ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (498)
  • Base Sequence  (322)
  • Chemistry
  • Inorganic Chemistry
  • METEOROLOGY AND CLIMATOLOGY
  • Physics
  • Polymer and Materials Science
  • American Association for the Advancement of Science (AAAS)  (844)
  • 2005-2009  (492)
  • 1980-1984  (352)
  • 1925-1929
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2006-11-18
    Description: Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Revyakin, Andrey -- Liu, Chenyu -- Ebright, Richard H -- Strick, Terence R -- GM41376/GM/NIGMS NIH HHS/ -- R01 GM041376/GM/NIGMS NIH HHS/ -- R01 GM041376-15/GM/NIGMS NIH HHS/ -- R01 GM041376-16/GM/NIGMS NIH HHS/ -- R01 GM041376-17/GM/NIGMS NIH HHS/ -- R01 GM041376-18/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1139-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110577" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biomechanical Phenomena ; DNA/chemistry/*metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Models, Genetic ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; RNA/biosynthesis ; Transcription Initiation Site/physiology ; Transcription, Genetic/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-25
    Description: The transcription factor NF-kappaB modulates apoptotic responses induced by genotoxic stress. We show that NF-kappaB essential modulator (NEMO), the regulatory subunit of IkappaB kinase (IKK) (which phosphorylates the NF-kappaB inhibitor IkappaB), associates with activated ataxia telangiectasia mutated (ATM) after the induction of DNA double-strand breaks. ATM phosphorylates serine-85 of NEMO to promote its ubiquitin-dependent nuclear export. ATM is also exported in a NEMO-dependent manner to the cytoplasm, where it associates with and causes the activation of IKK in a manner dependent on another IKK regulator, a protein rich in glutamate, leucine, lysine, and serine (ELKS). Thus, regulated nuclear shuttling of NEMO links two signaling kinases, ATM and IKK, to activate NF-kappaB by genotoxic signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Zhao-Hui -- Shi, Yuling -- Tibbetts, Randal S -- Miyamoto, Shigeki -- R01-CA77474/CA/NCI NIH HHS/ -- R01-CA81065/CA/NCI NIH HHS/ -- R01-GM067868/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1141-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Wisconsin-Madison, 301 SMI, 1300 University Avenue, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497931" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing/genetics/metabolism ; Amino Acid Motifs ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; *DNA Damage ; DNA-Binding Proteins/*metabolism ; Humans ; I-kappa B Kinase/*metabolism ; I-kappa B Proteins/genetics/metabolism ; NF-kappa B/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; SUMO-1 Protein/metabolism ; *Signal Transduction ; Tumor Suppressor Proteins/*metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-11-11
    Description: The molecular mechanisms controlling human hair growth and scalp hair loss are poorly understood. By screening about 350,000 individuals in two populations from the Volga-Ural region of Russia, we identified a gene mutation in families who show an inherited form of hair loss and a hair growth defect. Affected individuals were homozygous for a deletion in the LIPH gene on chromosome 3q27, caused by short interspersed nuclear element-retrotransposon-mediated recombination. The LIPH gene is expressed in hair follicles and encodes a phospholipase called lipase H (alternatively known as membrane-associated phosphatidic acid-selective phospholipase A1alpha), an enzyme that regulates the production of bioactive lipids. These results suggest that lipase H participates in hair growth and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kazantseva, Anastasiya -- Goltsov, Andrey -- Zinchenko, Rena -- Grigorenko, Anastasia P -- Abrukova, Anna V -- Moliaka, Yuri K -- Kirillov, Alexander G -- Guo, Zhiru -- Lyle, Stephen -- Ginter, Evgeny K -- Rogaev, Evgeny I -- K08-AR02179/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):982-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095700" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 3/genetics ; Exons ; Female ; Gene Deletion ; Gene Expression ; Genetic Markers ; Hair/*growth & development ; Hair Follicle/enzymology ; Heterozygote ; Homozygote ; Humans ; Hypotrichosis/*genetics ; Lipase/chemistry/*genetics/metabolism ; Lipid Metabolism ; Lod Score ; Male ; Molecular Sequence Data ; Pedigree ; Protein Structure, Tertiary ; Recombination, Genetic ; Retroelements ; Russia ; Tandem Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-05-20
    Description: We describe the use of gold nanoparticle-oligonucleotide complexes as intracellular gene regulation agents for the control of protein expression in cells. These oligonucleotide-modified nanoparticles have affinity constants for complementary nucleic acids that are higher than their unmodified oligonucleotide counterparts, are less susceptible to degradation by nuclease activity, exhibit greater than 99% cellular uptake, can introduce oligonucleotides at a higher effective concentration than conventional transfection agents, and are nontoxic to the cells under the conditions studied. By chemically tailoring the density of DNA bound to the surface of gold nanoparticles, we demonstrated a tunable gene knockdown.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosi, Nathaniel L -- Giljohann, David A -- Thaxton, C Shad -- Lytton-Jean, Abigail K R -- Han, Min Su -- Mirkin, Chad A -- New York, N.Y. -- Science. 2006 May 19;312(5776):1027-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16709779" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Deoxyribonucleases/metabolism ; *Gene Expression Regulation ; Glutathione/metabolism ; *Gold ; Green Fluorescent Proteins/genetics ; HeLa Cells ; Humans ; Mice ; *Nanostructures ; *Oligodeoxyribonucleotides, Antisense/metabolism ; RNA, Messenger
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-09-09
    Description: Chromosomal integration enables human immunodeficiency virus (HIV) to establish a permanent reservoir that can be therapeutically suppressed but not eradicated. Participation of cellular proteins in this obligate replication step is poorly understood. We used intensified RNA interference and dominant-negative protein approaches to show that the cellular transcriptional coactivator lens epithelium-derived growth factor (LEDGF)/p75 (p75) is an essential HIV integration cofactor. The mechanism requires both linkages of a molecular tether that p75 forms between integrase and chromatin. Fractionally minute levels of endogenous p75 are sufficient to enable integration, showing that cellular factors that engage HIV after entry may elude identification in less intensive knockdowns. Perturbing the p75-integrase interaction may have therapeutic potential.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Llano, Manuel -- Saenz, Dyana T -- Meehan, Anne -- Wongthida, Phonphimon -- Peretz, Mary -- Walker, William H -- Teo, Wulin -- Poeschla, Eric M -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):461-4. Epub 2006 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16959972" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/genetics/metabolism/*physiology ; CD4-Positive T-Lymphocytes/metabolism/*virology ; Cell Line ; Chromatin/*metabolism ; HIV Integrase/*metabolism ; HIV-1/*physiology ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/metabolism/*physiology ; *Virus Integration ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-07-22
    Description: The surface potential of biological membranes varies according to their lipid composition. We devised genetically encoded probes to assess surface potential in intact cells. These probes revealed marked, localized alterations in the charge of the inner surface of the plasma membrane of macrophages during the course of phagocytosis. Hydrolysis of phosphoinositides and displacement of phosphatidylserine accounted for the change in surface potential at the phagosomal cup. Signaling molecules such as K-Ras, Rac1, and c-Src that are targeted to the membrane by electrostatic interactions were rapidly released from membrane subdomains where the surface charge was altered by lipid remodeling during phagocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeung, Tony -- Terebiznik, Mauricio -- Yu, Liming -- Silvius, John -- Abidi, Wasif M -- Philips, Mark -- Levine, Tim -- Kapus, Andras -- Grinstein, Sergio -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):347-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Biology, Hepatology, and Nutrition Department, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16857939" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cell Line ; Cell Membrane/*physiology ; Fluorescent Dyes/metabolism ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin G/immunology ; Ionomycin/pharmacology ; Lipid Bilayers/metabolism ; Liposomes/metabolism ; Macrophages/*physiology ; Membrane Potentials ; Mice ; Molecular Probes/metabolism ; Neuropeptides/metabolism ; Opsonin Proteins ; Peptides/metabolism ; *Phagocytosis ; Phagosomes/physiology ; Phospholipids/analysis/metabolism ; Receptors, Fc/immunology/metabolism ; Static Electricity ; rac GTP-Binding Proteins/metabolism ; rac1 GTP-Binding Protein ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-29
    Description: Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855250/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855250/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scaffidi, Paola -- Misteli, Tom -- Z01 BC010309-07/BC/NCI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2006 May 19;312(5776):1059-63. Epub 2006 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645051" target="_blank"〉PubMed〈/a〉
    Keywords: Aged, 80 and over ; Aging/*physiology ; Cell Line ; Cell Nucleus/pathology ; DNA Damage ; Exons ; Histones/metabolism ; Humans ; Lamin Type A/genetics/*physiology ; Progeria/genetics/pathology ; RNA Splicing/genetics ; Signal Transduction ; Tumor Suppressor Protein p53/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-11-25
    Description: Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheong, Ian -- Huang, Xin -- Bettegowda, Chetan -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Zhou, Shibin -- Vogelstein, Bert -- CA062924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Camptothecin/administration & dosage/analogs & ; derivatives/pharmacokinetics/therapeutic use ; Cell Line, Tumor ; Cloning, Molecular ; Clostridium/*chemistry/genetics ; Colorectal Neoplasms/*drug therapy ; Doxorubicin/*administration & dosage/pharmacokinetics/therapeutic use ; Drug Carriers ; Humans ; Lipase/chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry ; Liposomes/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-08-26
    Description: The ataxia telangiectasia mutated (ATM) protein kinase is a critical component of a DNA-damage response network configured to maintain genomic integrity. The abundance of an essential downstream effecter of this pathway, the tumor suppressor protein p53, is tightly regulated by controlled degradation through COP1 and other E3 ubiquitin ligases, such as MDM2 and Pirh2; however, the signal transduction pathway that regulates the COP1-p53 axis following DNA damage remains enigmatic. We observed that in response to DNA damage, ATM phosphorylated COP1 on Ser(387) and stimulated a rapid autodegradation mechanism. Ionizing radiation triggered an ATM-dependent movement of COP1 from the nucleus to the cytoplasm, and ATM-dependent phosphorylation of COP1 on Ser(387) was both necessary and sufficient to disrupt the COP1-p53 complex and subsequently to abrogate the ubiquitination and degradation of p53. Furthermore, phosphorylation of COP1 on Ser(387) was required to permit p53 to become stabilized and to exert its tumor suppressor properties in response to DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dornan, David -- Shimizu, Harumi -- Mah, Angie -- Dudhela, Tanay -- Eby, Michael -- O'rourke, Karen -- Seshagiri, Somasekar -- Dixit, Vishva M -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1122-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931761" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; *DNA Damage ; DNA-Binding Proteins/genetics/*metabolism ; Escherichia coli/genetics/metabolism ; Etoposide/pharmacology ; Humans ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; RNA, Small Interfering ; Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics/metabolism ; Tumor Suppressor Proteins/genetics/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-10-21
    Description: The tumor suppressor programmed cell death protein 4 (PDCD4) inhibits the translation initiation factor eIF4A, an RNA helicase that catalyzes the unwinding of secondary structure at the 5' untranslated region (5'UTR) of messenger RNAs (mRNAs). In response to mitogens, PDCD4 was rapidly phosphorylated on Ser67 by the protein kinase S6K1 and subsequently degraded via the ubiquitin ligase SCF(betaTRCP). Expression in cultured cells of a stable PDCD4 mutant that is unable to bind betaTRCP inhibited translation of an mRNA with a structured 5'UTR, resulted in smaller cell size, and slowed down cell cycle progression. We propose that regulated degradation of PDCD4 in response to mitogens allows efficient protein synthesis and consequently cell growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorrello, N Valerio -- Peschiaroli, Angelo -- Guardavaccaro, Daniele -- Colburn, Nancy H -- Sherman, Nicholas E -- Pagano, Michele -- R01-CA76584/CA/NCI NIH HHS/ -- R01-GM57587/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):467-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053147" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Amino Acid Motifs ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Cell Size ; Eukaryotic Initiation Factor-4A/antagonists & inhibitors/metabolism ; Eukaryotic Initiation Factor-4F/metabolism ; Eukaryotic Initiation Factor-4G/metabolism ; Eukaryotic Initiation Factors/metabolism ; Humans ; Mitogens/pharmacology ; Phosphorylation ; *Protein Biosynthesis ; RNA, Small Interfering ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Ribosomal Protein S6 Kinases/metabolism ; SKP Cullin F-Box Protein Ligases/*metabolism ; Serine/metabolism ; Serum ; Signal Transduction ; beta-Transducin Repeat-Containing Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):457.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439636" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Birds ; Databases, Nucleic Acid ; Genetic Variation ; *Genome, Viral ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics/*pathogenicity ; Influenza in Birds/*virology ; Influenza, Human/*virology ; Ligands ; Poultry ; RNA, Viral/genetics ; Viral Nonstructural Proteins/chemistry/*genetics/metabolism ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szathmary, Eors -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):306-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, Eotvos University Budapest, and Collegium Budapest (Institute for Advanced Study), 2 Szentharomsag utca, H-1014 Budapest, Hungary. szathmary@colbud.hu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16857926" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Chemical Phenomena ; Chemistry ; Computational Biology ; Cooperative Behavior ; Cultural Evolution ; Exobiology ; Humans ; Language ; Models, Biological ; Models, Theoretical ; Molecular Biology ; Origin of Life ; *Research ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-11-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enserink, Martin -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1235-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124302" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry ; *Cooking ; *Food ; France ; History, 20th Century ; History, 21st Century
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2006-08-12
    Description: Transient infection of eukaryotic cells with commensal and extraintestinal pathogenic Escherichia coli of phylogenetic group B2 blocks mitosis and induces megalocytosis. This trait is linked to a widely spread genomic island that encodes giant modular nonribosomal peptide and polyketide synthases. Contact with E. coli expressing this gene cluster causes DNA double-strand breaks and activation of the DNA damage checkpoint pathway, leading to cell cycle arrest and eventually to cell death. Discovery of hybrid peptide-polyketide genotoxins in E. coli will change our view on pathogenesis and commensalism and open new biotechnological applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nougayrede, Jean-Philippe -- Homburg, Stefan -- Taieb, Frederic -- Boury, Michele -- Brzuszkiewicz, Elzbieta -- Gottschalk, Gerhard -- Buchrieser, Carmen -- Hacker, Jorg -- Dobrindt, Ulrich -- Oswald, Eric -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):848-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INRA, UMR1225, Ecole Nationale Veterinaire de Toulouse, Toulouse F-31076, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cell Death ; Cell Line ; Cell Nucleus/chemistry ; Cytotoxins/*metabolism ; DNA/analysis ; *DNA Damage ; DNA-Binding Proteins/metabolism ; Escherichia coli/genetics/*pathogenicity/*physiology ; G2 Phase ; *Genomic Islands ; HeLa Cells ; Histones/metabolism ; Humans ; Intestinal Mucosa/cytology/microbiology ; Molecular Sequence Data ; Mutagenesis ; Mutagens/*metabolism ; Peptides/*metabolism ; Phosphorylation ; Polyketide Synthases/genetics ; Protein-Serine-Threonine Kinases/metabolism ; Rats ; Signal Transduction ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2006-10-07
