ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular  (1,233)
  • Phosphorylation  (1,100)
  • ASTROPHYSICS
  • Physics
  • American Association for the Advancement of Science (AAAS)  (2,640)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-08
    Description: After many years of delays, the €1.7 billion Facility for Antiproton and Ion Research, an extension of the GSI Helmholtz Center for Heavy Ion Research near Darmstadt, Germany, may finally get built. At a council meeting on 27 and 28 June, the partner countries—eight European Union members plus India and Russia—concluded that they have enough money to cover a €320 million budget gap; they will now seek building permits from the German government. Still, some countries have yet to commit their share of the missing cash, including Russia, which had agreed to bear about 18% of FAIR's total construction cost, the second largest contribution after Germany's 70%. Author: Edwin Cartlidge
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-05-27
    Description: Author: Jelena Stajic
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-15
    Description: Author: Jelena Stajic
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-22
    Description: Author: Ian S. Osborne
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-04-08
    Description: Author: Jelena Stajic
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-03-25
    Description: Density functional theory (DFT) stands out from all first-principles quantum mechanical methods for the simulation of materials, as it enables very good approximations for the complicated components of electronic motion called exchange and correlation. DFT is the method of choice for many materials simulations because of the availability of general-purpose programs that can perform calculations on any material. Results obtained with one DFT program need to be reproducible by any of the other DFT programs, and this has not been straightforward up to now. On page 10.1126/science.aad3000 of this issue, Lejaeghere et al. (1) describe an extensive effort by developers of the major solid-state DFT codes to provide a unified and reproducible benchmark of precision for their calculations based on a reliable criterion, the so-called Δ gauge. Using the Δ gauge, the authors found that the level of precision that can be achieved today in DFT calculations of elemental crystalline solids is comparable to the precision of the most advanced techniques for experimental measurement of the properties of materials. The work leads to the conclusion that the DFT simulation of elemental crystalline solids is a (computationally) solved problem, but also poses the question of whether we can achieve the same levels of validation and reproducibility for more complex simulations of materials involving several elements and/or several methods. Author: Chris-Kriton Skylaris
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-01
    Description: The photoemission of electrons from atoms, molecules, and condensed matter provides the experimental basis of our understanding of electronic structure. During the process of photoemission, a sufficiently large quantum of electromagnetic radiation (a photon) is absorbed by matter and converted into an electronic excitation, promoting a bound electron into a final state above the vacuum energy Evac. In photoemission spectroscopy, the kinetic energy and momentum of electrons in such final states are analyzed after their propagation to a distant detector. To determine the electronic structure of the sample, the “sudden approximation” has to be fulfilled, whereby the photoelectron leaves the sample fast enough, without further interaction with the remaining electronic structure. On page 62 of this issue, Tao et al. (1) provide unprecedented insight into final-state dynamics by measuring the time a photoelectron takes to leave a solid material for characteristically different final states. By comparing an electron excited to a final state of a nickel solid Ψ Nif with one excited to a state of vacuum Ψ vacf, they establish that a photoelectron resides in the final state for 200 attoseconds (as) (2 × 10−16 s) before it leaves the nickel (see the figure). Such time scales would still allow for the electron to interact with its surroundings and, thus, are relevant for the validity of the sudden approximation. Authors: Uwe Bovensiepen, Manuel Ligges
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-06-24
    Description: Author: Jelena Stajic
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-08-16
    Description: When a multibillion-dollar physics experiment is canceled, it's tempting to look for lessons that can be applied to future megascience projects. A new book on the rise and fall of the Superconducting Supercollider (SSC) by a trio of science historians takes on that challenge. And while the authors do an excellent job of describing what occurred in the decade from its inception to its demise, they stumble when trying to assign blame. Author: Jeffrey Mervis
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907122/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907122/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Falke, Joseph J -- R01 GM040731/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1480-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biophysics Program and the Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA. falke@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859184" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Binding Sites ; Catalysis ; Cyclophilin A/*chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Nitrogen/chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2002-04-06
    Description: Higher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice. Although H2AX is not essential for irradiation-induced cell-cycle checkpoints, H2AX-/- mice were radiation sensitive, growth retarded, and immune deficient, and mutant males were infertile. These pleiotropic phenotypes were associated with chromosomal instability, repair defects, and impaired recruitment of Nbs1, 53bp1, and Brca1, but not Rad51, to irradiation-induced foci. Thus, H2AX is critical for facilitating the assembly of specific DNA-repair complexes on damaged DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Celeste, Arkady -- Petersen, Simone -- Romanienko, Peter J -- Fernandez-Capetillo, Oscar -- Chen, Hua Tang -- Sedelnikova, Olga A -- Reina-San-Martin, Bernardo -- Coppola, Vincenzo -- Meffre, Eric -- Difilippantonio, Michael J -- Redon, Christophe -- Pilch, Duane R -- Olaru, Alexandru -- Eckhaus, Michael -- Camerini-Otero, R Daniel -- Tessarollo, Lino -- Livak, Ferenc -- Manova, Katia -- Bonner, William M -- Nussenzweig, Michel C -- Nussenzweig, Andre -- Z99 CA999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2002 May 3;296(5569):922-7. Epub 2002 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11934988" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/physiology ; Base Sequence ; Cell Aging ; Cell Cycle ; Cells, Cultured ; *Chromosome Aberrations ; DNA Damage ; *DNA Repair ; Female ; Gene Targeting ; Histones/chemistry/*genetics/*physiology ; Immunoglobulin Class Switching ; Infertility, Male/genetics/physiopathology ; Lymphocyte Count ; Male ; Meiosis ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Recombination, Genetic ; Spermatocytes/physiology ; T-Lymphocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2002-06-22
    Description: Positive-strand RNA viruses such as poliovirus replicate their genomes on intracellular membranes of their eukaryotic hosts. Electron microscopy has revealed that purified poliovirus RNA-dependent RNA polymerase forms planar and tubular oligomeric arrays. The structural integrity of these arrays correlates with cooperative RNA binding and RNA elongation and is sensitive to mutations that disrupt intermolecular contacts predicted by the polymerase structure. Membranous vesicles isolated from poliovirus-infected cells contain structures consistent with the presence of two-dimensional polymerase arrays on their surfaces during infection. Therefore, host cytoplasmic membranes may function as physical foundations for two-dimensional polymerase arrays, conferring the advantages of surface catalysis to viral RNA replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyle, John M -- Bullitt, Esther -- Bienz, Kurt -- Kirkegaard, Karla -- AI-42119/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 21;296(5576):2218-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12077417" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Inclusion Bodies, Viral/metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Poliovirus/*enzymology/physiology ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; RNA Replicase/*chemistry/isolation & purification/*metabolism/ultrastructure ; RNA, Viral/biosynthesis/*metabolism ; Viral Core Proteins/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2003-07-12
    Description: Direct interaction between platelet receptor glycoprotein Ibalpha (GpIbalpha) and thrombin is required for platelet aggregation and activation at sites of vascular injury. Abnormal GpIbalpha-thrombin binding is associated with many pathological conditions,including occlusive arterial thrombosis and bleeding disorders. The crystal structure of the GpIbalpha-thrombin complex at 2.6 angstrom resolution reveals simultaneous interactions of GpIbalpha with exosite I of one thrombin molecule,and with exosite II of a second thrombin molecule. In the crystal lattice,the periodic arrangement of GpIbalpha-thrombin complexes mirrors a scaffold that could serve as a driving force for tight platelet adhesion. The details of these interactions reconcile GpIbalpha-thrombin binding modes that are presently controversial,highlighting two distinct interfaces that are potential targets for development of novel antithrombotic drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dumas, John J -- Kumar, Ravindra -- Seehra, Jasbir -- Somers, William S -- Mosyak, Lidia -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):222-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Screening Sciences, Wyeth, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855811" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Blood Platelets/chemistry/physiology ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Platelet Adhesiveness ; *Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thrombin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2003-05-06
    Description: We have used adenosine diphosphate analogs containing electron paramagnetic resonance (EPR) spin moieties and EPR spectroscopy to show that the nucleotide-binding site of kinesin-family motors closes when the motor.diphosphate complex binds to microtubules. Structural analyses demonstrate that a domain movement in the switch 1 region at the nucleotide site, homologous to domain movements in the switch 1 region in the G proteins [heterotrimeric guanine nucleotide-binding proteins], explains the EPR data. The switch movement primes the motor both for the free energy-yielding nucleotide hydrolysis reaction and for subsequent conformational changes that are crucial for the generation of force and directed motion along the microtubule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naber, Nariman -- Minehardt, Todd J -- Rice, Sarah -- Chen, Xiaoru -- Grammer, Jean -- Matuska, Marija -- Vale, Ronald D -- Kollman, Peter A -- Car, Roberto -- Yount, Ralph G -- Cooke, Roger -- Pate, Edward -- AR39643/AR/NIAMS NIH HHS/ -- AR42895/AR/NIAMS NIH HHS/ -- DK05915/DK/NIDDK NIH HHS/ -- GM29072/GM/NIGMS NIH HHS/ -- RR1081/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):798-801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, San Francisco, CA 94143, USA. naber@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730601" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine Nucleotides/*metabolism ; Adenosine Diphosphate/analogs & derivatives/metabolism ; Adenosine Triphosphate/analogs & derivatives/metabolism ; Animals ; Binding Sites ; Computer Simulation ; Crystallography, X-Ray ; *Drosophila Proteins ; Drosophila melanogaster ; Electron Spin Resonance Spectroscopy ; Humans ; Hydrogen Bonding ; Hydrolysis ; Kinesin/*chemistry/*metabolism ; Microtubules/*metabolism ; Models, Molecular ; Molecular Motor Proteins/*chemistry/*metabolism ; Molecular Probes/metabolism ; Protein Conformation ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hederstedt, Lars -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):671-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Organism Biology, Lund University, SE-22362 Lund, Sweden. lars.hederstedt@cob.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560540" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/*metabolism ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/*metabolism ; Succinic Acid/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintz, Nathaniel -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):59-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Rockefeller University, New York, NY 10021, USA. heintz@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843383" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Substitution ; Animals ; Ataxin-1 ; Ataxins ; Cell Nucleus/metabolism ; Disease Progression ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Peptides ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Purkinje Cells/metabolism/ultrastructure ; Signal Transduction ; Spinocerebellar Ataxias/etiology/genetics/pathology/*physiopathology ; *Trinucleotide Repeat Expansion ; Tyrosine 3-Monooxygenase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gundersen, Gregg G -- Bretscher, Anthony -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2040-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology and Department of Pathology, Columbia University, New York, NY 10032, USA. ggg1@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829769" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Division ; Cell Polarity ; Cyclins/metabolism ; Microtubule Proteins/metabolism ; Microtubule-Organizing Center/*metabolism/ultrastructure ; Microtubules/*metabolism/ultrastructure ; Models, Biological ; Mutation ; Myosin Heavy Chains/metabolism ; Myosin Type V/metabolism ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Transport ; Saccharomyces cerevisiae/cytology/metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/metabolism ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2003-07-05
    Description: Raf kinases have been linked to endothelial cell survival. Here, we show that basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) differentially activate Raf, resulting in protection from distinct pathways of apoptosis in human endothelial cells and chick embryo vasculature. bFGF activated Raf-1 via p21-activated protein kinase-1 (PAK-1) phosphorylation of serines 338 and 339, resulting in Raf-1 mitochondrial translocation and endothelial cell protection from the intrinsic pathway of apoptosis, independent of the mitogen-activated protein kinase kinase-1 (MEK1). In contrast, VEGF activated Raf-1 via Src kinase, leading to phosphorylation of tyrosines 340 and 341 and MEK1-dependent protection from extrinsic-mediated apoptosis. These findings implicate Raf-1 as a pivotal regulator of endothelial cell survival during angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alavi, Alireza -- Hood, John D -- Frausto, Ricardo -- Stupack, Dwayne G -- Cheresh, David A -- CA45726/CA/NCI NIH HHS/ -- CA50286/CA/NCI NIH HHS/ -- CA75924/CA/NCI NIH HHS/ -- P01 CA78045/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):94-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cell Survival ; Cells, Cultured ; Chick Embryo ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/*cytology/drug effects ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Fibroblast Growth Factor 2/pharmacology ; Flavonoids/pharmacology ; Humans ; Intercellular Signaling Peptides and Proteins/pharmacology ; Lymphokines/pharmacology ; MAP Kinase Kinase 1 ; Mitochondria/metabolism ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Neovascularization, Pathologic ; *Neovascularization, Physiologic/drug effects ; Phosphorylation ; Point Mutation ; Protein Transport ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins B-raf ; Proto-Oncogene Proteins c-raf/chemistry/genetics/*metabolism ; Signal Transduction ; Umbilical Veins ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors ; p21-Activated Kinases ; src-Family Kinases/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2003-05-10
