey, K L -- Macara, I G -- EST3207122/ES/NIEHS NIH HHS/ -- GM 50526/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1842-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Vermont, Burlington, VT 05405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9188526" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; Carrier Proteins/metabolism ; *Cell Cycle Proteins ; Cell Line ; Cell Nucleus/*metabolism ; Cricetinae ; Cytoplasm ; DNA-Binding Proteins/metabolism ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/metabolism ; *GTPase-Activating Proteins ; Glutathione Transferase/metabolism ; Green Fluorescent Proteins ; *Guanine Nucleotide Exchange Factors ; Guanosine Triphosphate/*metabolism ; Luminescent Proteins/metabolism ; Mutation ; Nuclear Envelope/metabolism ; Nuclear Localization Signals ; Nuclear Proteins/genetics/*metabolism ; Receptors, Glucocorticoid/metabolism ; Recombinant Fusion Proteins/metabolism ; Temperature ; ran GTP-Binding Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1989-10-27
    Description: Host cell factors act together with regulatory genes of the human immunodeficiency virus (HIV) to control virus production. Human-Chinese hamster ovary hybrid cell clones were used to probe for human chromosomes involved in regulating HIV gene expression. DNA transfection experiments showed that 4 of 18 clones had high levels of HIV gene expression measured by both extracellular virus production and transactivation of the HIV long terminal repeat in the presence of the trans-activator (tat) gene. Karyotype analyses revealed a 94% concordance (17/18) between human chromosome 12 and HIV gene expression. Other chromosomes had an 11 to 72% concordance with virus production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hart, C E -- Ou, C Y -- Galphin, J C -- Moore, J -- Bacheler, L T -- Wasmuth, J J -- Petteway, S R Jr -- Schochetman, G -- New York, N.Y. -- Science. 1989 Oct 27;246(4929):488-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centers for Disease Control, Atlanta, GA 30333.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2683071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chloramphenicol O-Acetyltransferase/genetics ; *Chromosomes, Human, Pair 12 ; Cricetinae ; Cricetulus ; Gene Expression Regulation, Viral/*genetics ; Genes, tat ; HIV-1/*genetics ; Humans ; Hybrid Cells ; Repetitive Sequences, Nucleic Acid ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1989-10-13
    Description: Autologous peripheral nerve grafts were used to permit and direct the regrowth of retinal ganglion cell axons from the eye to the ipsilateral superior colliculus of adult hamsters in which the optic nerves had been transected within the orbit. Extracellular recordings in the superior colliculus 15 to 18 weeks after graft insertion revealed excitatory and inhibitory postsynaptic responses to visual stimulation. The finding of light-induced responses in neurons in the superficial layers of the superior colliculus close to the graft indicates that axons regenerating from axotomized retinal ganglion cells can establish electrophysiologically functional synapses with neurons in the superior colliculus of these adult mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keirstead, S A -- Rasminsky, M -- Fukuda, Y -- Carter, D A -- Aguayo, A J -- Vidal-Sanz, M -- New York, N.Y. -- Science. 1989 Oct 13;246(4927):255-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurosciences Unit, Montreal General Hospital, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2799387" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Animals ; Axons/physiology ; Cricetinae ; Mesocricetus ; Nerve Regeneration/*physiology ; Optic Nerve/*physiology ; Photic Stimulation ; Retinal Ganglion Cells/physiology ; Superior Colliculi/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-10
    Description: A method was developed for selectively isolating genes from localized regions of the human genome that are contained in interspecific hybrid cells. Complementary human DNA was prepared from a human-rodent somatic cell hybrid that contained less than 1% human DNA, by using consensus 5' intron splice sequences as primers. These primers would select immature, unspliced messenger RNA (still retaining species-specific repeat sequences) as templates. Screening a derived complementary DNA library for human repeat sequences resulted in the isolation of human clones at the anticipated frequency with characteristics expected of exons of transcribed human genes--single copy sequences that hybridized to discrete bands on Northern (RNA) blots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, P -- Legerski, R -- Siciliano, M J -- GM19436/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 10;246(4931):813-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blotting, Northern ; Blotting, Southern ; Chromosome Mapping ; Chromosomes, Human, Pair 19 ; Cloning, Molecular ; Cricetinae ; DNA/biosynthesis/genetics/*isolation & purification ; Humans ; *Hybrid Cells ; Introns ; Nucleic Acid Hybridization ; RNA/genetics ; Repetitive Sequences, Nucleic Acid ; Restriction Mapping ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-09
    Description: Short RNA aptamers that specifically bind to a wide variety of ligands in vitro can be isolated from randomized pools of RNA. Here it is shown that small molecule aptamers also bound their ligand in vivo, enabling development of a method for controlling gene expression in living cells. Insertion of a small molecule aptamer into the 5' untranslated region of a messenger RNA allowed its translation to be repressible by ligand addition in vitro as well as in mammalian cells. The ability of small molecules to control expression of specific genes could facilitate studies in many areas of biology and medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werstuck, G -- Green, M R -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):296-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical Center, 373 Plantation Street, Suite 309, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9765156" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*metabolism/pharmacology ; Base Sequence ; Benzimidazoles/pharmacology ; Bisbenzimidazole/*metabolism/pharmacology ; CHO Cells ; Cricetinae ; Drug Resistance, Microbial ; Escherichia coli/genetics ; *Gene Expression Regulation/drug effects ; Kanamycin/metabolism/pharmacology ; Ligands ; Molecular Sequence Data ; Protein Biosynthesis/drug effects ; RNA/*metabolism ; RNA, Messenger/genetics ; Tobramycin/metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1998-02-28
    Description: At the endoplasmic reticulum membrane, the prion protein (PrP) can be synthesized in several topological forms. The role of these different forms was explored with transgenic mice expressing PrP mutations that alter the relative ratios of the topological forms. Expression of a particular transmembrane form (termed CtmPrP) produced neurodegenerative changes in mice similar to those of some genetic prion diseases. Brains from these mice contained CtmPrP but not PrPSc, the PrP isoform responsible for transmission of prion diseases. Furthermore, in one heritable prion disease of humans, brain tissue contained CtmPrP but not PrPSc. Thus, aberrant regulation of protein biogenesis and topology at the endoplasmic reticulum can result in neurodegeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hegde, R S -- Mastrianni, J A -- Scott, M R -- DeFea, K A -- Tremblay, P -- Torchia, M -- DeArmond, S J -- Prusiner, S B -- Lingappa, V R -- AG02132/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 6;279(5352):827-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9452375" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/metabolism/pathology ; Cricetinae ; Endopeptidases/metabolism ; Endoplasmic Reticulum/chemistry/*metabolism ; Gerstmann-Straussler-Scheinker Disease/metabolism ; Humans ; Intracellular Membranes/chemistry ; Mesocricetus ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Neurodegenerative Diseases/*etiology/metabolism/pathology ; PrPC Proteins/biosynthesis/*chemistry/genetics/*metabolism ; PrPSc Proteins/chemistry/metabolism ; Prion Diseases/etiology/metabolism/pathology ; Prions/biosynthesis/*chemistry/genetics/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1998-10-23
    Description: Patients with abetalipoproteinemia, a disease caused by defects in the microsomal triglyceride transfer protein (MTP), do not produce apolipoprotein B-containing lipoproteins. It was hypothesized that small molecule inhibitors of MTP would prevent the assembly and secretion of these atherogenic lipoproteins. To test this hypothesis, two compounds identified in a high-throughput screen for MTP inhibitors were used to direct the synthesis of a highly potent MTP inhibitor. This molecule (compound 9) inhibited the production of lipoprotein particles in rodent models and normalized plasma lipoprotein levels in Watanabe-heritable hyperlipidemic (WHHL) rabbits, which are a model for human homozygous familial hypercholesterolemia. These results suggest that compound 9, or derivatives thereof, has potential applications for the therapeutic lowering of atherogenic lipoprotein levels in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wetterau, J R -- Gregg, R E -- Harrity, T W -- Arbeeny, C -- Cap, M -- Connolly, F -- Chu, C H -- George, R J -- Gordon, D A -- Jamil, H -- Jolibois, K G -- Kunselman, L K -- Lan, S J -- Maccagnan, T J -- Ricci, B -- Yan, M -- Young, D -- Chen, Y -- Fryszman, O M -- Logan, J V -- Musial, C L -- Poss, M A -- Robl, J A -- Simpkins, L M -- Slusarchyk, W A -- Sulsky, R -- Taunk, P -- Magnin, D R -- Tino, J A -- Lawrence, R M -- Dickson, J K Jr -- Biller, S A -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):751-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Metabolic Diseases, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-4000, USA. Wetterau_John_R@msmail.bms.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784135" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine Transaminase/blood ; Animals ; Apolipoproteins B/*blood ; Aspartate Aminotransferases/blood ; Carrier Proteins/*antagonists & inhibitors ; Cholesterol/*blood ; Cricetinae ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Drug Design ; Drug Evaluation, Preclinical ; Fluorenes/chemistry/pharmacokinetics/*pharmacology ; Humans ; Hyperlipidemias/blood/drug therapy ; Hyperlipoproteinemia Type II/*blood/drug therapy ; Lipids/blood ; Lipoproteins/blood ; Liver/metabolism ; Mice ; Piperidines/chemistry/pharmacokinetics/*pharmacology ; Rabbits ; Rats ; Triglycerides/*blood/metabolism ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-07-25