    Description: A long-standing debate in evolutionary biology concerns whether species diverge gradually through time or by punctuational episodes at the time of speciation. We found that approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from background gradual divergence. Punctuational effects occur at more than twice the rate in plants and fungi than in animals, but the proportion of total divergence attributable to punctuational change does not vary among these groups. Punctuational changes cause departures from a clock-like tempo of evolution, suggesting that they should be accounted for in deriving dates from phylogenies. Punctuational episodes of evolution may play a larger role in promoting evolutionary divergence than has previously been appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pagel, Mark -- Venditti, Chris -- Meade, Andrew -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):119-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. m.pagel@rdg.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bayes Theorem ; DNA/*genetics ; DNA, Fungal/genetics ; DNA, Plant/genetics ; *Evolution, Molecular ; Founder Effect ; Fungi/classification/genetics ; *Genetic Speciation ; Genetic Variation ; Likelihood Functions ; Mathematics ; Models, Statistical ; Mutation ; Phylogeny ; Plants/classification/genetics ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Mildred K -- McGee, Glenn -- Magnus, David -- New York, N.Y. -- Science. 2006 Feb 3;311(5761):614-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stanford Center for Biomedical Ethics, Department of Pediatrics; Palo Alto, CA 94304, USA. micho@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16456065" target="_blank"〉PubMed〈/a〉
    Keywords: Academies and Institutes/ethics/*standards ; Authorship ; Biomedical Research/*ethics/*standards ; Cell Line ; *Ethics, Research ; Female ; Humans ; Korea ; Oocyte Donation/adverse effects ; Research Personnel/*ethics/standards ; Research Support as Topic ; Scientific Misconduct ; Stem Cells ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2006 Sep 8;313(5792):1372.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16959980" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cloning, Organism/legislation & jurisprudence ; Embryo Research/ethics/*legislation & jurisprudence ; Embryo, Mammalian/cytology ; Humans ; Massachusetts ; Research Embryo Creation/ethics/legislation & jurisprudence ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2007-01-06
    Description: We have designed a microfluidic device in which we can manipulate, lyse, label, separate, and quantify the protein contents of a single cell using single-molecule fluorescence counting. Generic labeling of proteins is achieved through fluorescent-antibody binding. The use of cylindrical optics enables high-efficiency (approximately 60%) counting of molecules in micrometer-sized channels. We used this microfluidic device to quantify beta2 adrenergic receptors expressed in insect cells (SF9). We also analyzed phycobiliprotein contents in individual cyanobacterial cells (Synechococcus sp. PCC 7942) and observed marked differences in the levels of specific complexes in cell populations that were grown under nitrogen-depleted conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Bo -- Wu, Hongkai -- Bhaya, Devaki -- Grossman, Arthur -- Granier, Sebastien -- Kobilka, Brian K -- Zare, Richard N -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Bacterial Proteins/*analysis ; Bacteriolysis ; Carbocyanines ; Cell Line ; Culture Media ; Fluorescence ; Fluorescent Antibody Technique ; Fluorescent Dyes ; Humans ; Lasers ; *Microfluidic Analytical Techniques/instrumentation ; Microfluidics ; Nitrogen/metabolism ; Optics and Photonics ; Phycobilisomes/metabolism ; Phycocyanin/*analysis ; Receptors, Adrenergic, beta-2/*analysis ; Synechococcus/*chemistry/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2006-12-16
    Description: A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N(2) to NH(3) at up to 92 degrees C, which is 28 degrees C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90 degrees C, FS406-22 incorporated (15)N(2) and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mehta, Mausmi P -- Baross, John A -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1783-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA. mausmi@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/classification/genetics/*isolation & purification/*metabolism ; Archaeal Proteins/chemistry/genetics/metabolism ; Base Sequence ; *Ecosystem ; Genes, Archaeal ; Genes, rRNA ; Geologic Sediments/microbiology ; *Hot Temperature ; Molecular Sequence Data ; Nitrogen/metabolism ; *Nitrogen Fixation/genetics ; Nitrogenase/chemistry/*genetics/metabolism ; Operon ; Oxidation-Reduction ; Oxidoreductases/chemistry/genetics/metabolism ; Pacific Ocean ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Seawater/*microbiology ; Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2006-11-04
    Description: Guanosine triphosphatases of the Rab family are key regulators of membrane trafficking, with Rab11 playing a specific role in membrane recycling. We identified a mammalian protein, protrudin, that promoted neurite formation through interaction with the guanosine diphosphate (GDP)-bound form of Rab11. Phosphorylation of protrudin by extracellular signal-regulated kinase (ERK) in response to nerve growth factor promoted protrudin association with Rab11-GDP. Down-regulation of protrudin by RNA interference induced membrane extension in all directions and inhibited neurite formation. Thus, protrudin regulates Rab11-dependent membrane recycling to promote the directional membrane trafficking required for neurite formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirane, Michiko -- Nakayama, Keiichi I -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082457" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Adhesion Molecules/metabolism ; Cell Line ; Cell Membrane/*metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Guanosine Diphosphate/metabolism ; HeLa Cells ; Humans ; MAP Kinase Kinase 1/metabolism ; Membrane Proteins ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Nerve Growth Factor/pharmacology/physiology ; Neurites/*physiology ; PC12 Cells ; Phosphorylation ; RNA Interference ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Vesicular Transport Proteins ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2006-12-23
    Description: Cartilaginous fishes represent the living group of jawed vertebrates that diverged from the common ancestor of human and teleost fish lineages about 530 million years ago. We generated approximately 1.4x genome sequence coverage for a cartilaginous fish, the elephant shark (Callorhinchus milii), and compared this genome with the human genome to identify conserved noncoding elements (CNEs). The elephant shark sequence revealed twice as many CNEs as were identified by whole-genome comparisons between teleost fishes and human. The ancient vertebrate-specific CNEs in the elephant shark and human genomes are likely to play key regulatory roles in vertebrate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatesh, Byrappa -- Kirkness, Ewen F -- Loh, Yong-Hwee -- Halpern, Aaron L -- Lee, Alison P -- Johnson, Justin -- Dandona, Nidhi -- Viswanathan, Lakshmi D -- Tay, Alice -- Venter, J Craig -- Strausberg, Robert L -- Brenner, Sydney -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673. mcbbv@imcb.a-star.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA, Intergenic ; Enhancer Elements, Genetic ; Evolution, Molecular ; Genome ; *Genome, Human ; Humans ; Molecular Sequence Data ; *Regulatory Sequences, Nucleic Acid ; Sharks/*genetics ; Takifugu/genetics ; Zebrafish/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2007-10-27
    Description: We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Kai-Yi -- Cong, Bin -- Wing, Rod -- Vrebalov, Julia -- Tanksley, Steven D -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):643-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Chromosome Mapping ; Cloning, Molecular ; Crosses, Genetic ; Down-Regulation ; Flowers/*anatomy & histology/genetics/growth & development ; Genes, Plant ; Genotype ; Helix-Loop-Helix Motifs ; Lycopersicon esculentum/anatomy & histology/*genetics/*physiology ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/metabolism ; Pollen/physiology ; Promoter Regions, Genetic ; Quantitative Trait Loci ; Reproduction ; Sequence Deletion ; Transcription Factors/chemistry/*genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-04-14
    Description: A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ventura, Mario -- Antonacci, Francesca -- Cardone, Maria Francesca -- Stanyon, Roscoe -- D'Addabbo, Pietro -- Cellamare, Angelo -- Sprague, L James -- Eichler, Evan E -- Archidiacono, Nicoletta -- Rocchi, Mariano -- GM58815/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Centromere ; Chromosomes, Human, Pair 6 ; Dna ; *Evolution, Molecular ; Gene Duplication ; Humans ; Macaca mulatta/*genetics ; Molecular Sequence Data ; Sequence Tagged Sites ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2007-08-19
    Description: Recent advances in far-field optical nanoscopy have enabled fluorescence imaging with a spatial resolution of 20 to 50 nanometers. Multicolor super-resolution imaging, however, remains a challenging task. Here, we introduce a family of photo-switchable fluorescent probes and demonstrate multicolor stochastic optical reconstruction microscopy (STORM). Each probe consists of a photo-switchable "reporter" fluorophore that can be cycled between fluorescent and dark states, and an "activator" that facilitates photo-activation of the reporter. Combinatorial pairing of reporters and activators allows the creation of probes with many distinct colors. Iterative, color-specific activation of sparse subsets of these probes allows their localization with nanometer accuracy, enabling the construction of a super-resolution STORM image. Using this approach, we demonstrate multicolor imaging of DNA model samples and mammalian cells with 20- to 30-nanometer resolution. This technique will facilitate direct visualization of molecular interactions at the nanometer scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633025/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633025/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bates, Mark -- Huang, Bo -- Dempsey, Graham T -- Zhuang, Xiaowei -- GM 068518/GM/NIGMS NIH HHS/ -- R01 GM068518/GM/NIGMS NIH HHS/ -- R01 GM068518-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1749-53. Epub 2007 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702910" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cercopithecus aethiops ; Clathrin-Coated Vesicles ; DNA/*analysis ; *DNA Probes ; *Fluorescent Dyes ; Microscopy, Fluorescence/methods ; Microtubules ; Nanotechnology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-01-06
    Description: Cell migration requires the transmission of motion generated in the actin cytoskeleton to the extracellular environment through a complex assembly of proteins in focal adhesions. We developed correlational fluorescent speckle microscopy to measure the coupling of focal-adhesion proteins to actin filaments. Different classes of focal-adhesion structural and regulatory molecules exhibited varying degrees of correlated motions with actin filaments, indicating hierarchical transmission of actin motion through focal adhesions. Interactions between vinculin, talin, and actin filaments appear to constitute a slippage interface between the cytoskeleton and integrins, generating a molecular clutch that is regulated during the morphodynamic transitions of cell migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Ke -- Ji, Lin -- Applegate, Kathryn T -- Danuser, Gaudenz -- Waterman-Storer, Clare M -- GM67230/GM/NIGMS NIH HHS/ -- U54GM64346/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):111-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204653" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actinin/metabolism ; Actins/*metabolism ; Animals ; Cell Line ; Cell Movement ; Extracellular Matrix/metabolism ; Focal Adhesion Protein-Tyrosine Kinases/metabolism ; Focal Adhesions/*metabolism ; Integrin alphaVbeta3/metabolism ; Microfilament Proteins/*metabolism ; Microscopy, Fluorescence ; Monte Carlo Method ; Paxillin/metabolism ; Potoroidae ; Recombinant Fusion Proteins/metabolism ; Talin/metabolism ; Vinculin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-02-10
    Description: A central issue in the regulation of apoptosis by the Bcl-2 family is whether its BH3-only members initiate apoptosis by directly binding to the essential cell-death mediators Bax and Bak, or whether they can act indirectly, by engaging their pro-survival Bcl-2-like relatives. Contrary to the direct-activation model, we show that Bax and Bak can mediate apoptosis without discernable association with the putative BH3-only activators (Bim, Bid, and Puma), even in cells with no Bim or Bid and reduced Puma. Our results indicate that BH3-only proteins induce apoptosis at least primarily by engaging the multiple pro-survival relatives guarding Bax and Bak.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willis, Simon N -- Fletcher, Jamie I -- Kaufmann, Thomas -- van Delft, Mark F -- Chen, Lin -- Czabotar, Peter E -- Ierino, Helen -- Lee, Erinna F -- Fairlie, W Douglas -- Bouillet, Philippe -- Strasser, Andreas -- Kluck, Ruth M -- Adams, Jerry M -- Huang, David C S -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):856-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Humans ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasm Proteins/metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism ; bcl-2 Homologous Antagonist-Killer Protein/metabolism ; bcl-2-Associated X Protein/chemistry/*metabolism ; bcl-Associated Death Protein/metabolism ; bcl-X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2007-09-29
    Description: The SAX-3/roundabout (Robo) receptor has SLT-1/Slit-dependent and -independent functions in guiding cell and axon migrations. We identified enhancer of ventral-axon guidance defects of unc-40 mutants (EVA-1) as a Caenorhabditis elegans transmembrane receptor for SLT-1. EVA-1 has two predicted galactose-binding ectodomains, acts cell-autonomously for SLT-1/Slit-dependent axon migration functions of SAX-3/Robo, binds to SLT-1 and SAX-3, colocalizes with SAX-3 on cells, and provides cell specificity to the activation of SAX-3 signaling by SLT-1. Double mutants of eva-1 or slt-1 with sax-3 mutations suggest that SAX-3 can (when slt-1 or eva-1 function is reduced) inhibit a parallel-acting guidance mechanism, which involves UNC-40/deleted in colorectal cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujisawa, Kazuko -- Wrana, Jeffrey L -- Culotti, Joseph G -- NS41397/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1934-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute of Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901337" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Axons/*physiology ; Caenorhabditis elegans/cytology/genetics/growth & development/*physiology ; Caenorhabditis elegans Proteins/*chemistry/genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Movement ; Cloning, Molecular ; Humans ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*metabolism ; Nervous System/growth & development/metabolism ; Neurons/physiology ; Protein Structure, Tertiary ; Receptors, Immunologic/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007-05-26
    Description: Mutations affecting the BRCT domains of the breast cancer-associated tumor suppressor BRCA1 disrupt the recruitment of this protein to DNA double-strand breaks (DSBs). The molecular structures at DSBs recognized by BRCA1 are presently unknown. We report the interaction of the BRCA1 BRCT domain with RAP80, a ubiquitin-binding protein. RAP80 targets a complex containing the BRCA1-BARD1 (BRCA1-associated ring domain protein 1) E3 ligase and the deubiquitinating enzyme (DUB) BRCC36 to MDC1-gammaH2AX-dependent lysine(6)- and lysine(63)-linked ubiquitin polymers at DSBs. These events are required for cell cycle checkpoint and repair responses to ionizing radiation, implicating ubiquitin chain recognition and turnover in the BRCA1-mediated repair of DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sobhian, Bijan -- Shao, Genze -- Lilli, Dana R -- Culhane, Aedin C -- Moreau, Lisa A -- Xia, Bing -- Livingston, David M -- Greenberg, Roger A -- K08 CA106597/CA/NCI NIH HHS/ -- K08 CA106597-01A2/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1198-202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Genetics and Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525341" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA1 Protein/*metabolism ; Binding Sites ; Carrier Proteins/*metabolism ; Cell Line ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair/physiology ; HeLa Cells ; Humans ; Mice ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Tumor Suppressor Proteins/metabolism ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2007-10-27
    Description: The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in approximately 3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lalueza-Fox, Carles -- Rompler, Holger -- Caramelli, David -- Staubert, Claudia -- Catalano, Giulio -- Hughes, David -- Rohland, Nadin -- Pilli, Elena -- Longo, Laura -- Condemi, Silvana -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Stoneking, Mark -- Schoneberg, Torsten -- Bertranpetit, Jaume -- Hofreiter, Michael -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1453-5. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Biologia Animal, Universitat de Barcelona, Spain. clalueza@ub.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962522" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Biological Evolution ; Cell Line ; DNA/genetics ; *Fossils ; Hair Color/*genetics ; Hominidae/*genetics ; Humans ; Molecular Sequence Data ; *Mutation ; Polymerase Chain Reaction ; Receptor, Melanocortin, Type 1/chemistry/*genetics/metabolism ; Sequence Analysis, DNA ; Skin Pigmentation/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2007-10-20
