ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (72)
  • Molecular Sequence Data  (51)
  • Quantum optics, physics of lasers, nonlinear optics, classical optics
  • Scientific Community
  • Nature Publishing Group (NPG)  (115)
  • 2015-2019  (115)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2016-01-28
    Description: Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Jeanine L -- Rouze, Pierre -- Verhelst, Bram -- Lin, Yao-Cheng -- Bayer, Till -- Collen, Jonas -- Dattolo, Emanuela -- De Paoli, Emanuele -- Dittami, Simon -- Maumus, Florian -- Michel, Gurvan -- Kersting, Anna -- Lauritano, Chiara -- Lohaus, Rolf -- Topel, Mats -- Tonon, Thierry -- Vanneste, Kevin -- Amirebrahimi, Mojgan -- Brakel, Janina -- Bostrom, Christoffer -- Chovatia, Mansi -- Grimwood, Jane -- Jenkins, Jerry W -- Jueterbock, Alexander -- Mraz, Amy -- Stam, Wytze T -- Tice, Hope -- Bornberg-Bauer, Erich -- Green, Pamela J -- Pearson, Gareth A -- Procaccini, Gabriele -- Duarte, Carlos M -- Schmutz, Jeremy -- Reusch, Thorsten B H -- Van de Peer, Yves -- England -- Nature. 2016 Feb 18;530(7590):331-5. doi: 10.1038/nature16548. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands. ; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium. ; GEOMAR Helmholtz Centre for Ocean Research-Kiel, Evolutionary Ecology, Dusternbrooker Weg 20, D-24105 Kiel, Germany. ; Sorbonne Universite, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France. ; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy. ; Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 206, 33100 Udine, Italy. ; INRA, UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France. ; Institute for Evolution and Biodiversity, Westfalische Wilhelms-University of Munster, Hufferstrasse 1, D-48149 Munster, Germany. ; Institute for Computer Science, Heinrich Heine University, D-40255 Duesseldorf, Germany. ; Department of Biological and Environmental Sciences, Bioinformatics Infrastructure for Life Sciences (BILS), University of Gothenburg, Medicinaregatan 18A, 40530 Gothenburg, Sweden. ; Department of Energy Joint Genome Institute, 2800 Mitchell Dr., #100, Walnut Creek, California 94598, USA. ; Environmental and Marine Biology, Faculty of Science and Engineering, Abo Akademi University, Artillerigatan 6, FI-20520 Turku/Abo, Finland. ; HudsonAlpha Institute for Biotechnology, 601 Genome Way NW, Huntsville, Alabama 35806, USA. ; Marine Ecology Group, Nord University, Postbox 1490, 8049 Bodo, Norway. ; Amplicon Express, 2345 NE Hopkins Ct., Pullman, Washington 99163, USA. ; School of Marine Science and Policy, Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, 15-Innovation Way, Newark, Delaware 19711, USA. ; Marine Ecology and Evolution, Centre for Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal. ; King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia. ; University of Kiel, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Platz 4, 24118 Kiel, Germany. ; Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria 0028, South Africa. ; Bioinformatics Institute Ghent, Ghent University, Ghent B-9000, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814964" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/genetics ; Adaptation, Physiological/*genetics ; Cell Wall/chemistry ; Ethylenes/biosynthesis ; *Evolution, Molecular ; Gene Duplication ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Oceans and Seas ; Osmoregulation/genetics ; Phylogeny ; Plant Leaves/metabolism ; Plant Stomata/genetics ; Pollen/metabolism ; Salinity ; Salt-Tolerance/genetics ; *Seawater ; Seaweed/genetics ; Terpenes/metabolism ; Zosteraceae/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-24
    Description: Eukaryotic cells restrict protein synthesis under various stress conditions, by inhibiting the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, a heterotrimeric G protein consisting of alpha-, beta- and gamma-subunits. eIF2B exchanges GDP for GTP on the gamma-subunit of eIF2 (eIF2gamma), and is inhibited by stress-induced phosphorylation of eIF2alpha. eIF2B is a heterodecameric complex of two copies each of the alpha-, beta-, gamma-, delta- and epsilon-subunits; its alpha-, beta- and delta-subunits constitute the regulatory subcomplex, while the gamma- and epsilon-subunits form the catalytic subcomplex. The three-dimensional structure of the entire eIF2B complex has not been determined. Here we present the crystal structure of Schizosaccharomyces pombe eIF2B with an unprecedented subunit arrangement, in which the alpha2beta2delta2 hexameric regulatory subcomplex binds two gammaepsilon dimeric catalytic subcomplexes on its opposite sides. A structure-based in vitro analysis by a surface-scanning site-directed photo-cross-linking method identified the eIF2alpha-binding and eIF2gamma-binding interfaces, located far apart on the regulatory and catalytic subcomplexes, respectively. The eIF2gamma-binding interface is located close to the conserved 'NF motif', which is important for nucleotide exchange. A structural model was constructed for the complex of eIF2B with phosphorylated eIF2alpha, which binds to eIF2B more strongly than the unphosphorylated form. These results indicate that the eIF2alpha phosphorylation generates the 'nonproductive' eIF2-eIF2B complex, which prevents nucleotide exchange on eIF2gamma, and thus provide a structural framework for the eIF2B-mediated mechanism of stress-induced translational control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kashiwagi, Kazuhiro -- Takahashi, Mari -- Nishimoto, Madoka -- Hiyama, Takuya B -- Higo, Toshiaki -- Umehara, Takashi -- Sakamoto, Kensaku -- Ito, Takuhiro -- Yokoyama, Shigeyuki -- England -- Nature. 2016 Mar 3;531(7592):122-5. doi: 10.1038/nature16991. Epub 2016 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. ; RIKEN Systems and Structural Biology Center, Tsurumi-ku, Yokohama 230-0045, Japan. ; RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan. ; RIKEN Structural Biology Laboratory, Tsurumi-ku, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26901872" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Biocatalysis ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-2B/*chemistry/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Models, Molecular ; Phosphorylation ; Protein Binding ; Protein Biosynthesis ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Schizosaccharomyces/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-07
    Description: Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 A resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ponce-Salvatierra, Almudena -- Wawrzyniak-Turek, Katarzyna -- Steuerwald, Ulrich -- Hobartner, Claudia -- Pena, Vladimir -- England -- Nature. 2016 Jan 14;529(7585):231-4. doi: 10.1038/nature16471. Epub 2016 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany. ; Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany. ; Institute for Organic and Biomolecular Chemistry, Georg-August-University Gottingen, Tammannstr. 2, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26735012" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA, Catalytic/chemical synthesis/*chemistry/metabolism ; Deoxyribose/chemistry/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Nucleotides/chemistry/metabolism ; Polynucleotide Ligases/chemistry/metabolism ; RNA/chemistry/metabolism ; RNA Folding ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-24
