ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Catterall, W A -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2306-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle, WA 98195, USA. wcatt@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743190" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacillus/*chemistry/metabolism ; Bacterial Proteins/antagonists & inhibitors/chemistry/*metabolism ; Calcium Channels/chemistry/metabolism ; Ion Channel Gating ; Ion Transport ; Membrane Potentials ; Potassium Channel Blockers ; Potassium Channels/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium/*metabolism ; Sodium Channel Blockers ; Sodium Channels/*chemistry/*metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-09-23
    Description: Antibodies directed against a conserved intracellular segment of the sodium channel alpha subunit slow the inactivation of sodium channels in rat muscle cells. Of four site-directed antibodies tested, only antibodies against the short intracellular segment between homologous transmembrane domains III and IV slowed inactivation, and their effects were blocked by the corresponding peptide antigen. No effects on the voltage dependence of sodium channel activation or of steady-state inactivation were observed, but the rate of onset of the antibody effect and the extent of slowing of inactivation were voltage-dependent. Antibody binding was more rapid at negative potentials, at which sodium channels are not inactivated; antibody-induced slowing of inactivation was greater during depolarizations to more positive membrane potentials. The peptide segment recognized by this antibody appears to participate directly in rapid sodium channel inactivation during large depolarizations and to undergo a conformational change that reduces its accessibility to antibodies as the channel inactivates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassilev, P M -- Scheuer, T -- Catterall, W A -- NS 15751/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 23;241(4873):1658-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, School of Medicine, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2458625" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies ; Cytoplasm/analysis ; In Vitro Techniques ; Ion Channels/*metabolism ; Membrane Potentials ; Molecular Sequence Data ; Peptides/*metabolism ; Rats ; Sodium/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-11-08
    Description: Voltage-gated sodium channels are responsible for generation of action potentials in excitable cells. Activation of protein kinase C slows inactivation of sodium channels and reduces peak sodium currents. Phosphorylation of a single residue, serine 1506, that is located in the conserved intracellular loop between domains III and IV and is involved in inactivation of the sodium channel, is required for both modulatory effects. Mutant sodium channels lacking this phosphorylation site have normal functional properties in unstimulated cells but do not respond to activation of protein kinase C. Phosphorylation of this conserved site in sodium channel alpha subunits may regulate electrical activity in a wide range of excitable cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, J W -- Numann, R -- Murphy, B J -- Scheuer, T -- Catterall, W A -- GM07270/GM/NIGMS NIH HHS/ -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):866-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Membrane/physiology ; Cells, Cultured ; Membrane Potentials ; Models, Structural ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinase C/*metabolism ; Sodium Channels/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Catterall, W A -- New York, N.Y. -- Science. 1991 Sep 27;253(5027):1499-500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1654596" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/genetics/*physiology ; Macromolecular Substances ; Membrane Proteins/chemistry/*physiology ; Muscles/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: Voltage-gated sodium channels, which are responsible for the generation of action potentials in the brain, are phosphorylated by protein kinase C (PKC) in purified form. Activation of PKC decreases peak sodium current up to 80 percent and slows its inactivation for sodium channels in rat brain neurons and for rat brain type IIA sodium channel alpha subunits heterologously expressed in Chinese hamster ovary cells. These effects are specific for PKC because they can be blocked by specific peptide inhibitors of PKC and can be reproduced by direct application of PKC to the cytoplasmic surface of sodium channels in excised inside-out membrane patches. Modulation of brain sodium channels by PKC is likely to have important effects on signal transduction and synaptic transmission in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Numann, R -- Catterall, W A -- Scheuer, T -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/physiology ; CHO Cells ; Cloning, Molecular ; Cricetinae ; Diglycerides/pharmacology ; In Vitro Techniques ; Neurons/physiology ; Phosphoproteins/physiology ; Phosphorylation ; Protein Kinase C/*physiology ; Protein Kinases/physiology ; Rats ; Sodium/*physiology ; Sodium Channels/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-02-16
    Description: Transfection of Chinese hamster ovary cells with complementary DNA encoding the RIIA sodium channel alpha subunit from rat brain led to expression of functional sodium channels with the rapid, voltage-dependent activation and inactivation characteristic of sodium channels in brain neurons. The sodium currents mediated by these transfected channels were inhibited by tetrodotoxin, persistently activated by veratridine, and prolonged by Leiurus alpha-scorpion toxin, indicating that neurotoxin receptor sites 1 through 3 were present in functional form. The RIIA sodium channel alpha subunit cDNA alone is sufficient for stable expression of functional sodium channels with the expected kinetic and pharmacological properties in mammalian somatic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheuer, T -- Auld, V J -- Boyd, S -- Offord, J -- Dunn, R -- Catterall, W A -- NS 15751/NS/NINDS NIH HHS/ -- NS 25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):854-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, School of Medicine, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2154850" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Cell Line ; Cricetinae ; Cricetulus ; Electric Conductivity ; Female ; Membrane Potentials/drug effects ; Membrane Proteins/genetics/*physiology ; Ovary ; Rats ; Sodium Channels/drug effects/*physiology ; Tetrodotoxin/pharmacology ; *Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-05-08