    Description: A computational analysis of the nuclear genome of a red alga, Cyanidioschyzon merolae, identified 11 transfer RNA (tRNA) genes in which the 3' half of the tRNA lies upstream of the 5' half in the genome. We verified that these genes are expressed and produce mature tRNAs that are aminoacylated. Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soma, Akiko -- Onodera, Akinori -- Sugahara, Junichi -- Kanai, Akio -- Yachie, Nozomu -- Tomita, Masaru -- Kawamura, Fujio -- Sekine, Yasuhiko -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):450-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima, Tokyo 171-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947580" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Algal/chemistry/genetics ; *Genes ; Methionine-tRNA Ligase/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Algal/*genetics/metabolism ; RNA, Transfer/*genetics/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Rhodophyta/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2007-10-13
    Description: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Laura D -- Parsons, D Williams -- Jones, Sian -- Lin, Jimmy -- Sjoblom, Tobias -- Leary, Rebecca J -- Shen, Dong -- Boca, Simina M -- Barber, Thomas -- Ptak, Janine -- Silliman, Natalie -- Szabo, Steve -- Dezso, Zoltan -- Ustyanksky, Vadim -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Karchin, Rachel -- Wilson, Paul A -- Kaminker, Joshua S -- Zhang, Zemin -- Croshaw, Randal -- Willis, Joseph -- Dawson, Dawn -- Shipitsin, Michail -- Willson, James K V -- Sukumar, Saraswati -- Polyak, Kornelia -- Park, Ben Ho -- Pethiyagoda, Charit L -- Pant, P V Krishna -- Ballinger, Dennis G -- Sparks, Andrew B -- Hartigan, James -- Smith, Douglas R -- Suh, Erick -- Papadopoulos, Nickolas -- Buckhaults, Phillip -- Markowitz, Sanford D -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Velculescu, Victor E -- Vogelstein, Bert -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA109274/CA/NCI NIH HHS/ -- CA112828/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM070219/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- P30-CA43703/CA/NCI NIH HHS/ -- RR017698/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1108-13. Epub 2007 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*genetics/metabolism ; Cell Line ; Chromosome Mapping ; Colorectal Neoplasms/*genetics/metabolism ; Computational Biology ; DNA, Neoplasm ; Databases, Genetic ; Genes, Neoplasm ; Genome, Human ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neoplasm Proteins/genetics/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2007-02-17
    Description: Migrating cells extend protrusions, probing the surrounding matrix in search of permissive sites to form adhesions. We found that actin fibers polymerizing along the leading edge directed local protrusions and drove synchronous sideways movement of beta1 integrin adhesion receptors. These movements lead to the clustering and positioning of conformationally activated, but unligated, beta1 integrins along the leading edge of fibroblast lamellae and growth cone filopodia. Thus, rapid actin-based movement of primed integrins along the leading edge suggests a "sticky fingers" mechanism to probe for new adhesion sites and to direct migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galbraith, Catherine G -- Yamada, Kenneth M -- Galbraith, James A -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):992-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303755" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*physiology ; Animals ; Antigens, CD29/*physiology ; Cell Adhesion/*physiology ; Cell Adhesion Molecules/metabolism ; Cell Line ; Cell Movement/*physiology ; Extracellular Matrix/metabolism ; Fibroblasts/physiology ; Fibronectins/metabolism ; Green Fluorescent Proteins/metabolism ; Mice ; Microfilament Proteins/metabolism ; NIH 3T3 Cells ; Phosphoproteins/metabolism ; Protein Binding ; Pseudopodia/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2007-07-14
    Description: Many human cancers involve up-regulation of the phosphoinositide 3-kinase PI3Kalpha, with oncogenic mutations identified in both the p110alpha catalytic and the p85alpha regulatory subunits. We used crystallographic and biochemical approaches to gain insight into activating mutations in two noncatalytic p110alpha domains-the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110alpha in a complex with the p85alpha inter-Src homology 2 (inter-SH2) domain shows that oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. We also examined helical domain mutations and found that the Glu545 to Lys545 (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. These studies extend our understanding of the architecture of PI3Ks and provide insight into how two classes of mutations that cause a gain in function can lead to cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miled, Nabil -- Yan, Ying -- Hon, Wai-Ching -- Perisic, Olga -- Zvelebil, Marketa -- Inbar, Yuval -- Schneidman-Duhovny, Dina -- Wolfson, Haim J -- Backer, Jonathan M -- Williams, Roger L -- GM55692/GM/NIGMS NIH HHS/ -- MC_U105184308/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626883" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; *Catalytic Domain ; Cattle ; Cell Line ; Cell Transformation, Neoplastic ; Crystallography, X-Ray ; Dimerization ; Humans ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Phosphatidylinositol 3-Kinases/antagonists & ; inhibitors/chemistry/*genetics/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2007-03-31
    Description: Telomerase is a ribonucleoprotein enzyme complex that adds 5'-TTAGGG-3' repeats onto the ends of human chromosomes, providing a telomere maintenance mechanism for approximately 90% of human cancers. We have purified human telomerase approximately 10(8)-fold, with the final elution dependent on the enzyme's ability to catalyze nucleotide addition onto a DNA oligonucleotide of telomeric sequence, thereby providing specificity for catalytically active telomerase. Mass spectrometric sequencing of the protein components and molecular size determination indicated an enzyme composition of two molecules each of telomerase reverse transcriptase, telomerase RNA, and dyskerin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Scott B -- Graham, Mark E -- Lovrecz, George O -- Bache, Nicolai -- Robinson, Phillip J -- Reddel, Roger R -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1850-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research Unit, Children's Medical Research Institute, 214 Hawkesbury Road, Westmead NSW 2145, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395830" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Cycle Proteins/*chemistry/isolation & purification ; Cell Line ; Cell Line, Tumor ; Centrifugation, Density Gradient ; Humans ; Molecular Sequence Data ; Molecular Weight ; Multienzyme Complexes/chemistry ; Nuclear Proteins/*chemistry/isolation & purification ; RNA/*chemistry/isolation & purification ; Tandem Mass Spectrometry ; Telomerase/*chemistry/isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2006-12-16
    Description: Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarrin, Ali A -- Del Vecchio, Catherine -- Tseng, Eva -- Gleason, Megan -- Zarin, Payam -- Tian, Ming -- Alt, Frederick W -- 2P01AI031541-15/AI/NIAID NIH HHS/ -- P01CA092625-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):377-81. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line ; Cytidine Deaminase/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Embryonic Stem Cells ; Gene Targeting ; Genes, Immunoglobulin Heavy Chain ; Hybridomas ; *Immunoglobulin Class Switching ; Immunoglobulin G/biosynthesis/genetics ; Immunoglobulin M/biosynthesis/genetics ; *Immunoglobulin Switch Region ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2007-10-20
    Description: To investigate the unregulated Ras activation associated with cancer, we developed and validated a mathematical model of Ras signaling. The model-based predictions and associated experiments help explain why only one of two classes of activating Ras point mutations with in vitro transformation potential is commonly found in cancers. Model-based analysis of these mutants uncovered a systems-level process that contributes to total Ras activation in cells. This predicted behavior was supported by experimental observations. We also used the model to identify a strategy in which a drug could cause stronger inhibition on the cancerous Ras network than on the wild-type network. This system-level analysis of the oncogenic Ras network provides new insights and potential therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stites, Edward C -- Trampont, Paul C -- Ma, Zhong -- Ravichandran, Kodi S -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):463-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beirne B. Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947584" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/metabolism/pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; *Computer Simulation ; Extracellular Signal-Regulated MAP Kinases/metabolism ; GTP Phosphohydrolases/metabolism ; GTPase-Activating Proteins/antagonists & inhibitors/metabolism ; Genes, ras ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Mathematics ; *Metabolic Networks and Pathways ; *Models, Biological ; Neoplasms/*metabolism ; Phosphorylation ; Point Mutation ; *Signal Transduction ; ras Proteins/antagonists & inhibitors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2007-03-10
    Description: Cellular memory is maintained at homeotic genes by cis-regulatory elements whose mechanism of action is unknown. We have examined chromatin at Drosophila homeotic gene clusters by measuring, at high resolution, levels of histone replacement and nucleosome occupancy. Homeotic gene clusters display conspicuous peaks of histone replacement at boundaries of cis-regulatory domains superimposed over broad regions of low replacement. Peaks of histone replacement closely correspond to nuclease-hypersensitive sites, binding sites for Polycomb and trithorax group proteins, and sites of nucleosome depletion. Our results suggest the existence of a continuous process that disrupts nucleosomes and maintains accessibility of cis-regulatory elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mito, Yoshiko -- Henikoff, Jorja G -- Henikoff, Steven -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/metabolism ; Drosophila Proteins/metabolism ; Drosophila melanogaster ; Genes, Homeobox ; Genes, Insect ; HSP70 Heat-Shock Proteins/genetics ; Histones/*metabolism ; Multigene Family ; Nuclear Proteins/metabolism ; Nucleosomes/*metabolism ; Oligonucleotide Array Sequence Analysis ; Polycomb Repressive Complex 1 ; Polycomb Repressive Complex 2 ; Protein Binding ; *Regulatory Sequences, Nucleic Acid ; Repressor Proteins/metabolism ; Response Elements ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2007-08-11
    Description: Tricyclic antidepressants exert their pharmacological effect-inhibiting the reuptake of serotonin, norepinephrine, and dopamine-by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zheng -- Zhen, Juan -- Karpowich, Nathan K -- Goetz, Regina M -- Law, Christopher J -- Reith, Maarten E A -- Wang, Da-Neng -- DA013261/DA/NIDA NIH HHS/ -- DA019676/DA/NIDA NIH HHS/ -- GM075026/GM/NIGMS NIH HHS/ -- GM075936/GM/NIGMS NIH HHS/ -- R01 DA013261/DA/NIDA NIH HHS/ -- R01 DA019676/DA/NIDA NIH HHS/ -- R01 DK053973/DK/NIDDK NIH HHS/ -- R21 DK060841/DK/NIDDK NIH HHS/ -- R21 GM075936/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1390-3. Epub 2007 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690258" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antidepressive Agents, Tricyclic/chemistry/*metabolism ; Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Caenorhabditis elegans Proteins/chemistry/metabolism ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Desipramine/chemistry/*metabolism ; Dopamine/chemistry/metabolism ; Dopamine Uptake Inhibitors/chemistry/metabolism ; Drosophila Proteins/chemistry/metabolism ; Humans ; Leucine/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Uptake Inhibitors/chemistry/*metabolism ; Norepinephrine/chemistry/metabolism ; Norepinephrine Plasma Membrane Transport Proteins/antagonists & ; inhibitors/chemistry/metabolism ; Plasma Membrane Neurotransmitter Transport Proteins/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Sequence Homology, Amino Acid ; Serotonin/chemistry/metabolism ; Serotonin Uptake Inhibitors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2007-09-01
    Description: Methylation of histone H3 lysine 27 (H3K27) is a posttranslational modification that is highly correlated with genomic silencing. Here we show that human UTX, a member of the Jumonji C family of proteins, is a di- and trimethyl H3K27 demethylase. UTX occupies the promoters of HOX gene clusters and regulates their transcriptional output by modulating the recruitment of polycomb repressive complex 1 and the monoubiquitination of histone H2A. Moreover, UTX associates with mixed-lineage leukemia (MLL) 2/3 complexes, and during retinoic acid signaling events, the recruitment of the UTX complex to HOX genes results in H3K27 demethylation and a concomitant methylation of H3K4. Our results suggest a concerted mechanism for transcriptional activation in which cycles of H3K4 methylation by MLL2/3 are linked with the demethylation of H3K27 through UTX.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Min Gyu -- Villa, Raffaella -- Trojer, Patrick -- Norman, Jessica -- Yan, Kai-Ping -- Reinberg, Danny -- Di Croce, Luciano -- Shiekhattar, Ramin -- R01CA090758/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):447-50. Epub 2007 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761849" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation ; Cell Line ; Cell Line, Tumor ; DNA-Binding Proteins/metabolism ; Embryonic Stem Cells ; *Genes, Homeobox ; Histone Demethylases ; Histones/*metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Multigene Family ; Neoplasm Proteins/metabolism ; Nuclear Proteins/genetics/*metabolism ; Polycomb-Group Proteins ; Promoter Regions, Genetic ; Protein Processing, Post-Translational ; Recombinant Proteins/metabolism ; Repressor Proteins/*metabolism ; Signal Transduction ; Transcription, Genetic ; Transcriptional Activation ; Tretinoin/metabolism/pharmacology ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2007-01-27
    Description: Vitamin A has diverse biological functions. It is transported in the blood as a complex with retinol binding protein (RBP), but the molecular mechanism by which vitamin A is absorbed by cells from the vitamin A-RBP complex is not clearly understood. We identified in bovine retinal pigment epithelium cells STRA6, a multitransmembrane domain protein, as a specific membrane receptor for RBP. STRA6 binds to RBP with high affinity and has robust vitamin A uptake activity from the vitamin A-RBP complex. It is widely expressed in embryonic development and in adult organ systems. The RBP receptor represents a major physiological mediator of cellular vitamin A uptake.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawaguchi, Riki -- Yu, Jiamei -- Honda, Jane -- Hu, Jane -- Whitelegge, Julian -- Ping, Peipei -- Wiita, Patrick -- Bok, Dean -- Sun, Hui -- 5T32EY07026/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):820-5. Epub 2007 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255476" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/metabolism ; Amino Acid Sequence ; Animals ; Blood-Retinal Barrier ; COS Cells ; Cattle ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Cercopithecus aethiops ; Embryonic Development ; Endocytosis ; Humans ; Molecular Sequence Data ; Mutation, Missense ; Pigment Epithelium of Eye/*metabolism ; Placenta/metabolism ; Receptors, Cell Surface/*metabolism ; Retinal Vessels/metabolism ; Retinol-Binding Proteins/*metabolism ; Spleen/metabolism ; Transfection ; Vitamin A/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2007-03-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, Jennifer -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1646.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379778" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research/*economics ; *Budgets ; Cell Line ; Embryo Research/*economics ; *Embryonic Stem Cells ; Financing, Government ; Humans ; National Institutes of Health (U.S.)/*economics ; Politics ; *Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2007-11-17
    Description: Monoallelic expression with random choice between the maternal and paternal alleles defines an unusual class of genes comprising X-inactivated genes and a few autosomal gene families. Using a genome-wide approach, we assessed allele-specific transcription of about 4000 human genes in clonal cell lines and found that more than 300 were subject to random monoallelic expression. For a majority of monoallelic genes, we also observed some clonal lines displaying biallelic expression. Clonal cell lines reflect an independent choice to express the maternal, the paternal, or both alleles for each of these genes. This can lead to differences in expressed protein sequence and to differences in levels of gene expression. Unexpectedly widespread monoallelic expression suggests a mechanism that generates diversity in individual cells and their clonal descendants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gimelbrant, Alexander -- Hutchinson, John N -- Thompson, Benjamin R -- Chess, Andrew -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1136-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Genetic Research and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006746" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; Apoptosis Regulatory Proteins/genetics ; Calcium-Calmodulin-Dependent Protein Kinases/genetics ; Cell Line ; Clone Cells ; DNA-Binding Proteins/genetics ; Death-Associated Protein Kinases ; Dosage Compensation, Genetic ; Female ; *Gene Expression ; Gene Expression Regulation ; Genetic Predisposition to Disease ; Genotype ; Humans ; In Situ Hybridization, Fluorescence ; Polymerase Chain Reaction ; Trans-Activators/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2007-11-10
