ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-17
    Description: It is widely accepted that individual neurons in the central nervous system release only a single fast transmitter. The possibility of corelease of fast neurotransmitters was examined by making paired recordings from synaptically connected neurons in spinal cord slices. Unitary inhibitory postsynaptic currents generated at interneuron-motoneuron synapses consisted of a strychnine-sensitive, glycine receptor-mediated component and a bicuculline-sensitive, gamma-aminobutyric acid (GABA)A receptor-mediated component. These results indicate that spinal interneurons release both glycine and GABA to activate functionally distinct receptors in their postsynaptic target cells. A subset of miniature synaptic currents also showed both components, consistent with corelease from individual synaptic vesicles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonas, P -- Bischofberger, J -- Sandkuhler, J -- New York, N.Y. -- Science. 1998 Jul 17;281(5375):419-24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiologisches Institut der Universitat Freiburg, D-79104 Freiburg, Germany. jonasp@ruf.uni-freiburg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9665886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Baclofen/pharmacology ; Bicuculline/pharmacology ; GABA Antagonists ; GABA-A Receptor Antagonists ; GABA-B Receptor Antagonists ; Glycine/*metabolism ; Glycine Agents/pharmacology ; In Vitro Techniques ; Interneurons/drug effects/*metabolism ; Motor Neurons/drug effects/*metabolism ; Patch-Clamp Techniques ; Presynaptic Terminals/*metabolism ; Rats ; Rats, Wistar ; Receptors, GABA-A/metabolism ; Receptors, GABA-B/metabolism ; Receptors, Glycine/antagonists & inhibitors/metabolism ; Spinal Cord/cytology ; Strychnine/pharmacology ; Synaptic Transmission/drug effects ; Synaptic Vesicles/metabolism ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-10-28
    Description: Large-conductance calcium- and voltage-activated potassium channels (BKCa) are dually activated by membrane depolarization and elevation of cytosolic calcium ions (Ca2+). Under normal cellular conditions, BKCa channel activation requires Ca2+ concentrations that typically occur in close proximity to Ca2+ sources. We show that BKCa channels affinity-purified from rat brain are assembled into macromolecular complexes with the voltage-gated calcium channels Cav1.2 (L-type), Cav2.1 (P/Q-type), and Cav2.2 (N-type). Heterologously expressed BKCa-Cav complexes reconstitute a functional "Ca2+ nanodomain" where Ca2+ influx through the Cav channel activates BKCa in the physiological voltage range with submillisecond kinetics. Complex formation with distinct Cav channels enables BKCa-mediated membrane hyperpolarization that controls neuronal firing pattern and release of hormones and transmitters in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berkefeld, Henrike -- Sailer, Claudia A -- Bildl, Wolfgang -- Rohde, Volker -- Thumfart, Jorg-Oliver -- Eble, Silke -- Klugbauer, Norbert -- Reisinger, Ellen -- Bischofberger, Josef -- Oliver, Dominik -- Knaus, Hans-Gunther -- Schulte, Uwe -- Fakler, Bernd -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):615-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain Chemistry ; CHO Cells ; Calcium/*metabolism ; Calcium Channels, L-Type/drug effects/isolation & purification/*metabolism ; Calcium Channels, N-Type/drug effects/isolation & purification/*metabolism ; Calcium Signaling ; Chromaffin Cells/drug effects/metabolism ; Cricetinae ; Cricetulus ; Egtazic Acid/analogs & derivatives/pharmacology ; Large-Conductance Calcium-Activated Potassium Channels/drug effects/isolation & ; purification/*metabolism ; Membrane Potentials/drug effects ; Molecular Sequence Data ; Patch-Clamp Techniques ; Potassium/*metabolism ; Rats ; *Signal Transduction ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...