    Description: Multidrug efflux pumps cause serious problems in cancer chemotherapy and treatment of bacterial infections. Yet high-resolution structures of ligand transporter complexes have previously been unavailable. We obtained x-ray crystallographic structures of the trimeric AcrB pump from Escherichia coli with four structurally diverse ligands. The structures show that three molecules of ligands bind simultaneously to the extremely large central cavity of 5000 cubic angstroms, primarily by hydrophobic, aromatic stacking and van der Waals interactions. Each ligand uses a slightly different subset of AcrB residues for binding. The bound ligand molecules often interact with each other, stabilizing the binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Edward W -- McDermott, Gerry -- Zgurskaya, Helen I -- Nikaido, Hiroshi -- Koshland, Daniel E Jr -- AI 09644/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 May 9;300(5621):976-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738864" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Infective Agents/chemistry/metabolism ; Anti-Infective Agents, Local/chemistry/metabolism ; Binding Sites ; Carrier Proteins/*chemistry/isolation & purification/*metabolism ; Cell Membrane/chemistry ; Chemistry, Physical ; Ciprofloxacin/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Dequalinium/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/isolation & purification/*metabolism ; Ethidium/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Membrane Proteins/*chemistry/isolation & purification/*metabolism ; Models, Molecular ; Multidrug Resistance-Associated Proteins ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rhodamines/chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, John F -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1530-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden. john.allen@plantbio.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624254" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/genetics/isolation & purification/metabolism ; Animals ; Binding Sites ; Chlamydomonas reinhardtii/*enzymology/genetics/metabolism ; Chlorophyll/metabolism ; Electron Transport ; Fluorescence ; Gene Library ; Light ; Light-Harvesting Protein Complexes ; Models, Biological ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*metabolism ; Plastoquinone/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*isolation & ; purification/*metabolism ; Signal Transduction ; Thylakoids/*enzymology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2003-11-01
    Description: Mutations in MeCP2, which encodes a protein that has been proposed to function as a global transcriptional repressor, are the cause of Rett syndrome (RT T), an X-linked progressive neurological disorder. Although the selective inactivation of MeCP2 in neurons is sufficient to confer a Rett-like phenotype in mice, the specific functions of MeCP2 in postmitotic neurons are not known. We find that MeCP2 binds selectively to BDNF promoter III and functions to repress expression of the BDNF gene. Membrane depolarization triggers the calcium-dependent phosphorylation and release of MeCP2 from BDNF promoter III, thereby facilitating transcription. These studies indicate that MeCP2 plays a key role in the control of neuronal activity-dependent gene regulation and suggest that the deregulation of this process may underlie the pathology of RT T.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wen G -- Chang, Qiang -- Lin, Yingxi -- Meissner, Alexander -- West, Anne E -- Griffith, Eric C -- Jaenisch, Rudolf -- Greenberg, Michael E -- HD 18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):885-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*genetics ; Calcium/*metabolism ; Cell Membrane/physiology ; Cells, Cultured ; *Chromosomal Proteins, Non-Histone ; Cloning, Molecular ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/*metabolism ; Electrophoretic Mobility Shift Assay ; *Gene Expression Regulation ; Gene Silencing ; Histones/metabolism ; Methyl-CpG-Binding Protein 2 ; Methylation ; Mice ; Mice, Knockout ; Neurons/metabolism/physiology ; Phosphorylation ; Potassium Chloride/pharmacology ; Precipitin Tests ; Promoter Regions, Genetic ; Rats ; *Repressor Proteins ; Rett Syndrome/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2003-11-25
    Description: Three distinct classes of drugs: dopaminergic agonists (such as D-amphetamine), serotonergic agonists (such as LSD), and glutamatergic antagonists (such as PCP) all induce psychotomimetic states in experimental animals that closely resemble schizophrenia symptoms in humans. Here we implicate a common signaling pathway in mediating these effects. In this pathway, dopamine- and an adenosine 3',5'-monophosphate (cAMP)-regulated phospho-protein of 32 kilodaltons (DARPP-32) is phosphorylated or dephosphorylated at three sites, in a pattern predicted to cause a synergistic inhibition of protein phosphatase-1 and concomitant regulation of its downstream effector proteins glycogen synthesis kinase-3 (GSK-3), cAMP response element-binding protein (CREB), and c-Fos. In mice with a genetic deletion of DARPP-32 or with point mutations in phosphorylation sites of DARPP-32, the effects of D-amphetamine, LSD, and PCP on two behavioral parameters-sensorimotor gating and repetitive movements-were strongly attenuated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Svenningsson, Per -- Tzavara, Eleni T -- Carruthers, Robert -- Rachleff, Ilan -- Wattler, Sigrid -- Nehls, Michael -- McKinzie, David L -- Fienberg, Allen A -- Nomikos, George G -- Greengard, Paul -- DA10044/DA/NIDA NIH HHS/ -- MH40899/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1412-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631045" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology ; Animals ; Brain/drug effects/*metabolism ; Central Nervous System Agents/*pharmacology ; Corpus Striatum/drug effects/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Dextroamphetamine/pharmacology ; Dopamine/metabolism ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Frontal Lobe/drug effects/metabolism ; Genes, fos ; Glycogen Synthase Kinase 3/metabolism ; Lysergic Acid Diethylamide/pharmacology ; Male ; Mice ; Mice, Knockout ; Motor Activity/drug effects ; Nerve Tissue Proteins/metabolism ; Phencyclidine/pharmacology ; Phosphoprotein Phosphatases/antagonists & inhibitors ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein Phosphatase 1 ; RNA, Messenger/genetics/metabolism ; Receptors, Dopamine D1/genetics/metabolism ; Reflex, Startle/drug effects ; *Signal Transduction ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2003-01-25
    Description: Disruption of the adaptor protein ELF, a beta-spectrin, leads to disruption of transforming growth factor-beta (TGF-beta) signaling by Smad proteins in mice. Elf-/- mice exhibit a phenotype similar to smad2+/-/smad3+/- mutant mice of midgestational death due to gastrointestinal, liver, neural, and heart defects. We show that TGF-beta triggers phosphorylation and association of ELF with Smad3 and Smad4, followed by nuclear translocation. ELF deficiency results in mislocalization of Smad3 and Smad4 and loss of the TGF-beta-dependent transcriptional response, which could be rescued by overexpression of the COOH-terminal region of ELF. This study reveals an unexpected molecular link between a major dynamic scaffolding protein and a key signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Yi -- Katuri, Varalakshmi -- Dillner, Allan -- Mishra, Bibhuti -- Deng, Chu-Xia -- Mishra, Lopa -- R01 DK56111/DK/NIDDK NIH HHS/ -- R01 DK58637/DK/NIDDK NIH HHS/ -- R03 DK53861/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, Department of Medicine, Georgetown University, Washington, DC 20007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543979" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple ; Animals ; Carrier Proteins/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Contractile Proteins/metabolism ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Filamins ; Gene Targeting ; Genes, fos ; Liver/abnormalities/embryology/*metabolism ; Mice ; Mice, Knockout ; Microfilament Proteins/metabolism ; Microscopy, Confocal ; Mutation ; Phenotype ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; *Signal Transduction ; Smad2 Protein ; Smad3 Protein ; Smad4 Protein ; Spectrin/genetics/*metabolism ; Trans-Activators/metabolism ; Transcriptional Activation ; Transforming Growth Factor beta/*metabolism/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1998-03-21
    Description: The T cell receptor (TCR) inherently has dual specificity. T cells must recognize self-antigens in the thymus during maturation and then discriminate between foreign pathogens in the periphery. A molecular basis for this cross-reactivity is elucidated by the crystal structure of the alloreactive 2C TCR bound to self peptide-major histocompatibility complex (pMHC) antigen H-2Kb-dEV8 refined against anisotropic 3.0 angstrom resolution x-ray data. The interface between peptide and TCR exhibits extremely poor shape complementarity, and the TCR beta chain complementarity-determining region 3 (CDR3) has minimal interaction with the dEV8 peptide. Large conformational changes in three of the TCR CDR loops are induced upon binding, providing a mechanism of structural plasticity to accommodate a variety of different peptide antigens. Extensive TCR interaction with the pMHC alpha helices suggests a generalized orientation that is mediated by the Valpha domain of the TCR and rationalizes how TCRs can effectively "scan" different peptides bound within a large, low-affinity MHC structural framework for those that provide the slight additional kinetic stabilization required for signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, K C -- Degano, M -- Pease, L R -- Huang, M -- Peterson, P A -- Teyton, L -- Wilson, I A -- AI42266/AI/NIAID NIH HHS/ -- AI42267/AI/NIAID NIH HHS/ -- R01 CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1166-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallization ; Crystallography, X-Ray ; H-2 Antigens/*chemistry/*immunology/metabolism ; Ligands ; Mice ; Mice, Transgenic ; Models, Molecular ; Mutation ; Oligopeptides/*chemistry/immunology/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/*immunology/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: The 2.5 angstrom resolution x-ray crystal structure of the Escherichia coli RNA polymerase (RNAP) alpha subunit amino-terminal domain (alphaNTD), which is necessary and sufficient to dimerize and assemble the other RNAP subunits into a transcriptionally active enzyme and contains all of the sequence elements conserved among eukaryotic alpha homologs, has been determined. The alphaNTD monomer comprises two distinct, flexibly linked domains, only one of which participates in the dimer interface. In the alphaNTD dimer, a pair of helices from one monomer interact with the cognate helices of the other to form an extensive hydrophobic core. All of the determinants for interactions with the other RNAP subunits lie on one face of the alphaNTD dimer. Sequence alignments, combined with secondary-structure predictions, support proposals that a heterodimer of the eukaryotic RNAP subunits related to Saccharomyces cerevisiae Rpb3 and Rpb11 plays the role of the alphaNTD dimer in prokaryotic RNAP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, G -- Darst, S A -- GM19441-01/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/*chemistry ; Dimerization ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Polymerase II/chemistry ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1998-12-18
    Description: CTLA-4, a negative regulator of T cell function, was found to associate with the T cell receptor (TCR) complex zeta chain in primary T cells. The association of TCRzeta with CTLA-4, reconstituted in 293 transfectants, was enhanced by p56(lck)-induced tyrosine phosphorylation. Coexpression of the CTLA-4-associated tyrosine phosphatase, SHP-2, resulted in dephosphorylation of TCRzeta bound to CTLA-4 and abolished the p56(lck)-inducible TCRzeta-CTLA-4 interaction. Thus, CTLA-4 inhibits TCR signal transduction by binding to TCRzeta and inhibiting tyrosine phosphorylation after T cell activation. These findings have broad implications for the negative regulation of T cell function and T cell tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, K M -- Chuang, E -- Griffin, M -- Khattri, R -- Hong, D K -- Zhang, W -- Straus, D -- Samelson, L E -- Thompson, C B -- Bluestone, J A -- P01 AI35294-6/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2263-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ben May Institute for Cancer Research, and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856951" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Animals ; Antigens, CD ; Antigens, Differentiation/*metabolism ; CTLA-4 Antigen ; Cell Line ; Cells, Cultured ; Humans ; *Immunoconjugates ; Intracellular Signaling Peptides and Proteins ; *Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics/metabolism ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred BALB C ; Models, Immunological ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/genetics/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; SH2 Domain-Containing Protein Tyrosine Phosphatases ; *Signal Transduction ; T-Lymphocytes/*immunology ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, B J -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1000-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84132, USA. graves@bioscience.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490475" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrins/chemistry ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; GA-Binding Protein Transcription Factor ; Hydrogen Bonding ; Leucine Zippers ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Transcription Factors/*chemistry/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1998-02-21
    Description: Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, L -- Anderson, K -- Stokoe, D -- Erdjument-Bromage, H -- Painter, G F -- Holmes, A B -- Gaffney, P R -- Reese, C B -- McCormick, F -- Tempst, P -- Coadwell, J -- Hawkins, P T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):710-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inositide Laboratory, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445477" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cloning, Molecular ; DNA, Complementary ; Drosophila ; Drosophila Proteins ; Enzyme Activation ; Humans ; Liposomes/metabolism ; Molecular Sequence Data ; Open Reading Frames ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/isolation & ; purification/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Recombinant Proteins/metabolism ; Sheep ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1998-08-28
    Description: A large protein complex mediates the phosphorylation of the inhibitor of kappaB (IkappaB), which results in the activation of nuclear factor kappaB (NF-kappaB). Two subunits of this complex, IkappaB kinase alpha (IKKalpha) and IkappaB kinase beta (IKKbeta), are required for NF-kappaB activation. Purified recombinant IKKalpha and IKKbeta expressed in insect cells were used to demonstrate that each protein can directly phosphorylate IkappaB proteins. IKKalpha and IKKbeta were found to form both homodimers and heterodimers. Both IKKalpha and IKKbeta phosphorylated IkappaB bound to NF-kappaB more efficiently than they phosphorylated free IkappaB. This result explains how free IkappaB can accumulate in cells in which IKK is still active and thus can contribute to the termination of NF-kappaB activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zandi, E -- Chen, Y -- Karin, M -- AI 43477/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1360-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Dimerization ; Enzyme Activation ; HeLa Cells ; Helix-Loop-Helix Motifs ; Humans ; I-kappa B Kinase ; Leucine Zippers ; Mutation ; NF-kappa B/antagonists & inhibitors/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Spodoptera ; Transcription Factor RelB ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1998-11-30