    Description: All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the beta-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane beta-barrel of BamA to induce movement of the beta-strands of the barrel and promote insertion of the nascent OMP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Yinghong -- Li, Huanyu -- Dong, Haohao -- Zeng, Yi -- Zhang, Zhengyu -- Paterson, Neil G -- Stansfeld, Phillip J -- Wang, Zhongshan -- Zhang, Yizheng -- Wang, Wenjian -- Dong, Changjiang -- G1100110/1/Medical Research Council/United Kingdom -- WT106121MA/Wellcome Trust/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):64-9. doi: 10.1038/nature17199. Epub 2016 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. ; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, China. ; Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China. ; Laboratory of Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26901871" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Movement ; Multiprotein Complexes/*chemistry/*metabolism ; Periplasm/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-10
    Description: Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843519/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843519/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morgan, Jacob L W -- McNamara, Joshua T -- Fischer, Michael -- Rich, Jamie -- Chen, Hong-Ming -- Withers, Stephen G -- Zimmer, Jochen -- 1R01GM101001/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM101001/GM/NIGMS NIH HHS/ -- S10 RR029205/RR/NCRR NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):329-34. doi: 10.1038/nature16966. Epub 2016 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Virginia School of Medicine, Center for Membrane Biology, Molecular Physiology and Biological Physics, 480 Ray C. Hunt Drive, Charlottesville, Virginia 22908, USA. ; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26958837" target="_blank"〉PubMed〈/a〉
    Keywords: Cellulose/*biosynthesis/chemistry/*metabolism ; Crystallography, X-Ray ; Glucose/metabolism ; Glucosyltransferases/*chemistry/*metabolism ; Intracellular Membranes/chemistry/*metabolism ; Models, Molecular ; Movement ; Protein Structure, Secondary ; Proteolipids/chemistry/metabolism ; Rhodobacter sphaeroides/enzymology ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-15
    Description: Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reimer, Janice M -- Aloise, Martin N -- Harrison, Paul M -- Schmeing, T Martin -- 106615/Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 14;529(7585):239-42. doi: 10.1038/nature16503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montreal, Quebec H3G 0B1, Canada. ; Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26762462" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/chemistry/metabolism ; Anti-Bacterial Agents/biosynthesis ; Binding Sites ; *Biocatalysis ; Brevibacillus/*enzymology ; Carbohydrate Metabolism ; Carrier Proteins/chemistry/metabolism ; Catalytic Domain ; Coenzymes/metabolism ; Crystallography, X-Ray ; Gramicidin/*biosynthesis ; Hydroxymethyl and Formyl Transferases/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/chemistry/metabolism ; Pantetheine/analogs & derivatives/metabolism ; Peptide Synthases/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Transfer/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-09
    Description: The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a mouse coronavirus S trimer ectodomain determined at 4.0 A resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walls, Alexandra C -- Tortorici, M Alejandra -- Bosch, Berend-Jan -- Frenz, Brandon -- Rottier, Peter J M -- DiMaio, Frank -- Rey, Felix A -- Veesler, David -- GM103310/GM/NIGMS NIH HHS/ -- T32GM008268/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):114-7. doi: 10.1038/nature16988. Epub 2016 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institut Pasteur, Unite de Virologie Structurale, 75015 Paris, France. ; CNRS UMR 3569 Virologie, 75015 Paris, France. ; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26855426" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Cell Line ; Coronavirus Infections/immunology/virology ; *Cryoelectron Microscopy ; Drosophila melanogaster ; Mice ; Models, Molecular ; Molecular Sequence Data ; Murine hepatitis virus/*chemistry/immunology/*ultrastructure ; Protein Multimerization ; Protein Structure, Tertiary ; Spike Glycoprotein, Coronavirus/*chemistry/immunology/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-21
    Description: Ubiquitination is a central process affecting all facets of cellular signalling and function. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate. The RING-between-RING (RBR) family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases. The RBR family includes Parkin and HOIP, the central catalytic factor of the LUBAC (linear ubiquitin chain assembly complex). While structural insights into the RBR E3 ligases Parkin and HHARI in their overall auto-inhibited forms are available, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely unknown. Here we present the first structure, to our knowledge, of the fully active human HOIP RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP RBR adopts a conformation markedly different from that of auto-inhibited RBRs. HOIP RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centres ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, three distinct helix-IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~ubiquitin conjugate and, surprisingly, an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lechtenberg, Bernhard C -- Rajput, Akhil -- Sanishvili, Ruslan -- Dobaczewska, Malgorzata K -- Ware, Carl F -- Mace, Peter D -- Riedl, Stefan J -- P30 CA030199/CA/NCI NIH HHS/ -- P30CA030199/CA/NCI NIH HHS/ -- R01AA017238/AA/NIAAA NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):546-50. doi: 10.1038/nature16511. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA. ; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA. ; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA. ; Biochemistry Department, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789245" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism ; *RING Finger Domains ; Ubiquitin/*chemistry/metabolism ; Ubiquitin-Conjugating Enzymes/*chemistry/metabolism ; Ubiquitin-Protein Ligases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-24
    Description: (beta-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) beta-arrestin proteins (beta-arrestin1 and beta-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (beta-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of beta-arrestin with GPCRs, and the beta-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based beta-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in beta-arrestin2 that occur rapidly after the receptor-beta-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and beta-arrestins. They further indicate that beta-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of beta-arrestins, which permits their active signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nuber, Susanne -- Zabel, Ulrike -- Lorenz, Kristina -- Nuber, Andreas -- Milligan, Graeme -- Tobin, Andrew B -- Lohse, Martin J -- Hoffmann, Carsten -- 1 R01 DA038882/DA/NIDA NIH HHS/ -- BB/K019864/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology and Toxicology, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Rudolf Virchow Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Comprehensive Heart Failure Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. ; MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/chemistry/*metabolism ; Biosensing Techniques ; Cattle ; Cell Line ; Cell Membrane/metabolism ; Cell Survival ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-05