    Description: Voltage-sensitive sodium channels are responsible for the initiation and propagation of the action potential and therefore are important for neuronal excitability. Complementary DNA clones encoding the beta 1 subunit of the rat brain sodium channel were isolated by a combination of polymerase chain reaction and library screening techniques. The deduced primary structure indicates that the beta 1 subunit is a 22,851-dalton protein that contains a single putative transmembrane domain and four potential extracellular N-linked glycosylation sites, consistent with biochemical data. Northern blot analysis reveals a 1,400-nucleotide messenger RNA in rat brain, heart, skeletal muscle, and spinal cord. Coexpression of beta 1 subunits with alpha subunits increases the size of the peak sodium current, accelerates its inactivation, and shifts the voltage dependence of inactivation to more negative membrane potentials. These results indicate that the beta 1 subunit is crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the rat brain sodium channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isom, L L -- De Jongh, K S -- Patton, D E -- Reber, B F -- Offord, J -- Charbonneau, H -- Walsh, K -- Goldin, A L -- Catterall, W A -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- NS26729/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1992 May 8;256(5058):839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1375395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Brain/*physiology ; Cloning, Molecular ; DNA/genetics/isolation & purification ; Female ; Kinetics ; Macromolecular Substances ; Membrane Potentials ; Molecular Sequence Data ; Oocytes/physiology ; Polymerase Chain Reaction/methods ; Protein Conformation ; RNA/genetics/isolation & purification ; RNA, Messenger/genetics ; Rats ; Sodium Channels/*genetics/*physiology ; Voltage-Gated Sodium Channel beta-1 Subunit ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-09-10
    Description: The function of voltage-gated sodium channels that are responsible for action potential generation in mammalian brain neurons is modulated by phosphorylation by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (cA-PK) and by protein kinase C (PKC). Reduction of peak sodium currents by cA-PK in intact cells required concurrent activation of PKC and was prevented by blocking phosphorylation of serine 1506, a site in the inactivation gate of the channel that is phosphorylated by PKC but not by cA-PK. Replacement of serine 1506 with negatively charged amino acids mimicked the effect of phosphorylation. Conversion of the consensus sequence surrounding serine 1506 to one more favorable for cA-PK enhanced modulation of sodium currents by cA-PK. Convergent modulation of sodium channels required phosphorylation of serine 1506 by PKC accompanied by phosphorylation of additional sites by cA-PK. This regulatory mechanism may serve to integrate neuronal signals mediated through these parallel signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, M -- West, J W -- Numann, R -- Murphy, B J -- Scheuer, T -- Catterall, W A -- R01-NS15751/NS/NINDS NIH HHS/ -- T32-GM07270/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1439-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8396273" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; CHO Cells ; Consensus Sequence ; Cricetinae ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Protein Kinase C/*metabolism ; Protein Kinases/*metabolism ; Sodium/metabolism ; Sodium Channels/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-06-09
    Description: In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 A resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552482/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552482/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payandeh, Jian -- Gamal El-Din, Tamer M -- Scheuer, Todd -- Zheng, Ning -- Catterall, William A -- R01 HL112808/HL/NHLBI NIH HHS/ -- R01 NS015751/NS/NINDS NIH HHS/ -- R01 NS15751/NS/NINDS NIH HHS/ -- U01 NS058039/NS/NINDS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 20;486(7401):135-9. doi: 10.1038/nature11077.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678296" target="_blank"〉PubMed〈/a〉
    Keywords: Arcobacter/*chemistry ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; *Ion Channel Gating ; Models, Molecular ; Protein Conformation ; Sodium Channels/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-07-12
    Description: Voltage-gated sodium (Na(V)) channels initiate electrical signalling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity and drug block is unknown. Here we report the crystal structure of a voltage-gated Na(+) channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage sensors at 2.7 A resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures indicate that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, approximately 4.6 A wide, and water filled, with four acidic side chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high-field-strength anionic coordination site, which confers Na(+) selectivity through partial dehydration via direct interaction with glutamate side chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs. This structure provides the template for understanding electrical signalling in excitable cells and the actions of drugs used for pain, epilepsy and cardiac arrhythmia at the atomic level.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266868/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266868/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payandeh, Jian -- Scheuer, Todd -- Zheng, Ning -- Catterall, William A -- R01 NS015751/NS/NINDS NIH HHS/ -- R01 NS015751-24/NS/NINDS NIH HHS/ -- R01 NS15751/NS/NINDS NIH HHS/ -- U01 NS058039/NS/NINDS NIH HHS/ -- U01 NS058039-03/NS/NINDS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jul 10;475(7356):353-8. doi: 10.1038/nature10238.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21743477" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arcobacter/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Calcium/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; *Ion Channel Gating ; Ion Transport ; Models, Molecular ; Potassium/metabolism ; Potassium Channels/chemistry/metabolism ; Protein Conformation ; Sodium/metabolism ; Sodium Channel Blockers/chemistry/metabolism/pharmacology ; Sodium Channels/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...