    Description: The NPH1 gene of Arabidopsis thaliana encodes a 120-kilodalton serine-threonine protein kinase hypothesized to function as a photoreceptor for phototropism. When expressed in insect cells, the NPH1 protein is phosphorylated in response to blue light irradiation. The biochemical and photochemical properties of the photosensitive protein reflect those of the native protein in microsomal membranes. Recombinant NPH1 noncovalently binds flavin mononucleotide, a likely chromophore for light-dependent autophosphorylation. The fluorescence excitation spectrum of the recombinant protein is similar to the action spectrum for phototropism, consistent with the conclusion that NPH1 is an autophosphorylating flavoprotein photoreceptor mediating phototropic responses in higher plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christie, J M -- Reymond, P -- Powell, G K -- Bernasconi, P -- Raibekas, A A -- Liscum, E -- Briggs, W R -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1698-701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/*physiology ; *Arabidopsis Proteins ; Cell Line ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Flavin Mononucleotide/metabolism ; Flavoproteins/physiology ; Genes, Plant ; Light ; Mutation ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; *Photoreceptor Cells, Invertebrate ; *Phototropism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, G-Protein-Coupled ; Recombinant Proteins/metabolism ; Spectrometry, Fluorescence ; Spodoptera ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: The three-dimensional structure of a 70-kilodalton amino terminally truncated form of human topoisomerase I in complex with a 22-base pair duplex oligonucleotide, determined to a resolution of 2.8 angstroms, reveals all of the structural elements of the enzyme that contact DNA. The linker region that connects the central core of the enzyme to the carboxyl-terminal domain assumes a coiled-coil configuration and protrudes away from the remainder of the enzyme. The positively charged DNA-proximal surface of the linker makes only a few contacts with the DNA downstream of the cleavage site. In combination with the crystal structures of the reconstituted human topoisomerase I before and after DNA cleavage, this information suggests which amino acid residues are involved in catalyzing phosphodiester bond breakage and religation. The structures also lead to the proposal that the topoisomerization step occurs by a mechanism termed "controlled rotation."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, L -- Redinbo, M R -- Qiu, X -- Hol, W G -- Champoux, J J -- CA65656/CA/NCI NIH HHS/ -- GM16713/GM/NIGMS NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1534-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195-7742, USA. emerald_biostructures@rocketmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hafen, E -- New York, N.Y. -- Science. 1998 May 22;280(5367):1212-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zoologisches Institut der Universitat Zurich, Zurich, Switzerland. hafen@zool.unizh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9634402" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 4 ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Down-Regulation ; Dual Specificity Phosphatase 6 ; Enzyme Activation ; Mitogen-Activated Protein Kinase 1 ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein Tyrosine Phosphatases/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagmann, M -- New York, N.Y. -- Science. 1999 Aug 20;285(5431):1200-1, 1203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10484727" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/chemistry/metabolism ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Chromatin/chemistry/*metabolism/*ultrastructure ; *Gene Expression Regulation ; Histone Acetyltransferases ; Histones/*metabolism ; Methylation ; *Mitosis ; Phosphorylation ; Protein Structure, Secondary ; Protein-Arginine N-Methyltransferases/metabolism ; Transcription Factors ; p300-CBP Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1998-04-16
    Description: Photoactive yellow protein (PYP) is a member of the xanthopsin family of eubacterial blue-light photoreceptors. On absorption of light, PYP enters a photocycle that ultimately transduces the energy contained in a light signal into an altered biological response. Nanosecond time-resolved x-ray crystallography was used to determine the structure of the short-lived, red-shifted, intermediate state denoted [pR], which develops within 1 nanosecond after photoelectronic excitation of the chromophore of PYP by absorption of light. The resulting structural model demonstrates that the [pR] state possesses the cis conformation of the 4-hydroxyl cinnamic thioester chromophore, and that the process of trans to cis isomerization is accompanied by the specific formation of new hydrogen bonds that replace those broken upon excitation of the chromophore. Regions of flexibility that compose the chromophore-binding pocket serve to lower the activation energy barrier between the dark state, denoted pG, and [pR], and help initiate entrance into the photocycle. Direct structural evidence is provided for the initial processes of transduction of light energy, which ultimately translate into a physiological signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perman, B -- Srajer, V -- Ren, Z -- Teng, T -- Pradervand, C -- Ursby, T -- Bourgeois, D -- Schotte, F -- Wulff, M -- Kort, R -- Hellingwerf, K -- Moffat, K -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1946-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506946" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Chromatiaceae/chemistry ; Crystallography, X-Ray ; Energy Metabolism ; Fourier Analysis ; Hydrogen Bonding ; Isomerism ; Kinetics ; *Light ; Models, Molecular ; *Photoreceptors, Microbial ; *Protein Conformation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9446222" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Binding Sites ; Cell Division ; Crystallization ; Crystallography/*methods ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; GTP-Binding Proteins/chemistry ; Guanosine Triphosphate/metabolism ; Microtubules/chemistry ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary ; Tubulin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-09
    Description: A "switch" mutant of the Arc repressor homodimer was constructed by interchanging the sequence positions of a hydrophobic core residue, leucine 12, and an adjacent surface polar residue, asparagine 11, in each strand of an intersubunit beta sheet. The mutant protein adopts a fold in which each beta strand is replaced by a right-handed helix and side chains in this region undergo significant repacking. The observed structural changes allow the protein to maintain solvent exposure of polar side chains and optimal burial of hydrophobic side chains. These results suggest that new protein folds can evolve from existing folds without drastic or large-scale mutagenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cordes, M H -- Walsh, N P -- McKnight, C J -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):325-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195898" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Asparagine/chemistry ; Circular Dichroism ; Hydrogen Bonding ; Leucine/chemistry ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Insertional ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; *Protein Folding ; *Protein Structure, Secondary ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry ; Viral Proteins/*chemistry ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1999-10-09
    Description: The Yersinia pseudotuberculosis invasin protein promotes bacterial entry by binding to host cell integrins with higher affinity than natural substrates such as fibronectin. The 2.3 angstrom crystal structure of the invasin extracellular region reveals five domains that form a 180 angstrom rod with structural similarities to tandem fibronectin type III domains. The integrin-binding surfaces of invasin and fibronectin include similarly located key residues, but in the context of different folds and surface shapes. The structures of invasin and fibronectin provide an example of convergent evolution, in which invasin presents an optimized surface for integrin binding, in comparison with host substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamburger, Z A -- Brown, M S -- Isberg, R R -- Bjorkman, P J -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):291-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514372" target="_blank"〉PubMed〈/a〉
    Keywords: *Adhesins, Bacterial ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Evolution, Molecular ; Fibronectins/chemistry/metabolism ; Hydrogen Bonding ; Integrins/*metabolism ; Ligands ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Yersinia pseudotuberculosis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1999-09-25
    Description: The flow of information from calcium-mobilizing receptors to nuclear factor of activated T cells (NFAT)-dependent genes is critically dependent on interaction between the phosphatase calcineurin and the transcription factor NFAT. A high-affinity calcineurin-binding peptide was selected from combinatorial peptide libraries based on the calcineurin docking motif of NFAT. This peptide potently inhibited NFAT activation and NFAT-dependent expression of endogenous cytokine genes in T cells, without affecting the expression of other cytokines that require calcineurin but not NFAT. Substitution of the optimized peptide sequence into the natural calcineurin docking site increased the calcineurin responsiveness of NFAT. Compounds that interfere selectively with the calcineurin-NFAT interaction without affecting calcineurin phosphatase activity may be useful as therapeutic agents that are less toxic than current drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aramburu, J -- Yaffe, M B -- Lopez-Rodriguez, C -- Cantley, L C -- Hogan, P G -- Rao, A -- R01 AI 40127/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HL 03601/HL/NHLBI NIH HHS/ -- R43 AI 43726/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2129-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Nucleus/metabolism ; Cyclosporine/pharmacology ; Cytokines/biosynthesis/genetics ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HeLa Cells ; Humans ; Immunosuppressive Agents/chemistry/metabolism/*pharmacology ; Jurkat Cells ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Oligopeptides/chemistry/metabolism/*pharmacology ; Peptide Library ; Peptides/chemistry/metabolism/*pharmacology ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/*drug effects/immunology ; Transcription Factors/*antagonists & inhibitors/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1999-11-05
    Description: The Brca1 (breast cancer gene 1) tumor suppressor protein is phosphorylated in response to DNA damage. Results from this study indicate that the checkpoint protein kinase ATM (mutated in ataxia telangiectasia) was required for phosphorylation of Brca1 in response to ionizing radiation. ATM resides in a complex with Brca1 and phosphorylated Brca1 in vivo and in vitro in a region that contains clusters of serine-glutamine residues. Phosphorylation of this domain appears to be functionally important because a mutated Brca1 protein lacking two phosphorylation sites failed to rescue the radiation hypersensitivity of a Brca1-deficient cell line. Thus, phosphorylation of Brca1 by the checkpoint kinase ATM may be critical for proper responses to DNA double-strand breaks and may provide a molecular explanation for the role of ATM in breast cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cortez, D -- Wang, Y -- Qin, J -- Elledge, S J -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Mars McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550055" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ataxia Telangiectasia/genetics ; Ataxia Telangiectasia Mutated Proteins ; BRCA1 Protein/*metabolism ; Breast Neoplasms/genetics ; Cell Cycle Proteins ; Cell Line ; *DNA Damage ; *DNA Repair ; DNA, Complementary ; DNA-Binding Proteins ; Female ; Gamma Rays ; Genes, BRCA1 ; Genetic Predisposition to Disease ; HeLa Cells ; Heterozygote ; Humans ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, I A -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1867-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. wilson@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*chemistry/immunology/metabolism ; Binding Sites ; CD4-Positive T-Lymphocytes/immunology/metabolism ; CD8-Positive T-Lymphocytes/immunology/metabolism ; Crystallography, X-Ray ; Histocompatibility Antigens Class I/chemistry/immunology/metabolism ; Histocompatibility Antigens Class II/*chemistry/immunology/metabolism ; Mice ; Models, Molecular ; Peptides/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-30
    Description: The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shtilerman, M -- Lorimer, G H -- Englander, S W -- GM31847/GM/NIGMS NIH HHS/ -- R01 GM031847/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 30;284(5415):822-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10221918" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/metabolism ; Binding Sites ; Chaperonin 10/chemistry/metabolism/physiology ; Chaperonin 60/chemistry/metabolism/*physiology ; Hydrogen/chemistry/metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Ribulose-Bisphosphate Carboxylase/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1999-07-31
    Description: Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Song, Y -- Bakker, A B -- Bauer, S -- Spies, T -- Lanier, L L -- Phillips, J H -- AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):730-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cytotoxicity, Immunologic ; Humans ; Killer Cells, Natural/*immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; NK Cell Lectin-Like Receptor Subfamily K ; Neoplasms/immunology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Natural Killer Cell ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1999-04-09
    Description: Phosphorylation of inhibitor of kappa B (IkappaB) proteins is an important step in the activation of the transcription nuclear factor kappa B (NF-kappaB) and requires two IkappaB kinases, IKK1 (IKKalpha) and IKK2 (IKKbeta). Mice that are devoid of the IKK2 gene had extensive liver damage from apoptosis and died as embryos, but these mice could be rescued by the inactivation of the gene encoding tumor necrosis factor receptor 1. Mouse embryonic fibroblast cells that were isolated from IKK2-/- embryos showed a marked reduction in tumor necrosis factor-alpha (TNF-alpha)- and interleukin-1alpha-induced NF-kappaB activity and an enhanced apoptosis in response to TNF-alpha. IKK1 associated with NF-kappaB essential modulator (IKKgamma/IKKAP1), another component of the IKK complex. These results show that IKK2 is essential for mouse development and cannot be substituted with IKK1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Q -- Van Antwerp, D -- Mercurio, F -- Lee, K F -- Verma, I M -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute, La Jolla, CA 92037, USA. Signal Pharmaceuticals, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Line ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Liver/cytology/*embryology ; Mice ; NF-kappa B/metabolism ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Signal Transduction ; Transcription Factor RelA ; Transcription Factors/metabolism ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2000-01-05