    Description: The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Travis K -- Jordan, Robert -- Lo, Michael K -- Ray, Adrian S -- Mackman, Richard L -- Soloveva, Veronica -- Siegel, Dustin -- Perron, Michel -- Bannister, Roy -- Hui, Hon C -- Larson, Nate -- Strickley, Robert -- Wells, Jay -- Stuthman, Kelly S -- Van Tongeren, Sean A -- Garza, Nicole L -- Donnelly, Ginger -- Shurtleff, Amy C -- Retterer, Cary J -- Gharaibeh, Dima -- Zamani, Rouzbeh -- Kenny, Tara -- Eaton, Brett P -- Grimes, Elizabeth -- Welch, Lisa S -- Gomba, Laura -- Wilhelmsen, Catherine L -- Nichols, Donald K -- Nuss, Jonathan E -- Nagle, Elyse R -- Kugelman, Jeffrey R -- Palacios, Gustavo -- Doerffler, Edward -- Neville, Sean -- Carra, Ernest -- Clarke, Michael O -- Zhang, Lijun -- Lew, Willard -- Ross, Bruce -- Wang, Queenie -- Chun, Kwon -- Wolfe, Lydia -- Babusis, Darius -- Park, Yeojin -- Stray, Kirsten M -- Trancheva, Iva -- Feng, Joy Y -- Barauskas, Ona -- Xu, Yili -- Wong, Pamela -- Braun, Molly R -- Flint, Mike -- McMullan, Laura K -- Chen, Shan-Shan -- Fearns, Rachel -- Swaminathan, Swami -- Mayers, Douglas L -- Spiropoulou, Christina F -- Lee, William A -- Nichol, Stuart T -- Cihlar, Tomas -- Bavari, Sina -- R01 AI113321/AI/NIAID NIH HHS/ -- R01AI113321/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):381-5. doi: 10.1038/nature17180. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA. ; United States Army Medical Research Institute of Infectious Diseases, Therapeutic Development Center, Frederick, Maryland 21702, USA. ; Gilead Sciences, Foster City, California 94404, USA. ; Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA. ; Boston University School of Medicine, Boston, Massachusetts 02118, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934220" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/pharmacokinetics/pharmacology/therapeutic use ; Amino Acid Sequence ; Animals ; Antiviral Agents/pharmacokinetics/pharmacology/*therapeutic use ; Cell Line, Tumor ; Ebolavirus/drug effects ; Female ; HeLa Cells ; Hemorrhagic Fever, Ebola/*drug therapy/prevention & control ; Humans ; Macaca mulatta/*virology ; Male ; Molecular Sequence Data ; Organ Specificity ; Prodrugs/pharmacokinetics/pharmacology/therapeutic use ; Ribonucleotides/pharmacokinetics/pharmacology/*therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-01-15
    Description: Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs). During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drake, Eric J -- Miller, Bradley R -- Shi, Ce -- Tarrasch, Jeffrey T -- Sundlov, Jesse A -- Allen, C Leigh -- Skiniotis, Georgios -- Aldrich, Courtney C -- Gulick, Andrew M -- GM-068440/GM/NIGMS NIH HHS/ -- GM-115601/GM/NIGMS NIH HHS/ -- R01 GM068440/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Jan 14;529(7585):235-8. doi: 10.1038/nature16163.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA. ; Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, USA. ; Center for Drug Design and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26762461" target="_blank"〉PubMed〈/a〉
    Keywords: Acinetobacter baumannii/*enzymology ; Biocatalysis ; Carrier Proteins/metabolism ; Coenzymes/metabolism ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Holoenzymes/*chemistry/metabolism ; Models, Molecular ; Pantetheine/analogs & derivatives/metabolism ; Peptide Synthases/*chemistry/metabolism ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-04-21
    Description: The CRISPR-Cas systems, as exemplified by CRISPR-Cas9, are RNA-guided adaptive immune systems used by bacteria and archaea to defend against viral infection. The CRISPR-Cpf1 system, a new class 2 CRISPR-Cas system, mediates robust DNA interference in human cells. Although functionally conserved, Cpf1 and Cas9 differ in many aspects including their guide RNAs and substrate specificity. Here we report the 2.38 A crystal structure of the CRISPR RNA (crRNA)-bound Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1). LbCpf1 has a triangle-shaped architecture with a large positively charged channel at the centre. Recognized by the oligonucleotide-binding domain of LbCpf1, the crRNA adopts a highly distorted conformation stabilized by extensive intramolecular interactions and the (Mg(H2O)6)(2+) ion. The oligonucleotide-binding domain also harbours a looped-out helical domain that is important for LbCpf1 substrate binding. Binding of crRNA or crRNA lacking the guide sequence induces marked conformational changes but no oligomerization of LbCpf1. Our study reveals the crRNA recognition mechanism and provides insight into crRNA-guided substrate binding of LbCpf1, establishing a framework for engineering LbCpf1 to improve its efficiency and specificity for genome editing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, De -- Ren, Kuan -- Qiu, Xiaolin -- Zheng, Jianlin -- Guo, Minghui -- Guan, Xiaoyu -- Liu, Hongnan -- Li, Ningning -- Zhang, Bailing -- Yang, Daijun -- Ma, Chuang -- Wang, Shuo -- Wu, Dan -- Ma, Yunfeng -- Fan, Shilong -- Wang, Jiawei -- Gao, Ning -- Huang, Zhiwei -- England -- Nature. 2016 Apr 28;532(7600):522-6. doi: 10.1038/nature17944. Epub 2016 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27096363" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; CRISPR-Associated Proteins/*chemistry/*metabolism ; CRISPR-Cas Systems ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Crystallography, X-Ray ; Firmicutes/*enzymology ; Genetic Engineering ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Structure, Tertiary ; RNA Stability ; RNA, Bacterial/*chemistry/genetics/*metabolism ; RNA, Guide/chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-04-05
    Description: The human sigma1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the sigma1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the sigma1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human sigma1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like beta-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Hayden R -- Zheng, Sanduo -- Gurpinar, Esin -- Koehl, Antoine -- Manglik, Aashish -- Kruse, Andrew C -- T32GM007226/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):527-30. doi: 10.1038/nature17391. Epub 2016 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27042935" target="_blank"〉PubMed〈/a〉
    Keywords: Benzamides/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endoplasmic Reticulum/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/metabolism ; Isoxazoles/chemistry/metabolism ; Ligands ; Models, Molecular ; Piperidines/chemistry/metabolism ; Protein Structure, Tertiary ; Pyridines/chemistry/metabolism ; Receptors, sigma/*chemistry/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-03-08
    Description: Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61alpha, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 A) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855518/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855518/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Park, Eunyong -- Ling, JingJing -- Ingram, Jessica -- Ploegh, Hidde -- Rapoport, Tom A -- GM052586/GM/NIGMS NIH HHS/ -- R01 GM052586/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 17;531(7594):395-9. doi: 10.1038/nature17163. Epub 2016 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26950603" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Protein Sorting Signals ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-01-28
