ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-09-20
    Description: During mouse embryogenesis, reversion of imprinted X chromosome inactivation in the pluripotent inner cell mass of the female blastocyst is initiated by the repression of Xist from the paternal X chromosome. Here we report that key factors supporting pluripotency-Nanog, Oct3/4, and Sox2-bind within Xist intron 1 in undifferentiated embryonic stem (ES) cells. Whereas Nanog null ES cells display a reversible and moderate up-regulation of Xist in the absence of any apparent modification of Oct3/4 and Sox2 binding, the drastic release of all three factors from Xist intron 1 triggers rapid ectopic accumulation of Xist RNA. We conclude that the three main genetic factors underlying pluripotency cooperate to repress Xist and thus couple X inactivation reprogramming to the control of pluripotency during embryogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navarro, Pablo -- Chambers, Ian -- Karwacki-Neisius, Violetta -- Chureau, Corinne -- Morey, Celine -- Rougeulle, Claire -- Avner, Philip -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 19;321(5896):1693-5. doi: 10.1126/science.1160952.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Unite de Genetique Moleculaire Murine, CNRS, URA2578, F-75015, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18802003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst Inner Cell Mass/metabolism ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/*metabolism ; Embryonic Stem Cells/cytology/*metabolism ; Female ; HMGB Proteins/*metabolism ; Homeodomain Proteins/genetics/*metabolism ; Introns ; Male ; Mice ; Octamer Transcription Factor-3/genetics/*metabolism ; Pluripotent Stem Cells/cytology/*metabolism ; RNA, Long Noncoding ; RNA, Untranslated/*genetics/metabolism ; SOXB1 Transcription Factors ; Transcription Factors/*metabolism ; Up-Regulation ; X Chromosome/physiology ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...