    Description: The nematode pharynx has a potassium channel with unusual properties, which allows the muscles to repolarize quickly and with the proper delay. Here, the Caenorhabditis elegans exp-2 gene is shown to encode this channel. EXP-2 is a Kv-type (voltage-activated) potassium channel that has inward-rectifying properties resembling those of the structurally dissimilar human ether-a-go-go-related gene (HERG) channel. Null and gain-of-function mutations affect pharyngeal muscle excitability in ways that are consistent with the electrophysiological behavior of the channel, and thereby demonstrate a direct link between the kinetics of this unusual channel and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791429/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791429/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, M W -- Fleischhauer, R -- Dent, J A -- Joho, R H -- Avery, L -- HL46154/HL/NHLBI NIH HHS/ -- NS28407/NS/NINDS NIH HHS/ -- R01 HL046154/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2501-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. wdavis@biology.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617464" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Feeding Behavior ; Genes, Helminth ; Genes, Reporter ; Ion Channel Gating ; Kinetics ; Membrane Potentials ; Models, Molecular ; Muscles/metabolism ; Mutation ; Neurons/metabolism ; Oocytes/metabolism ; Pharyngeal Muscles/physiology ; Potassium Channels/chemistry/genetics/*physiology ; Protein Conformation ; RNA, Complementary/genetics ; Recombinant Fusion Proteins/biosynthesis ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1999-09-18
    Description: The bacterial pathogen Yersinia uses a type III secretion system to inject several virulence factors into target cells. One of the Yersinia virulence factors, YopJ, was shown to bind directly to the superfamily of MAPK (mitogen-activated protein kinase) kinases (MKKs) blocking both phosphorylation and subsequent activation of the MKKs. These results explain the diverse activities of YopJ in inhibiting the extracellular signal-regulated kinase, c-Jun amino-terminal kinase, p38, and nuclear factor kappa B signaling pathways, preventing cytokine synthesis and promoting apoptosis. YopJ-related proteins that are found in a number of bacterial pathogens of animals and plants may function to block MKKs so that host signaling responses can be modulated upon infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orth, K -- Palmer, L E -- Bao, Z Q -- Stewart, S -- Rudolph, A E -- Bliska, J B -- Dixon, J E -- 18024/PHS HHS/ -- AI35175/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1920-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489373" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*physiology ; Calcium-Calmodulin-Dependent Protein Kinases/*antagonists & inhibitors ; Cell Line ; Enzyme Activation ; Enzyme Inhibitors/*pharmacology ; HeLa Cells ; Humans ; *MAP Kinase Kinase Kinase 1 ; NF-kappa B/metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Transfection ; Virulence ; Yersinia pseudotuberculosis/genetics/metabolism/pathogenicity/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1999-09-11
    Description: To characterize the mechanism by which receptors propagate conformational changes across membranes, nitroxide spin labels were attached at strategic positions in the bacterial aspartate receptor. By collecting the electron paramagnetic resonance spectra of these labeled receptors in the presence and absence of the ligand aspartate, ligand binding was shown to generate an approximately 1 angstrom intrasubunit piston-type movement of one transmembrane helix downward relative to the other transmembrane helix. The receptor-associated phosphorylation cascade proteins CheA and CheW did not alter the ligand-induced movement. Because the piston movement is very small, the ability of receptors to produce large outcomes in response to stimuli is caused by the ability of the receptor-coupled enzymes to detect small changes in the conformation of the receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ottemann, K M -- Xiao, W -- Shin, Y K -- Koshland, D E Jr -- DK09765/DK/NIDDK NIH HHS/ -- GM51290/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1751-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481014" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/*metabolism ; Bacterial Proteins/metabolism ; Cell Membrane/*metabolism ; Chemotaxis ; Dimerization ; Electron Spin Resonance Spectroscopy ; Escherichia coli/metabolism ; *Escherichia coli Proteins ; Fourier Analysis ; Ligands ; Lipid Bilayers ; Membrane Proteins/metabolism ; Methylation ; *Models, Biological ; Mutagenesis ; Phosphorylation ; Protein Conformation ; Protein Kinases/metabolism ; Protein Structure, Secondary ; Receptors, Amino Acid/*chemistry/genetics/*metabolism ; *Signal Transduction ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1999-12-22
    Description: The crystal structure of an efficient Diels-Alder antibody catalyst at 1.9 angstrom resolution reveals almost perfect shape complementarity with its transition state analog. Comparison with highly related progesterone and Diels-Alderase antibodies that arose from the same primordial germ line template shows the relatively subtle mutational steps that were able to evolve both structural complementarity and catalytic efficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, J -- Deng, Q -- Chen, J -- Houk, K N -- Bartek, J -- Hilvert, D -- Wilson, I A -- CA27489/CA/NCI NIH HHS/ -- GM38273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600746" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/genetics/*metabolism ; Binding Sites, Antibody ; Catalysis ; Chemistry, Physical ; Crystallography, X-Ray ; *Evolution, Molecular ; Haptens/chemistry/metabolism ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Ligands ; Models, Molecular ; Mutation ; Physicochemical Phenomena ; Progesterone/immunology ; Protein Conformation ; Solubility ; Temperature ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1999-08-14
    Description: Isoleucyl-transfer RNA (tRNA) synthetase (IleRS) joins Ile to tRNA(Ile) at its synthetic active site and hydrolyzes incorrectly acylated amino acids at its editing active site. The 2.2 angstrom resolution crystal structure of Staphylococcus aureus IleRS complexed with tRNA(Ile) and Mupirocin shows the acceptor strand of the tRNA(Ile) in the continuously stacked, A-form conformation with the 3' terminal nucleotide in the editing active site. To position the 3' terminus in the synthetic active site, the acceptor strand must adopt the hairpinned conformation seen in tRNA(Gln) complexed with its synthetase. The amino acid editing activity of the IleRS may result from the incorrect products shuttling between the synthetic and editing active sites, which is reminiscent of the editing mechanism of DNA polymerases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silvian, L F -- Wang, J -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1074-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446055" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Adenosine Monophosphate/analogs & derivatives/metabolism ; Amino Acids/metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA-Directed DNA Polymerase/metabolism ; Glutamate-tRNA Ligase/chemistry/metabolism ; Isoleucine/metabolism ; Isoleucine-tRNA Ligase/*chemistry/*metabolism ; Models, Molecular ; Mupirocin/chemistry/*metabolism ; Nucleic Acid Conformation ; Oligopeptides/metabolism ; Protein Conformation ; Protein Structure, Secondary ; RNA, Transfer, Gln/chemistry/metabolism ; RNA, Transfer, Ile/*chemistry/*metabolism ; Staphylococcus aureus/enzymology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1999-11-13
    Description: The p42 and p44 mitogen-activated protein kinases (MAPKs), also called Erk2 and Erk1, respectively, have been implicated in proliferation as well as in differentiation programs. The specific role of the p44 MAPK isoform in the whole animal was evaluated by generation of p44 MAPK-deficient mice by homologous recombination in embryonic stem cells. The p44 MAPK-/- mice were viable, fertile, and of normal size. Thus, p44 MAPK is apparently dispensable and p42 MAPK (Erk2) may compensate for its loss. However, in p44 MAPK-/- mice, thymocyte maturation beyond the CD4+CD8+ stage was reduced by half, with a similar diminution in the thymocyte subpopulation expressing high levels of T cell receptor (CD3high). In p44 MAPK-/- thymocytes, proliferation in response to activation with a monoclonal antibody to the T cell receptor in the presence of phorbol myristate acetate was severely reduced even though activation of p42 MAPK was more sustained in these cells. The p44 MAPK apparently has a specific role in thymocyte development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pages, G -- Guerin, S -- Grall, D -- Bonino, F -- Smith, A -- Anjuere, F -- Auberger, P -- Pouyssegur, J -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1374-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France. gpages@unice.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antigens, CD/analysis ; Antigens, CD3/immunology ; Cell Differentiation ; Cell Division ; Cells, Cultured ; DNA/biosynthesis ; Enzyme Activation ; Gene Targeting ; Isoenzymes/genetics/metabolism ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/deficiency/genetics/*metabolism ; Phosphorylation ; Polymorphism, Restriction Fragment Length ; Receptors, Antigen, T-Cell, alpha-beta/analysis/physiology ; T-Lymphocyte Subsets/*cytology/enzymology/immunology ; Tetradecanoylphorbol Acetate/pharmacology ; Thymus Gland/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1999-02-26
    Description: Cell proliferation and differentiation are regulated by growth regulatory factors such as transforming growth factor-beta (TGF-beta) and the liphophilic hormone vitamin D. TGF-beta causes activation of SMAD proteins acting as coactivators or transcription factors in the nucleus. Vitamin D controls transcription of target genes through the vitamin D receptor (VDR). Smad3, one of the SMAD proteins downstream in the TGF-beta signaling pathway, was found in mammalian cells to act as a coactivator specific for ligand-induced transactivation of VDR by forming a complex with a member of the steroid receptor coactivator-1 protein family in the nucleus. Thus, Smad3 may mediate cross-talk between vitamin D and TGF-beta signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yanagisawa, J -- Yanagi, Y -- Masuhiro, Y -- Suzawa, M -- Watanabe, M -- Kashiwagi, K -- Toriyabe, T -- Kawabata, M -- Miyazono, K -- Kato, S -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1317-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037600" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein Receptors ; Bone Morphogenetic Proteins/pharmacology ; COS Cells ; Calcitriol/*metabolism/pharmacology ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; Histone Acetyltransferases ; Ligands ; Nuclear Receptor Coactivator 1 ; Phosphorylation ; Receptor Cross-Talk ; Receptors, Calcitriol/*metabolism ; Receptors, Cell Surface/metabolism ; *Receptors, Growth Factor ; Receptors, Retinoic Acid/metabolism ; Receptors, Transforming Growth Factor beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; Signal Transduction ; Smad3 Protein ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lisman, J E -- Fallon, J R -- P01 NS039321/NS/NINDS NIH HHS/ -- R01 HD023924/HD/NICHD NIH HHS/ -- R01 HD052083/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):339-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Brandeis University, Waltham, MA 02254, USA. lisman@binah.cc.brandeis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9925495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Computer Simulation ; Enzyme Activation ; Feedback ; Gene Expression ; Long-Term Potentiation ; Memory/*physiology ; Models, Neurological ; Phosphorylation ; Protein Biosynthesis ; Protein Kinase C/metabolism ; RNA, Messenger/metabolism ; Second Messenger Systems ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1999-02-12
    Description: Erythropoietin receptor (EPOR) is thought to be activated by ligand-induced homodimerization. However, structures of agonist and antagonist peptide complexes of EPOR, as well as an EPO-EPOR complex, have shown that the actual dimer configuration is critical for the biological response and signal efficiency. The crystal structure of the extracellular domain of EPOR in its unliganded form at 2.4 angstrom resolution has revealed a dimer in which the individual membrane-spanning and intracellular domains would be too far apart to permit phosphorylation by JAK2. This unliganded EPOR dimer is formed from self-association of the same key binding site residues that interact with EPO-mimetic peptide and EPO ligands. This model for a preformed dimer on the cell surface provides insights into the organization, activation, and plasticity of recognition of hematopoietic cell surface receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Livnah, O -- Stura, E A -- Middleton, S A -- Johnson, D L -- Jolliffe, L K -- Wilson, I A -- GM49497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):987-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9974392" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry ; Crystallography, X-Ray ; Dimerization ; Erythropoietin/metabolism ; Humans ; Hydrogen Bonding ; Janus Kinase 2 ; Ligands ; Models, Molecular ; Peptide Fragments/*chemistry/metabolism ; Peptides, Cyclic/metabolism ; Protein Conformation ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Erythropoietin/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1999-04-09
    Description: IkappaB [inhibitor of nuclear factor kappaB (NF-kappaB)] kinase (IKK) phosphorylates IkappaB inhibitory proteins, causing their degradation and activation of transcription factor NF-kappaB, a master activator of inflammatory responses. IKK is composed of three subunits-IKKalpha and IKKbeta, which are highly similar protein kinases, and IKKgamma, a regulatory subunit. In mammalian cells, phosphorylation of two sites at the activation loop of IKKbeta was essential for activation of IKK by tumor necrosis factor and interleukin-1. Elimination of equivalent sites in IKKalpha, however, did not interfere with IKK activation. Thus, IKKbeta, not IKKalpha, is the target for proinflammatory stimuli. Once activated, IKKbeta autophosphorylated at a carboxyl-terminal serine cluster. Such phosphorylation decreased IKK activity and may prevent prolonged activation of the inflammatory response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delhase, M -- Hayakawa, M -- Chen, Y -- Karin, M -- R01 AI43477/AI/NIAID NIH HHS/ -- R37 ES04151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):309-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195894" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; HeLa Cells ; Helix-Loop-Helix Motifs ; Humans ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Leucine Zippers ; *MAP Kinase Kinase Kinase 1 ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1999-04-16