    Description: Transport of membrane proteins between intracellular compartments requires specific sequences in the protein cytoplasmic domain to direct packaging into vesicle shuttles. A sequence that mediates export from the endoplasmic reticulum (ER) has proved elusive. A di-acidic signal (Asp-X-Glu, where X represents any amino acid) on the cytoplasmic tail of vesicular stomatitis virus glycoprotein (VSV-G) and other cargo molecules was required for efficient recruitment to vesicles mediating export from the ER in baby hamster kidney cells. The existence of such a signal provides evidence that export from the ER occurs through a selective mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, N -- Balch, W E -- GM 42336/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 25;277(5325):556-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9228004" target="_blank"〉PubMed〈/a〉
    Keywords: Acid Phosphatase/metabolism ; Amino Acid Sequence ; Animals ; Biological Transport ; Cell Line ; Cricetinae ; Cytoplasm/chemistry ; Endoplasmic Reticulum/*metabolism ; Golgi Apparatus/metabolism ; *Membrane Glycoproteins ; Membrane Proteins/*chemistry/*metabolism ; Molecular Sequence Data ; Mutation ; Protein Folding ; Protein Sorting Signals/chemistry/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Viral Envelope Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1990-02-09
    Description: The control of cellular senescence by specific human chromosomes was examined in interspecies cell hybrids between diploid human fibroblasts and an immortal, Syrian hamster cell line. Most such hybrids exhibited a limited life span comparable to that of the human fibroblasts, indicating that cellular senescence is dominant in these hybrids. Karyotypic analyses of the hybrid clones that did not senesce revealed that all these clones had lost both copies of human chromosome 1, whereas all other human chromosomes were observed in at least some of the immortal hybrids. The application of selective pressure for retention of human chromosome 1 to the cell hybrids resulted in an increased percentage of hybrids that senesced. Further, the introduction of a single copy of human chromosome 1 to the hamster cells by microcell fusion caused typical signs of cellular senescence. Transfer of chromosome 11 had no effect on the growth of the cells. These findings indicate that human chromosome 1 may participate in the control of cellular senescence and further support a genetic basis for cellular senescence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sugawara, O -- Oshimura, M -- Koi, M -- Annab, L A -- Barrett, J C -- New York, N.Y. -- Science. 1990 Feb 9;247(4943):707-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2300822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Survival/*genetics ; Chromosome Mapping ; *Chromosomes, Human, Pair 1 ; Clone Cells ; Cricetinae ; Diploidy ; Fibroblasts/*cytology ; Humans ; Hybrid Cells/*cytology ; Hypoxanthine Phosphoribosyltransferase/genetics ; Karyotyping ; Mice ; Ploidies ; Transfection ; Translocation, Genetic ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1990-06-22
    Description: The vast repertoire of immunoglobulins and T cell receptors is generated, in part, by V(D)J recombination, a series of genomic rearrangements that occur specifically in developing lymphocytes. The recombination activating gene, RAG-1, which is a gene expressed exclusively in maturing lymphoid cells, was previously isolated. RAG-1 inefficiently induced V(D)J recombinase activity when transfected into fibroblasts, but cotransfection with an adjacent gene, RAG-2, has resulted in at least a 1000-fold increase in the frequency of recombination. The 2.1-kilobase RAG-2 complementary DNA encodes a putative protein of 527 amino acids whose sequence is unrelated to that of RAG-1. Like RAG-1, RAG-2 is conserved between species that carry out V(D)J recombination, and its expression pattern correlates precisely with that of V(D)J recombinase activity. In addition to being located just 8 kilobases apart, these convergently transcribed genes are unusual in that most, if not all, of their coding and 3' untranslated sequences are contained in single exons. RAG-1 and RAG-2 might activate the expression of the V(D)J recombinase but, more likely, they directly participate in the recombination reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oettinger, M A -- Schatz, D G -- Gorka, C -- Baltimore, D -- GM39458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 22;248(4962):1517-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2360047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biological Evolution ; Cattle ; Cell Line ; Chickens ; Cricetinae ; DNA/*genetics ; DNA Nucleotidyltransferases/*genetics ; *DNA-Binding Proteins ; Dogs ; Female ; *Gene Rearrangement, B-Lymphocyte ; *Gene Rearrangement, T-Lymphocyte ; *Homeodomain Proteins ; Humans ; Male ; Mice ; Molecular Sequence Data ; *Multigene Family ; Nuclear Proteins ; Nucleic Acid Hybridization ; Opossums ; Proteins/*genetics ; Rabbits ; Recombination, Genetic/*genetics ; Restriction Mapping ; Transfection ; Turtles ; VDJ Recombinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1990-06-08
    Description: Lighting cycles synchronize (entrain) mammalian circadian rhythms by altering activity of cells in the suprachiasmatic nucleus (SCN) of the hypothalamus, a circadian pacemaker. Exposure of hamsters and rats to light pulses at those phases of the circadian rhythm during which light can shift the rhythm caused increased immunoreactivity for the product of the immediate-early gene c-fos in cells in the region of the SCN that receives retinal fibers. Light pulses also increased messenger RNA for the Fos protein and for the immediate-early protein NGFI-A in the rat SCN. Similar increases in mRNA for NGFI-A were seen in the SCN of hamsters. Thus cells in this portion of the SCN undergo alterations in gene expression in response to retinal illumination, but only at times in the circadian cycle when light is capable of influencing entrainment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rusak, B -- Robertson, H A -- Wisden, W -- Hunt, S P -- New York, N.Y. -- Science. 1990 Jun 8;248(4960):1237-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2112267" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Circadian Rhythm ; Cricetinae ; Darkness ; *Gene Expression ; Light ; Nerve Growth Factors/*genetics ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-fos ; *Proto-Oncogenes ; RNA, Messenger/*analysis/genetics ; Rats ; Suprachiasmatic Nucleus/*physiology/radiation effects ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1990-06-15
    Description: Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen responsible for considerable morbidity in the general population. The results presented herein establish the basic fibroblast growth factor (FGF) receptor as a means of entry of HSV-1 into vertebrate cells. Inhibitors of basic FGF binding to its receptor and competitive polypeptide antagonists of basic FGF prevented HSV-1 uptake. Chinese hamster ovary (CHO) cells that do not express FGF receptors are resistant to HSV-1 entry; however, HSV-1 uptake is dramatically increased in CHO cells transfected with a complementary DNA encoding a basic FGF receptor. The distribution of this integral membrane protein in vivo may explain the tissue and cell tropism of HSV-1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaner, R J -- Baird, A -- Mansukhani, A -- Basilico, C -- Summers, B D -- Florkiewicz, R Z -- Hajjar, D P -- P01 DK 18811/DK/NIDDK NIH HHS/ -- P01 HD 96601/HD/NICHD NIH HHS/ -- P50 HL 18828/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jun 15;248(4961):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2162560" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Amino Acid Sequence ; Animals ; Binding, Competitive ; Cell Line ; Cell Membrane/microbiology ; Cricetinae ; DNA/genetics ; Fibroblast Growth Factors/antagonists & inhibitors/metabolism/pharmacology ; Heparitin Sulfate/metabolism ; Molecular Sequence Data ; Peptide Fragments/pharmacology ; Receptors, Cell Surface/genetics/*physiology ; Receptors, Fibroblast Growth Factor ; Simplexvirus/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1991-02-08
    Description: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis. In order to evaluate its function, CFTR was expressed in HeLa, Chinese hamster ovary (CHO), and NIH 3T3 fibroblast cells, and anion permeability was assessed with a fluorescence microscopic assay and the whole-cell patch-clamp technique. Adenosine 3',5'-monophosphate (cAMP) increased anion permeability and chloride currents in cells expressing CFTR, but not in cells expressing a mutant CFTR (delta F508) or in nontransfected cells. The simplest interpretation of these observations is that CFTR is itself a cAMP-activated chloride channel. The alternative interpretation, that CFTR directly or indirectly regulates chloride channels, requires that these cells have endogenous cryptic, chloride channels that are stimulated by cAMP only in the presence of CFTR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, M P -- Rich, D P -- Gregory, R J -- Smith, A E -- Welsh, M J -- New York, N.Y. -- Science. 1991 Feb 8;251(4994):679-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1704151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chloride Channels ; Chlorides/*metabolism ; Cricetinae ; Cyclic AMP/*physiology ; Cystic Fibrosis Transmembrane Conductance Regulator ; Humans ; Membrane Proteins/*metabolism/*physiology ; Mice ; Mutation ; Recombinant Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1989-06-23