    Description: Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorenzo-Redondo, Ramon -- Fryer, Helen R -- Bedford, Trevor -- Kim, Eun-Young -- Archer, John -- Kosakovsky Pond, Sergei L -- Chung, Yoon-Seok -- Penugonda, Sudhir -- Chipman, Jeffrey G -- Fletcher, Courtney V -- Schacker, Timothy W -- Malim, Michael H -- Rambaut, Andrew -- Haase, Ashley T -- McLean, Angela R -- Wolinsky, Steven M -- AI1074340/AI/NIAID NIH HHS/ -- DA033773/DA/NIDA NIH HHS/ -- G1000196/Medical Research Council/United Kingdom -- GM110749/GM/NIGMS NIH HHS/ -- R01 DA033773/DA/NIDA NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2016 Feb 4;530(7588):51-6. doi: 10.1038/nature16933. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60011, USA. ; Institute for Emerging Infections, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. ; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Centro de Investigacao em Biodiversidade e Recursos Geneticos Universidade do Porto, 4485-661 Vairao, Portugal. ; Department of Medicine, University of California, San Diego, California 92093, USA. ; Division of AIDS, Center for Immunology and Pathology, Korea National Institutes of Health, Chungju-si, Chungcheongbuk-do, 28159, South Korea. ; Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, College of Pharmacy, Omaha, Nebraska 68198, USA. ; Division of Infectious Diseases, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Department of Infectious Diseases, King's College London, Guy's Hospital, London SE21 7DN, UK. ; Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK. ; Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814962" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/administration & dosage/pharmacology/therapeutic use ; Carrier State/blood/*drug therapy/*virology ; Drug Resistance, Viral/drug effects ; HIV Infections/blood/*drug therapy/*virology ; HIV-1/drug effects/genetics/*growth & development/isolation & purification ; Haplotypes/drug effects ; Humans ; Lymph Nodes/drug effects/virology ; Models, Biological ; Molecular Sequence Data ; Phylogeny ; Selection, Genetic/drug effects ; Sequence Analysis, DNA ; Spatio-Temporal Analysis ; Time Factors ; *Viral Load/drug effects ; *Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-04-28
    Description: The Bacillus thuringiensis delta-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (dissociation constant Kd = 11-41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome insect Bt toxin resistance and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Badran, Ahmed H -- Guzov, Victor M -- Huai, Qing -- Kemp, Melissa M -- Vishwanath, Prashanth -- Kain, Wendy -- Nance, Autumn M -- Evdokimov, Artem -- Moshiri, Farhad -- Turner, Keith H -- Wang, Ping -- Malvar, Thomas -- Liu, David R -- R01 EB022376/EB/NIBIB NIH HHS/ -- R01EB022376/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 May 5;533(7601):58-63. doi: 10.1038/nature17938. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA. ; Monsanto Company, 245 First Street, Suite 200, Cambridge, Massachusetts 02142, USA. ; Department of Entomology, Cornell University, Geneva, New York 14456, USA. ; Monsanto Company, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120167" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacillus thuringiensis/*genetics ; Bacterial Proteins/*genetics/*metabolism ; Bacteriophages/genetics ; Biotechnology ; Cadherins/metabolism ; Cell Death ; Consensus Sequence ; Crops, Agricultural/genetics/metabolism ; Directed Molecular Evolution/*methods ; Endotoxins/*genetics/*metabolism ; Genetic Variation/*genetics ; Hemolysin Proteins/*genetics/*metabolism ; *Insecticide Resistance ; Insecticides/metabolism ; Molecular Sequence Data ; Moths/cytology/*physiology ; Mutagenesis/genetics ; Pest Control, Biological/*methods ; Plants, Genetically Modified ; Protein Binding/genetics ; Protein Stability ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-02-19
    Description: Retroviral integrase catalyses the integration of viral DNA into host target DNA, which is an essential step in the life cycle of all retroviruses. Previous structural characterization of integrase-viral DNA complexes, or intasomes, from the spumavirus prototype foamy virus revealed a functional integrase tetramer, and it is generally believed that intasomes derived from other retroviral genera use tetrameric integrase. However, the intasomes of orthoretroviruses, which include all known pathogenic species, have not been characterized structurally. Here, using single-particle cryo-electron microscopy and X-ray crystallography, we determine an unexpected octameric integrase architecture for the intasome of the betaretrovirus mouse mammary tumour virus. The structure is composed of two core integrase dimers, which interact with the viral DNA ends and structurally mimic the integrase tetramer of prototype foamy virus, and two flanking integrase dimers that engage the core structure via their integrase carboxy-terminal domains. Contrary to the belief that tetrameric integrase components are sufficient to catalyse integration, the flanking integrase dimers were necessary for mouse mammary tumour virus integrase activity. The integrase octamer solves a conundrum for betaretroviruses as well as alpharetroviruses by providing critical carboxy-terminal domains to the intasome core that cannot be provided in cis because of evolutionarily restrictive catalytic core domain-carboxy-terminal domain linker regions. The octameric architecture of the intasome of mouse mammary tumour virus provides new insight into the structural basis of retroviral DNA integration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ballandras-Colas, Allison -- Brown, Monica -- Cook, Nicola J -- Dewdney, Tamaria G -- Demeler, Borries -- Cherepanov, Peter -- Lyumkis, Dmitry -- Engelman, Alan N -- 9 P41 GM103310/GM/NIGMS NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- P41 GM103331/GM/NIGMS NIH HHS/ -- P50 GM082251/GM/NIGMS NIH HHS/ -- P50 GM103368/GM/NIGMS NIH HHS/ -- R01 AI070042/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Feb 18;530(7590):358-61. doi: 10.1038/nature16955.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA. ; Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, California 92037, USA. ; Clare Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK. ; Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA. ; Division of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26887496" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA, Viral/chemistry/*metabolism/*ultrastructure ; Integrases/*chemistry/metabolism/*ultrastructure ; Mammary Tumor Virus, Mouse/chemistry/*enzymology/genetics/ultrastructure ; Models, Molecular ; *Protein Multimerization ; Protein Structure, Quaternary ; Spumavirus/chemistry/enzymology ; Virus Integration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-01-21