    Description: Mutation of the VHL tumor suppressor is associated with the inherited von Hippel-Lindau (VHL) cancer syndrome and the majority of kidney cancers. VHL binds the ElonginC-ElonginB complex and regulates levels of hypoxia-inducible proteins. The structure of the ternary complex at 2.7 angstrom resolution shows two interfaces, one between VHL and ElonginC and another between ElonginC and ElonginB. Tumorigenic mutations frequently occur in a 35-residue domain of VHL responsible for ElonginC binding. A mutational patch on a separate domain of VHL indicates a second macromolecular binding site. The structure extends the similarities to the SCF (Skp1-Cul1-F-box protein) complex that targets proteins for degradation, supporting the hypothesis that VHL may function in an analogous pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stebbins, C E -- Kaelin, W G Jr -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):455-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Structural Biology, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Cycle Proteins/chemistry/metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; *Ligases ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Neoplasms/genetics ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/metabolism ; S-Phase Kinase-Associated Proteins ; Surface Properties ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein ; von Hippel-Lindau Disease/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuker, C S -- Ranganathan, R -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):650-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, University of California, San Diego, CA 92093-0649, USA. charles@flyeye.ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9988659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestin/genetics/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Membrane/metabolism ; Enzyme Activation ; GTP-Binding Proteins/metabolism ; Humans ; Models, Biological ; Mutation ; Phosphorylation ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; Receptor Cross-Talk ; Receptors, Adrenergic, beta-2/*metabolism ; *Signal Transduction ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1999-03-05
    Description: Protein tyrosine phosphatase-1B (PTP-1B) has been implicated in the negative regulation of insulin signaling. Disruption of the mouse homolog of the gene encoding PTP-1B yielded healthy mice that, in the fed state, had blood glucose concentrations that were slightly lower and concentrations of circulating insulin that were one-half those of their PTP-1B+/+ littermates. The enhanced insulin sensitivity of the PTP-1B-/- mice was also evident in glucose and insulin tolerance tests. The PTP-1B-/- mice showed increased phosphorylation of the insulin receptor in liver and muscle tissue after insulin injection in comparison to PTP-1B+/+ mice. On a high-fat diet, the PTP-1B-/- and PTP-1B+/- mice were resistant to weight gain and remained insulin sensitive, whereas the PTP-1B+/+ mice rapidly gained weight and became insulin resistant. These results demonstrate that PTP-1B has a major role in modulating both insulin sensitivity and fuel metabolism, thereby establishing it as a potential therapeutic target in the treatment of type 2 diabetes and obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elchebly, M -- Payette, P -- Michaliszyn, E -- Cromlish, W -- Collins, S -- Loy, A L -- Normandin, D -- Cheng, A -- Himms-Hagen, J -- Chan, C C -- Ramachandran, C -- Gresser, M J -- Tremblay, M L -- Kennedy, B P -- New York, N.Y. -- Science. 1999 Mar 5;283(5407):1544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, 3655 Drummond Street, Montreal, Quebec, Canada, H3G 1Y6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10066179" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Diabetes Mellitus, Type 2/therapy ; Dietary Fats/administration & dosage ; Gene Targeting ; Glucose Tolerance Test ; Insulin/blood/*metabolism/pharmacology ; Insulin Receptor Substrate Proteins ; Insulin Resistance ; Liver/metabolism ; Male ; Mice ; Mice, Knockout ; Muscle, Skeletal/metabolism ; Obesity/*metabolism/therapy ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Tyrosine Phosphatases/*genetics/*metabolism ; Receptor, Insulin/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1999-04-09
    Description: The oligomeric IkappaB kinase (IKK) is composed of three polypeptides: IKKalpha and IKKbeta, the catalytic subunits, and IKKgamma, a regulatory subunit. IKKalpha and IKKbeta are similar in structure and thought to have similar function-phosphorylation of the IkappaB inhibitors in response to proinflammatory stimuli. Such phosphorylation leads to degradation of IkappaB and activation of nuclear factor kappaB transcription factors. The physiological function of these protein kinases was explored by analysis of IKKalpha-deficient mice. IKKalpha was not required for activation of IKK and degradation of IkappaB by proinflammatory stimuli. Instead, loss of IKKalpha interfered with multiple morphogenetic events, including limb and skeletal patterning and proliferation and differentiation of epidermal keratinocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Y -- Baud, V -- Delhase, M -- Zhang, P -- Deerinck, T -- Ellisman, M -- Johnson, R -- Karin, M -- R01 AI43477/AI/NIAID NIH HHS/ -- R37 ES04151/ES/NIEHS NIH HHS/ -- RR04050/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):316-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Cancer Center, University of California San Diego, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195896" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/enzymology/genetics ; Animals ; Apoptosis ; Body Patterning ; Bone and Bones/abnormalities/embryology ; Cell Differentiation ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA-Binding Proteins/metabolism ; Dimerization ; *Embryonic and Fetal Development ; Enzyme Activation ; Epidermis/cytology/embryology ; Female ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Keratinocytes ; Limb Deformities, Congenital/enzymology ; Male ; Mice ; *Morphogenesis ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Skin/embryology ; Skin Abnormalities/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-27
    Description: Adenosine triphosphate (ATP) synthase contains a rotary motor involved in biological energy conversion. Its membrane-embedded F0 sector has a rotation generator fueled by the proton-motive force, which provides the energy required for the synthesis of ATP by the F1 domain. An electron density map obtained from crystals of a subcomplex of yeast mitochondrial ATP synthase shows a ring of 10 c subunits. Each c subunit forms an alpha-helical hairpin. The interhelical loops of six to seven of the c subunits are in close contact with the gamma and delta subunits of the central stalk. The extensive contact between the c ring and the stalk suggests that they may rotate as an ensemble during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stock, D -- Leslie, A G -- Walker, J E -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1700-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576729" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Hydrogen Bonding ; Mitochondria/enzymology ; Models, Molecular ; Molecular Motor Proteins/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proton-Motive Force ; Proton-Translocating ATPases/*chemistry/metabolism ; Protons ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1999-10-09
    Description: Norwalk virus, a noncultivatable human calicivirus, is the major cause of epidemic gastroenteritis in humans. The first x-ray structure of a calicivirus capsid, which consists of 180 copies of a single protein, has been determined by phase extension from a low-resolution electron microscopy structure. The capsid protein has a protruding (P) domain connected by a flexible hinge to a shell (S) domain that has a classical eight-stranded beta-sandwich motif. The structure of the P domain is unlike that of any other viral protein with a subdomain exhibiting a fold similar to that of the second domain in the eukaryotic translation elongation factor-Tu. This subdomain, located at the exterior of the capsid, has the largest sequence variation among Norwalk-like human caliciviruses and is likely to contain the determinants of strain specificity and cell binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prasad, B V -- Hardy, M E -- Dokland, T -- Bella, J -- Rossmann, M G -- Estes, M K -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):287-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs Mclean Department of Biochemistry, Division of Molecular Virology, Baylor College of Medicine, Houston, TX 77030, USA. bprasad@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514371" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Capsid/*chemistry/metabolism ; *Capsid Proteins ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Dimerization ; Genome, Viral ; Humans ; Hydrogen Bonding ; Image Processing, Computer-Assisted ; Models, Molecular ; Molecular Sequence Data ; Norwalk virus/*chemistry/genetics/physiology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: Systematic chemical studies indicate that the capability of Watson-Crick base-pairing is widespread among potentially natural nucleic acid alternatives taken from RNA's close structural neighborhood. A comparison of RNA and such alternatives with regard to chemical properties that are fundamental to the biological function of RNA provides chemical facts that may contain clues to RNA's origin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eschenmoser, A -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2118-24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology at The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381870" target="_blank"〉PubMed〈/a〉
    Keywords: *Base Pairing ; DNA/chemistry ; *Evolution, Chemical ; Isomerism ; Models, Molecular ; Nucleic Acid Conformation ; Oligonucleotides/*chemistry ; RNA/*chemistry ; Structure-Activity Relationship ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1999-05-13
    Description: Interleukin-12 (IL-12) and type 2 NO synthase (NOS2) are crucial for defense against bacterial and parasitic pathogens, but their relationship in innate immunity is unknown. In the absence of NOS2 activity, IL-12 was unable to prevent spreading of Leishmania parasites, did not stimulate natural killer (NK) cells for cytotoxicity or interferon-gamma (IFN-gamma) release, and failed to activate Tyk2 kinase and to tyrosine phosphorylate Stat4 (the central signal transducer of IL-12) in NK cells. Activation of Tyk2 in NK cells by IFN-alpha/beta also required NOS2. Thus, NOS2-derived NO is a prerequisite for cytokine signaling and function in innate immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diefenbach, A -- Schindler, H -- Rollinghoff, M -- Yokoyama, W M -- Bogdan, C -- New York, N.Y. -- Science. 1999 May 7;284(5416):951-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Klinische Mikrobiologie, Immunologie und Hygiene, Universitat Erlangen, Wasserturmstrasse 3, D-91054 Erlangen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320373" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cyclic GMP/metabolism ; Cytotoxicity, Immunologic ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Immunity, Innate ; Interferon-gamma/biosynthesis/genetics ; Interferons/pharmacology ; Interleukin-12/pharmacology/*physiology ; Janus Kinase 2 ; Killer Cells, Natural/*immunology/metabolism ; *Leishmania major ; Leishmaniasis, Cutaneous/*immunology/metabolism ; Lysine/analogs & derivatives/pharmacology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nitric Oxide/metabolism ; Nitric Oxide Synthase/antagonists & inhibitors/*metabolism ; Nitric Oxide Synthase Type II ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proteins/metabolism ; *Proto-Oncogene Proteins ; STAT4 Transcription Factor ; *Signal Transduction ; TYK2 Kinase ; Trans-Activators/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1999-07-31
    Description: Many psychotropic drugs interfere with the reuptake of dopamine, norepinephrine, and serotonin. Transport capacity is regulated by kinase-linked pathways, particularly those involving protein kinase C (PKC), resulting in transporter phosphorylation and sequestration. Phosphorylation and sequestration of the serotonin transporter (SERT) were substantially impacted by ligand occupancy. Ligands that can permeate the transporter, such as serotonin or the amphetamines, prevented PKC-dependent SERT phosphorylation. Nontransported SERT antagonists such as cocaine and antidepressants were permissive for SERT phosphorylation but blocked serotonin effects. PKC-dependent SERT sequestration was also blocked by serotonin. These findings reveal activity-dependent modulation of neurotransmitter reuptake and identify previously unknown consequences of amphetamine, cocaine, and antidepressant action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramamoorthy, S -- Blakely, R D -- DA07390/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):763-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Center for Molecular Neuroscience, School of Medicine, Vanderbilt University, Nashville, TN 37232-6420, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427004" target="_blank"〉PubMed〈/a〉
    Keywords: Antidepressive Agents/metabolism/pharmacology ; Biogenic Monoamines/metabolism/pharmacology ; Biotinylation ; Carrier Proteins/antagonists & inhibitors/*metabolism ; Cell Line ; Central Nervous System Agents/metabolism/*pharmacology ; Cocaine/metabolism/pharmacology ; Dextroamphetamine/metabolism/pharmacology ; Enzyme Activation ; Humans ; Ligands ; Membrane Glycoproteins/antagonists & inhibitors/*metabolism ; *Membrane Transport Proteins ; Models, Biological ; *Nerve Tissue Proteins ; Neurotransmitter Agents/metabolism/*pharmacology ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Kinases/metabolism ; Serotonin/*metabolism/pharmacology ; Serotonin Antagonists/pharmacology ; Serotonin Plasma Membrane Transport Proteins ; Serotonin Uptake Inhibitors/metabolism/pharmacology ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1999-11-13
    Description: A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonni, A -- Brunet, A -- West, A E -- Datta, S R -- Takasu, M A -- Greenberg, M E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 HD 24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain-Derived Neurotrophic Factor/pharmacology ; Carrier Proteins/genetics/metabolism ; *Cell Survival ; Cells, Cultured ; Cerebellum/cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Kinase 1 ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Mutation ; Neurons/*cytology/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; *Protein-Serine-Threonine Kinases ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; bcl-Associated Death Protein ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1247, 1249.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10084927" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Cell Cycle Proteins/metabolism ; Cell Nucleus/metabolism ; *Conserved Sequence ; Mitosis ; Peptidylprolyl Isomerase/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Phosphoserine/*metabolism ; Phosphotyrosine/metabolism ; Protein Binding ; Proteins/*chemistry/*metabolism ; *Tyrosine 3-Monooxygenase ; cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2000-08-01
    Description: The path of the nucleic acids through a transcription elongation complex was tracked by mapping cross-links between bacterial RNA polymerase (RNAP) and transcript RNA or template DNA onto the x-ray crystal structure. In the resulting model, the downstream duplex DNA is nestled in a trough formed by the beta' subunit and enclosed on top by the beta subunit. In the RNAP channel, the RNA/DNA hybrid extends from the enzyme active site, along a region of the beta subunit harboring rifampicin resistance mutations, to the beta' subunit "rudder." The single-stranded RNA is then extruded through another channel formed by the beta-subunit flap domain. The model provides insight into the functional properties of the transcription complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korzheva, N -- Mustaev, A -- Kozlov, M -- Malhotra, A -- Nikiforov, V -- Goldfarb, A -- Darst, S A -- GM30717/GM/NIGMS NIH HHS/ -- GM49242/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 28;289(5479):619-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10915625" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cross-Linking Reagents ; Crystallography, X-Ray ; DNA/chemistry/genetics/*metabolism ; DNA Primers ; DNA-Directed RNA Polymerases/*chemistry/genetics/metabolism ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry/genetics/*metabolism ; Templates, Genetic ; Thermus/enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2000-01-15