    Description: Production of type I interferon (IFN-I) is a critical host defense triggered by pattern-recognition receptors (PRRs) of the innate immune system. Deubiquitinating enzyme A (DUBA), an ovarian tumor domain-containing deubiquitinating enzyme, was discovered in a small interfering RNA-based screen as a regulator of IFN-I production. Reduction of DUBA augmented the PRR-induced IFN-I response, whereas ectopic expression of DUBA had the converse effect. DUBA bound tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein essential for the IFN-I response. TRAF3 is an E3 ubiquitin ligase that preferentially assembled lysine-63-linked polyubiquitin chains. DUBA selectively cleaved the lysine-63-linked polyubiquitin chains on TRAF3, resulting in its dissociation from the downstream signaling complex containing TANK-binding kinase 1. A discrete ubiquitin interaction motif within DUBA was required for efficient deubiquitination of TRAF3 and optimal suppression of IFN-I. Our data identify DUBA as a negative regulator of innate immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Phung, Qui -- Chan, Salina -- Chaudhari, Ruchir -- Quan, Casey -- O'Rourke, Karen M -- Eby, Michael -- Pietras, Eric -- Cheng, Genhong -- Bazan, J Fernando -- Zhang, Zemin -- Arnott, David -- Dixit, Vishva M -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1628-32. Epub 2007 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991829" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Line ; Endopeptidases/*metabolism ; Humans ; Interferon Type I/*biosynthesis/genetics ; Interferon-alpha/genetics ; Molecular Sequence Data ; NF-kappa B/metabolism ; Protein Structure, Tertiary ; RNA, Small Interfering ; Signal Transduction ; TNF Receptor-Associated Factor 3/metabolism ; Toll-Like Receptor 3/metabolism ; Ubiquitin/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2007-07-14
    Description: The temporal and spatial regulation of gene expression in mammalian development is linked to the establishment of functional chromatin domains. Here, we report that tissue-specific transcription of a retrotransposon repeat in the murine growth hormone locus is required for gene activation. This repeat serves as a boundary to block the influence of repressive chromatin modifications. The repeat element is able to generate short, overlapping Pol II-and Pol III-driven transcripts, both of which are necessary and sufficient to enable a restructuring of the regulated locus into nuclear compartments. These data suggest that transcription of interspersed repetitive sequences may represent a developmental strategy for the establishment of functionally distinct domains within the mammalian genome to control gene activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunyak, Victoria V -- Prefontaine, Gratien G -- Nunez, Esperanza -- Cramer, Thorsten -- Ju, Bong-Gun -- Ohgi, Kenneth A -- Hutt, Kasey -- Roy, Rosa -- Garcia-Diaz, Angel -- Zhu, Xiaoyan -- Yung, Yun -- Montoliu, Lluis -- Glass, Christopher K -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA. vlunyak@uscd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromatin Immunoprecipitation ; DNA Polymerase II/metabolism ; DNA Polymerase III/metabolism ; *Gene Expression Regulation, Developmental ; Growth Hormone/*genetics ; Histones/metabolism ; *Insulator Elements ; Methylation ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Organogenesis ; Pituitary Gland/*embryology/metabolism ; *Short Interspersed Nucleotide Elements ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2007-08-25
    Description: Changes in the concentration of oxidants in cells can regulate biochemical signaling mechanisms that control cell function. We have found that guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) functions directly as a redox sensor. The Ialpha isoform, PKGIalpha, formed an interprotein disulfide linking its two subunits in cells exposed to exogenous hydrogen peroxide. This oxidation directly activated the kinase in vitro, and in rat cells and tissues. The affinity of the kinase for substrates it phosphorylates was enhanced by disulfide formation. This oxidation-induced activation represents an alternate mechanism for regulation along with the classical activation involving nitric oxide and cGMP. This mechanism underlies cGMP-independent vasorelaxation in response to oxidants in the cardiovascular system and provides a molecular explantion for how hydrogen peroxide can operate as an endothelium-derived hyperpolarizing factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burgoyne, Joseph R -- Madhani, Melanie -- Cuello, Friederike -- Charles, Rebecca L -- Brennan, Jonathan P -- Schroder, Ewald -- Browning, Darren D -- Eaton, Philip -- G0700320/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1393-7. Epub 2007 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Cardiovascular Division, King's College London, Rayne Institute, St. Thomas' Hospital, London SE1 7EH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717153" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta ; Cell Line ; Cyclic GMP/metabolism ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/genetics/*metabolism ; Cysteine/*metabolism ; Disulfides/metabolism ; Enzyme Activation ; Humans ; Hydrogen Peroxide/metabolism ; Male ; Nitric Oxide/metabolism ; Oxidants/*metabolism ; Oxidation-Reduction ; Oxidative Stress ; Rats ; Rats, Wistar ; Signal Transduction ; Tissue Culture Techniques ; Transfection ; Vasodilation/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sapienza, Carmen -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):46-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fels Institute for Cancer Research and Department of Pathology, Temple University Medical School, 3307 North Broad Street, Philadelphia, PA 19140, USA. sapienza@temple.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axonemal Dyneins ; Body Patterning ; Cell Line ; Cells, Cultured ; Chromatids/*physiology ; *Chromosome Segregation ; DNA Replication ; Dyneins/*genetics/*physiology ; Ectoderm/*cytology ; Embryonic Stem Cells/*cytology ; Endoderm/*cytology ; Interphase ; Mice ; Mitosis ; Recombination, Genetic ; Spindle Apparatus/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2007-09-01
    Description: MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non-protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinson's disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongpil -- Inoue, Keiichi -- Ishii, Jennifer -- Vanti, William B -- Voronov, Sergey V -- Murchison, Elizabeth -- Hannon, Gregory -- Abeliovich, Asa -- R01 NS064433/NS/NINDS NIH HHS/ -- R01 NS064433-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1220-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia University, College of Physicians and Surgeons 15-403, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761882" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Aged ; Aged, 80 and over ; Animals ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Dopamine/*metabolism ; Embryonic Stem Cells ; *Feedback, Physiological ; Female ; Gene Expression Regulation ; Homeodomain Proteins/*metabolism ; Humans ; Locomotion ; Male ; Mesencephalon/cytology/*metabolism ; Mice ; MicroRNAs/*metabolism ; Middle Aged ; Models, Biological ; Neurons/cytology/*metabolism ; Parkinson Disease/metabolism ; Rats ; Ribonuclease III/genetics/metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2007-06-30
    Description: HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTRs). To date, treatment regimens primarily target the virus enzymes or virus-cell fusion, but not the integrated provirus. We report here the substrate-linked protein evolution of a tailored recombinase that recognizes an asymmetric sequence within an HIV-1 LTR. This evolved recombinase efficiently excised integrated HIV proviral DNA from the genome of infected cells. Although a long way from use in the clinic, we speculate that this type of technology might be adapted in future antiretroviral therapies, among other possible uses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarkar, Indrani -- Hauber, Ilona -- Hauber, Joachim -- Buchholz, Frank -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1912-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA Shuffling ; DNA, Viral/*metabolism ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Gene Library ; Genome, Human ; *HIV Long Terminal Repeat ; HIV-1/*metabolism ; HeLa Cells ; Humans ; Integrases/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Proviruses/metabolism ; Recombination, Genetic ; *Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2007-01-16
    Description: A major goal of systems biology is to predict the function of biological networks. Although network topologies have been successfully determined in many cases, the quantitative parameters governing these networks generally have not. Measuring affinities of molecular interactions in high-throughput format remains problematic, especially for transient and low-affinity interactions. We describe a high-throughput microfluidic platform that measures such properties on the basis of mechanical trapping of molecular interactions. With this platform we characterized DNA binding energy landscapes for four eukaryotic transcription factors; these landscapes were used to test basic assumptions about transcription factor binding and to predict their in vivo function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maerkl, Sebastian J -- Quake, Stephen R -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):233-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Molecular Biophysics Option, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218526" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*metabolism ; Computational Biology ; Computer Simulation ; DNA/*metabolism ; DNA, Fungal/genetics/metabolism ; DNA-Binding Proteins/metabolism ; E-Box Elements ; Gene Expression Regulation, Fungal ; Helix-Loop-Helix Motifs ; Humans ; *Microfluidic Analytical Techniques ; Oligonucleotide Array Sequence Analysis ; Protein Binding ; Protein Isoforms/metabolism ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/metabolism ; *Systems Biology ; Templates, Genetic ; Thermodynamics ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2006-12-16
    Description: Genetically matched pluripotent embryonic stem (ES) cells generated via nuclear transfer or parthenogenesis (pES cells) are a potential source of histocompatible cells and tissues for transplantation. After parthenogenetic activation of murine oocytes and interruption of meiosis I or II, we isolated and genotyped pES cells and characterized those that carried the full complement of major histocompatibility complex (MHC) antigens of the oocyte donor. Differentiated tissues from these pES cells engrafted in immunocompetent MHC-matched mouse recipients, demonstrating that selected pES cells can serve as a source of histocompatible tissues for transplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Kitai -- Lerou, Paul -- Yabuuchi, Akiko -- Lengerke, Claudia -- Ng, Kitwa -- West, Jason -- Kirby, Andrew -- Daly, Mark J -- Daley, George Q -- T32: HD07466/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):482-6. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromosome Segregation ; Embryonic Stem Cells/cytology/*immunology/physiology ; Female ; Genotype ; H-2 Antigens/*genetics/*immunology ; Heterozygote ; *Histocompatibility ; Histocompatibility Antigens Class II/genetics/immunology ; *Major Histocompatibility Complex ; Meiosis ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Oocytes/cytology/immunology ; *Parthenogenesis ; Pluripotent Stem Cells/cytology/*immunology/physiology ; Polymerase Chain Reaction ; Recombination, Genetic ; Stem Cell Transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2007-08-04
    Description: Toll-like receptors (TLRs) trigger the production of inflammatory cytokines and shape adaptive and innate immunity to pathogens. We report the identification of B cell leukemia (Bcl)-3 as an essential negative regulator of TLR signaling. By blocking ubiquitination of p50, a member of the nuclear factor (NF)-kappaB family, Bcl-3 stabilizes a p50 complex that inhibits gene transcription. As a consequence, Bcl-3-deficient mice and cells were found to be hypersensitive to TLR activation and unable to control responses to lipopolysaccharides. Thus, p50 ubiquitination blockade by Bcl-3 limits the strength of TLR responses and maintains innate immune homeostasis. These findings indicate that the p50 ubiquitination pathway can be selectively targeted to control deleterious inflammatory diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carmody, Ruaidhri J -- Ruan, Qingguo -- Palmer, Scott -- Hilliard, Brendan -- Chen, Youhai H -- AI069289/AI/NIAID NIH HHS/ -- AI50059/AI/NIAID NIH HHS/ -- DK070691/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):675-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673665" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; DNA/metabolism ; Female ; Half-Life ; Immune Tolerance ; Immunity, Innate ; Lipopolysaccharides/immunology ; Macrophage Activation ; Macrophages, Peritoneal/*immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B p50 Subunit/*metabolism ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/genetics/*metabolism ; *Signal Transduction ; Toll-Like Receptors/*metabolism ; Transcription Factor RelA/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Tumor Necrosis Factor-alpha/genetics/metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-27
    Description: Differential DNA methylation is important for the epigenetic regulation of gene expression. Allele-specific methylation of the inactive X chromosome has been demonstrated at promoter CpG islands, but the overall pattern of methylation on the active X(Xa) and inactive X (Xi) chromosomes is unknown. We performed allele-specific analysis of more than 1000 informative loci along the human X chromosome. The Xa displays more than two times as much allele-specific methylation as Xi. This methylation is concentrated at gene bodies, affecting multiple neighboring CpGs. Before X inactivation, all of these Xa gene body-methylated sites are biallelically methylated. Thus, a bipartite methylation-demethylation program results in Xa-specific hypomethylation at gene promoters and hypermethylation at gene bodies. These results suggest a relationship between global methylation and expression potentiality.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hellman, Asaf -- Chess, Andrew -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1141-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Genetic Research and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA. hellman@chgr.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322062" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line ; Chromosomes, Human, X/*genetics/metabolism ; CpG Islands ; *DNA Methylation ; Embryonic Stem Cells ; Epigenesis, Genetic ; Female ; Gene Expression Regulation ; Gene Silencing ; Heterozygote ; Humans ; Male ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide ; Promoter Regions, Genetic ; X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2006-12-23
    Description: Synonymous single-nucleotide polymorphisms (SNPs) do not produce altered coding sequences, and therefore they are not expected to change the function of the protein in which they occur. We report that a synonymous SNP in the Multidrug Resistance 1 (MDR1) gene, part of a haplotype previously linked to altered function of the MDR1 gene product P-glycoprotein (P-gp), nonetheless results in P-gp with altered drug and inhibitor interactions. Similar mRNA and protein levels, but altered conformations, were found for wild-type and polymorphic P-gp. We hypothesize that the presence of a rare codon, marked by the synonymous polymorphism, affects the timing of cotranslational folding and insertion of P-gp into the membrane, thereby altering the structure of substrate and inhibitor interaction sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimchi-Sarfaty, Chava -- Oh, Jung Mi -- Kim, In-Wha -- Sauna, Zuben E -- Calcagno, Anna Maria -- Ambudkar, Suresh V -- Gottesman, Michael M -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):525-8. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. kimchi@cber.fda.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185560" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/metabolism ; Cercopithecus aethiops ; Codon ; Cyclosporine/pharmacology ; *Genes, MDR ; Haplotypes ; HeLa Cells ; Humans ; Mutagenesis, Site-Directed ; P-Glycoprotein/antagonists & inhibitors/*chemistry/genetics/*metabolism ; *Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Rhodamine 123/metabolism/pharmacology ; Sirolimus/pharmacology ; Substrate Specificity ; Transfection ; Verapamil/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2007-12-01
    Description: AU-rich elements (AREs) and microRNA target sites are conserved sequences in messenger RNA (mRNA) 3' untranslated regions (3'UTRs) that control gene expression posttranscriptionally. Upon cell cycle arrest, the ARE in tumor necrosis factor-alpha (TNFalpha) mRNA is transformed into a translation activation signal, recruiting Argonaute (AGO) and fragile X mental retardation-related protein 1 (FXR1), factors associated with micro-ribonucleoproteins (microRNPs). We show that human microRNA miR369-3 directs association of these proteins with the AREs to activate translation. Furthermore, we document that two well-studied microRNAs-Let-7 and the synthetic microRNA miRcxcr4-likewise induce translation up-regulation of target mRNAs on cell cycle arrest, yet they repress translation in proliferating cells. Thus, activation is a common function of microRNPs on cell cycle arrest. We propose that translation regulation by microRNPs oscillates between repression and activation during the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vasudevan, Shobha -- Tong, Yingchun -- Steitz, Joan A -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1931-4. Epub 2007 Nov 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18048652" target="_blank"〉PubMed〈/a〉