    Description: Cellular immunity against viral infection and tumour cells depends on antigen presentation by major histocompatibility complex class I (MHC I) molecules. Intracellular antigenic peptides are transported into the endoplasmic reticulum by the transporter associated with antigen processing (TAP) and then loaded onto the nascent MHC I molecules, which are exported to the cell surface and present peptides to the immune system. Cytotoxic T lymphocytes recognize non-self peptides and program the infected or malignant cells for apoptosis. Defects in TAP account for immunodeficiency and tumour development. To escape immune surveillance, some viruses have evolved strategies either to downregulate TAP expression or directly inhibit TAP activity. So far, neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the structural level. Here we describe the cryo-electron microscopy structure of human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex virus I. Here we show that the 12 transmembrane helices and 2 cytosolic nucleotide-binding domains of the transporter adopt an inward-facing conformation with the two nucleotide-binding domains separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and prevents nucleotide-binding domain closure necessary for ATP hydrolysis. This work illustrates a striking example of immune evasion by persistent viruses. By blocking viral antigens from entering the endoplasmic reticulum, herpes simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a lifelong infection in the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldham, Michael L -- Hite, Richard K -- Steffen, Alanna M -- Damko, Ermelinda -- Li, Zongli -- Walz, Thomas -- Chen, Jue -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 28;529(7587):537-40. doi: 10.1038/nature16506. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789246" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/antagonists & ; inhibitors/chemistry/*metabolism/*ultrastructure ; Amino Acid Sequence ; Antigens, Viral/immunology/metabolism ; *Cryoelectron Microscopy ; Endoplasmic Reticulum/metabolism ; Herpesvirus 1, Human/chemistry/*immunology/metabolism/ultrastructure ; Immediate-Early Proteins/chemistry/*metabolism/*ultrastructure ; *Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-02-04
    Description: G protein-coupled receptors (GPCRs) are physiologically important transmembrane signalling proteins that trigger intracellular responses upon binding of extracellular ligands. Despite recent breakthroughs in GPCR crystallography, the details of ligand-induced signal transduction are not well understood owing to missing dynamical information. In principle, such information can be provided by NMR, but so far only limited data of functional relevance on few side-chain sites of eukaryotic GPCRs have been obtained. Here we show that receptor motions can be followed at virtually any backbone site in a thermostabilized mutant of the turkey beta1-adrenergic receptor (beta1AR). Labelling with [(15)N]valine in a eukaryotic expression system provides over twenty resolved resonances that report on structure and dynamics in six ligand complexes and the apo form. The response to the various ligands is heterogeneous in the vicinity of the binding pocket, but gets transformed into a homogeneous readout at the intracellular side of helix 5 (TM5), which correlates linearly with ligand efficacy for the G protein pathway. The effect of several pertinent, thermostabilizing point mutations was assessed by reverting them to the native sequence. Whereas the response to ligands remains largely unchanged, binding of the G protein mimetic nanobody NB80 and G protein activation are only observed when two conserved tyrosines (Y227 and Y343) are restored. Binding of NB80 leads to very strong spectral changes throughout the receptor, including the extracellular ligand entrance pocket. This indicates that even the fully thermostabilized receptor undergoes activating motions in TM5, but that the fully active state is only reached in presence of Y227 and Y343 by stabilization with a G protein-like partner. The combined analysis of chemical shift changes from the point mutations and ligand responses identifies crucial connections in the allosteric activation pathway, and presents a general experimental method to delineate signal transmission networks at high resolution in GPCRs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isogai, Shin -- Deupi, Xavier -- Opitz, Christian -- Heydenreich, Franziska M -- Tsai, Ching-Ju -- Brueckner, Florian -- Schertler, Gebhard F X -- Veprintsev, Dmitry B -- Grzesiek, Stephan -- England -- Nature. 2016 Feb 11;530(7589):237-41. doi: 10.1038/nature16577. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland. ; Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland. ; Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840483" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-1 Receptor Agonists/chemistry/pharmacology ; Adrenergic beta-1 Receptor Antagonists/pharmacology ; Allosteric Regulation/drug effects/genetics ; Animals ; Apoproteins/chemistry/genetics/metabolism ; Binding Sites/drug effects ; Crystallography, X-Ray ; Drug Partial Agonism ; Heterotrimeric GTP-Binding Proteins/metabolism ; Ligands ; Models, Molecular ; Movement ; *Nuclear Magnetic Resonance, Biomolecular ; Point Mutation/genetics ; Protein Stability ; Protein Structure, Secondary/drug effects ; Receptors, Adrenergic, beta-1/*chemistry/genetics/*metabolism ; *Signal Transduction/drug effects/genetics ; Turkeys
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-04-01
    Description: The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 A resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cavadini, Simone -- Fischer, Eric S -- Bunker, Richard D -- Potenza, Alessandro -- Lingaraju, Gondichatnahalli M -- Goldie, Kenneth N -- Mohamed, Weaam I -- Faty, Mahamadou -- Petzold, Georg -- Beckwith, Rohan E J -- Tichkule, Ritesh B -- Hassiepen, Ulrich -- Abdulrahman, Wassim -- Pantelic, Radosav S -- Matsumoto, Syota -- Sugasawa, Kaoru -- Stahlberg, Henning -- Thoma, Nicolas H -- England -- Nature. 2016 Mar 31;531(7596):598-603. doi: 10.1038/nature17416.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. ; University of Basel, Petersplatz 10, 4003 Basel, Switzerland. ; Department of Cancer Biology, Dana-Farber Cancer Institute, LC-4312, 360 Longwood Avenue, Boston, Massachusetts 02215, USA. ; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058 Basel, Switzerland. ; Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. ; Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland. ; Gatan R&D, 5974 W. Las Positas Boulevard, Pleasanton, California 94588, USA. ; Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan. ; Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27029275" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Apoproteins/chemistry/metabolism/ultrastructure ; Binding Sites ; *Biocatalysis ; Carrier Proteins/chemistry/metabolism/ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cullin Proteins/chemistry/metabolism/ultrastructure ; DNA Damage ; DNA-Binding Proteins/chemistry/metabolism/ultrastructure ; Humans ; Kinetics ; Models, Molecular ; Multiprotein Complexes/chemistry/*metabolism/*ultrastructure ; Peptide Hydrolases/chemistry/*metabolism/*ultrastructure ; Protein Binding ; Ubiquitination ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-02-26
    Description: Thalidomide and its derivatives, lenalidomide and pomalidomide, are immune modulatory drugs (IMiDs) used in the treatment of haematologic malignancies. IMiDs bind CRBN, the substrate receptor of the CUL4-RBX1-DDB1-CRBN (also known as CRL4(CRBN)) E3 ubiquitin ligase, and inhibit ubiquitination of endogenous CRL4(CRBN) substrates. Unexpectedly, IMiDs also repurpose the ligase to target new proteins for degradation. Lenalidomide induces degradation of the lymphoid transcription factors Ikaros and Aiolos (also known as IKZF1 and IKZF3), and casein kinase 1alpha (CK1alpha), which contributes to its clinical efficacy in the treatment of multiple myeloma and 5q-deletion associated myelodysplastic syndrome (del(5q) MDS), respectively. How lenalidomide alters the specificity of the ligase to degrade these proteins remains elusive. Here we present the 2.45 A crystal structure of DDB1-CRBN bound to lenalidomide and CK1alpha. CRBN and lenalidomide jointly provide the binding interface for a CK1alpha beta-hairpin-loop located in the kinase N-lobe. We show that CK1alpha binding to CRL4(CRBN) is strictly dependent on the presence of an IMiD. Binding of IKZF1 to CRBN similarly requires the compound and both, IKZF1 and CK1alpha, use a related binding mode. Our study provides a mechanistic explanation for the selective efficacy of lenalidomide in del(5q) MDS therapy. We anticipate that high-affinity protein-protein interactions induced by small molecules will provide opportunities for drug development, particularly for targeted protein degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petzold, Georg -- Fischer, Eric S -- Thoma, Nicolas H -- England -- Nature. 