    Description: Adipsin is a serine protease that is secreted by adipocytes into the bloodstream; it is deficient in several animal models of obesity, representing a striking example of defective gene expression in this disorder. Recombinant mouse adipsin was purified and its biochemical and enzymatic properties were studied in order to elucidate the function of this protein. Activated adipsin has little or no proteolytic activity toward most substrates but has the same activity as human complement factor D, cleaving complement factor B when it is complexed with activated complement component C3. Like authentic factor D, adipsin can activate the alternative pathway of complement, resulting in red blood cell lysis. Decreased (58 to 80 percent) complement factor D activity, relative to lean controls, was observed as a common feature of several experimental models of obesity, including the ob/ob, db/db, and monosodium glutamate (MSG)-injected mouse and the fa/fa rat. These results suggest that adipsin and the alternative pathway of complement may play an unexpected but important role in the regulation of systemic energy balance in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosen, B S -- Cook, K S -- Yaglom, J -- Groves, D L -- Volanakis, J E -- Damm, D -- White, T -- Spiegelman, B M -- DK31403/DK/NIDDK NIH HHS/ -- DK34605/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Jun 23;244(4911):1483-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2734615" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Complement Activating Enzymes/*metabolism ; Complement Factor D/*metabolism ; Complement Pathway, Alternative ; Cricetinae ; DNA/genetics ; Gene Expression Regulation ; Humans ; Immunoblotting ; Mice ; Molecular Sequence Data ; Obesity/genetics/*immunology/metabolism ; RNA, Messenger/metabolism ; Recombinant Proteins ; Serine Endopeptidases/genetics/isolation & purification/*metabolism ; Substrate Specificity ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1989-09-08
    Description: An understanding of the basic defect in the inherited disorder cystic fibrosis requires cloning of the cystic fibrosis gene and definition of its protein product. In the absence of direct functional information, chromosomal map position is a guide for locating the gene. Chromosome walking and jumping and complementary DNA hybridization were used to isolate DNA sequences, encompassing more than 500,000 base pairs, from the cystic fibrosis region on the long arm of human chromosome 7. Several transcribed sequences and conserved segments were identified in this cloned region. One of these corresponds to the cystic fibrosis gene and spans approximately 250,000 base pairs of genomic DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rommens, J M -- Iannuzzi, M C -- Kerem, B -- Drumm, M L -- Melmer, G -- Dean, M -- Rozmahel, R -- Cole, J L -- Kennedy, D -- Hidaka, N -- DK34944/DK/NIDDK NIH HHS/ -- DK39690/DK/NIDDK NIH HHS/ -- N01-CO-74102/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 8;245(4922):1059-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2772657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cattle ; Chickens ; *Chromosome Mapping ; *Chromosomes, Human, Pair 7 ; Cloning, Molecular/methods ; Cricetinae ; Cystic Fibrosis/*genetics ; DNA Probes ; Genes, Overlapping ; *Genes, Recessive ; Genetic Markers ; Humans ; Mice ; Nucleic Acid Hybridization ; Restriction Mapping/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-23
    Description: The pacemaker role of the suprachiasmatic nucleus in a mammalian circadian system was tested by neural transplantation by using a mutant strain of hamster that shows a short circadian period. Small neural grafts from the suprachiasmatic region restored circadian rhythms to arrhythmic animals whose own nucleus had been ablated. The restored rhythms always exhibited the period of the donor genotype regardless of the direction of the transplant or genotype of the host. The basic period of the overt circadian rhythm therefore is determined by cells of the suprachiasmatic region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ralph, M R -- Foster, R G -- Davis, F C -- Menaker, M -- HD13162/HD/NICHD NIH HHS/ -- HD18686/HD/NICHD NIH HHS/ -- MH09483/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):975-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Virginia, Charlottesville 22903.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305266" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Circadian Rhythm/genetics/*physiology ; Cricetinae ; Immunohistochemistry ; Male ; Mutation ; Nerve Tissue/*transplantation ; Neuropeptide Y/analysis ; Suprachiasmatic Nucleus/embryology/*physiology ; Vasopressins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-01-19
    Description: The mevalonate-derived portion of a prenylated protein from Chinese hamster ovary cells has been established as diterpenoid (C20). This group is linked to a carboxyl-terminal cysteine as a thioether. It was removed from the protein by hydrazinolysis followed by Raney nickel desulfurization, and the resulting hydrocarbon fraction was analyzed by gas chromatography-mass spectrometry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rilling, H C -- Breunger, E -- Epstein, W W -- Crain, P F -- GM 29812/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jan 19;247(4940):318-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utah, Salt Lake City 84112.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2296720" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; Diterpenes/*metabolism ; Female ; Gas Chromatography-Mass Spectrometry ; Mevalonic Acid/metabolism ; Molecular Structure ; Ovary ; Protein Precursors/metabolism ; *Protein Processing, Post-Translational ; Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1990-11-23
    Description: The CD4 antigen is the high affinity cellular receptor for the human immunodeficiency virus type-1 (HIV-1). Binding of recombinant soluble CD4 (sCD4) or the purified V1 domain of sCD4 to the surface glycoprotein gp120 on virions resulted in rapid dissociation of gp120 from its complex with the transmembrane glycoprotein gp41. This may represent the initial stage in virus-cell and cell-cell fusion. Shedding of gp120 from virions induced by sCD4 may also contribute to the mechanism by which these soluble receptor molecules neutralize HIV-1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, J P -- McKeating, J A -- Weiss, R A -- Sattentau, Q J -- New York, N.Y. -- Science. 1990 Nov 23;250(4984):1139-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2251501" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/pharmacology ; Antigens, CD4/immunology/*metabolism ; Binding Sites ; Binding, Competitive ; Cell Line ; Cricetinae ; HIV Envelope Protein gp120/*metabolism ; HIV Envelope Protein gp41/metabolism ; HIV-1/*metabolism ; Virion/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-12
    Description: Activation of the N-methyl-D-aspartate (NMDA) subclass of glutamate receptors is a critical step in the selection of appropriate synaptic connections in the developing visual systems of cat and frog. Activity-dependent development of mammalian motor neurons was shown to be similarly mediated by activation of the NMDA receptor. The expression of the Cat-301 proteoglycan on motor neurons was developmentally regulated and could be specifically inhibited by blockade of the NMDA receptor at the spinal segmental level. In the adult, Cat-301 immunoreactivity on motor neurons was not diminished by NMDA receptor blockade. The NMDA receptor may regulate the expression of a class of neuronal proteins (of which Cat-301 is one example) that underlie the morphological and physiological features of activity-dependent development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalb, R G -- Hockfield, S -- EY 06511/EY/NEI NIH HHS/ -- NS 01247/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 12;250(4978):294-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neuroanatomy, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2145629" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Animals, Newborn ; Antibodies, Monoclonal/analysis/*biosynthesis ; Anticonvulsants/pharmacology ; Cricetinae ; Dizocilpine Maleate/pharmacology ; Fluorescent Antibody Technique ; Motor Neurons/drug effects/*physiology ; Proteoglycans/*biosynthesis ; Receptors, N-Methyl-D-Aspartate/drug effects/*physiology ; Spinal Cord/drug effects/*growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1991-11-22
    Description: The binding of cytosolic coat proteins to organelles may regulate membrane structure and traffic. Evidence is presented that a small guanosine triphosphate (GTP)-binding protein, the adenosine diphosphate ribosylation factor (ARF), reversibly associates with the Golgi apparatus in an energy, GTP, and fungal metabolite brefeldin A (BFA)-sensitive manner similar to, but distinguishable from, the 110-kilodalton cytosolic coat protein beta-COP. Addition of beta gamma subunits of G proteins inhibited the association of both ARF and beta-COP with Golgi membranes that occurred upon incubation with guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S). Thus, heterotrimeric G proteins may function to regulate the assembly of coat proteins onto the Golgi membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Donaldson, J G -- Kahn, R A -- Lippincott-Schwartz, J -- Klausner, R D -- New York, N.Y. -- Science. 1991 Nov 22;254(5035):1197-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1957170" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors ; Aluminum/pharmacology ; *Aluminum Compounds ; Animals ; Biological Transport ; Brefeldin A ; CHO Cells ; Coatomer Protein ; Cricetinae ; Cyclopentanes/pharmacology ; Endoplasmic Reticulum/metabolism ; Fluorides/pharmacology ; GTP-Binding Proteins/*metabolism ; Golgi Apparatus/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; In Vitro Techniques ; Intracellular Membranes/metabolism ; Microtubule-Associated Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1991-05-10