    Keywords: *3' Untranslated Regions ; Argonaute Proteins ; Base Pairing ; Cell Cycle ; Cell Line ; Cell Proliferation ; Computational Biology ; Eukaryotic Initiation Factor-2/genetics/metabolism ; *Gene Expression Regulation ; HMGA2 Protein/genetics ; HeLa Cells ; Humans ; Interphase ; MicroRNAs/*metabolism ; *Protein Biosynthesis ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/genetics/metabolism ; Ribonucleoproteins/metabolism ; Transfection ; Tumor Necrosis Factor-alpha/biosynthesis/*genetics ; *Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2007-11-03
    Description: Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Hannon, Gregory J -- Brennecke, Julius -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):761-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975059" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Argonaute Proteins ; Base Sequence ; *DNA Transposable Elements ; Drosophila Proteins ; Evolution, Molecular ; Gene Silencing ; Molecular Sequence Data ; Proteins/genetics/physiology ; *RNA, Small Interfering ; RNA-Binding Proteins/genetics/*physiology ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-09-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rowley, Janet D -- Blumenthal, Thomas -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1302-4. doi: 10.1126/science.1163791.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA. jrowley@medicine.bsd.uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772424" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromosomes, Human, Pair 17/genetics ; Chromosomes, Human, Pair 7/genetics ; Endometrial Neoplasms/genetics ; Endometrium/cytology/*metabolism ; Female ; Gene Fusion ; Gene Rearrangement ; Humans ; Macaca mulatta ; Menstrual Cycle ; Neoplasm Proteins/*genetics ; RNA, Guide/genetics ; RNA, Messenger/*genetics ; *Trans-Splicing ; Transcription Factors/*genetics ; *Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2008-09-20
    Description: During mouse embryogenesis, reversion of imprinted X chromosome inactivation in the pluripotent inner cell mass of the female blastocyst is initiated by the repression of Xist from the paternal X chromosome. Here we report that key factors supporting pluripotency-Nanog, Oct3/4, and Sox2-bind within Xist intron 1 in undifferentiated embryonic stem (ES) cells. Whereas Nanog null ES cells display a reversible and moderate up-regulation of Xist in the absence of any apparent modification of Oct3/4 and Sox2 binding, the drastic release of all three factors from Xist intron 1 triggers rapid ectopic accumulation of Xist RNA. We conclude that the three main genetic factors underlying pluripotency cooperate to repress Xist and thus couple X inactivation reprogramming to the control of pluripotency during embryogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navarro, Pablo -- Chambers, Ian -- Karwacki-Neisius, Violetta -- Chureau, Corinne -- Morey, Celine -- Rougeulle, Claire -- Avner, Philip -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 19;321(5896):1693-5. doi: 10.1126/science.1160952.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Unite de Genetique Moleculaire Murine, CNRS, URA2578, F-75015, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18802003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst Inner Cell Mass/metabolism ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/*metabolism ; Embryonic Stem Cells/cytology/*metabolism ; Female ; HMGB Proteins/*metabolism ; Homeodomain Proteins/genetics/*metabolism ; Introns ; Male ; Mice ; Octamer Transcription Factor-3/genetics/*metabolism ; Pluripotent Stem Cells/cytology/*metabolism ; RNA, Long Noncoding ; RNA, Untranslated/*genetics/metabolism ; SOXB1 Transcription Factors ; Transcription Factors/*metabolism ; Up-Regulation ; X Chromosome/physiology ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2008-01-26
    Description: We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Daniel G -- Benders, Gwynedd A -- Andrews-Pfannkoch, Cynthia -- Denisova, Evgeniya A -- Baden-Tillson, Holly -- Zaveri, Jayshree -- Stockwell, Timothy B -- Brownley, Anushka -- Thomas, David W -- Algire, Mikkel A -- Merryman, Chuck -- Young, Lei -- Noskov, Vladimir N -- Glass, John I -- Venter, J Craig -- Hutchison, Clyde A 3rd -- Smith, Hamilton O -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1215-20. doi: 10.1126/science.1151721. Epub 2008 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218864" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Artificial, Bacterial ; Chromosomes, Artificial, Yeast ; *Cloning, Molecular ; DNA, Bacterial/*chemical synthesis ; DNA, Recombinant ; Escherichia coli/genetics ; Genetic Vectors ; *Genome, Bacterial ; Genomics/*methods ; Mycoplasma genitalium/*genetics ; Oligodeoxyribonucleotides/chemical synthesis ; Plasmids ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics ; Sequence Analysis, DNA ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2008-08-02
    Description: The transition from naive to activated T cells is marked by alternative splicing of pre-mRNA encoding the transmembrane phosphatase CD45. Using a short hairpin RNA interference screen, we identified heterogeneous ribonucleoprotein L-like (hnRNPLL) as a critical inducible regulator of CD45 alternative splicing. HnRNPLL was up-regulated in stimulated T cells, bound CD45 transcripts, and was both necessary and sufficient for CD45 alternative splicing. Depletion or overexpression of hnRNPLL in B and T cell lines and primary T cells resulted in reciprocal alteration of CD45RA and RO expression. Exon array analysis suggested that hnRNPLL acts as a global regulator of alternative splicing in activated T cells. Induction of hnRNPLL during hematopoietic cell activation and differentiation may allow cells to rapidly shift their transcriptomes to favor proliferation and inhibit cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791692/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791692/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oberdoerffer, Shalini -- Moita, Luis Ferreira -- Neems, Daniel -- Freitas, Rui P -- Hacohen, Nir -- Rao, Anjana -- AI40127/AI/NIAID NIH HHS/ -- AI44432/AI/NIAID NIH HHS/ -- CA42471/CA/NCI NIH HHS/ -- R01 AI040127/AI/NIAID NIH HHS/ -- R01 AI040127-18/AI/NIAID NIH HHS/ -- R01 AI040127-19/AI/NIAID NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 AI044432-09/AI/NIAID NIH HHS/ -- R01 AI044432-10/AI/NIAID NIH HHS/ -- R01 AI080875/AI/NIAID NIH HHS/ -- R01 AI080875-01/AI/NIAID NIH HHS/ -- R01 CA042471/CA/NCI NIH HHS/ -- R01 CA042471-23/CA/NCI NIH HHS/ -- R21 AI071060/AI/NIAID NIH HHS/ -- R21 AI071060-01/AI/NIAID NIH HHS/ -- R21 AI071060-02/AI/NIAID NIH HHS/ -- T32 HL066987/HL/NHLBI NIH HHS/ -- U19 AI070352/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):686-91. doi: 10.1126/science.1157610. Epub 2008 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669861" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Antigens, CD45/chemistry/*genetics ; B-Lymphocytes/immunology/metabolism ; CD4-Positive T-Lymphocytes/*immunology/*metabolism ; Cell Line ; Cell Line, Tumor ; Heterogeneous-Nuclear Ribonucleoproteins/genetics/*metabolism ; Humans ; Lentivirus/genetics/physiology ; *Lymphocyte Activation ; Protein Isoforms/chemistry/genetics ; RNA Interference ; STAT5 Transcription Factor/genetics ; T-Lymphocytes/*immunology/*metabolism ; Tetradecanoylphorbol Acetate/pharmacology ; Transcription, Genetic ; Transduction, Genetic ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2008-07-26
    Description: Membrane and secretory proteins cotranslationally enter and are folded in the endoplasmic reticulum (ER). Misfolded or unassembled proteins are discarded by a process known as ER-associated degradation (ERAD), which involves their retrotranslocation into the cytosol. ERAD substrates frequently contain disulfide bonds that must be cleaved before their retrotranslocation. Here, we found that an ER-resident protein ERdj5 had a reductase activity, cleaved the disulfide bonds of misfolded proteins, and accelerated ERAD through its physical and functional associations with EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and an ER-resident chaperone BiP. Thus, ERdj5 is a member of a supramolecular ERAD complex that recognizes and unfolds misfolded proteins for their efficient retrotranslocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ushioda, Ryo -- Hoseki, Jun -- Araki, Kazutaka -- Jansen, Gregor -- Thomas, David Y -- Nagata, Kazuhiro -- New York, N.Y. -- Science. 2008 Jul 25;321(5888):569-72. doi: 10.1126/science.1159293.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653895" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cell Line ; Endoplasmic Reticulum/*metabolism ; Glutathione/metabolism ; HSP40 Heat-Shock Proteins/chemistry/genetics/*metabolism ; Heat-Shock Proteins/metabolism ; Humans ; Immunoglobulin J-Chains/chemistry/metabolism ; Membrane Proteins/metabolism ; Mice ; Molecular Chaperones/chemistry/genetics/*metabolism ; Mutation ; Oxidation-Reduction ; Protein Disulfide Reductase (Glutathione)/metabolism ; Protein Disulfide-Isomerases/metabolism ; Protein Folding ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Transfection ; Two-Hybrid System Techniques ; alpha 1-Antitrypsin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2008-03-01
    Description: Intraluminal vesicles of multivesicular endosomes are either sorted for cargo degradation into lysosomes or secreted as exosomes into the extracellular milieu. The mechanisms underlying the sorting of membrane into the different populations of intraluminal vesicles are unknown. Here, we find that cargo is segregated into distinct subdomains on the endosomal membrane and that the transfer of exosome-associated domains into the lumen of the endosome did not depend on the function of the ESCRT (endosomal sorting complex required for transport) machinery, but required the sphingolipid ceramide. Purified exosomes were enriched in ceramide, and the release of exosomes was reduced after the inhibition of neutral sphingomyelinases. These results establish a pathway in intraendosomal membrane transport and exosome formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trajkovic, Katarina -- Hsu, Chieh -- Chiantia, Salvatore -- Rajendran, Lawrence -- Wenzel, Dirk -- Wieland, Felix -- Schwille, Petra -- Brugger, Britta -- Simons, Mikael -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1244-7. doi: 10.1126/science.1153124.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Biochemistry and Molecular Cell Biology, University of Gottingen, 37073 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18309083" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Line, Tumor ; Ceramides/analysis/*metabolism ; Cytoplasmic Vesicles/chemistry/*metabolism/ultrastructure ; Endosomes/*metabolism/ultrastructure ; Humans ; Intracellular Membranes/*metabolism/ultrastructure ; Membrane Microdomains/*metabolism/ultrastructure ; Mice ; Myelin Proteolipid Protein/*metabolism ; Oligodendroglia/metabolism/ultrastructure ; Protein Transport ; Receptor, Epidermal Growth Factor/metabolism ; Recombinant Fusion Proteins/metabolism ; Sphingomyelin Phosphodiesterase/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: Cadherin-mediated cell adhesion and signaling is essential for metazoan development and yet is absent from all other multicellular organisms. We found cadherin genes at numbers similar to those observed in complex metazoans in one of the closest single-celled relatives of metazoans, the choanoflagellate Monosiga brevicollis. Because the evolution of metazoans from a single-celled ancestor required novel cell adhesion and signaling mechanisms, the discovery of diverse cadherins in choanoflagellates suggests that cadherins may have contributed to metazoan origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abedin, Monika -- King, Nicole -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):946-8. doi: 10.1126/science.1151084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276888" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Cadherins/*chemistry/*genetics/physiology ; Cell Adhesion ; Ciona intestinalis/chemistry ; Cnidaria/chemistry ; Drosophila melanogaster/chemistry ; Eukaryota/*chemistry ; Eukaryotic Cells/*chemistry/physiology ; Mice ; Molecular Sequence Data ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Signal Transduction ; Tyrosine/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2008-04-12
    Description: Cytidine deaminases of the APOBEC3 family all have specificity for single-stranded DNA, which may become exposed during replication or transcription of double-stranded DNA. Three human APOBEC3A (hA3A), hA3B, and hA3H genes are expressed in keratinocytes and skin, leading us to determine whether genetic editing of human papillomavirus (HPV) DNA occurred. In a study of HPV1a plantar warts and HPV16 precancerous cervical biopsies, hyperedited HPV1a and HPV16 genomes were found. Strictly analogous results were obtained from transfection experiments with HPV plasmid DNA and the three nuclear localized enzymes: hA3A, hA3C, and hA3H. Thus, stochastic or transient overexpression of APOBEC3 genes may expose the genome to a broad spectrum of mutations that could influence the development of tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vartanian, Jean-Pierre -- Guetard, Denise -- Henry, Michel -- Wain-Hobson, Simon -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):230-3. doi: 10.1126/science.1153201.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Retrovirology Unit, Institut Pasteur, 28 Rue de Docteur Roux, 75724 Paris cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403710" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cervix Uteri/virology ; Cytidine/metabolism ; Cytosine Deaminase/*metabolism ; DNA Mismatch Repair ; DNA, Viral/genetics/*metabolism ; Female ; Genome, Viral ; Human papillomavirus 16/*genetics ; Humans ; Mupapillomavirus/*genetics ; Mutation ; Papillomavirus Infections/enzymology/virology ; Precancerous Conditions/enzymology/*virology ; Transfection ; Uterine Cervical Neoplasms/enzymology/*virology ; Warts/enzymology/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2008-12-20
    Description: Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marraffini, Luciano A -- Sontheimer, Erik J -- GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095942" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Conjugation, Genetic ; DNA, Bacterial/*genetics/metabolism ; Deoxyribonuclease I/genetics/metabolism ; *Gene Silencing ; *Gene Transfer, Horizontal ; Plasmids/genetics ; RNA Splicing ; RNA, Bacterial/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid/*genetics ; Staphylococcus Phages/genetics ; Staphylococcus aureus/genetics ; Staphylococcus epidermidis/*genetics ; *Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2008-05-03
    Description: Golgins, long stringlike proteins, tether cisternae and transport vesicles at the Golgi apparatus. We examined the attachment of golgin GMAP-210 to lipid membranes. GMAP-210 connected highly curved liposomes to flatter ones. This asymmetric tethering relied on motifs that sensed membrane curvature both in the N terminus of GMAP-210 and in ArfGAP1, which controlled the interaction of the C terminus of GMAP-210 with the small guanine nucleotide-binding protein Arf1. Because membrane curvature constantly changes during vesicular trafficking, this mode of tethering suggests a way to maintain the Golgi architecture without compromising membrane flow.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drin, Guillaume -- Morello, Vincent -- Casella, Jean-Francois -- Gounon, Pierre -- Antonny, Bruno -- New York, N.Y. -- Science. 2008 May 2;320(5876):670-3. doi: 10.1126/science.1155821.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice Sophia Antipolis and CNRS, 660 route des lucioles, 06560 Valbonne, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18451304" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factor 1/metabolism ; Binding Sites ; Cell Line ; GTPase-Activating Proteins/metabolism ; Golgi Apparatus/chemistry/metabolism ; HeLa Cells ; Humans ; Intracellular Membranes/*chemistry/metabolism ; Liposomes ; Membrane Lipids/*chemistry ; Nuclear Proteins/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2008-09-06
    Description: The canonical Wnt-beta-catenin signaling pathway is initiated by inducing phosphorylation of one of the Wnt receptors, low-density lipoprotein receptor-related protein 6 (LRP6), at threonine residue 1479 (Thr1479) and serine residue 1490 (Ser1490). By screening a human kinase small interfering RNA library, we identified phosphatidylinositol 4-kinase type II alpha and phosphatidylinositol-4-phosphate 5-kinase type I (PIP5KI) as required for Wnt3a-induced LRP6 phosphorylation at Ser1490 in mammalian cells and confirmed that these kinases are important for Wnt signaling in Xenopus embryos. Wnt3a stimulates the formation of phosphatidylinositol 4,5-bisphosphates [PtdIns (4,5)P2] through frizzled and dishevelled, the latter of which directly interacted with and activated PIP5KI. In turn, PtdIns (4,5)P2 regulated phosphorylation of LRP6 at Thr1479 and Ser1490. Therefore, our study reveals a signaling mechanism for Wnt to regulate LRP6 phosphorylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Weijun -- Choi, Sun-Cheol -- Wang, He -- Qin, Yuanbo -- Volpicelli-Daley, Laura -- Swan, Laura -- Lucast, Louise -- Khoo, Cynthia -- Zhang, Xiaowu -- Li, Lin -- Abrams, Charles S -- Sokol, Sergei Y -- Wu, Dianqing -- AR051476/AR/NIAMS NIH HHS/ -- CA132317/CA/NCI NIH HHS/ -- DA018343/DA/NIDA NIH HHS/ -- HL080706/HL/NHLBI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- P30 DA018343/DA/NIDA NIH HHS/ -- R01 AR051476/AR/NIAMS NIH HHS/ -- R01 AR051476-01A1/AR/NIAMS NIH HHS/ -- R01 AR051476-02/AR/NIAMS NIH HHS/ -- R01 AR051476-03/AR/NIAMS NIH HHS/ -- R01 CA132317/CA/NCI NIH HHS/ -- R01 CA132317-01A2/CA/NCI NIH HHS/ -- R01 CA139395/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1350-3. doi: 10.1126/science.1160741.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772438" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Axin Protein ; Cell Line ; Frizzled Receptors/metabolism ; Humans ; LDL-Receptor Related Proteins/*metabolism ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mice ; Models, Biological ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; Repressor Proteins/metabolism ; Serine/metabolism ; Signal Transduction ; Threonine/metabolism ; Wnt Proteins/*metabolism ; Wnt3 Protein ; Wnt3A Protein ; Xenopus/embryology ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2008-04-05