2016 Apr 7;532(7597):127-30. doi: 10.1038/nature16979. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909574" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites/drug effects ; Casein Kinase Ialpha/chemistry/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Ikaros Transcription Factor/chemistry/metabolism ; Models, Molecular ; Protein Binding/drug effects ; Proteolysis/drug effects ; Structure-Activity Relationship ; Substrate Specificity/drug effects ; Thalidomide/*analogs & derivatives/chemistry/metabolism/pharmacology ; Ubiquitin-Protein Ligases/chemistry/*metabolism ; Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-01-21
    Description: The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by 'high-risk' mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Zapien, Denise -- Ruiz, Francesc Xavier -- Poirson, Juline -- Mitschler, Andre -- Ramirez, Juan -- Forster, Anne -- Cousido-Siah, Alexandra -- Masson, Murielle -- Vande Pol, Scott -- Podjarny, Alberto -- Trave, Gilles -- Zanier, Katia -- R01CA134737/CA/NCI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):541-5. doi: 10.1038/nature16481. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Equipe labellisee Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch, France. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France. ; Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Human papillomavirus 16/chemistry/*metabolism/pathogenicity ; Humans ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Oncogene Proteins, Viral/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; *Proteolysis ; Repressor Proteins/*chemistry/genetics/*metabolism ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitin-Protein Ligases/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-03-10
    Description: Muscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thal, David M -- Sun, Bingfa -- Feng, Dan -- Nawaratne, Vindhya -- Leach, Katie -- Felder, Christian C -- Bures, Mark G -- Evans, David A -- Weis, William I -- Bachhawat, Priti -- Kobilka, Tong Sun -- Sexton, Patrick M -- Kobilka, Brian K -- Christopoulos, Arthur -- U19 GM106990/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):335-40. doi: 10.1038/nature17188. Epub 2016 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia. ; ConfometRx, 3070 Kenneth Street, Santa Clara, California 95054, USA. ; Neuroscience, Eli Lilly, Indianapolis, Indiana 46285, USA. ; Computational Chemistry and Chemoinformatics, Eli Lilly, Indianapolis, Indiana 46285, USA. ; Computational Chemistry and Chemoinformatics, Eli Lilly, Sunninghill Road, Windlesham GU20 6PH, UK. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26958838" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Allosteric Regulation/drug effects ; Allosteric Site/drug effects ; Alzheimer Disease ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Models, Molecular ; Nicotinic Acids/metabolism/pharmacology ; Receptor, Muscarinic M1/*chemistry/metabolism ; Receptor, Muscarinic M4/*chemistry/metabolism ; Schizophrenia ; Static Electricity ; Substrate Specificity ; Surface Properties ; Thiophenes/metabolism/pharmacology ; Tiotropium Bromide/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-02-19
    Description: Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase-DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNA remained elusive. Here we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein-DNA and protein-protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Zhiqi -- Shi, Ke -- Banerjee, Surajit -- Pandey, Krishan K -- Bera, Sibes -- Grandgenett, Duane P -- Aihara, Hideki -- AI087098/AI/NIAID NIH HHS/ -- AI100682/AI/NIAID NIH HHS/ -- GM109770/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Feb 18;530(7590):362-6. doi: 10.1038/nature16950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Northeastern Collaborative Access Team, Cornell University, Advanced Photon Source, Lemont, Illinois 60439, USA. ; Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, Missouri 63104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26887497" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; DNA, Viral/*chemistry/metabolism ; HIV-1/enzymology/metabolism ; Integrases/*chemistry/metabolism ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Rous sarcoma virus/*chemistry/*enzymology/genetics/metabolism ; Spumavirus/enzymology ; Virus Integration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-04-07
    Description: The serotonin transporter (SERT) terminates serotonergic signalling through the sodium- and chloride-dependent reuptake of neurotransmitter into presynaptic neurons. SERT is a target for antidepressant and psychostimulant drugs, which block reuptake and prolong neurotransmitter signalling. Here we report X-ray crystallographic structures of human SERT at 3.15 A resolution bound to the antidepressants (S)-citalopram or paroxetine. Antidepressants lock SERT in an outward-open conformation by lodging in the central binding site, located between transmembrane helices 1, 3, 6, 8 and 10, directly blocking serotonin binding. We further identify the location of an allosteric site in the complex as residing at the periphery of the extracellular vestibule, interposed between extracellular loops 4 and 6 and transmembrane helices 1, 6, 10 and 11. Occupancy of the allosteric site sterically hinders ligand unbinding from the central site, providing an explanation for the action of (S)-citalopram as an allosteric ligand. These structures define the mechanism of antidepressant action in SERT, and provide blueprints for future drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coleman, Jonathan A -- Green, Evan M -- Gouaux, Eric -- 5R37MH070039/MH/NIMH NIH HHS/ -- R37 MH070039/MH/NIMH NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Apr 21;532(7599):334-9. doi: 10.1038/nature17629. Epub 2016 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Howard Hughes Medical Institute, Oregon Health &Science University, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27049939" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Allosteric Site/drug effects ; Antidepressive Agents/chemistry/metabolism/pharmacology ; Citalopram/chemistry/metabolism/pharmacology ; Crystallography, X-Ray ; Dopamine Plasma Membrane Transport Proteins/chemistry ; Drug Design ; Extracellular Space/metabolism ; Humans ; Immunoglobulin Fab Fragments/immunology ; Intracellular Space/metabolism ; Ions/chemistry/metabolism ; Ligands ; Models, Molecular ; Paroxetine/chemistry/metabolism/pharmacology ; Protein Binding/drug effects ; Protein Conformation/drug effects ; Protein Stability ; Serotonin/metabolism ; Serotonin Plasma Membrane Transport Proteins/*chemistry/immunology/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-04-07