    Description: A mutated form of the platelet-derived growth factor (PDGF) beta receptor lacking most of its cytoplasmic domain was tested for its ability to block wild-type PDGF receptor function. PDGF induced the formation of complexes consisting of wild-type and truncated receptors. Such complexes were defective in autophosphorylation. When truncated receptors were expressed in excess compared to wild-type receptors, stimulation by PDGF of receptor autophosphorylation, association of phosphatidylinositol-3 kinase with the receptor, and calcium mobilization were blocked. Thus, a truncated receptor can inactivate wild-type receptor function by forming ligand-dependent receptor complexes (probably heterodimers) that are incapable of mediating the early steps of signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ueno, H -- Colbert, H -- Escobedo, J A -- Williams, L T -- P01 HL-43821/HL/NHLBI NIH HHS/ -- R01 HL-32898/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 10;252(5007):844-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1851331" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Centrifugation, Density Gradient ; Cricetinae ; In Vitro Techniques ; Ligands ; Mice ; Mice, Inbred BALB C ; Phosphorylation ; Platelet-Derived Growth Factor ; Receptors, Cell Surface/*antagonists & inhibitors/physiology ; Receptors, Platelet-Derived Growth Factor ; Signal Transduction/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: Voltage-gated sodium channels, which are responsible for the generation of action potentials in the brain, are phosphorylated by protein kinase C (PKC) in purified form. Activation of PKC decreases peak sodium current up to 80 percent and slows its inactivation for sodium channels in rat brain neurons and for rat brain type IIA sodium channel alpha subunits heterologously expressed in Chinese hamster ovary cells. These effects are specific for PKC because they can be blocked by specific peptide inhibitors of PKC and can be reproduced by direct application of PKC to the cytoplasmic surface of sodium channels in excised inside-out membrane patches. Modulation of brain sodium channels by PKC is likely to have important effects on signal transduction and synaptic transmission in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Numann, R -- Catterall, W A -- Scheuer, T -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/physiology ; CHO Cells ; Cloning, Molecular ; Cricetinae ; Diglycerides/pharmacology ; In Vitro Techniques ; Neurons/physiology ; Phosphoproteins/physiology ; Phosphorylation ; Protein Kinase C/*physiology ; Protein Kinases/physiology ; Rats ; Sodium/*physiology ; Sodium Channels/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1992-02-28
    Description: The primary defect arising from Zellweger syndrome appears to be linked to impaired assembly of peroxisomes. A human complementary DNA has been cloned that complements the disease's symptoms (including defective peroxisome assembly) in fibroblasts from a patient with Zellweger syndrome. The cause of the syndrome in this patient was a point mutation that resulted in the premature termination of peroxisome assembly factor-1. The homozygous patient apparently inherited the mutation from her parents, each of whom was heterozygous for that mutation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimozawa, N -- Tsukamoto, T -- Suzuki, Y -- Orii, T -- Shirayoshi, Y -- Mori, T -- Fujiki, Y -- New York, N.Y. -- Science. 1992 Feb 28;255(5048):1132-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Gifu University School of Medicine, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546315" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cricetinae ; DNA Mutational Analysis ; Genes ; Genetic Complementation Test ; Humans ; Membrane Proteins/*genetics ; Microbodies/*ultrastructure ; Molecular Sequence Data ; Oligodeoxyribonucleotides/chemistry ; Pedigree ; Polymerase Chain Reaction ; Transfection ; Zellweger Syndrome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1992-04-03
    Description: Steroid-thyroid hormone receptors typically bind as dimers to DNA sequences that contain repeated elements termed half-sites. NGFI-B, an early response protein and orphan member of this receptor superfamily, binds to a DNA sequence that contains only one half-site (5'-AAAGGTCA-3'). A domain separate from the NGFI-B zinc fingers, termed the A box, was identified and is required for recognition of the two adenine-thymidine (A-T) base pairs at the 5' end of the NGFI-B DNA binding element. In addition, a domain downstream of the zinc fingers of the orphan receptor H-2 region II binding protein, termed the T box, determined binding to tandem repeats of the estrogen receptor half-site (5'-AGGTCA-3').〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, T E -- Paulsen, R E -- Padgett, K A -- Milbrandt, J -- NS01018/NS/NINDS NIH HHS/ -- P01 CA49712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Apr 3;256(5053):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1314418" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; CHO Cells ; Cell Nucleus/*physiology ; Cricetinae ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Kinetics ; Mice ; Molecular Sequence Data ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Oligodeoxyribonucleotides/metabolism ; Polymerase Chain Reaction ; Receptors, Cell Surface/*metabolism ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Recombinant Fusion Proteins/metabolism ; Sequence Homology, Nucleic Acid ; Substrate Specificity ; Transcription Factors/genetics/*metabolism ; Transfection ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1992-12-04
    Description: A secreted form of a class I major histocompatibility complex (MHC) molecule was denatured and renatured in vitro in the absence of peptide. The resulting empty class I heterodimer was immunologically reactive and structurally similar to a heterodimer renatured in the presence of an appropriate restricted peptide. Thermal stability profiles indicated that the two forms of heterodimer differed in their resistance to denaturation by heat but that a significant portion of the empty class I heterodimers had a native conformation at physiological temperatures. Free energies calculated from these data gave a direct measure of the stabilization of the class I MHC molecule that resulted from peptide binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fahnestock, M L -- Tamir, I -- Narhi, L -- Bjorkman, P J -- AI28931/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1992 Dec 4;258(5088):1658-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1360705" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Circular Dichroism ; Cricetinae ; Drug Stability ; Enzyme-Linked Immunosorbent Assay ; Glutamate-Ammonia Ligase/genetics/metabolism ; Histocompatibility Antigens Class I/*chemistry/genetics ; Hot Temperature ; Humans ; Macromolecular Substances ; *Protein Conformation ; Protein Folding ; Thermodynamics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-10-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frisch, R E -- New York, N.Y. -- Science. 1989 Oct 27;246(4929):432.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2814472" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Body Weight/*physiology ; Cricetinae ; Female ; Fertility/*physiology ; Humans ; Mesocricetus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1989-04-21
    Description: The receptor with high affinity for immunoglobulin E (IgE) on mast cells and basophils is critical in initiating allergic reactions. It is composed of an IgE-binding alpha subunit, a beta subunit, and two gamma subunits. The human alpha subunit was expressed on transfected cells in the presence of rat beta and gamma subunits or in the presence of the gamma subunit alone. The IgE binding properties of the expressed human alpha were characteristic of receptors on normal human cells. These results now permit a systematic analysis of human IgE binding and a search for therapeutically useful inhibitors of that binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, L -- Blank, U -- Metzger, H -- Kinet, J P -- New York, N.Y. -- Science. 1989 Apr 21;244(4902):334-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Chemical Immunology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2523561" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Differentiation, B-Lymphocyte/genetics/*metabolism ; Basophils/*immunology ; Cell Line ; Cloning, Molecular ; Cricetinae ; DNA/genetics ; Humans ; Immunoglobulin E/*metabolism ; Immunosorbent Techniques ; Mast Cells/*immunology ; Rats ; Receptors, Fc/genetics/*metabolism ; Receptors, IgE ; *Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1989-05-12
    Description: Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the "scavenger" receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukhopadhyay, A -- Chaudhuri, G -- Arora, S K -- Sehgal, S -- Basu, S K -- New York, N.Y. -- Science. 1989 May 12;244(4905):705-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbial Technology, Chandigarh, India.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2717947" target="_blank"〉PubMed〈/a〉
    Keywords: Albumins/*administration & dosage/metabolism ; Animals ; Cells, Cultured ; Cricetinae ; Female ; Kinetics ; Leishmania mexicana/*drug effects ; Leishmaniasis/*drug therapy ; Macrophages/metabolism/*parasitology ; Male ; *Membrane Proteins ; Mesocricetus ; Methotrexate/*administration & dosage/pharmacology/therapeutic use ; *Receptors, Immunologic/metabolism ; *Receptors, Lipoprotein ; Receptors, Scavenger ; Scavenger Receptors, Class B ; Serum Albumin, Bovine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1989-03-03