    Description: Purines are synthesized de novo in 10 chemical steps that are catalyzed by six enzymes in eukaryotes. Studies in vitro have provided little evidence of anticipated protein-protein interactions that would enable substrate channeling and regulation of the metabolic flux. We applied fluorescence microscopy to HeLa cells and discovered that all six enzymes colocalize to form clusters in the cellular cytoplasm. The association and dissociation of these enzyme clusters can be regulated dynamically, by either changing the purine levels of or adding exogenous agents to the culture media. Collectively, the data provide strong evidence for the formation of a multi-enzyme complex, the "purinosome," to carry out de novo purine biosynthesis in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉An, Songon -- Kumar, Ravindra -- Sheets, Erin D -- Benkovic, Stephen J -- R21 AG030949/AG/NIA NIH HHS/ -- R21 AG030949-01/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 4;320(5872):103-6. doi: 10.1126/science.1152241.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA. sua13@psu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388293" target="_blank"〉PubMed〈/a〉
    Keywords: Azaserine/pharmacology ; Binding Sites ; Carbon-Nitrogen Ligases/genetics/*metabolism ; Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/genetics/*metabolism ; Cell Compartmentation ; Cell Line ; Cell Line, Tumor ; Culture Media ; Cytoplasm/*enzymology ; Fluorescent Antibody Technique ; HeLa Cells ; Humans ; Hypoxanthine/pharmacology ; Microscopy, Fluorescence ; Multienzyme Complexes/genetics/*metabolism ; Phosphoribosylglycinamide Formyltransferase/genetics/*metabolism ; Purines/*biosynthesis ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2008-12-06
    Description: Transcription in mammalian cells can be assessed at a genome-wide level, but it has been difficult to reliably determine whether individual transcripts are derived from the plus or minus strands of chromosomes. This distinction can be critical for understanding the relationship between known transcripts (sense) and the complementary antisense transcripts that may regulate them. Here, we describe a technique that can be used to (i) identify the DNA strand of origin for any particular RNA transcript, and (ii) quantify the number of sense and antisense transcripts from expressed genes at a global level. We examined five different human cell types and in each case found evidence for antisense transcripts in 2900 to 6400 human genes. The distribution of antisense transcripts was distinct from that of sense transcripts, was nonrandom across the genome, and differed among cell types. Antisense transcripts thus appear to be a pervasive feature of human cells, which suggests that they are a fundamental component of gene regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824178/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824178/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yiping -- Vogelstein, Bert -- Velculescu, Victor E -- Papadopoulos, Nickolas -- Kinzler, Kenneth W -- CA121113/CA/NCI NIH HHS/ -- CA43460/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- R37 CA057345/CA/NCI NIH HHS/ -- R37 CA057345-17/CA/NCI NIH HHS/ -- R37 CA057345-18/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1855-7. doi: 10.1126/science.1163853. Epub 2008 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056939" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Line, Tumor ; Exons ; Gene Expression ; *Gene Expression Profiling ; *Genome, Human ; Humans ; Introns ; Leukocytes, Mononuclear/metabolism ; Promoter Regions, Genetic ; RNA, Antisense/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2008-01-19
    Description: Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and beta-cryptoxanthin. Through association analysis, linkage mapping, expression analysis, and mutagenesis, we show that variation at the lycopene epsilon cyclase (lcyE) locus alters flux down alpha-carotene versus beta-carotene branches of the carotenoid pathway. Four natural lcyE polymorphisms explained 58% of the variation in these two branches and a threefold difference in provitamin A compounds. Selection of favorable lcyE alleles with inexpensive molecular markers will now enable developing-country breeders to more effectively produce maize grain with higher provitamin A levels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harjes, Carlos E -- Rocheford, Torbert R -- Bai, Ling -- Brutnell, Thomas P -- Kandianis, Catherine Bermudez -- Sowinski, Stephen G -- Stapleton, Ann E -- Vallabhaneni, Ratnakar -- Williams, Mark -- Wurtzel, Eleanore T -- Yan, Jianbing -- Buckler, Edward S -- S06-GM08225/GM/NIGMS NIH HHS/ -- SC1 GM081160/GM/NIGMS NIH HHS/ -- SC1 GM081160-01/GM/NIGMS NIH HHS/ -- SC1 GM081160-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):330-3. doi: 10.1126/science.1150255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202289" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Breeding ; Carotenoids/*analysis/metabolism ; Crosses, Genetic ; Cryptoxanthins ; Gene Expression Regulation, Plant ; *Genetic Variation ; Haplotypes ; Intramolecular Lyases/*genetics/metabolism ; Molecular Sequence Data ; Mutagenesis ; Nutritive Value ; Polymorphism, Genetic ; Quantitative Trait Loci ; Xanthophylls/analysis/metabolism ; Zea mays/chemistry/enzymology/*genetics ; beta Carotene/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2008-05-24
    Description: Viruses shape microbial community structure and function by altering the fitness of their hosts and by promoting genetic exchange. The complexity of most natural ecosystems has precluded detailed studies of virus-host interactions. We reconstructed virus and host bacterial and archaeal genome sequences from community genomic data from two natural acidophilic biofilms. Viruses were matched to their hosts by analyzing spacer sequences that occur among clustered regularly interspaced short palindromic repeats (CRISPRs) that are a hallmark of virus resistance. Virus population genomic analyses provided evidence that extensive recombination shuffles sequence motifs sufficiently to evade CRISPR spacers. Only the most recently acquired spacers match coexisting viruses, which suggests that community stability is achieved by rapid but compensatory shifts in host resistance levels and virus population structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersson, Anders F -- Banfield, Jillian F -- New York, N.Y. -- Science. 2008 May 23;320(5879):1047-50. doi: 10.1126/science.1157358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Earth and Planetary Science and Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/*genetics/physiology/*virology ; Archaeal Viruses/genetics/*physiology ; Bacteria/*genetics/*virology ; Bacterial Physiological Phenomena ; Bacteriophages/genetics/*physiology ; Base Sequence ; Biofilms ; DNA, Intergenic ; Ecosystem ; Genome, Archaeal ; Genome, Bacterial ; Genome, Viral ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Recombination, Genetic ; *Repetitive Sequences, Nucleic Acid ; Thermoplasmales/genetics/physiology/virology ; Viral Proteins/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2008-09-27
    Description: Pluripotent stem cells have been generated from mouse and human somatic cells by viral expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc. A major limitation of this technology is the use of potentially harmful genome-integrating viruses. We generated mouse induced pluripotent stem (iPS) cells from fibroblasts and liver cells by using nonintegrating adenoviruses transiently expressing Oct4, Sox2, Klf4, and c-Myc. These adenoviral iPS (adeno-iPS) cells show DNA demethylation characteristic of reprogrammed cells, express endogenous pluripotency genes, form teratomas, and contribute to multiple tissues, including the germ line, in chimeric mice. Our results provide strong evidence that insertional mutagenesis is not required for in vitro reprogramming. Adenoviral reprogramming may provide an improved method for generating and studying patient-specific stem cells and for comparing embryonic stem cells and iPS cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987909/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987909/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stadtfeld, Matthias -- Nagaya, Masaki -- Utikal, Jochen -- Weir, Gordon -- Hochedlinger, Konrad -- DP2 OD003266/OD/NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):945-9. doi: 10.1126/science.1162494. Epub 2008 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, 185 Cambridge Street, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818365" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/*genetics/physiology ; Animals ; Cell Differentiation ; Cell Line ; *Cellular Reprogramming ; Chimera ; Cloning, Molecular ; Female ; Fibroblasts/*cytology/metabolism/virology ; Genes, myc ; *Genetic Vectors ; Hepatocytes/*cytology/metabolism/virology ; Kruppel-Like Transcription Factors/genetics/metabolism ; Liver/cytology/embryology ; Male ; Mice ; Mice, SCID ; Octamer Transcription Factor-3/genetics/metabolism ; *Pluripotent Stem Cells/cytology/metabolism/transplantation ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; SOXB1 Transcription Factors/genetics/metabolism ; Teratoma/etiology ; Transgenes ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoubridge, Eric A -- Wai, Timothy -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):914-5. doi: 10.1126/science.1154515.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec H3A 2B4, Canada. eric@ericpc.mni.mcgill.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy ; Cell Line ; DNA, Mitochondrial/*genetics ; DNA-Directed DNA Polymerase/genetics ; Electron Transport Complex IV/*genetics ; Embryonic Stem Cells ; Female ; Frameshift Mutation ; *Germ-Line Mutation ; Male ; Mice ; Mitochondria/physiology ; NADH Dehydrogenase/*genetics ; Oocytes/*physiology ; Oogenesis ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-26
    Description: The statistical methods applied to the analysis of genomic data do not account for uncertainty in the sequence alignment. Indeed, the alignment is treated as an observation, and all of the subsequent inferences depend on the alignment being correct. This may not have been too problematic for many phylogenetic studies, in which the gene is carefully chosen for, among other things, ease of alignment. However, in a comparative genomics study, the same statistical methods are applied repeatedly on thousands of genes, many of which will be difficult to align. Using genomic data from seven yeast species, we show that uncertainty in the alignment can lead to several problems, including different alignment methods resulting in different conclusions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Karen M -- Suchard, Marc A -- Huelsenbeck, John P -- GM-069801/GM/NIGMS NIH HHS/ -- R01 GM069801/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):473-6. doi: 10.1126/science.1151532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218900" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; Evolution, Molecular ; *Genome, Fungal ; *Genomics ; Models, Statistical ; Monte Carlo Method ; Open Reading Frames ; Phylogeny ; Saccharomyces/*genetics ; Selection, Genetic ; Sequence Alignment/*methods ; Software ; Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2008-02-16
    Description: The majority of mitochondrial DNA (mtDNA) mutations that cause human disease are mild to moderately deleterious, yet many random mtDNA mutations would be expected to be severe. To determine the fate of the more severe mtDNA mutations, we introduced mtDNAs containing two mutations that affect oxidative phosphorylation into the female mouse germ line. The severe ND6 mutation was selectively eliminated during oogenesis within four generations, whereas the milder COI mutation was retained throughout multiple generations even though the offspring consistently developed mitochondrial myopathy and cardiomyopathy. Thus, severe mtDNA mutations appear to be selectively eliminated from the female germ line, thereby minimizing their impact on population fitness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, Weiwei -- Waymire, Katrina G -- Narula, Navneet -- Li, Peng -- Rocher, Christophe -- Coskun, Pinar E -- Vannan, Mani A -- Narula, Jagat -- Macgregor, Grant R -- Wallace, Douglas C -- AG13154/AG/NIA NIH HHS/ -- AG16573/AG/NIA NIH HHS/ -- AG24373/AG/NIA NIH HHS/ -- DK73691/DK/NIDDK NIH HHS/ -- HD45913/HD/NICHD NIH HHS/ -- NS21328/NS/NINDS NIH HHS/ -- U01 HD045913-01/HD/NICHD NIH HHS/ -- U01 HD045913-02/HD/NICHD NIH HHS/ -- U01 HD045913-03/HD/NICHD NIH HHS/ -- U01 HD045913-04/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):958-62. doi: 10.1126/science.1147786.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiomyopathies/genetics/pathology ; Cell Line ; Crosses, Genetic ; DNA, Mitochondrial/*genetics ; Electron Transport Complex I/metabolism ; Electron Transport Complex IV/*genetics/metabolism ; Embryonic Stem Cells ; Female ; Frameshift Mutation ; *Germ-Line Mutation ; Litter Size ; Male ; Mice ; Mitochondria/physiology ; Mitochondrial Myopathies/*genetics/pathology ; Mutation, Missense ; Myocardium/pathology ; NADH Dehydrogenase/*genetics ; Oocytes/*physiology ; Oogenesis ; Oxidative Phosphorylation ; Oxygen Consumption ; Point Mutation ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2008-09-06
    Description: Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81-base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Visel, Axel -- Akiyama, Jennifer A -- Shoukry, Malak -- Lewis, Keith D -- Holt, Amy -- Plajzer-Frick, Ingrid -- Morrison, Harris -- Fitzpatrick, David R -- Afzal, Veena -- Pennacchio, Len A -- Rubin, Edward M -- Noonan, James P -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367-02/GM/NIGMS NIH HHS/ -- HG003988/HG/NHGRI NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- MC_U127561093/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1346-50. doi: 10.1126/science.1159974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Body Patterning/*genetics ; Conserved Sequence ; Embryonic Development ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Extremities/*embryology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Limb Buds/embryology/metabolism ; Macaca mulatta/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; PAX9 Transcription Factor/metabolism ; Pan troglodytes/genetics ; Selection, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2008-08-23
    Description: Adenovirus small early region 1a (e1a) protein drives cells into S phase by binding RB family proteins and the closely related histone acetyl transferases p300 and CBP. The interaction with RB proteins displaces them from DNA-bound E2F transcription factors, reversing their repression of cell cycle genes. However, it has been unclear how the e1a interaction with p300 and CBP promotes passage through the cell cycle. We show that this interaction causes a threefold reduction in total cellular histone H3 lysine 18 acetylation (H3K18ac). CBP and p300 are required for acetylation at this site because their knockdown causes specific hypoacetylation at H3K18. SV40 T antigen also induces H3K18 hypoacetylation. Because global hypoacetylation at this site is observed in prostate carcinomas with poor prognosis, this suggests that processes resulting in global H3K18 hypoacetylation may be linked to oncogenic transformation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756290/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756290/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horwitz, Gregory A -- Zhang, Kangling -- McBrian, Matthew A -- Grunstein, Michael -- Kurdistani, Siavash K -- Berk, Arnold J -- CA25235/CA/NCI NIH HHS/ -- R37 CA025235/CA/NCI NIH HHS/ -- R37 CA025235-30/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Aug 22;321(5892):1084-5. doi: 10.1126/science.1155544.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719283" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Adenovirus E1A Proteins/genetics/*metabolism ; Adenoviruses, Human/*metabolism ; Antigens, Polyomavirus Transforming/metabolism ; CREB-Binding Protein/metabolism ; *Cell Cycle ; Cell Line ; Cell Transformation, Viral ; Cells, Cultured ; HeLa Cells ; Histones/*metabolism ; Humans ; Lysine/metabolism ; Mutation ; p300-CBP Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2008-05-10
    Description: As obligate intracellular parasites, viruses expertly modify cellular processes to facilitate their replication and spread, often by encoding genes that mimic the functions of cellular proteins while lacking regulatory features that modify their activity. We show that the human cytomegalovirus UL97 protein has activities similar to cellular cyclin-cyclin-dependent kinase (CDK) complexes. UL97 phosphorylated and inactivated the retinoblastoma tumor suppressor, stimulated cell cycle progression in mammalian cells, and rescued proliferation of Saccharomyces cerevisiae lacking CDK activity. UL97 is not inhibited by the CDK inhibitor p21 and lacks amino acid residues conserved in the CDKs that permit the attenuation of kinase activity. Thus, UL97 represents a functional ortholog of cellular CDKs that is immune from normal CDK control mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hume, Adam J -- Finkel, Jonathan S -- Kamil, Jeremy P -- Coen, Donald M -- Culbertson, Michael R -- Kalejta, Robert F -- AI26077/AI/NIAID NIH HHS/ -- GM65172/GM/NIGMS NIH HHS/ -- R56-AI064703/AI/NIAID NIH HHS/ -- T32 AI07245/AI/NIAID NIH HHS/ -- T32 CA009135-31/CA/NCI NIH HHS/ -- T32 GM007215/GM/NIGMS NIH HHS/ -- T32 GM077078-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 May 9;320(5877):797-9. doi: 10.1126/science.1152095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18467589" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Cell Line ; Cyclin-Dependent Kinases/antagonists & inhibitors/*metabolism ; Cytomegalovirus/enzymology/*physiology ; Humans ; Molecular Mimicry ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors/*metabolism ; Protein Kinase Inhibitors/pharmacology ; Retinoblastoma Protein/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2008-10-18