    Description: Signalling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalysed by the E1, E2 and E3 three-enzyme cascade, which links the carboxy terminus of ubiquitin to the epsilon-amino group of, in most cases, a lysine of the substrate via an isopeptide bond. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents. For example, many bacterial pathogens exploit ubiquitin signalling using virulence factors that function as E3 ligases, deubiquitinases or as enzymes that directly attack ubiquitin. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a permissive niche for its replication in phagocytes. Here we demonstrate that members of the SidE effector family of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum. Moreover, we show that these proteins are capable of catalysing ubiquitination without the need for the E1 and E2 enzymes. A putative mono-ADP-ribosyltransferase motif critical for the ubiquitination activity is also essential for the role of the SidE family in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalysed by these enzymes is energized by nicotinamide adenine dinucleotide, which activates ubiquitin by the formation of ADP-ribosylated ubiquitin. These results establish that ubiquitination can be catalysed by a single enzyme, the activity of which does not require ATP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Jiazhang -- Sheedlo, Michael J -- Yu, Kaiwen -- Tan, Yunhao -- Nakayasu, Ernesto S -- Das, Chittaranjan -- Liu, Xiaoyun -- Luo, Zhao-Qing -- 2R01GM103401/GM/NIGMS NIH HHS/ -- K02AI085403/AI/NIAID NIH HHS/ -- R21AI105714/AI/NIAID NIH HHS/ -- R56AI103168/AI/NIAID NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):120-4. doi: 10.1038/nature17657. Epub 2016 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA. ; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA. ; Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. ; Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27049943" target="_blank"〉PubMed〈/a〉
    Keywords: ADP Ribose Transferases/chemistry/metabolism ; Adenosine Diphosphate Ribose/metabolism ; Adenosine Triphosphate ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Load ; Bacterial Proteins/*metabolism ; Biocatalysis ; Endoplasmic Reticulum/enzymology/metabolism ; Legionella pneumophila/*chemistry/cytology/enzymology/pathogenicity ; Membrane Proteins/metabolism ; Molecular Sequence Data ; NAD/metabolism ; Ubiquitin/chemistry/metabolism ; Ubiquitin-Activating Enzymes ; Ubiquitin-Conjugating Enzymes ; *Ubiquitination ; Virulence Factors/metabolism ; rab GTP-Binding Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-03-11
    Description: Two-pore channels (TPCs) comprise a subfamily (TPC1-3) of eukaryotic voltage- and ligand-gated cation channels with two non-equivalent tandem pore-forming subunits that dimerize to form quasi-tetramers. Found in vacuolar or endolysosomal membranes, they regulate the conductance of sodium and calcium ions, intravesicular pH, trafficking and excitability. TPCs are activated by a decrease in transmembrane potential and an increase in cytosolic calcium concentrations, are inhibited by low luminal pH and calcium, and are regulated by phosphorylation. Here we report the crystal structure of TPC1 from Arabidopsis thaliana at 2.87 A resolution as a basis for understanding ion permeation, channel activation, the location of voltage-sensing domains and regulatory ion-binding sites. We determined sites of phosphorylation in the amino-terminal and carboxy-terminal domains that are positioned to allosterically modulate cytoplasmic Ca(2+) activation. One of the two voltage-sensing domains (VSD2) encodes voltage sensitivity and inhibition by luminal Ca(2+) and adopts a conformation distinct from the activated state observed in structures of other voltage-gated ion channels. The structure shows that potent pharmacophore trans-Ned-19 (ref. 17) acts allosterically by clamping the pore domains to VSD2. In animals, Ned-19 prevents infection by Ebola virus and other filoviruses, presumably by altering their fusion with the endolysosome and delivery of their contents into the cytoplasm.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863712/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863712/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kintzer, Alexander F -- Stroud, Robert M -- GM24485/GM/NIGMS NIH HHS/ -- P41-GM103311/GM/NIGMS NIH HHS/ -- P41-RR001614/RR/NCRR NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- R37 GM024485/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 10;531(7593):258-62. doi: 10.1038/nature17194.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961658" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Arabidopsis/*chemistry ; Arabidopsis Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Binding Sites ; Calcium/metabolism/pharmacology ; Calcium Channels/*chemistry/metabolism ; Carbolines/metabolism/pharmacology ; Crystallography, X-Ray ; Ebolavirus/drug effects ; Endosomes/drug effects/metabolism/virology ; *Ion Channel Gating/drug effects ; Ion Transport/drug effects ; Models, Molecular ; Phosphorylation ; Piperazines/metabolism/pharmacology ; Protein Structure, Tertiary/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-02-26
    Description: Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoued, Abdelrahim -- Durand, Eric -- Brunet, Yannick R -- Spinelli, Silvia -- Douzi, Badreddine -- Guzzo, Mathilde -- Flaugnatti, Nicolas -- Legrand, Pierre -- Journet, Laure -- Fronzes, Remi -- Mignot, Tam -- Cambillau, Christian -- Cascales, Eric -- England -- Nature. 2016 Mar 3;531(7592):59-63. doi: 10.1038/nature17182. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Ingenierie des Systemes Macromoleculaires, Institut de Microbiologie de la Mediterranee, CNRS UMR7255, Aix-Marseille Universite, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; Architecture et Fonction des Macromolecules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Universite, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; Laboratoire de Chimie Bacterienne, Institut de Microbiologie de la Mediterranee, CNRS UMR7283, Aix-Marseille Universite, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; Synchrotron Soleil, L'Orme des merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909579" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry/ultrastructure ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Microscopy, Fluorescence ; Models, Molecular ; *Polymerization ; Protein Structure, Tertiary ; Type VI Secretion Systems/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-03-16
    Description: Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herbst, Dominik A -- Jakob, Roman P -- Zahringer, Franziska -- Maier, Timm -- England -- Nature. 2016 Mar 24;531(7595):533-7. doi: 10.1038/nature16993. Epub 2016 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26976449" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*chemistry/*metabolism ; Crystallography, X-Ray ; Fatty Acid Synthases/metabolism ; Models, Molecular ; Mycobacterium smegmatis/enzymology ; Oxidation-Reduction ; Polyketide Synthases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Virulence Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-03-31
    Description: Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847710/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847710/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Zhonghui -- Luo, Xuelian -- Yu, Hongtao -- GM107415/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Apr 7;532(7597):131-4. doi: 10.1038/nature17402. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA. ; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA. ; Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding, Competitive/drug effects ; Cell Cycle Proteins/chemistry/*metabolism ; Chaetomium/*enzymology ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; Chromosome Segregation ; Crystallography, X-Ray ; Models, Molecular ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Proteolysis ; Proto-Oncogene Proteins/metabolism ; Securin/chemistry/genetics/metabolism/pharmacology ; Separase/antagonists & inhibitors/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-04-21