    Description: Sindbis virus, an enveloped virus with a single-stranded RNA genome, was engineered to express a bacterial protein, chloramphenicol acetyltransferase (CAT), in cultured insect, avian, and mammalian cells. The vectors were self-replicating and gene expression was efficient and rapid; up to 10(8) CAT polypeptides were produced per infected cell in 16 to 20 hours. CAT expression could be made temperature-sensitive by means of a derivative that incorporated a temperature-sensitive mutation in viral RNA synthesis. Vector genomic RNAs were packaged into infectious particles when Sindbis helper virus was used to supply virion structural proteins. The vector RNAs were stable to at least seven cycles of infection. The expression of CAT increased about 10(3)-fold, despite a 10(15)-fold dilution during the passaging. Sindbis virus vectors should prove useful for expressing large quantities of gene products in a variety of animal cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, C -- Levis, R -- Shen, P -- Schlesinger, S -- Rice, C M -- Huang, H V -- AG05681/AG/NIA NIH HHS/ -- AI11377/AI/NIAID NIH HHS/ -- AI24134/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1188-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2922607" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes ; Animals ; Bacteria/enzymology ; Cells, Cultured ; Chick Embryo ; Chloramphenicol O-Acetyltransferase/*genetics ; Codon ; Cricetinae ; DNA/genetics ; Drosophila ; Gene Amplification ; Gene Expression Regulation ; *Genetic Engineering ; *Genetic Vectors ; Humans ; Quail ; RNA, Viral/*genetics ; Sindbis Virus/*genetics ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1990-04-13
    Description: Biosynthetic studies of the prion protein (PrP) have shown that two forms of different topology can be generated from the same pool of nascent chains in cell-free translation systems supplemented with microsomal membranes. A transmembrane form is the predominant product generated in wheat germ (WG) extracts, whereas a completely translocated (secretory) form is the major product synthesized in rabbit reticulocyte lysates (RRL). An unusual topogenic sequence within PrP is now shown to direct this system-dependent difference. The actions of this topogenic sequence were independent of on-going translation and could be conferred to heterologous proteins by the engineering of a discrete set of codons. System-dependent topology conferred by addition of RRL to WG translation products suggests that this sequence interacts with one or more cytosolic factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez, C D -- Yost, C S -- Prusiner, S B -- Myers, R M -- Lingappa, V R -- AG02132/AG/NIA NIH HHS/ -- NS14069/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 13;248(4952):226-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1970195" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Codon ; Cricetinae ; DNA, Viral/genetics ; Kinetics ; Mesocricetus ; Peptide Mapping ; Plasmids ; PrPSc Proteins ; Prions/*genetics ; Protein Biosynthesis ; Protein Processing, Post-Translational ; Restriction Mapping ; Transcription, Genetic ; Viral Proteins/biosynthesis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1990-02-16
    Description: Transfection of Chinese hamster ovary cells with complementary DNA encoding the RIIA sodium channel alpha subunit from rat brain led to expression of functional sodium channels with the rapid, voltage-dependent activation and inactivation characteristic of sodium channels in brain neurons. The sodium currents mediated by these transfected channels were inhibited by tetrodotoxin, persistently activated by veratridine, and prolonged by Leiurus alpha-scorpion toxin, indicating that neurotoxin receptor sites 1 through 3 were present in functional form. The RIIA sodium channel alpha subunit cDNA alone is sufficient for stable expression of functional sodium channels with the expected kinetic and pharmacological properties in mammalian somatic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheuer, T -- Auld, V J -- Boyd, S -- Offord, J -- Dunn, R -- Catterall, W A -- NS 15751/NS/NINDS NIH HHS/ -- NS 25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):854-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, School of Medicine, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2154850" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Cell Line ; Cricetinae ; Cricetulus ; Electric Conductivity ; Female ; Membrane Potentials/drug effects ; Membrane Proteins/genetics/*physiology ; Ovary ; Rats ; Sodium Channels/drug effects/*physiology ; Tetrodotoxin/pharmacology ; *Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1990-08-10
    Description: A library of human-derived complementary DNA from a human-hamster hybrid cell line containing the Xq24-qter region has been constructed. Complementary DNA synthesis was primed from heterogeneous nuclear (hn) RNA by oligonucleotides derived from conserved regions of human Alu repeats. At least 80% of these cloned sequences were of human origin, providing an enrichment of at least two orders of magnitude. Two clones, one containing a fragment of the primary transcript of the human hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene at Xq26 and another recognizing a family of human genes mapping to two regions of Xq24-qter, were characterized. Additional hncDNA clones mapped to a variety of sites in the Xq24-qter region, demonstrating the isolation of many transcriptionally active loci. These clones provide probes for identification of genetic loci on the terminal region of the X chromosome long arm, which is the location of a number of inherited disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corbo, L -- Maley, J A -- Nelson, D L -- Caskey, C T -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):652-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2382140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Chromosome Mapping ; Cloning, Molecular/methods ; Cricetinae ; DNA, Single-Stranded/genetics/isolation & purification ; Deoxyribonuclease EcoRI ; Humans ; Hybrid Cells/cytology ; Molecular Sequence Data ; Molecular Weight ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; RNA, Heterogeneous Nuclear/*genetics ; Restriction Mapping ; *Transcription, Genetic ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1990-11-23
    Description: Recruitment of neutrophils to sites of inflammation is mediated in part by endothelial leukocyte adhesion molecule-1 (ELAM-1), which is expressed on activated endothelial cells of the blood vessel walls. ELAM-1 is a member of the LEC-CAM or selectin family of adhesion molecules that contain a lectin motif thought to recognize carbohydrate ligands. In this report, cell adhesion by ELAM-1 is shown to be mediated by a carbohydrate ligand, sialyl-Lewis X (SLex; NeuAc alpha 2,3Gal beta 1,4(Fuc alpha 1,3)-GlcNAc-), a terminal structure found on cell-surface glycoprotein and glycolipid carbohydrate groups of neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips, M L -- Nudelman, E -- Gaeta, F C -- Perez, M -- Singhal, A K -- Hakomori, S -- Paulson, J C -- New York, N.Y. -- Science. 1990 Nov 23;250(4984):1130-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cytel Corp., La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1701274" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/pharmacology ; Antigens, CD15/chemistry/*physiology ; Carbohydrate Conformation ; Carbohydrate Sequence ; Cell Adhesion/*physiology ; Cell Adhesion Molecules/immunology/*physiology ; Cell Line ; Cricetinae ; E-Selectin ; Glycosylation ; Humans ; Ligands ; Molecular Sequence Data ; Neuraminidase/pharmacology ; Neutrophils/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1991-02-15
    Description: Transfer of a normal Chinese hamster X chromosome (carried in a mouse A9 donor cell line) to a nickel-transformed Chinese hamster cell line with an Xq chromosome deletion resulted in senescense of these previously immortal cells. At early passages of the A9/CX donor cells, the hamster X chromosome was highly active, inducing senescence in 100% of the colonies obtained after its transfer into the nickel-transformed cells. However, senescence was reduced to 50% when Chinese hamster X chromosomes were transferred from later passage A9 cells. Full senescing activity of the intact hamster X chromosome was restored by treatment of the donor mouse cells with 5-azacytidine, which induced demethylation of DNA. These results suggest that a senescence gene or genes, which may be located on the Chinese hamster X chromosome, can be regulated by DNA methylation, and that escape from senescence and possibly loss of tumor suppressor gene activity can occur by epigenetic mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, C B -- Conway, K -- Wang, X W -- Bhamra, R K -- Lin, X H -- Cohen, M D -- Annab, L -- Barrett, J C -- Costa, M -- ES 04715/ES/NIEHS NIH HHS/ -- ES 04895/ES/NIEHS NIH HHS/ -- ES 05512/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 15;251(4995):796-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Environmental Medicine, New York University Medical Center, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1990442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Fusion ; Cell Line, Transformed ; Cell Survival/*genetics ; Cell Transformation, Neoplastic/chemically induced/*genetics ; Chromosome Deletion ; Cricetinae ; Cricetulus ; Hypoxanthine Phosphoribosyltransferase/genetics ; Mice ; Nickel/*pharmacology ; X Chromosome/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1991-12-20
    Description: The binding of multivalent immunoglobulin G complexes to Fc receptors (Fc gamma Rs) on macrophages activates multiple immune functions. A murine macrophage cell line, but not a fibroblast cell line, that was transfected with human Fc gamma RIIA mediated phagocytosis and an intracellular Ca2+ concentration ([Ca2+]i) flux upon cross-linking of human Fc gamma RIIA. Transfected macrophages that expressed a truncated receptor lacking 17 carboxy-terminal amino acids phagocytosed small antibody complexes. However, only wild-type transfectants phagocytosed labeled erythrocytes and fluxed [Ca2+]i. Thus, the cytoplasmic domain of human Fc gamma RIIA contains distinct functional regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Odin, J A -- Edberg, J C -- Painter, C J -- Kimberly, R P -- Unkeless, J C -- AI 24322/AI/NIAID NIH HHS/ -- AI 24671/AI/NIAID NIH HHS/ -- AR 33062/AR/NIAMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1785-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Mount Sinai Medical Center, New York, NY 10029.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1837175" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antigens, Differentiation/genetics/*physiology ; CHO Cells ; Calcium/*metabolism ; Cell Line ; Cloning, Molecular ; Cricetinae ; Homeostasis ; Humans ; Immunoglobulin G/metabolism ; Kinetics ; Macrophages ; Mice ; *Phagocytosis ; Receptors, Fc/genetics/*physiology ; Receptors, IgG ; Recombinant Proteins/metabolism ; *Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1992-05-08