    Description: Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have succeeded in providing parts lists of the essential components of signaling networks, they typically do not provide much insight into the hierarchical and functional relations that exist among these components. We describe a high-throughput screen in which we used RNA interference to systematically inhibit two genes simultaneously in 17,724 combinations to identify regulators of Drosophila JUN NH(2)-terminal kinase (JNK). Using both genetic and phosphoproteomics data, we then implemented an integrative network algorithm to construct a JNK phosphorylation network, which provides structural and mechanistic insights into the systems architecture of JNK signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakal, Chris -- Linding, Rune -- Llense, Flora -- Heffern, Elleard -- Martin-Blanco, Enrique -- Pawson, Tony -- Perrimon, Norbert -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):453-6. doi: 10.1126/science.1158739.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02215, USA. cbakal@receptor.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18927396" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Cell Line ; Computational Biology ; Drosophila/*enzymology/genetics ; Drosophila Proteins/genetics/*metabolism ; Fluorescence Resonance Energy Transfer ; *Genes, Insect ; JNK Mitogen-Activated Protein Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Metabolic Networks and Pathways ; Phosphorylation ; Proteomics ; RNA Interference ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2008-07-19
    Description: The atypical cadherin Fat acts as a receptor for a signaling pathway that regulates growth, gene expression, and planar cell polarity. Genetic studies in Drosophila identified the four-jointed gene as a regulator of Fat signaling. We show that four-jointed encodes a protein kinase that phosphorylates serine or threonine residues within extracellular cadherin domains of Fat and its transmembrane ligand, Dachsous. Four-jointed functions in the Golgi and is the first molecularly defined kinase that phosphorylates protein domains destined to be extracellular. An acidic sequence motif (Asp-Asn-Glu) within Four-jointed was essential for its kinase activity in vitro and for its biological activity in vivo. Our results indicate that Four-jointed regulates Fat signaling by phosphorylating cadherin domains of Fat and Dachsous as they transit through the Golgi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562711/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562711/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishikawa, Hiroyuki O -- Takeuchi, Hideyuki -- Haltiwanger, Robert S -- Irvine, Kenneth D -- CA123071/CA/NCI NIH HHS/ -- GM061126/GM/NIGMS NIH HHS/ -- GM078620/GM/NIGMS NIH HHS/ -- R01 CA123071/CA/NCI NIH HHS/ -- R01 CA123071-02/CA/NCI NIH HHS/ -- R01 GM061126/GM/NIGMS NIH HHS/ -- R01 GM061126-08/GM/NIGMS NIH HHS/ -- R01 GM078620/GM/NIGMS NIH HHS/ -- R01 GM078620-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):401-4. doi: 10.1126/science.1158159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635802" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cadherins/chemistry/*metabolism ; Cell Adhesion Molecules/chemistry/*metabolism ; Cell Line ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster ; Electrophoretic Mobility Shift Assay ; Glycosylation ; Golgi Apparatus/enzymology/*metabolism ; Kinetics ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Serine/metabolism ; Signal Transduction ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2008-11-08
    Description: The abundance of cellular proteins is determined largely by the rate of transcription and translation coupled with the stability of individual proteins. Although we know a great deal about global transcript abundance, little is known about global protein stability. We present a highly parallel multiplexing strategy to monitor protein turnover on a global scale by coupling flow cytometry with microarray technology to track the stability of individual proteins within a complex mixture. We demonstrated the feasibility of this approach by measuring the stability of approximately 8000 human proteins and identifying proteasome substrates. The technology provides a general platform for proteome-scale analysis of protein turnover under various physiological and disease conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yen, Hsueh-Chi Sherry -- Xu, Qikai -- Chou, Danny M -- Zhao, Zhenming -- Elledge, Stephen J -- AG11085/AG/NIA NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):918-23. doi: 10.1126/science.1160489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988847" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/analysis ; Cell Cycle ; Cell Line ; DNA, Complementary ; Flow Cytometry ; Green Fluorescent Proteins/analysis/metabolism ; Half-Life ; Humans ; Luminescent Proteins/analysis/metabolism ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; Proteasome Endopeptidase Complex/*metabolism ; Protein Biosynthesis ; *Protein Stability ; Proteins/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2008-01-12
    Description: Electrostatic interactions with negatively charged membranes contribute to the subcellular targeting of proteins with polybasic clusters or cationic domains. Although the anionic phospholipid phosphatidylserine is comparatively abundant, its contribution to the surface charge of individual cellular membranes is unknown, partly because of the lack of reagents to analyze its distribution in intact cells. We developed a biosensor to study the subcellular distribution of phosphatidylserine and found that it binds the cytosolic leaflets of the plasma membrane, as well as endosomes and lysosomes. The negative charge associated with the presence of phosphatidylserine directed proteins with moderately positive charge to the endocytic pathway. More strongly cationic proteins, normally associated with the plasma membrane, relocalized to endocytic compartments when the plasma membrane surface charge decreased on calcium influx.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeung, Tony -- Gilbert, Gary E -- Shi, Jialan -- Silvius, John -- Kapus, Andras -- Grinstein, Sergio -- New York, N.Y. -- Science. 2008 Jan 11;319(5860):210-3. doi: 10.1126/science.1152066.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Biology, Hospital for Sick Children, Toronto M5G 1X8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18187657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biosensing Techniques ; Cell Line ; Cell Membrane/*metabolism ; Endocytosis ; Endosomes/*metabolism ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/*metabolism ; Lysosomes/*metabolism ; Microscopy, Confocal ; Milk Proteins/metabolism ; Organelles/metabolism ; Phosphatidylserines/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/metabolism ; Signal Transduction ; Static Electricity ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2008-12-06
    Description: Female meiotic drive, in which paired chromosomes compete for access to the egg, is a potentially powerful but rarely documented evolutionary force. In interspecific monkeyflower (Mimulus) hybrids, a driving M. guttatus allele (D) exhibits a 98:2 transmission advantage via female meiosis. We show that extreme interspecific drive is most likely caused by divergence in centromere-associated repeat domains and document cytogenetic and functional polymorphism for drive within a population of M. guttatus. In conspecific crosses, D had a 58:42 transmission advantage over nondriving alternative alleles. However, individuals homozygous for the driving allele suffered reduced pollen viability. These fitness effects and molecular population genetic data suggest that balancing selection prevents the fixation or loss of D and that selfish chromosomal transmission may affect both individual fitness and population genetic load.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fishman, Lila -- Saunders, Arpiar -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1559-62. doi: 10.1126/science.1161406.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA. lila.fishman@mso.umt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056989" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Biological Evolution ; Centromere/*physiology ; Chromosome Segregation ; Chromosomes, Plant/*physiology ; Crosses, Genetic ; Genetic Markers ; Heterozygote ; Hybridization, Genetic ; Linkage Disequilibrium ; *Meiosis ; Mimulus/*genetics/physiology ; Molecular Sequence Data ; Polymorphism, Genetic ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2008-05-24
    Description: Nitric oxide acts substantially in cellular signal transduction through stimulus-coupled S-nitrosylation of cysteine residues. The mechanisms that might subserve protein denitrosylation in cellular signaling remain uncharacterized. Our search for denitrosylase activities focused on caspase-3, an exemplar of stimulus-dependent denitrosylation, and identified thioredoxin and thioredoxin reductase in a biochemical screen. In resting human lymphocytes, thioredoxin-1 actively denitrosylated cytosolic caspase-3 and thereby maintained a low steady-state amount of S-nitrosylation. Upon stimulation of Fas, thioredoxin-2 mediated denitrosylation of mitochondria-associated caspase-3, a process required for caspase-3 activation, and promoted apoptosis. Inhibition of thioredoxin-thioredoxin reductases enabled identification of additional substrates subject to endogenous S-nitrosylation. Thus, specific enzymatic mechanisms may regulate basal and stimulus-induced denitrosylation in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754768/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754768/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benhar, Moran -- Forrester, Michael T -- Hess, Douglas T -- Stamler, Jonathan S -- P01 HL075443/HL/NHLBI NIH HHS/ -- P01 HL075443-050003/HL/NHLBI NIH HHS/ -- R01 HL059130/HL/NHLBI NIH HHS/ -- R01 HL059130-11/HL/NHLBI NIH HHS/ -- U19 ES012496/ES/NIEHS NIH HHS/ -- U19 ES012496-05/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2008 May 23;320(5879):1050-4. doi: 10.1126/science.1158265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/metabolism ; Apoptosis ; Auranofin/pharmacology ; Binding Sites ; Caspase 3/metabolism ; Caspase Inhibitors ; Cell Line ; Cytosol/*metabolism ; Dinitrochlorobenzene/pharmacology ; HeLa Cells ; Humans ; Jurkat Cells ; Macrophages/metabolism ; Mitochondria/enzymology/*metabolism ; Mitochondrial Proteins/*metabolism ; Nitric Oxide/*metabolism ; Rats ; Recombinant Proteins/metabolism ; S-Nitrosothiols/*metabolism ; T-Lymphocytes/metabolism ; Thioredoxin-Disulfide Reductase/*metabolism ; Thioredoxins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2008-07-26
    Description: Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes alpha2-chimaerin, a Rac guanosine triphosphatase-activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase alpha2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance alpha2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant alpha2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that alpha2-chimaerin has a critical developmental function in ocular motor axon pathfinding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyake, Noriko -- Chilton, John -- Psatha, Maria -- Cheng, Long -- Andrews, Caroline -- Chan, Wai-Man -- Law, Krystal -- Crosier, Moira -- Lindsay, Susan -- Cheung, Michelle -- Allen, James -- Gutowski, Nick J -- Ellard, Sian -- Young, Elizabeth -- Iannaccone, Alessandro -- Appukuttan, Binoy -- Stout, J Timothy -- Christiansen, Stephen -- Ciccarelli, Maria Laura -- Baldi, Alfonso -- Campioni, Mara -- Zenteno, Juan C -- Davenport, Dominic -- Mariani, Laura E -- Sahin, Mustafa -- Guthrie, Sarah -- Engle, Elizabeth C -- G9900837/Medical Research Council/United Kingdom -- G9900989/Medical Research Council/United Kingdom -- R01 EY015298/EY/NEI NIH HHS/ -- R01 EY015298-01/EY/NEI NIH HHS/ -- R01 EY015298-02/EY/NEI NIH HHS/ -- R01 EY015298-03/EY/NEI NIH HHS/ -- R01 EY015298-04/EY/NEI NIH HHS/ -- R01 EY015298-05/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Aug 8;321(5890):839-43. doi: 10.1126/science.1156121. Epub 2008 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine (Genetics), Children's Hospital Boston, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653847" target="_blank"〉PubMed〈/a〉
    Keywords: Abducens Nerve/abnormalities ; Amino Acid Sequence ; Animals ; Axons/physiology ; Cell Line ; Cell Membrane/metabolism ; Chick Embryo ; Chimerin 1/chemistry/*genetics/*metabolism ; Duane Retraction Syndrome/*genetics ; Female ; Gene Expression Profiling ; Heterozygote ; Humans ; Male ; Molecular Sequence Data ; *Mutation, Missense ; Oculomotor Muscles/embryology/innervation/metabolism ; Oculomotor Nerve/abnormalities/embryology ; Pedigree
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2008-11-01
    Description: To equalize X-chromosome dosages between the sexes, the female mammal inactivates one of her two X chromosomes. X-chromosome inactivation (XCI) is initiated by expression of Xist, a 17-kb noncoding RNA (ncRNA) that accumulates on the X in cis. Because interacting factors have not been isolated, the mechanism by which Xist induces silencing remains unknown. We discovered a 1.6-kilobase ncRNA (RepA) within Xist and identified the Polycomb complex, PRC2, as its direct target. PRC2 is initially recruited to the X by RepA RNA, with Ezh2 serving as the RNA binding subunit. The antisense Tsix RNA inhibits this interaction. RepA depletion abolishes full-length Xist induction and trimethylation on lysine 27 of histone H3 of the X. Likewise, PRC2 deficiency compromises Xist up-regulation. Therefore, RepA, together with PRC2, is required for the initiation and spread of XCI. We conclude that a ncRNA cofactor recruits Polycomb complexes to their target locus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748911/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748911/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Jing -- Sun, Bryan K -- Erwin, Jennifer A -- Song, Ji-Joon -- Lee, Jeannie T -- R01 GM058839/GM/NIGMS NIH HHS/ -- R01 GM058839-10/GM/NIGMS NIH HHS/ -- R01 GM110090/GM/NIGMS NIH HHS/ -- R01GM58839/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Oct 31;322(5902):750-6. doi: 10.1126/science.1163045.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18974356" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin Immunoprecipitation ; Electrophoretic Mobility Shift Assay ; Embryonic Stem Cells ; Female ; Fibroblasts ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Polycomb-Group Proteins ; Polymerase Chain Reaction ; RNA, Long Noncoding ; RNA, Untranslated/genetics/*metabolism ; Repetitive Sequences, Nucleic Acid ; Repressor Proteins/*metabolism ; Up-Regulation ; X Chromosome/*metabolism ; X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strasser, Bruno J -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):537-8. doi: 10.1126/science.1163399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of the History of Medicine, Yale University, New Haven, CT 06520, USA. bruno.strasser@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948528" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Databases, Nucleic Acid/*history/organization & administration ; Editorial Policies ; History, 20th Century ; History, 21st Century ; National Institutes of Health (U.S.)/*history ; National Library of Medicine (U.S.)/history ; Natural History/history ; Publishing ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2008-07-19
    Description: Cyclic di-guanosine monophosphate (di-GMP) is a circular RNA dinucleotide that functions as a second messenger in diverse species of bacteria to trigger wide-ranging physiological changes, including cell differentiation, conversion between motile and biofilm lifestyles, and virulence gene expression. However, the mechanisms by which cyclic di-GMP regulates gene expression have remained a mystery. We found that cyclic di-GMP in many bacterial species is sensed by a riboswitch class in messenger RNA that controls the expression of genes involved in numerous fundamental cellular processes. A variety of cyclic di-GMP regulons are revealed, including some riboswitches associated with virulence gene expression, pilus formation, and flagellum biosynthesis. In addition, sequences matching the consensus for cyclic di-GMP riboswitches are present in the genome of a bacteriophage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudarsan, N -- Lee, E R -- Weinberg, Z -- Moy, R H -- Kim, J N -- Link, K H -- Breaker, R R -- GM 068819/GM/NIGMS NIH HHS/ -- HV28186/HV/NHLBI NIH HHS/ -- R33 DK07027/DK/NIDDK NIH HHS/ -- RR19895-02/RR/NCRR NIH HHS/ -- T32GM007223/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):411-3. doi: 10.1126/science.1159519.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635805" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/*metabolism ; Bacillus cereus/genetics/metabolism ; Bacteria/*genetics/metabolism ; Bacteriophages/genetics ; Base Sequence ; Clostridium difficile/genetics/metabolism ; Cyclic GMP/*analogs & derivatives/metabolism ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Bacterial/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; Regulon ; *Second Messenger Systems ; Vibrio cholerae/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2008-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sugarman, Jeremy -- Siegel, Andrew W -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):379. doi: 10.1126/science.1164441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205, USA. jsugarm1@jhmi.edu .〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18927375" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Embryo Disposition ; Embryo Research/*ethics/legislation & jurisprudence ; *Embryo, Mammalian ; *Embryonic Stem Cells ; Female ; Germ Cells ; Guidelines as Topic ; Humans ; *Informed Consent ; *Tissue Donors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2008-07-05