    Description: Murine T10 and T22 are highly related nonclassical major histocompatibility complex (MHC) class Ib proteins that bind to certain gammadelta T cell receptors (TCRs) in the absence of other components. The crystal structure of T22b at 3.1 angstroms reveals similarities to MHC class I molecules, but one side of the normal peptide-binding groove is severely truncated, which allows direct access to the beta-sheet floor. Potential gammadelta TCR-binding sites can be inferred from functional mapping of T10 and T22 point mutants and allelic variants. Thus, T22 represents an unusual variant of the MHC-like fold and indicates that gammadelta and alphabeta TCRs interact differently with their respective MHC ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wingren, C -- Crowley, M P -- Degano, M -- Chien, Y -- Wilson, I A -- AI33431/AI/NIAID NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):310-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634787" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Binding Sites ; Crystallography, X-Ray ; Glycosylation ; Histocompatibility Antigens Class I/*chemistry ; Hydrogen Bonding ; Ligands ; Mice ; Models, Molecular ; Point Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/immunology/metabolism ; Receptors, Antigen, T-Cell, gamma-delta/immunology/*metabolism ; Surface Properties ; beta 2-Microglobulin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1999-12-30
    Description: The Smad proteins mediate transforming growth factor-beta (TGFbeta) signaling from the transmembrane serine-threonine receptor kinases to the nucleus. The Smad anchor for receptor activation (SARA) recruits Smad2 to the TGFbeta receptors for phosphorylation. The crystal structure of a Smad2 MH2 domain in complex with the Smad-binding domain (SBD) of SARA has been determined at 2.2 angstrom resolution. SARA SBD, in an extended conformation comprising a rigid coil, an alpha helix, and a beta strand, interacts with the beta sheet and the three-helix bundle of Smad2. Recognition between the SARA rigid coil and the Smad2 beta sheet is essential for specificity, whereas interactions between the SARA beta strand and the Smad2 three-helix bundle contribute significantly to binding affinity. Comparison of the structures between Smad2 and a comediator Smad suggests a model for how receptor-regulated Smads are recognized by the type I receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, G -- Chen, Y G -- Ozdamar, B -- Gyuricza, C A -- Chong, P A -- Wrana, J L -- Massague, J -- Shi, Y -- CA85171/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):92-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615055" target="_blank"〉PubMed〈/a〉
    Keywords: *Activin Receptors, Type I ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Smad2 Protein ; Trans-Activators/*chemistry/genetics/*metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2000-06-10
    Description: Cyclic nucleotides are second messengers that are essential in vision, muscle contraction, neurotransmission, exocytosis, cell growth, and differentiation. These molecules are degraded by a family of enzymes known as phosphodiesterases, which serve a critical function by regulating the intracellular concentration of cyclic nucleotides. We have determined the three-dimensional structure of the catalytic domain of phosphodiesterase 4B2B to 1.77 angstrom resolution. The active site has been identified and contains a cluster of two metal atoms. The structure suggests the mechanism of action and basis for specificity and will provide a framework for structure-assisted drug design for members of the phosphodiesterase family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, R X -- Hassell, A M -- Vanderwall, D -- Lambert, M H -- Holmes, W D -- Luther, M A -- Rocque, W J -- Milburn, M V -- Zhao, Y -- Ke, H -- Nolte, R T -- AI33072/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Jun 9;288(5472):1822-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Chemistry, Department of Molecular Sciences, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10846163" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/*chemistry/*metabolism ; Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/chemistry/*metabolism ; Cyclic GMP/chemistry/metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 4 ; Hydrogen Bonding ; Hydrolysis ; Metals/metabolism ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2000-09-23
    Description: When DNA replication is inhibited during the synthesis (S) phase of the cell cycle, a signaling pathway (checkpoint) is activated that serves to prevent mitosis from initiating before completion of replication. This replication checkpoint acts by down-regulating the activity of the mitotic inducer cdc2-cyclin B. Here, we report the relation between chromatin structure and induction of the replication checkpoint. Chromatin was competent to initiate a checkpoint response only after the DNA was unwound and DNA polymerase alpha had been loaded. Checkpoint induction did not require new DNA synthesis on the unwound template strand but did require RNA primer synthesis by primase. These findings identify the RNA portion of the primer as an important component of the signal that activates the replication checkpoint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michael, W M -- Ott, R -- Fanning, E -- Newport, J -- 52948/PHS HHS/ -- R01GM33523-16/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2133-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA. matt@mcb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11000117" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aphidicolin/pharmacology ; *CDC2-CDC28 Kinases ; Carrier Proteins/metabolism ; Chromatin/*metabolism ; Cyclin E/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; DNA Helicases/metabolism ; DNA Polymerase I/antagonists & inhibitors/metabolism ; DNA Primase/*metabolism ; *DNA Replication/drug effects ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; Mitosis ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; RNA/*biosynthesis ; Recombinant Proteins/metabolism ; S Phase ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Xenopus ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2000-10-20
    Description: Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, M -- Wang, L C -- Hymowitz, S G -- Schilbach, S -- Lee, J -- Goddard, A -- de Vos, A M -- Gao, W Q -- Dixit, V M -- New York, N.Y. -- Science. 2000 Oct 20;290(5491):523-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11039935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Cell Line ; DNA-Binding Proteins/metabolism ; Ectodermal Dysplasia/genetics ; Ectodysplasins ; Epidermis/embryology/*metabolism ; Humans ; *I-kappa B Proteins ; In Situ Hybridization ; Ligands ; Membrane Proteins/*chemistry/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Morphogenesis ; NF-kappa B/metabolism ; Phosphorylation ; Point Mutation ; Protein Conformation ; Proteins/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2000-08-19
    Description: In thioredoxin reductase (TrxR) from Escherichia coli, cycles of reduction and reoxidation of the flavin adenine dinucleotide (FAD) cofactor depend on rate-limiting rearrangements of the FAD and NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) domains. We describe the structure of the flavin-reducing conformation of E. coli TrxR at a resolution of 3.0 angstroms. The orientation of the two domains permits reduction of FAD by NADPH and oxidation of the enzyme dithiol by the protein substrate, thioredoxin. The alternate conformation, described by Kuriyan and co-workers, permits internal transfer of reducing equivalents from reduced FAD to the active-site disulfide. Comparison of these structures demonstrates that switching between the two conformations involves a "ball-and-socket" motion in which the pyridine nucleotide-binding domain rotates by 67 degrees.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lennon, B W -- Williams, C H Jr -- Ludwig, M L -- GM16429/GM/NIGMS NIH HHS/ -- GM18723/GM/NIGMS NIH HHS/ -- GM21444/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1190-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Research Division, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947986" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Models, Molecular ; NADP/metabolism ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Tertiary ; Thioredoxin-Disulfide Reductase/*chemistry/*metabolism ; Thioredoxins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2000-09-01
    Description: Epithelia of the vertebrate intestinal tract characteristically maintain an inflammatory hyporesponsiveness toward the lumenal prokaryotic microflora. We report the identification of enteric organisms (nonvirulent Salmonella strains) whose direct interaction with model human epithelia attenuate synthesis of inflammatory effector molecules elicited by diverse proinflammatory stimuli. This immunosuppressive effect involves inhibition of the inhibitor kappaB/nuclear factor kappaB (IkappaB/NF-kappaB) pathway by blockade of IkappaB-alpha degradation, which prevents subsequent nuclear translocation of active NF-kappaB dimer. Although phosphorylation of IkappaB-alpha occurs, subsequent polyubiquitination necessary for regulated IkappaB-alpha degradation is completely abrogated. These data suggest that prokaryotic determinants could be responsible for the unique tolerance of the gastrointestinal mucosa to proinflammatory stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neish, A S -- Gewirtz, A T -- Zeng, H -- Young, A N -- Hobert, M E -- Karmali, V -- Rao, A S -- Madara, J L -- DK-35932/DK/NIDDK NIH HHS/ -- DK-47662/DK/NIDDK NIH HHS/ -- DK09800/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1560-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA. aneish@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968793" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cytoskeletal Proteins/metabolism ; DNA-Binding Proteins/*metabolism ; Dimerization ; Humans ; *I-kappa B Proteins ; Inflammation Mediators/pharmacology ; Interleukin-8/genetics/metabolism ; Intestinal Mucosa/*metabolism/*microbiology ; Leupeptins/pharmacology ; Ligases/metabolism ; NF-kappa B/genetics/*metabolism ; Phosphorylation ; Salmonella/pathogenicity/*physiology ; Salmonella typhimurium/pathogenicity/physiology ; *Trans-Activators ; Transcription Factor RelA ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology ; Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: Human herpesviruses are large and structurally complex viruses that cause a variety of diseases. The three-dimensional structure of the herpesvirus capsid has been determined at 8.5 angstrom resolution by electron cryomicroscopy. More than 30 putative alpha helices were identified in the four proteins that make up the 0.2 billion-dalton shell. Some of these helices are located at domains that undergo conformational changes during capsid assembly and DNA packaging. The unique spatial arrangement of the heterotrimer at the local threefold positions accounts for the asymmetric interactions with adjacent capsid components and the unusual co-dependent folding of its subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Z H -- Dougherty, M -- Jakana, J -- He, J -- Rixon, F J -- Chiu, W -- New York, N.Y. -- Science. 2000 May 5;288(5467):877-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797014" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/*chemistry/*ultrastructure ; Capsid Proteins ; Cryoelectron Microscopy ; Herpesvirus 1, Human/chemistry/*ultrastructure ; Image Processing, Computer-Assisted ; Models, Molecular ; Molecular Weight ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2000-08-11
    Description: Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nissen, P -- Hansen, J -- Ban, N -- Moore, P B -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- GM54216/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):920-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10937990" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallization ; Evolution, Molecular ; Haloarcula marismortui/chemistry/metabolism/ultrastructure ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligonucleotides/metabolism ; *Peptide Biosynthesis ; Peptides/metabolism ; Peptidyl Transferases/antagonists & inhibitors/chemistry/*metabolism ; Phosphates/chemistry/metabolism ; Protein Conformation ; Puromycin/metabolism ; RNA, Archaeal/chemistry/metabolism ; RNA, Catalytic/*chemistry/*metabolism ; RNA, Ribosomal, 23S/*chemistry/*metabolism ; RNA, Transfer/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2000-09-16
    Description: The inadvertent activation of the Abelson tyrosine kinase (Abl) causes chronic myelogenous leukemia (CML). A small-molecule inhibitor of Abl (STI-571) is effective in the treatment of CML. We report the crystal structure of the catalytic domain of Abl, complexed to a variant of STI-571. Critical to the binding of STI-571 is the adoption by the kinase of an inactive conformation, in which a centrally located "activation loop" is not phosphorylated. The conformation of this loop is distinct from that in active protein kinases, as well as in the inactive form of the closely related Src kinases. These results suggest that compounds that exploit the distinctive inactivation mechanisms of individual protein kinases can achieve both high affinity and high specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schindler, T -- Bornmann, W -- Pellicena, P -- Miller, W T -- Clarkson, B -- Kuriyan, J -- GM29362/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 15;289(5486):1938-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratories of Molecular Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10988075" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/chemistry/*pharmacology ; Benzamides ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Enzyme Inhibitors/chemistry/*pharmacology ; Humans ; Imatinib Mesylate ; Mice ; Models, Molecular ; Phosphorylation ; *Piperazines ; Protein Conformation ; Proto-Oncogene Proteins c-abl/*antagonists & inhibitors/chemistry/metabolism ; Pyrimidines/chemistry/*pharmacology ; Recombinant Fusion Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2000-04-25
    Description: Susceptibility to murine and human insulin-dependent diabetes mellitus correlates strongly with major histocompatibility complex (MHC) class II I-A or HLA-DQ alleles that lack an aspartic acid at position beta57. I-Ag7 lacks this aspartate and is the only class II allele expressed by the nonobese diabetic mouse. The crystal structure of I-Ag7 was determined at 2.6 angstrom resolution as a complex with a high-affinity peptide from the autoantigen glutamic acid decarboxylase (GAD) 65. I-Ag7 has a substantially wider peptide-binding groove around beta57, which accounts for distinct peptide preferences compared with other MHC class II alleles. Loss of Asp(beta57) leads to an oxyanion hole in I-Ag7 that can be filled by peptide carboxyl residues or, perhaps, through interaction with the T cell receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corper, A L -- Stratmann, T -- Apostolopoulos, V -- Scott, C A -- Garcia, K C -- Kang, A S -- Wilson, I A -- Teyton, L -- CA58896/CA/NCI NIH HHS/ -- DK55037/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):505-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10775108" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Crystallography, X-Ray ; Diabetes Mellitus, Type 1/*immunology ; Drosophila melanogaster ; *Genes, MHC Class II ; Glutamate Decarboxylase/metabolism ; Histocompatibility Antigens Class II/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Mice ; Mice, Inbred NOD ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2000-05-29