    Description: Controversy exists as to whether the interaction of a guanosine triphosphatase activating protein (GAP) with Ras proteins functions both to initiate and to terminate Ras-dependent signaling events or only to terminate them. GAP-C, a carboxyl-terminal fragment of GAP that is sufficient to stimulate GTPase activity, inhibited the stimulation of transcription produced by some oncoproteins (v-Src, polyoma middle T, wild-type Ras, and oncogenic Ras) but not that produced by v-Mos. Wild-type GAP did not affect transcription induced by oncogenic Ras but reversed the inhibitory effect of GAP-C on transcription induced by oncogenic Ras. These results indicate that GAP is a negative regulator of wild-type Ras and elicits a downstream signal by interacting with Ras-GTP (guanosine triphosphate).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schweighoffer, F -- Barlat, I -- Chevallier-Multon, M C -- Tocque, B -- New York, N.Y. -- Science. 1992 May 8;256(5058):825-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rhone-Poulenc Rorer, Centre de Recherche de Vitry-Alfortville, Vitry Sur Seine.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1317056" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antigens, Polyomavirus Transforming/genetics ; CHO Cells ; *Cell Cycle Proteins ; *Cell Transformation, Neoplastic ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Cricetinae ; *Enhancer Elements, Genetic ; Fungal Proteins/genetics/metabolism ; GTPase-Activating Proteins ; *Genes, ras ; Humans ; Mice ; Oncogene Proteins v-mos ; Oncogenes ; Polyomavirus/*genetics ; Promoter Regions, Genetic ; Protein-Tyrosine Kinases/genetics ; Proteins/*metabolism ; Retroviridae Proteins, Oncogenic/genetics ; Signal Transduction ; Simian virus 40/genetics ; Transcription, Genetic ; *Transcriptional Activation ; Transfection ; ras GTPase-Activating Proteins ; *ras-GRF1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1992-01-10
    Description: The progesterone analog RU486, an abortifacient, inhibits the action of progestins in humans but not in chickens or hamsters. Substitution of cysteine at position 575 by glycine in the hormone binding domain (HBD) of the chicken progesterone receptor (cPR) generated a cPR that binds RU486 and whose activity is antagonized by that compound. In fact, all receptors that bind RU486 have a glycine at the corresponding position. The hamster PR, like cPR, has a cysteine. Only glycine--not methionine or leucine--at position 575 allowed binding of RU486 to cPR. Substitution of this glycine by cysteine in the human PR (hPR) abrogated binding of RU486 but not that of an agonist. The corresponding mutation in the human glucocorticoid receptor resulted in a loss of binding of both dexamethasone and RU486. Examination of a series of 11 beta-substituted steroids showed that antagonism is not an intrinsic property of an antihormone, because one hPR antagonist acted as an agonist for a mutated hPR. The positioning of an aromatic 11 beta-substitution in the PR HBD appears to be critical for generating agonistic or antagonistic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benhamou, B -- Garcia, T -- Lerouge, T -- Vergezac, A -- Gofflo, D -- Bigogne, C -- Chambon, P -- Gronemeyer, H -- New York, N.Y. -- Science. 1992 Jan 10;255(5041):206-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department Endocrinologie, Centre de Recherche Roussel-Uclaf, Romainville, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1372753" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cricetinae ; Female ; Humans ; Mifepristone/*pharmacology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction ; Progesterone/analogs & derivatives/metabolism ; RNA/genetics/isolation & purification ; Receptors, Mineralocorticoid ; Receptors, Progesterone/*drug effects/genetics/metabolism ; Receptors, Steroid/drug effects/genetics/metabolism ; Recombinant Proteins/drug effects/metabolism ; Restriction Mapping ; Uterus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1992-03-20
    Description: The suprachiasmatic nuclei (SCN) of the hypothalamus comprise the primary pacemaker responsible for generation of circadian rhythms in mammals. Light stimuli that synchronize this circadian clock induce expression of the c-fos gene in rodent SCN, which suggests a possible role for Fos in circadian entrainment. Appropriate light stimuli also induce the expression of jun-B messenger RNA in the SCN of golden hamsters but only slightly elevate c-jun messenger RNA levels. In addition, light increases the amount of a protein complex in the SCN that binds specifically to sites on DNA known to mediate regulation by the AP-1 transcription factor. The photic regulation of both jun-B messenger RNA expression and AP-1 binding activity is dependent on circadian phase: only light stimuli that shift behavioral rhythms induce jun-B and AP-1 expression. Thus, light and the circadian pacemaker interact to regulate a specific set of immediate-early genes in the SCN that may participate in entrainment of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kornhauser, J M -- Nelson, D E -- Mayo, K E -- Takahashi, J S -- New York, N.Y. -- Science. 1992 Mar 20;255(5051):1581-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Neuroscience, Northwestern University, Evanston, IL 60208.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1549784" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cricetinae ; *Gene Expression Regulation ; Genes, fos/physiology ; Genes, jun/*physiology ; *Light ; Molecular Sequence Data ; Nucleic Acid Hybridization ; *Periodicity ; Proto-Oncogene Proteins c-jun/*biosynthesis ; RNA Probes ; RNA, Messenger/*biosynthesis ; Suprachiasmatic Nucleus/physiology ; Time Factors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1992-07-10
    Description: The concentration of cytoplasmic free calcium (Ca2+) increases in various stimulated cells in a wave (Ca2+ wave) and in periodic transients (Ca2+ oscillations). These phenomena are explained by inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release (IICR) and Ca(2+)-induced Ca2+ release (CICR) from separate intracellular stores, but decisive evidence is lacking. A monoclonal antibody to the IP3 receptor inhibited both IICR and CICR upon injection of IP3 and Ca2+ into hamster eggs, respectively. The antibody completely blocked sperm-induced Ca2+ waves and Ca2+ oscillations. The results indicate that Ca2+ release in fertilized hamster eggs is mediated solely by the IP3 receptor, and Ca(2+)-sensitized IICR, but not CICR, generates Ca2+ waves and Ca2+ oscillations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyazaki, S -- Yuzaki, M -- Nakada, K -- Shirakawa, H -- Nakanishi, S -- Nakade, S -- Mikoshiba, K -- New York, N.Y. -- Science. 1992 Jul 10;257(5067):251-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Tokyo Women's Medical College, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1321497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Caffeine/pharmacology ; Calcium/*metabolism ; *Calcium Channels ; Cricetinae ; Dose-Response Relationship, Drug ; Fertilization/*physiology ; Immunoblotting ; Inositol 1,4,5-Trisphosphate Receptors ; Male ; Ovum/*metabolism ; Receptors, Cell Surface/drug effects/*physiology ; *Receptors, Cytoplasmic and Nuclear ; Ryanodine/pharmacology ; Spermatozoa/physiology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-06-16
    Description: Food deprivation and weight loss inhibit ovulation and estrous behavior in Syrian hamsters. In the present experiments, lean hamsters were more susceptible to starvation-induced anestrus than fat hamsters. However, anestrus was not caused by changes in any dimension of body size per se, but instead by the availability of metabolic fuels. Simultaneous pharmacological blockade of both fatty acid oxidation and glycolysis inhibited reproduction, but, as long as one of these metabolic pathways could be used, estrous cycles continued. Thus, reproduction in female Syrian hamsters is sensitive to the general availability of oxidizable metabolic fuels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, J E -- Wade, G N -- AM 32976-06/AM/NIADDK NIH HHS/ -- MH 00321-09/MH/NIMH NIH HHS/ -- NS 10873-17/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jun 16;244(4910):1326-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Massachusetts, Amherst 01003.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2734610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimetabolites/pharmacology ; Body Weight ; Cricetinae ; Deoxyglucose/pharmacology ; Epoxy Compounds/pharmacology ; Estrus/drug effects/*physiology ; Female ; Food Deprivation/*physiology ; Mesocricetus ; Periodicity ; Propionates/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1990-02-09
    Description: The Na+/H+ antiporter, which regulates intracellular pH in virtually all cells, is one of the best examples of a mitogen- and oncogene-activated membrane target whose activity rapidly changes on stimulation. The activating mechanism is unknown. A Na+/H+ antiporter complementary DNA fragment was expressed in Escherichia coli as a beta-galactosidase fusion protein, and a specific antibody to the fusion protein was prepared. Use of this antibody revealed that the Na+/H+ antiporter is a 110-kilodalton glycoprotein that is phosphorylated in growing cells. Mitogenic activation of resting hamster fibroblasts and A431 human epidermoid cells with epidermal growth factor, thrombin, phorbol esters, or serum, stimulated phosphorylation of the Na+/H+ antiporter with a time course similar to that of the rise in intracellular pH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sardet, C -- Counillon, L -- Franchi, A -- Pouyssegur, J -- New York, N.Y. -- Science. 1990 Feb 9;247(4943):723-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Biochimie-CNRS, Nice, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2154036" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cricetinae ; DNA/genetics ; Epidermal Growth Factor/pharmacology ; Escherichia coli/genetics ; Fibroblasts/metabolism ; Glycosylation ; Growth Substances/*pharmacology ; Humans ; Immunoblotting ; Mammary Tumor Virus, Mouse/genetics ; Molecular Weight ; Phosphorylation ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Sodium-Hydrogen Antiporter ; Thrombin/pharmacology ; Transfection ; beta-Galactosidase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1991-11-08