    Description: The functional complexity of the human transcriptome is not yet fully elucidated. We report a high-throughput sequence of the human transcriptome from a human embryonic kidney and a B cell line. We used shotgun sequencing of transcripts to generate randomly distributed reads. Of these, 50% mapped to unique genomic locations, of which 80% corresponded to known exons. We found that 66% of the polyadenylated transcriptome mapped to known genes and 34% to nonannotated genomic regions. On the basis of known transcripts, RNA-Seq can detect 25% more genes than can microarrays. A global survey of messenger RNA splicing events identified 94,241 splice junctions (4096 of which were previously unidentified) and showed that exon skipping is the most prevalent form of alternative splicing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sultan, Marc -- Schulz, Marcel H -- Richard, Hugues -- Magen, Alon -- Klingenhoff, Andreas -- Scherf, Matthias -- Seifert, Martin -- Borodina, Tatjana -- Soldatov, Aleksey -- Parkhomchuk, Dmitri -- Schmidt, Dominic -- O'Keeffe, Sean -- Haas, Stefan -- Vingron, Martin -- Lehrach, Hans -- Yaspo, Marie-Laure -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):956-60. doi: 10.1126/science.1160342. Epub 2008 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599741" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Cell Line ; Cell Line, Tumor ; Computational Biology ; DNA, Complementary ; DNA, Intergenic ; Exons ; *Gene Expression Profiling ; *Genome, Human ; Humans ; Introns ; Oligonucleotide Array Sequence Analysis ; RNA Polymerase II/metabolism ; *RNA Splice Sites ; RNA, Messenger/*genetics ; *Sequence Analysis, RNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2008-12-06
    Description: RNA polymerases are highly regulated molecular machines. We present a method (global run-on sequencing, GRO-seq) that maps the position, amount, and orientation of transcriptionally engaged RNA polymerases genome-wide. In this method, nuclear run-on RNA molecules are subjected to large-scale parallel sequencing and mapped to the genome. We show that peaks of promoter-proximal polymerase reside on approximately 30% of human genes, transcription extends beyond pre-messenger RNA 3' cleavage, and antisense transcription is prevalent. Additionally, most promoters have an engaged polymerase upstream and in an orientation opposite to the annotated gene. This divergent polymerase is associated with active genes but does not elongate effectively beyond the promoter. These results imply that the interplay between polymerases and regulators over broad promoter regions dictates the orientation and efficiency of productive transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833333/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833333/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Core, Leighton J -- Waterfall, Joshua J -- Lis, John T -- GM25232/GM/NIGMS NIH HHS/ -- R01 GM025232/GM/NIGMS NIH HHS/ -- R01 GM025232-32/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1845-8. doi: 10.1126/science.1162228. Epub 2008 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056941" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; CpG Islands ; DNA-Directed RNA Polymerases/*metabolism ; Genome, Human ; Humans ; Nucleosomes/metabolism ; *Promoter Regions, Genetic ; RNA Polymerase II/*metabolism ; RNA, Antisense/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; *Sequence Analysis, RNA ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2009-03-17
    Description: The three-dimensional molecular structure of DNA, specifically the shape of the backbone and grooves of genomic DNA, can be dramatically affected by nucleotide changes, which can cause differences in protein-binding affinity and phenotype. We developed an algorithm to measure constraint on the basis of similarity of DNA topography among multiple species, using hydroxyl radical cleavage patterns to interrogate the solvent-accessible surface area of DNA. This algorithm found that 12% of bases in the human genome are evolutionarily constrained-double the number detected by nucleotide sequence-based algorithms. Topography-informed constrained regions correlated with functional noncoding elements, including enhancers, better than did regions identified solely on the basis of nucleotide sequence. These results support the idea that the molecular shape of DNA is under selection and can identify evolutionary history.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Stephen C J -- Hansen, Loren -- Abaan, Hatice Ozel -- Tullius, Thomas D -- Margulies, Elliott H -- R01 HG003541/HG/NHGRI NIH HHS/ -- R01 HG003541-03/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):389-92. doi: 10.1126/science.1169050. Epub 2009 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics Program, Boston University, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286520" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Base Sequence ; Binding Sites ; Conserved Sequence ; DNA/*chemistry/genetics ; Deoxyribonuclease I/metabolism ; Early Growth Response Protein 1/genetics/metabolism ; Evolution, Molecular ; *Genome, Human ; Humans ; Mutant Proteins/metabolism ; Nucleic Acid Conformation ; Phenotype ; Polymorphism, Single Nucleotide ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2009-11-11
    Description: Rapid antigenic evolution in the influenza A virus hemagglutinin precludes effective vaccination with existing vaccines. To understand this phenomenon, we passaged virus in mice immunized with influenza vaccine. Neutralizing antibodies selected mutants with single-amino acid hemagglutinin substitutions that increased virus binding to cell surface glycan receptors. Passaging these high-avidity binding mutants in naive mice, but not immune mice, selected for additional hemagglutinin substitutions that decreased cellular receptor binding avidity. Analyzing a panel of monoclonal antibody hemagglutinin escape mutants revealed a positive correlation between receptor binding avidity and escape from polyclonal antibodies. We propose that in response to variation in neutralizing antibody pressure between individuals, influenza A virus evolves by adjusting receptor binding avidity via amino acid substitutions throughout the hemagglutinin globular domain, many of which simultaneously alter antigenicity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hensley, Scott E -- Das, Suman R -- Bailey, Adam L -- Schmidt, Loren M -- Hickman, Heather D -- Jayaraman, Akila -- Viswanathan, Karthik -- Raman, Rahul -- Sasisekharan, Ram -- Bennink, Jack R -- Yewdell, Jonathan W -- GM 57073/GM/NIGMS NIH HHS/ -- U54 GM62116/GM/NIGMS NIH HHS/ -- Z01 AI001014-01/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 30;326(5953):734-6. doi: 10.1126/science.1178258.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19900932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology ; Antibodies, Viral/immunology ; Antigenic Variation/genetics/*immunology ; Cell Line ; Hemagglutinin Glycoproteins, Influenza Virus/genetics/immunology/*metabolism ; Influenza A Virus, H1N1 Subtype/genetics/*immunology ; Influenza Vaccines/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Models, Immunological ; Mutation ; Receptors, Virus/*metabolism ; Serial Passage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2009-12-08
    Description: Hepatitis delta virus (HDV) and cytoplasmic polyadenylation element-binding protein 3 (CPEB3) ribozymes form a family of self-cleaving RNAs characterized by a conserved nested double-pseudoknot and minimal sequence conservation. Secondary structure-based searches were used to identify sequences capable of forming this fold, and their self-cleavage activity was confirmed in vitro. Active sequences were uncovered in several marine organisms, two nematodes, an arthropod, a bacterium, and an insect virus, often in multiple sequence families and copies. Sequence searches based on identified ribozymes showed that plants, fungi, and a unicellular eukaryote also harbor the ribozymes. In Anopheles gambiae, the ribozymes were found differentially expressed and self-cleaved at basic developmental stages. Our results indicate that HDV-like ribozymes are abundant in nature and suggest that self-cleaving RNAs may play a variety of biological roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webb, Chiu-Ho T -- Riccitelli, Nathan J -- Ruminski, Dana J -- Luptak, Andrej -- R01 GM094929/GM/NIGMS NIH HHS/ -- R01 GM094929-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):953. doi: 10.1126/science.1178084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/enzymology/*genetics/growth & development ; Base Sequence ; Catalysis ; Eukaryota/enzymology/*genetics ; Expressed Sequence Tags ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2008-11-22
    Description: We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eid, John -- Fehr, Adrian -- Gray, Jeremy -- Luong, Khai -- Lyle, John -- Otto, Geoff -- Peluso, Paul -- Rank, David -- Baybayan, Primo -- Bettman, Brad -- Bibillo, Arkadiusz -- Bjornson, Keith -- Chaudhuri, Bidhan -- Christians, Frederick -- Cicero, Ronald -- Clark, Sonya -- Dalal, Ravindra -- Dewinter, Alex -- Dixon, John -- Foquet, Mathieu -- Gaertner, Alfred -- Hardenbol, Paul -- Heiner, Cheryl -- Hester, Kevin -- Holden, David -- Kearns, Gregory -- Kong, Xiangxu -- Kuse, Ronald -- Lacroix, Yves -- Lin, Steven -- Lundquist, Paul -- Ma, Congcong -- Marks, Patrick -- Maxham, Mark -- Murphy, Devon -- Park, Insil -- Pham, Thang -- Phillips, Michael -- Roy, Joy -- Sebra, Robert -- Shen, Gene -- Sorenson, Jon -- Tomaney, Austin -- Travers, Kevin -- Trulson, Mark -- Vieceli, John -- Wegener, Jeffrey -- Wu, Dawn -- Yang, Alicia -- Zaccarin, Denis -- Zhao, Peter -- Zhong, Frank -- Korlach, Jonas -- Turner, Stephen -- R01HG003710/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 2;323(5910):133-8. doi: 10.1126/science.1162986. Epub 2008 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Biosciences, 1505 Adams Drive, Menlo Park, CA 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023044" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Consensus Sequence ; DNA/biosynthesis ; DNA, Circular/chemistry ; DNA, Single-Stranded/chemistry ; DNA-Directed DNA Polymerase/*metabolism ; Deoxyribonucleotides/metabolism ; Enzymes, Immobilized ; Fluorescent Dyes ; Kinetics ; Nanostructures ; Sequence Analysis, DNA/*methods ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2009 Jul 10;325(5937):131. doi: 10.1126/science.325_131.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19589969" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Embryo Research/economics ; *Embryonic Stem Cells ; Financing, Government ; *Guidelines as Topic ; Humans ; National Institutes of Health (U.S.) ; Registries ; *Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2009-05-09
    Description: Despite tremendous progress in understanding the nature of the immune system, the full diversity of an organism's antibody repertoire is unknown. We used high-throughput sequencing of the variable domain of the antibody heavy chain from 14 zebrafish to analyze VDJ usage and antibody sequence. Zebrafish were found to use between 50 and 86% of all possible VDJ combinations and shared a similar frequency distribution, with some correlation of VDJ patterns between individuals. Zebrafish antibodies retained a few thousand unique heavy chains that also exhibited a shared frequency distribution. We found evidence of convergence, in which different individuals made the same antibody. This approach provides insight into the breadth of the expressed antibody repertoire and immunological diversity at the level of an individual organism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinstein, Joshua A -- Jiang, Ning -- White, Richard A 3rd -- Fisher, Daniel S -- Quake, Stephen R -- DP1 OD000251/OD/NIH HHS/ -- DP1 OD000251-04/OD/NIH HHS/ -- DP1 OD000251-05/OD/NIH HHS/ -- DP1 OD000251-06/OD/NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):807-10. doi: 10.1126/science.1170020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19423829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/genetics ; Antibody Diversity ; Base Sequence ; Complementarity Determining Regions/*genetics ; Computational Biology ; Female ; Gene Library ; *Genes, Immunoglobulin Heavy Chain ; Immunoglobulin Heavy Chains/*genetics ; Immunoglobulin Joining Region/genetics ; Immunoglobulin M/*genetics ; Male ; Molecular Sequence Data ; Recombination, Genetic ; Sequence Analysis, DNA ; VDJ Exons ; Zebrafish/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2009-04-11
    Description: The nuclear factor kappaB (NF-kappaB) transcription factor regulates cellular stress responses and the immune response to infection. NF-kappaB activation results in oscillations in nuclear NF-kappaB abundance. To define the function of these oscillations, we treated cells with repeated short pulses of tumor necrosis factor-alpha at various intervals to mimic pulsatile inflammatory signals. At all pulse intervals that were analyzed, we observed synchronous cycles of NF-kappaB nuclear translocation. Lower frequency stimulations gave repeated full-amplitude translocations, whereas higher frequency pulses gave reduced translocation, indicating a failure to reset. Deterministic and stochastic mathematical models predicted how negative feedback loops regulate both the resetting of the system and cellular heterogeneity. Altering the stimulation intervals gave different patterns of NF-kappaB-dependent gene expression, which supports the idea that oscillation frequency has a functional role.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashall, Louise -- Horton, Caroline A -- Nelson, David E -- Paszek, Pawel -- Harper, Claire V -- Sillitoe, Kate -- Ryan, Sheila -- Spiller, David G -- Unitt, John F -- Broomhead, David S -- Kell, Douglas B -- Rand, David A -- See, Violaine -- White, Michael R H -- BB/C007158/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C008219/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C520471/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D010748/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E004210/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E012965/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F005938/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC0071581/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC0082191/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC5204711/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBD0107481/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBF0059381/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0500346/Medical Research Council/United Kingdom -- G0500346(73596)/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):242-6. doi: 10.1126/science.1164860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359585" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Feedback, Physiological ; *Gene Expression ; Humans ; I-kappa B Proteins/metabolism ; Mice ; Models, Biological ; Models, Statistical ; NF-kappa B/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Stochastic Processes ; Transcription Factor RelA/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2009-03-03
    Description: Plants have distinct RNA polymerase complexes (Pol IV and Pol V) with largely unknown roles in maintaining small RNA-associated gene silencing. Curiously, the eudicot Arabidopsis thaliana is not affected when either function is lost. By use of mutation selection and positional cloning, we showed that the largest subunit of the presumed maize Pol IV is involved in paramutation, an inherited epigenetic change facilitated by an interaction between two alleles, as well as normal maize development. Bioinformatics analyses and nuclear run-on transcription assays indicate that Pol IV does not engage in the efficient RNA synthesis typical of the three major eukaryotic DNA-dependent RNA polymerases. These results indicate that Pol IV employs abnormal RNA polymerase activities to achieve genome-wide silencing and that its absence affects both maize development and heritable epigenetic changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erhard, Karl F Jr -- Stonaker, Jennifer L -- Parkinson, Susan E -- Lim, Jana P -- Hale, Christopher J -- Hollick, Jay B -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1201-5. doi: 10.1126/science.1164508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251626" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Epigenesis, Genetic ; Gene Silencing ; Genes, Plant ; Molecular Sequence Data ; *Mutation ; Phylogeny ; Protein Subunits/chemistry/genetics/metabolism ; RNA, Plant/genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; Transcription, Genetic ; Zea mays/*enzymology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2009-04-18
    Description: Genes are not simply turned on or off, but instead their expression is fine-tuned to meet the needs of a cell. How genes are modulated so precisely is not well understood. The glucocorticoid receptor (GR) regulates target genes by associating with specific DNA binding sites, the sequences of which differ between genes. Traditionally, these binding sites have been viewed only as docking sites. Using structural, biochemical, and cell-based assays, we show that GR binding sequences, differing by as little as a single base pair, differentially affect GR conformation and regulatory activity. We therefore propose that DNA is a sequence-specific allosteric ligand of GR that tailors the activity of the receptor toward specific target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijsing, Sebastiaan H -- Pufall, Miles A -- So, Alex Y -- Bates, Darren L -- Chen, Lin -- Yamamoto, Keith R -- GM08537/GM/NIGMS NIH HHS/ -- R01 CA020535/CA/NCI NIH HHS/ -- R01 CA020535-31/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):407-10. doi: 10.1126/science.1164265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Line, Tumor ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; Humans ; Ligands ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...