    Description: To protect genome integrity and ensure survival, eukaryotic cells exposed to genotoxic stress cease proliferating to provide time for DNA repair. Human cells responded to ultraviolet light or ionizing radiation by rapid, ubiquitin- and proteasome-dependent protein degradation of Cdc25A, a phosphatase that is required for progression from G1 to S phase of the cell cycle. This response involved activated Chk1 protein kinase but not the p53 pathway, and the persisting inhibitory tyrosine phosphorylation of Cdk2 blocked entry into S phase and DNA replication. Overexpression of Cdc25A bypassed this mechanism, leading to enhanced DNA damage and decreased cell survival. These results identify specific degradation of Cdc25A as part of the DNA damage checkpoint mechanism and suggest how Cdc25A overexpression in human cancers might contribute to tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mailand, N -- Falck, J -- Lukas, C -- Syljuasen, R G -- Welcker, M -- Bartek, J -- Lukas, J -- New York, N.Y. -- Science. 2000 May 26;288(5470):1425-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10827953" target="_blank"〉PubMed〈/a〉
    Keywords: *CDC2-CDC28 Kinases ; Cell Line ; Cell Survival ; Cyclin E/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/antagonists & inhibitors/metabolism ; Cysteine Endopeptidases/metabolism ; *DNA Damage ; DNA Repair ; DNA Replication ; G1 Phase ; Humans ; Multienzyme Complexes/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Proteasome Endopeptidase Complex ; Protein Kinase Inhibitors ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Recombinant Fusion Proteins/metabolism ; S Phase ; Transfection ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/metabolism ; Ultraviolet Rays ; cdc25 Phosphatases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-31
    Description: All cellular organisms use specialized RNA polymerases called "primases" to synthesize RNA primers for the initiation of DNA replication. The high-resolution crystal structure of a primase, comprising the catalytic core of the Escherichia coli DnaG protein, was determined. The core structure contains an active-site architecture that is unrelated to other DNA or RNA polymerase palm folds, but is instead related to the "toprim" fold. On the basis of the structure, it is likely that DnaG binds nucleic acid in a groove clustered with invariant residues and that DnaG is positioned within the replisome to accept single-stranded DNA directly from the replicative helicase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, J L -- Roche, D D -- Lynch, A S -- Berger, J M -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2482-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, 229 Stanley Hall, no. 3206, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10741967" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; DNA Helicases/chemistry/metabolism ; DNA Primase/*chemistry/*metabolism ; DNA Replication ; DNA, Bacterial/metabolism ; DNA, Single-Stranded/*metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Escherichia coli/*enzymology/metabolism ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/biosynthesis ; Recombinant Proteins/chemistry/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, D -- New York, N.Y. -- Science. 2000 May 19;288(5469):1165.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10841732" target="_blank"〉PubMed〈/a〉
    Keywords: *Academies and Institutes/economics ; Animals ; Astronomical Phenomena ; Astronomy ; Chloroplasts/genetics ; Drosophila/genetics ; Interferometry ; *Molecular Biology/economics ; Physical Phenomena ; Physics ; *Research/economics ; Research Support as Topic ; Taiwan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2000-08-26
    Description: Polyadenylate [poly(A)] polymerase (PAP) catalyzes the addition of a polyadenosine tail to almost all eukaryotic messenger RNAs (mRNAs). The crystal structure of the PAP from Saccharomyces cerevisiae (Pap1) has been solved to 2.6 angstroms, both alone and in complex with 3'-deoxyadenosine triphosphate (3'-dATP). Like other nucleic acid polymerases, Pap1 is composed of three domains that encircle the active site. The arrangement of these domains, however, is quite different from that seen in polymerases that use a template to select and position their incoming nucleotides. The first two domains are functionally analogous to polymerase palm and fingers domains. The third domain is attached to the fingers domain and is known to interact with the single-stranded RNA primer. In the nucleotide complex, two molecules of 3'-dATP are bound to Pap1. One occupies the position of the incoming base, prior to its addition to the mRNA chain. The other is believed to occupy the position of the 3' end of the mRNA primer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bard, J -- Zhelkovsky, A M -- Helmling, S -- Earnest, T N -- Moore, C L -- Bohm, A -- R01 GM57218-01A2/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1346-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958780" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism ; Hydrogen Bonding ; Manganese/metabolism ; Models, Molecular ; Mutation ; Polynucleotide Adenylyltransferase/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/metabolism ; RNA, Messenger/metabolism ; Ribosomal Protein S6 ; Ribosomal Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2000-11-10
    Description: Reciprocal gene activation and restriction during cell type differentiation from a common lineage is a hallmark of mammalian organogenesis. A key question, then, is whether a critical transcriptional activator of cell type-specific gene targets can also restrict expression of the same genes in other cell types. Here, we show that whereas the pituitary-specific POU domain factor Pit-1 activates growth hormone gene expression in one cell type, the somatotrope, it restricts its expression from a second cell type, the lactotrope. This distinction depends on a two-base pair spacing in accommodation of the bipartite POU domains on a conserved growth hormone promoter site. The allosteric effect on Pit-1, in combination with other DNA binding factors, results in the recruitment of a corepressor complex, including nuclear receptor corepressor N-CoR, which, unexpectedly, is required for active long-term repression of the growth hormone gene in lactotropes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scully, K M -- Jacobson, E M -- Jepsen, K -- Lunyak, V -- Viadiu, H -- Carriere, C -- Rose, D W -- Hooshmand, F -- Aggarwal, A K -- Rosenfeld, M G -- R01 DK18477/DK/NIDDK NIH HHS/ -- R01 DK54802/DK/NIDDK NIH HHS/ -- R01 GM49327/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 10;290(5494):1127-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Endocrinology and Metabolism, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11073444" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Base Sequence ; Binding Sites ; Cell Line ; Conserved Sequence ; Crystallization ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Female ; *Gene Expression Regulation ; Genes, Reporter ; Growth Hormone/*genetics ; Male ; Mice ; Mice, Transgenic ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/genetics/metabolism ; Nuclear Receptor Co-Repressor 1 ; Pituitary Gland/cytology/*metabolism ; Prolactin/*genetics ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Rats ; Repressor Proteins/chemistry/genetics/*metabolism ; Transcription Factor Pit-1 ; Transcription Factors/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2001-02-07
    Description: Atomic force microscopy and single-molecule force spectroscopy were combined to image and manipulate purple membrane patches from Halobacterium salinarum. Individual bacteriorhodopsin molecules were first localized and then extracted from the membrane; the remaining vacancies were imaged again. Anchoring forces between 100 and 200 piconewtons for the different helices were found. Upon extraction, the helices were found to unfold. The force spectra revealed the individuality of the unfolding pathways. Helices G and F as well as helices E and D always unfolded pairwise, whereas helices B and C occasionally unfolded one after the other. Experiments with cleaved loops revealed the origin of the individuality: stabilization of helix B by neighboring helices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oesterhelt, F -- Oesterhelt, D -- Pfeiffer, M -- Engel, A -- Gaub, H E -- Muller, D J -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):143-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeNS and Lehrstuhl fur angewandte Physik, Ludwig Maximilians-Universitat Munchen, Amalienstrasse 54, 80799 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753119" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriorhodopsins/*chemistry/genetics ; Cysteine/chemistry ; Halobacterium salinarum/*chemistry ; Membrane Proteins/*chemistry/genetics ; *Microscopy, Atomic Force ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Protein Structure, Secondary ; Purple Membrane/*chemistry ; Serine Endopeptidases/metabolism ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2000-11-25
    Description: Evidence for a new signaling mechanism consisting of ligand-independent lateral propagation of receptor activation in the plasma membrane is presented. We visualized the phosphorylation of green fluorescent protein (GFP)-tagged ErbB1 (ErbB1-GFP) receptors in cells focally stimulated with epidermal growth factor (EGF) covalently attached to beads. This was achieved by quantitative imaging of protein reaction states in cells by fluorescence resonance energy transfer (FRET) with global analysis of fluorescence lifetime imaging microscopy (FLIM) data. The rapid and extensive propagation of receptor phosphorylation over the entire cell after focal stimulation demonstrates a signaling wave at the plasma membrane resulting in full activation of all receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verveer, P J -- Wouters, F S -- Reynolds, A R -- Bastiaens, P I -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1567-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090353" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenicals/pharmacology ; Carbocyanines ; Cell Membrane/*metabolism ; Diffusion ; Dimerization ; Endocytosis ; Energy Transfer ; Enzyme Inhibitors/pharmacology ; Epidermal Growth Factor/*metabolism/pharmacology ; Fluorescence ; Fluorescent Dyes ; Green Fluorescent Proteins ; Humans ; Immunoglobulin Fab Fragments ; Ligands ; Luminescent Proteins ; Microscopy, Confocal ; Microscopy, Fluorescence ; Microspheres ; Phosphorylation ; Phosphotyrosine/immunology ; Protein Tyrosine Phosphatases/antagonists & inhibitors/metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; *Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2000-02-26
    Description: The signal recognition particle (SRP), a protein-RNA complex conserved in all three kingdoms of life, recognizes and transports specific proteins to cellular membranes for insertion or secretion. We describe here the 1.8 angstrom crystal structure of the universal core of the SRP, revealing protein recognition of a distorted RNA minor groove. Nucleotide analog interference mapping demonstrates the biological importance of observed interactions, and genetic results show that this core is functional in vivo. The structure explains why the conserved residues in the protein and RNA are required for SRP assembly and defines a signal sequence recognition surface composed of both protein and RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Batey, R T -- Rambo, R P -- Lucast, L -- Rha, B -- Doudna, J A -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1232-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678824" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Base Pairing ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry/genetics/metabolism ; *Escherichia coli Proteins ; Guanosine Triphosphate/metabolism ; Hydrogen Bonding ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Potassium/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Bacterial/*chemistry/genetics/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Transformation, Bacterial ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2000-02-11
    Description: DARPP-32, a dopamine- and adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (32 kilodaltons in size), is an obligate intermediate in progesterone (P)-facilitated sexual receptivity in female rats and mice. The facilitative effect of P on sexual receptivity in female rats was blocked by antisense oligonucleotides to DARPP-32. Homozygous mice carrying a null mutation for the DARPP-32 gene exhibited minimal levels of P-facilitated sexual receptivity when compared to their wild-type littermates. P significantly increased hypothalamic cAMP levels and cAMP-dependent protein kinase activity. These increases were not inhibited by a D1 subclass dopamine receptor antagonist. P also enhanced phosphorylation of DARPP-32 on threonine 34 in the hypothalamus of mice. DARPP-32 activation is thus an obligatory step in progestin receptor regulation of sexual receptivity in rats and mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mani, S K -- Fienberg, A A -- O'Callaghan, J P -- Snyder, G L -- Allen, P B -- Dash, P K -- Moore, A N -- Mitchell, A J -- Bibb, J -- Greengard, P -- O'Malley, B W -- MH49662/MH/NIMH NIH HHS/ -- MH57442/MH/NIMH NIH HHS/ -- NS 35457/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1053-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. smani@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669419" target="_blank"〉PubMed〈/a〉
    Keywords: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology ; Animals ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dopamine/pharmacology ; Dopamine Agonists/pharmacology ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Female ; Hypothalamus/metabolism ; Injections, Intraventricular ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; *Nerve Tissue Proteins ; Oligonucleotides, Antisense/pharmacology ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Posture ; Progesterone/*pharmacology ; Proteins/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Progesterone/metabolism ; Serotonin/pharmacology ; Sexual Behavior, Animal/*drug effects ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, R F -- New York, N.Y. -- Science. 2000 Mar 17;287(5460):1954-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10755949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biotechnology ; Computer Simulation ; Crystallography, X-Ray ; *Drug Design ; Humans ; Models, Molecular ; Private Sector ; *Protein Conformation ; Protein Folding ; Proteins/*chemistry/*genetics/physiology ; Proteome ; Public Sector ; Research Support as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2001-03-27
    Description: Receptor-mediated activation of heterotrimeric GTP-binding proteins (G-proteins) was visualized in living Dictyostelium discoideum cells by monitoring fluorescence resonance energy transfer (FRET) between alpha- and beta- subunits fused to cyan and yellow fluorescent proteins. The G-protein heterotrimer rapidly dissociated and reassociated upon addition and removal of chemoattractant. During continuous stimulation, G-protein activation reached a dose-dependent steady-state level. Even though physiological responses subsided, the activation did not decline. Thus, adaptation occurs at another point in the signaling pathway, and occupied receptors, whether or not they are phosphorylated, catalyze the G-protein cycle. Construction of similar energy-transfer pairs of mammalian G-proteins should enable direct in situ mechanistic studies and applications such as drug screening and identifying ligands of newly found G-protein-coupled receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janetopoulos, C -- Jin, T -- Devreotes, P -- GM28007/GM/NIGMS NIH HHS/ -- GM34933/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264536" target="_blank"〉PubMed〈/a〉
    Keywords: 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Bacterial Proteins ; Cyclic AMP/metabolism/*pharmacology ; Deoxyadenine Nucleotides/pharmacology ; Dictyostelium/*metabolism ; Energy Transfer ; Fluorescence ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Kinetics ; Ligands ; Luminescent Proteins ; Microscopy, Fluorescence ; Phosphorylation ; Receptors, Cyclic AMP/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Spectrometry, Fluorescence ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2001-01-06