    Description: Intracellular signaling alters integrin adhesive functions in inflammation, immune responses, hemostasis, thrombosis, and retinal development. By truncating the cytoplasmic domain of alpha IIb, the affinity of integrin alpha IIb beta 3 for ligand was increased. Reconstitution with the cytoplasmic domain from integrin alpha 5 did not reverse the increased affinity. Thus, the cytoplasmic domain of the alpha subunit of GPIIb-IIIa controls ligand binding affinity, which suggests mechanisms for inside-out transmembrane signaling through integrins. These findings imply the existence of hitherto unappreciated hereditary and acquired thrombotic disorders in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Toole, T E -- Mandelman, D -- Forsyth, J -- Shattil, S J -- Plow, E F -- Ginsberg, M H -- HL 39150/HL/NHLBI NIH HHS/ -- HL16411/HL/NHLBI NIH HHS/ -- HL28235/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):845-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Committee on Vascular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948065" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Cell Aggregation ; Cricetinae ; Cytoplasm/metabolism ; Fibrinogen/metabolism ; Kinetics ; Macromolecular Substances ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Platelet Membrane Glycoproteins/genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shieh, M T -- Spear, P G -- New York, N.Y. -- Science. 1991 Jul 12;253(5016):208-10.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1649495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; Fibroblast Growth Factors ; Heparitin Sulfate/metabolism ; Herpes Simplex/*metabolism ; In Vitro Techniques ; Receptors, Cell Surface/*physiology ; Receptors, Fibroblast Growth Factor ; Receptors, Virus/*physiology ; Simplexvirus/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1992-07-17
    Description: The direct effects of pro-inflammatory cytokines on the contractility of mammalian heart were studied. Tumor necrosis factor alpha, interleukin-6, and interleukin-2 inhibited contractility of isolated hamster papillary muscles in a concentration-dependent, reversible manner. The nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) blocked these negative inotropic effects. L-Arginine reversed the inhibition by L-NMMA. Removal of the endocardial endothelium did not alter these responses. These findings demonstrate that the direct negative inotropic effect of cytokines is mediated through a myocardial nitric oxide synthase. The regulation of pro-inflammatory cytokines and myocardial nitric oxide synthase may provide new therapeutic strategies for the treatment of cardiac disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkel, M S -- Oddis, C V -- Jacob, T D -- Watkins, S C -- Hattler, B G -- Simmons, R L -- GM-37753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 17;257(5068):387-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Pittsburgh School of Medicine, PA 15213.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1631560" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/analogs & derivatives/pharmacology ; Cells, Cultured ; Cricetinae ; Cytokines/*pharmacology ; Dose-Response Relationship, Drug ; Drug Interactions ; Endocardium/cytology ; Epithelium/physiology ; Interleukin-2/pharmacology ; Interleukin-6/pharmacology ; Microscopy, Electron ; Myocardial Contraction/*drug effects ; Nitric Oxide/*pharmacology ; Tumor Necrosis Factor-alpha/pharmacology ; omega-N-Methylarginine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2006-10-28
    Description: Large-conductance calcium- and voltage-activated potassium channels (BKCa) are dually activated by membrane depolarization and elevation of cytosolic calcium ions (Ca2+). Under normal cellular conditions, BKCa channel activation requires Ca2+ concentrations that typically occur in close proximity to Ca2+ sources. We show that BKCa channels affinity-purified from rat brain are assembled into macromolecular complexes with the voltage-gated calcium channels Cav1.2 (L-type), Cav2.1 (P/Q-type), and Cav2.2 (N-type). Heterologously expressed BKCa-Cav complexes reconstitute a functional "Ca2+ nanodomain" where Ca2+ influx through the Cav channel activates BKCa in the physiological voltage range with submillisecond kinetics. Complex formation with distinct Cav channels enables BKCa-mediated membrane hyperpolarization that controls neuronal firing pattern and release of hormones and transmitters in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berkefeld, Henrike -- Sailer, Claudia A -- Bildl, Wolfgang -- Rohde, Volker -- Thumfart, Jorg-Oliver -- Eble, Silke -- Klugbauer, Norbert -- Reisinger, Ellen -- Bischofberger, Josef -- Oliver, Dominik -- Knaus, Hans-Gunther -- Schulte, Uwe -- Fakler, Bernd -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):615-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain Chemistry ; CHO Cells ; Calcium/*metabolism ; Calcium Channels, L-Type/drug effects/isolation & purification/*metabolism ; Calcium Channels, N-Type/drug effects/isolation & purification/*metabolism ; Calcium Signaling ; Chromaffin Cells/drug effects/metabolism ; Cricetinae ; Cricetulus ; Egtazic Acid/analogs & derivatives/pharmacology ; Large-Conductance Calcium-Activated Potassium Channels/drug effects/isolation & ; purification/*metabolism ; Membrane Potentials/drug effects ; Molecular Sequence Data ; Patch-Clamp Techniques ; Potassium/*metabolism ; Rats ; *Signal Transduction ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2008-06-21
    Description: Specialized secretion systems are used by many bacteria to deliver effector proteins into host cells that can either mimic or disrupt the function of eukaryotic factors. We found that the intracellular pathogens Legionella pneumophila and Coxiella burnetii use a type IV secretion system to deliver into eukaryotic cells a large number of different bacterial proteins containing ankyrin repeat homology domains called Anks. The L. pneumophila AnkX protein prevented microtubule-dependent vesicular transport to interfere with fusion of the L. pneumophila-containing vacuole with late endosomes after infection of macrophages, which demonstrates that Ank proteins have effector functions important for bacterial infection of eukaryotic host cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2514061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2514061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Xiaoxiao -- Luhrmann, Anja -- Satoh, Ayano -- Laskowski-Arce, Michelle A -- Roy, Craig R -- AG030101/AG/NIA NIH HHS/ -- AI041699/AI/NIAID NIH HHS/ -- AI064559/AI/NIAID NIH HHS/ -- GM060919/GM/NIGMS NIH HHS/ -- R01 AI041699/AI/NIAID NIH HHS/ -- R01 AI041699-12/AI/NIAID NIH HHS/ -- R01 AI064559/AI/NIAID NIH HHS/ -- R01 AI064559-03/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Jun 20;320(5883):1651-4. doi: 10.1126/science.1158160.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18566289" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ankyrin Repeat ; Bacterial Proteins/*chemistry/genetics/*metabolism ; CHO Cells ; Cells, Cultured ; Coxiella burnetii/*metabolism/pathogenicity ; Cricetinae ; Cricetulus ; Cyclic AMP/metabolism ; Cytoplasmic Vesicles/metabolism/ultrastructure ; Cytosol/metabolism ; Golgi Apparatus/metabolism ; Humans ; Intracellular Membranes/metabolism ; Legionella pneumophila/*metabolism/pathogenicity ; Microtubules/metabolism ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Vacuoles/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2008-03-01
    Description: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder characterized pathologically by ubiquitinated TAR DNA binding protein (TDP-43) inclusions. The function of TDP-43 in the nervous system is uncertain, and a mechanistic role in neurodegeneration remains speculative. We identified neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases. TARDBPM337V segregated with disease within one kindred and a genome-wide scan confirmed that linkage was restricted to chromosome 1p36, which contains the TARDBP locus. Mutant forms of TDP-43 fragmented in vitro more readily than wild type and, in vivo, caused neural apoptosis and developmental delay in the chick embryo. Our evidence suggests a pathophysiological link between TDP-43 and ALS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sreedharan, Jemeen -- Blair, Ian P -- Tripathi, Vineeta B -- Hu, Xun -- Vance, Caroline -- Rogelj, Boris -- Ackerley, Steven -- Durnall, Jennifer C -- Williams, Kelly L -- Buratti, Emanuele -- Baralle, Francisco -- de Belleroche, Jacqueline -- Mitchell, J Douglas -- Leigh, P Nigel -- Al-Chalabi, Ammar -- Miller, Christopher C -- Nicholson, Garth -- Shaw, Christopher E -- G0500289/Medical Research Council/United Kingdom -- G0501573/Medical Research Council/United Kingdom -- G0600974/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Mar 21;319(5870):1668-72. doi: 10.1126/science.1154584. Epub 2008 Feb 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Neuroscience, King's College London, Medical Research Council (MRC) Centre for Neurodegeneration Research, and Institute of Psychiatry, London, SE5 8AF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18309045" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amino Acid Substitution ; Amyotrophic Lateral Sclerosis/*genetics ; Animals ; Apoptosis ; CHO Cells ; Chick Embryo ; Chromosomes, Human, Pair 1/genetics ; Cricetinae ; Cricetulus ; DNA-Binding Proteins/chemistry/*genetics/physiology ; Embryonic Development ; Female ; Humans ; Male ; Microsatellite Repeats ; Middle Aged ; Molecular Sequence Data ; Mutant Proteins/chemistry/physiology ; *Mutation, Missense ; Neurons/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2008-12-17