    Description: All aspects of cellular RNA metabolism and the replication of many viruses require DExH/D proteins that manipulate RNA in a manner that requires nucleoside triphosphates. Although DExH/D proteins have been shown to unwind purified RNA duplexes, most RNA molecules in the cellular environment are complexed with proteins. It has therefore been speculated that DExH/D proteins may also affect RNA-protein interactions. We demonstrate that the DExH protein NPH-II from vaccinia virus can displace the protein U1A from RNA in an active adenosine triphosphate-dependent fashion. NPH-II increases the rate of U1A dissociation by more than three orders of magnitude while retaining helicase processivity. This indicates that DExH/D proteins can effectively catalyze protein displacement from RNA and thereby participate in the structural reorganization of ribonucleoprotein assemblies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jankowsky, E -- Gross, C H -- Shuman, S -- Pyle, A M -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141562" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Acid Anhydride Hydrolases/chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleoside-Triphosphatase ; Protein Binding ; Protein Conformation ; RNA/chemistry/*metabolism ; RNA Helicases/chemistry/*metabolism ; *RNA-Binding Proteins ; Ribonucleoprotein, U1 Small Nuclear/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2001-04-21
    Description: Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cramer, P -- Bushnell, D A -- Kornberg, R D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1863-76. Epub 2001 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313498" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Fourier Analysis ; Hydrogen Bonding ; Magnesium/metabolism ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/*chemistry/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Fungal/biosynthesis/chemistry/metabolism ; RNA, Messenger/biosynthesis/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2001-11-03
    Description: The Arabidopsis thaliana response regulator 4, expressed in response to phytochrome B action, specifically interacts with the extreme amino-terminus of the photoreceptor. The response regulator 4 stabilizes the active Pfr form of phytochrome B in yeast and in planta, thus elevates the level of the active photoreceptor in vivo. Accordingly, transgenic Arabidopsis plants overexpressing the response regulator 4 display hypersensitivity to red light but not to light of other wavelengths. We propose that the response regulator 4 acts as an output element of a two-component system that modulates red light signaling on the level of the phytochrome B photoreceptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sweere, U -- Eichenberg, K -- Lohrmann, J -- Mira-Rodado, V -- Baurle, I -- Kudla, J -- Nagy, F -- Schafer, E -- Harter, K -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1108-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biologie II / Botanik, Universitat Freiburg, Schanzlestrasse 1, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691995" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/radiation effects ; Arabidopsis Proteins/genetics/*metabolism ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Darkness ; Genes, Plant ; *Light ; Phenotype ; Phosphorylation ; *Photoreceptor Cells ; Phytochrome/chemistry/*metabolism ; Phytochrome B ; Plants, Genetically Modified ; Protein Conformation ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; *Transcription Factors ; Two-Hybrid System Techniques ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-11
    Description: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a "histone code" that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenuwein, T -- Allis, C D -- GM53512/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1074-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP) at the Vienna Biocenter, Dr. Bohrgasse 7, A-1030 Vienna, Austria. jenuwein@nt.imp.univie.ac.at〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498575" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Animals ; Chromatin/chemistry/metabolism/ultrastructure ; *Gene Expression Regulation ; *Gene Silencing ; Genomic Imprinting ; Histones/chemistry/genetics/*metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Protein Structure, Tertiary ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2001-11-27
    Description: Adhesions between fibroblastic cells and extracellular matrix have been studied extensively in vitro, but little is known about their in vivo counterparts. Here, we characterized the composition and function of adhesions in three-dimensional (3D) matrices derived from tissues or cell culture. "3D-matrix adhesions" differ from focal and fibrillar adhesions characterized on 2D substrates in their content of alpha5beta1 and alphavbeta3 integrins, paxillin, other cytoskeletal components, and tyrosine phosphorylation of focal adhesion kinase (FAK). Relative to 2D substrates, 3D-matrix interactions also display enhanced cell biological activities and narrowed integrin usage. These distinctive in vivo 3D-matrix adhesions differ in structure, localization, and function from classically described in vitro adhesions, and as such they may be more biologically relevant to living organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cukierman, E -- Pankov, R -- Stevens, D R -- Yamada, K M -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1708-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721053" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; *Cell Adhesion/drug effects ; Cell Culture Techniques/methods ; Cell Division ; Cell Movement ; Cell Size ; Cells, Cultured ; Culture Techniques/methods ; Cycloheximide/pharmacology ; Cytoskeletal Proteins/metabolism ; Extracellular Matrix/chemistry/metabolism ; Fibroblasts/chemistry/*cytology/*metabolism ; Fibronectins/metabolism ; Fluorescent Antibody Technique, Indirect ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Focal Adhesions/chemistry/metabolism ; Glutaral/metabolism ; Humans ; Imaging, Three-Dimensional/*methods ; Integrins/metabolism ; Mice ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Conformation ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: How does human immunodeficiency virus (HIV) gain access to the carefully guarded nucleus of the host cell? In a Perspective, Segura-Totten and Wilson elaborate on new findings (de Noronha et al.) showing that the HIV protein Vpr is crucial for causing transient herniations in the host cell nuclear envelope. These ruptures are sufficient to enable the preintegration complexes of invading virions to enter the nucleus and to integrate with host cell DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segura-Totten, M -- Wilson, K L -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1016-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691977" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/*metabolism/*virology ; Chromatin/metabolism ; DNA-Binding Proteins/metabolism ; G2 Phase ; Gene Products, vpr/genetics/*metabolism ; HIV/*physiology ; HeLa Cells ; Humans ; Lamins ; Membrane Proteins/metabolism ; Mutation ; Nuclear Envelope/*metabolism/ultrastructure ; Nuclear Proteins/metabolism ; Phosphorylation ; Thymopoietins/metabolism ; *Virus Integration ; vpr Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laver, G -- Garman, E -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1776-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian National University, Canberra 2601, ACT, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/therapeutic use ; Chickens/*virology ; Drug Industry/methods ; Drug Resistance, Microbial ; Enzyme Inhibitors/therapeutic use ; Guanidines ; HN Protein/chemistry/genetics/metabolism ; Hong Kong/epidemiology ; Humans ; Influenza A virus/*enzymology/genetics/immunology/*pathogenicity ; Influenza Vaccines/biosynthesis/economics/immunology ; Influenza, Human/diagnosis/drug therapy/*epidemiology/*prevention & control ; Models, Molecular ; Mutation/genetics ; Neuraminidase/antagonists & inhibitors/chemistry/genetics/metabolism ; Protein Conformation ; Pyrans ; RNA, Viral/analysis/genetics ; Reassortant Viruses/enzymology/genetics/immunology/pathogenicity ; Sialic Acids/therapeutic use ; Zanamivir
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2001-03-10
    Description: GADS is an adaptor protein implicated in CD3 signaling because of its ability to link SLP-76 to LAT. A GADS-deficient mouse was generated by gene targeting, and the function of GADS in T cell development and activation was examined. GADS- CD4-CD8- thymocytes exhibited a severe block in proliferation but still differentiated into mature T cells. GADS- thymocytes failed to respond to CD3 cross-linking in vivo and were impaired in positive and negative selection. Immunoprecipitation experiments revealed that the association between SLP-76 and LAT was uncoupled in GADS- thymocytes. These observations indicate that GADS is a critical adaptor for CD3 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoder, J -- Pham, C -- Iizuka, Y M -- Kanagawa, O -- Liu, S K -- McGlade, J -- Cheng, A M -- New York, N.Y. -- Science. 2001 Mar 9;291(5510):1987-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11239162" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD3/metabolism ; Carrier Proteins/*metabolism ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Size ; Female ; Gene Targeting ; Lymphocyte Activation ; Male ; *Membrane Proteins ; Mice ; Mice, Transgenic ; Phosphoproteins/*metabolism ; Phosphorylation ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; Spleen/cytology/immunology ; T-Lymphocytes/*cytology/immunology ; Thymus Gland/cytology/immunology ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2001-06-26
    Description: Clinical studies with the Abl tyrosine kinase inhibitor STI-571 in chronic myeloid leukemia demonstrate that many patients with advanced stage disease respond initially but then relapse. Through biochemical and molecular analysis of clinical material, we find that drug resistance is associated with the reactivation of BCR-ABL signal transduction in all cases examined. In six of nine patients, resistance was associated with a single amino acid substitution in a threonine residue of the Abl kinase domain known to form a critical hydrogen bond with the drug. This substitution of threonine with isoleucine was sufficient to confer STI-571 resistance in a reconstitution experiment. In three patients, resistance was associated with progressive BCR-ABL gene amplification. These studies provide evidence that genetically complex cancers retain dependence on an initial oncogenic event and suggest a strategy for identifying inhibitors of STI-571 resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gorre, M E -- Mohammed, M -- Ellwood, K -- Hsu, N -- Paquette, R -- Rao, P N -- Sawyers, C L -- GM07185/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):876-80. Epub 2001 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423618" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/metabolism/pharmacology/therapeutic use ; Base Sequence ; Benzamides ; Blast Crisis/genetics ; Cell Line ; Drug Resistance, Neoplasm/genetics ; Fusion Proteins, bcr-abl/*metabolism ; Gene Amplification ; *Genes, abl ; Humans ; Hydrogen Bonding ; Imatinib Mesylate ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/*drug therapy/*genetics ; Molecular Sequence Data ; Philadelphia Chromosome ; Phosphorylation ; Piperazines/metabolism/*pharmacology/therapeutic use ; Point Mutation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins c-crk ; Pyrimidines/metabolism/*pharmacology/therapeutic use ; Recurrence ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gottifredi, V -- Prives, C -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1851-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397937" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Cycle ; Cell Line ; Cell Nucleus/*metabolism ; Cysteine Endopeptidases/metabolism ; Cytoplasm/metabolism ; DNA Damage ; Humans ; Multienzyme Complexes/metabolism ; Nuclear Localization Signals ; Nuclear Pore/metabolism ; *Nuclear Proteins ; Phosphorylation ; Proteasome Endopeptidase Complex ; *Protein Sorting Signals ; Proto-Oncogene Proteins/chemistry/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Tumor Suppressor Protein p53/chemistry/*metabolism ; Ubiquitins/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2001-08-25
    Description: beta-Amyloid plaques and neurofibrillary tangles (NFTs) are the defining neuropathological hallmarks of Alzheimer's disease, but their pathophysiological relation is unclear. Injection of beta-amyloid Abeta42 fibrils into the brains of P301L mutant tau transgenic mice caused fivefold increases in the numbers of NFTs in cell bodies within the amygdala from where neurons project to the injection sites. Gallyas silver impregnation identified NFTs that contained tau phosphorylated at serine 212/threonine 214 and serine 422. NFTs were composed of twisted filaments and occurred in 6-month-old mice as early as 18 days after Abeta42 injections. Our data support the hypothesis that Abeta42 fibrils can accelerate NFT formation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gotz, J -- Chen, F -- van Dorpe, J -- Nitsch, R M -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1491-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Psychiatry Research, University of Zurich, August Forel Strasse 1, 8008 Zurich, Switzerland. goetz@bli.unizh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520988" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/metabolism/*pathology ; Amygdala/*pathology ; Amyloid beta-Peptides/administration & dosage/*metabolism ; Animals ; Brain/*pathology ; Epitopes ; Female ; Fluorescent Antibody Technique ; Humans ; Male ; Mice ; Mice, Transgenic ; Microscopy, Immunoelectron ; Mutation ; Neurofibrillary Tangles/*metabolism/pathology ; Peptide Fragments/administration & dosage/*metabolism ; Phosphorylation ; Plaque, Amyloid/*metabolism/pathology ; Protein Conformation ; Protein Isoforms ; Sex Characteristics ; tau Proteins/chemistry/genetics/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2001-09-05
    Description: We show that high doses of salicylates reverse hyperglycemia, hyperinsulinemia, and dyslipidemia in obese rodents by sensitizing insulin signaling. Activation or overexpression of the IkappaB kinase beta (IKKbeta) attenuated insulin signaling in cultured cells, whereas IKKbeta inhibition reversed insulin resistance. Thus, IKKbeta, rather than the cyclooxygenases, appears to be the relevant molecular target. Heterozygous deletion (Ikkbeta+/-) protected against the development of insulin resistance during high-fat feeding and in obese Lep(ob/ob) mice. These findings implicate an inflammatory process in the pathogenesis of insulin resistance in obesity and type 2 diabetes mellitus and identify the IKKbeta pathway as a target for insulin sensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, M -- Konstantopoulos, N -- Lee, J -- Hansen, L -- Li, Z W -- Karin, M -- Shoelson, S E -- AI43477/AI/NIAID NIH HHS/ -- DK45493/DK/NIDDK NIH HHS/ -- DK51729/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1673-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology ; Aspirin/administration & dosage/*pharmacology ; Blood Glucose/metabolism ; Cell Line ; Dietary Fats/*administration & dosage ; Gene Deletion ; Gene Targeting ; Glucose Tolerance Test ; I-kappa B Kinase ; Insulin/administration & dosage/blood/*metabolism/pharmacology ; *Insulin Resistance ; Lipids/blood ; Liver/metabolism ; Male ; Mice ; Mice, Obese ; Muscles/metabolism ; Obesity/metabolism/*physiopathology ; Phosphorylation ; Prostaglandin-Endoperoxide Synthases/genetics/metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/genetics/*metabolism ; Rats ; Rats, Zucker ; Receptor, Insulin/metabolism ; Signal Transduction ; Sodium Salicylate/administration & dosage/*pharmacology ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...