    Description: Sphingosine-1-phosphate (S1P) is a secreted lipid mediator that functions in vascular development; however, it remains unclear how S1P secretion is regulated during embryogenesis. We identified a zebrafish mutant, ko157, that displays cardia bifida (two hearts) resembling that in the S1P receptor-2 mutant. A migration defect of myocardial precursors in the ko157 mutant is due to a mutation in a multipass transmembrane protein, Spns2, and can be rescued by S1P injection. We show that the export of S1P from cells requires Spns2. spns2 is expressed in the extraembryonic tissue yolk syncytial layer (YSL), and the introduction of spns2 mRNA in the YSL restored the cardiac defect in the ko157 mutant. Thus, Spns2 in the YSL functions as a S1P transporter in S1P secretion, thereby regulating myocardial precursor migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawahara, Atsuo -- Nishi, Tsuyoshi -- Hisano, Yu -- Fukui, Hajime -- Yamaguchi, Akihito -- Mochizuki, Naoki -- New York, N.Y. -- Science. 2009 Jan 23;323(5913):524-7. doi: 10.1126/science.1167449. Epub 2008 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Analysis, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan. atsuo@ri.ncvc.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074308" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Blastomeres/metabolism ; CHO Cells ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Movement ; Cricetinae ; Cricetulus ; Embryo, Nonmammalian/cytology/*metabolism ; Embryonic Development ; Heart/*embryology ; Heart Defects, Congenital/embryology ; Humans ; Lysophospholipids/*metabolism ; Membrane Proteins/chemistry/genetics/*metabolism ; Mesoderm/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Oligonucleotides, Antisense ; Organogenesis ; Signal Transduction ; Somites/embryology/metabolism ; Sphingosine/*analogs & derivatives/metabolism ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-07-02
    Description: Mucolipidosis II is a severe lysosomal storage disorder caused by defects in the alpha and beta subunits of the hexameric N-acetylglucosamine-1-phosphotransferase complex essential for the formation of the mannose 6-phosphate targeting signal on lysosomal enzymes. Cleavage of the membrane-bound alpha/beta-subunit precursor by an unknown protease is required for catalytic activity. Here we found that the alpha/beta-subunit precursor is cleaved by the site-1 protease (S1P) that activates sterol regulatory element-binding proteins in response to cholesterol deprivation. S1P-deficient cells failed to activate the alpha/beta-subunit precursor and exhibited a mucolipidosis II-like phenotype. Thus, S1P functions in the biogenesis of lysosomes, and lipid-independent phenotypes of S1P deficiency may be caused by lysosomal dysfunction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marschner, Katrin -- Kollmann, Katrin -- Schweizer, Michaela -- Braulke, Thomas -- Pohl, Sandra -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):87-90. doi: 10.1126/science.1205677.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21719679" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Line ; Cholesterol/*metabolism ; Chondrocytes/cytology ; Cricetinae ; Cricetulus ; Enzyme Precursors/chemistry/*metabolism ; HeLa Cells ; Humans ; Lipid Metabolism ; Lysosomes/enzymology/*metabolism/ultrastructure ; Mannosephosphates/metabolism ; Mice ; Morphogenesis ; Mucolipidoses/enzymology/genetics/metabolism/pathology ; N-Acetylgalactosamine-4-Sulfatase/metabolism ; Osteogenesis ; Proprotein Convertases/genetics/*metabolism ; Protein Subunits/chemistry/metabolism ; RNA, Small Interfering ; Serine Endopeptidases/genetics/*metabolism ; Transferases (Other Substituted Phosphate Groups)/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-04-09
    Description: Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an essential negative regulator of T cell immune responses whose mechanism of action is the subject of debate. CTLA-4 shares two ligands (CD80 and CD86) with a stimulatory receptor, CD28. Here, we show that CTLA-4 can capture its ligands from opposing cells by a process of trans-endocytosis. After removal, these costimulatory ligands are degraded inside CTLA-4-expressing cells, resulting in impaired costimulation via CD28. Acquisition of CD86 from antigen-presenting cells is stimulated by T cell receptor engagement and observed in vitro and in vivo. These data reveal a mechanism of immune regulation in which CTLA-4 acts as an effector molecule to inhibit CD28 costimulation by the cell-extrinsic depletion of ligands, accounting for many of the known features of the CD28-CTLA-4 system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198051/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198051/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qureshi, Omar S -- Zheng, Yong -- Nakamura, Kyoko -- Attridge, Kesley -- Manzotti, Claire -- Schmidt, Emily M -- Baker, Jennifer -- Jeffery, Louisa E -- Kaur, Satdip -- Briggs, Zoe -- Hou, Tie Z -- Futter, Clare E -- Anderson, Graham -- Walker, Lucy S K -- Sansom, David M -- 17851/Arthritis Research UK/United Kingdom -- BB/D011000/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H013598/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0400931/Medical Research Council/United Kingdom -- G0401620/Medical Research Council/United Kingdom -- G0802382/Medical Research Council/United Kingdom -- G1000213/Medical Research Council/United Kingdom -- G9818340/Medical Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):600-3. doi: 10.1126/science.1202947. Epub 2011 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham B15 2TT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*immunology/metabolism ; Antigens, CD28/*immunology ; Antigens, CD80/*immunology/metabolism ; Antigens, CD86/*immunology/metabolism ; CHO Cells ; CTLA-4 Antigen ; Cricetinae ; Cricetulus ; Dendritic Cells/immunology ; *Endocytosis ; Humans ; Jurkat Cells ; Ligands ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Models, Biological ; Ovalbumin/immunology ; Receptors, Antigen, T-Cell/immunology ; Recombinant Fusion Proteins/metabolism ; T-Lymphocyte Subsets/*immunology/metabolism ; T-Lymphocytes, Regulatory/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-11-01
    Description: Many biological functions are conserved, but the extent to which conservation applies to integrative behaviors is unknown. Vasopressin and oxytocin neuropeptides are strongly implicated in mammalian reproductive and social behaviors, yet rodent loss-of-function mutants have relatively subtle behavioral defects. Here we identify an oxytocin/vasopressin-like signaling system in Caenorhabditis elegans, consisting of a peptide and two receptors that are expressed in sexually dimorphic patterns. Males lacking the peptide or its receptors perform poorly in reproductive behaviors, including mate search, mate recognition, and mating, but other sensorimotor behaviors are intact. Quantitative analysis indicates that mating motor patterns are fragmented and inefficient in mutants, suggesting that oxytocin/vasopressin peptides increase the coherence of mating behaviors. These results indicate that conserved molecules coordinate diverse behavioral motifs in reproductive behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597094/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597094/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garrison, Jennifer L -- Macosko, Evan Z -- Bernstein, Samantha -- Pokala, Navin -- Albrecht, Dirk R -- Bargmann, Cornelia I -- GM07739/GM/NIGMS NIH HHS/ -- K99 GM092859/GM/NIGMS NIH HHS/ -- K99GM092859/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):540-3. doi: 10.1126/science.1226201.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112335" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; CHO Cells ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans ; Proteins/agonists/chemistry/genetics/pharmacology/*physiology ; Cricetinae ; Humans ; Male ; Neuropeptides/chemistry/genetics/pharmacology/*physiology ; Oxytocin/chemistry/genetics/pharmacology/*physiology ; Receptors, G-Protein-Coupled/agonists/genetics/*physiology ; Reproduction ; Sexual Behavior, Animal/*physiology ; Vasopressins/chemistry/genetics/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-01-28
    Description: Prions are infectious pathogens essentially composed of PrP(Sc), an abnormally folded form of the host-encoded prion protein PrP(C). Constrained steric interactions between PrP(Sc) and PrP(C) are thought to provide prions with species specificity and to control cross-species transmission into other host populations, including humans. We compared the ability of brain and lymphoid tissues from ovine and human PrP transgenic mice to replicate foreign, inefficiently transmitted prions. Lymphoid tissue was consistently more permissive than the brain to prions such as those causing chronic wasting disease and bovine spongiform encephalopathy. Furthermore, when the transmission barrier was overcome through strain shifting in the brain, a distinct agent propagated in the spleen, which retained the ability to infect the original host. Thus, prion cross-species transmission efficacy can exhibit a marked tissue dependence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beringue, Vincent -- Herzog, Laetitia -- Jaumain, Emilie -- Reine, Fabienne -- Sibille, Pierre -- Le Dur, Annick -- Vilotte, Jean-Luc -- Laude, Hubert -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):472-5. doi: 10.1126/science.1215659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Recherche Agronomique UR892, Virologie Immunologie Moleculaires, Jouy-en-Josas, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282814" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cattle ; Cricetinae ; Encephalopathy, Bovine Spongiform/transmission ; Humans ; Mice ; Mice, Transgenic ; Organ Specificity ; *PrPSc Proteins/analysis/chemistry/pathogenicity ; Prion Diseases/metabolism/*transmission ; Sheep ; Species Specificity ; Spleen/*chemistry ; Wasting Disease, Chronic/transmission ; Zoonoses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...