    Description: CRISPR-Cas systems that provide defence against mobile genetic elements in bacteria and archaea have evolved a variety of mechanisms to target and cleave RNA or DNA. The well-studied types I, II and III utilize a set of distinct CRISPR-associated (Cas) proteins for production of mature CRISPR RNAs (crRNAs) and interference with invading nucleic acids. In types I and III, Cas6 or Cas5d cleaves precursor crRNA (pre-crRNA) and the mature crRNAs then guide a complex of Cas proteins (Cascade-Cas3, type I; Csm or Cmr, type III) to target and cleave invading DNA or RNA. In type II systems, RNase III cleaves pre-crRNA base-paired with trans-activating crRNA (tracrRNA) in the presence of Cas9 (refs 13, 14). The mature tracrRNA-crRNA duplex then guides Cas9 to cleave target DNA. Here, we demonstrate a novel mechanism in CRISPR-Cas immunity. We show that type V-A Cpf1 from Francisella novicida is a dual-nuclease that is specific to crRNA biogenesis and target DNA interference. Cpf1 cleaves pre-crRNA upstream of a hairpin structure formed within the CRISPR repeats and thereby generates intermediate crRNAs that are processed further, leading to mature crRNAs. After recognition of a 5'-YTN-3' protospacer adjacent motif on the non-target DNA strand and subsequent probing for an eight-nucleotide seed sequence, Cpf1, guided by the single mature repeat-spacer crRNA, introduces double-stranded breaks in the target DNA to generate a 5' overhang. The RNase and DNase activities of Cpf1 require sequence- and structure-specific binding to the hairpin of crRNA repeats. Cpf1 uses distinct active domains for both nuclease reactions and cleaves nucleic acids in the presence of magnesium or calcium. This study uncovers a new family of enzymes with specific dual endoribonuclease and endonuclease activities, and demonstrates that type V-A constitutes the most minimalistic of the CRISPR-Cas systems so far described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fonfara, Ines -- Richter, Hagen -- Bratovic, Majda -- Le Rhun, Anais -- Charpentier, Emmanuelle -- England -- Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umea Centre for Microbial Research (UCMR), Department of Molecular Biology, Umea University, Umea 90187, Sweden. ; Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany. ; Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, Berlin 10117, Germany. ; Hannover Medical School, Hannover 30625, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27096362" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Base Sequence ; CRISPR-Associated Proteins/*metabolism ; CRISPR-Cas Systems ; Calcium/metabolism/pharmacology ; Catalytic Domain ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; *DNA Cleavage/drug effects ; Francisella/enzymology ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA Precursors/chemistry/*genetics/*metabolism ; *RNA Processing, Post-Transcriptional ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Guide/biosynthesis/chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-02-16
    Description: The vertebrate brain is highly complex, but its evolutionary origin remains elusive. Because of the absence of certain developmental domains generally marked by the expression of regulatory genes, the embryonic brain of the lamprey, a jawless vertebrate, had been regarded as representing a less complex, ancestral state of the vertebrate brain. Specifically, the absence of a Hedgehog- and Nkx2.1-positive domain in the lamprey subpallium was thought to be similar to mouse mutants in which the suppression of Nkx2-1 leads to a loss of the medial ganglionic eminence. Here we show that the brain of the inshore hagfish (Eptatretus burgeri), another cyclostome group, develops domains equivalent to the medial ganglionic eminence and rhombic lip, resembling the gnathostome brain. Moreover, further investigation of lamprey larvae revealed that these domains are also present, ruling out the possibility of convergent evolution between hagfish and gnathostomes. Thus, brain regionalization as seen in crown gnathostomes is not an evolutionary innovation of this group, but dates back to the latest vertebrate ancestor before the divergence of cyclostomes and gnathostomes more than 500 million years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sugahara, Fumiaki -- Pascual-Anaya, Juan -- Oisi, Yasuhiro -- Kuraku, Shigehiro -- Aota, Shin-ichi -- Adachi, Noritaka -- Takagi, Wataru -- Hirai, Tamami -- Sato, Noboru -- Murakami, Yasunori -- Kuratani, Shigeru -- England -- Nature. 2016 Mar 3;531(7592):97-100. doi: 10.1038/nature16518. Epub 2016 Feb 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Evolutionary Morphology Laboratory, RIKEN, Kobe 650-0047, Japan. ; Division of Biology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan. ; Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA. ; Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan. ; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA. ; Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan. ; Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26878236" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*anatomy & histology/*embryology ; Female ; Hagfishes/*anatomy & histology/*embryology/genetics ; Humans ; Lampreys/*anatomy & histology/*embryology/genetics/growth & development ; Larva/anatomy & histology ; Male ; Mice ; Molecular Sequence Data ; *Phylogeny ; Synteny/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-03-05
    Description: Identifying key molecules that launch regeneration has been a long-sought goal. Multiple regenerative animals show an initial wound-associated proliferative response that transits into sustained proliferation if a considerable portion of the body part has been removed. In the axolotl, appendage amputation initiates a round of wound-associated cell cycle induction followed by continued proliferation that is dependent on nerve-derived signals. A wound-associated molecule that triggers the initial proliferative response to launch regeneration has remained obscure. Here, using an expression cloning strategy followed by in vivo gain- and loss-of-function assays, we identified axolotl MARCKS-like protein (MLP) as an extracellularly released factor that induces the initial cell cycle response during axolotl appendage regeneration. The identification of a regeneration-initiating molecule opens the possibility of understanding how to elicit regeneration in other animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sugiura, Takuji -- Wang, Heng -- Barsacchi, Rico -- Simon, Andras -- Tanaka, Elly M -- England -- Nature. 2016 Mar 10;531(7593):237-40. doi: 10.1038/nature16974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DFG Research Center for Regenerative Therapies (CRTD), Technische Universitat Dresden, Fetscherstrasse 105, 01307 Dresden, Germany. ; Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ; Karolinska Institute, Department of Cell and Molecular Biology, Centre of Developmental Biology for Regenerative Medicine, SE-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934225" target="_blank"〉PubMed〈/a〉
    Keywords: Ambystoma mexicanum/injuries/*physiology ; Amputation, Traumatic/metabolism ; Animals ; Cell Cycle/genetics ; Cell Proliferation/genetics ; Cloning, Molecular ; Extremities/injuries/*physiology ; Humans ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism/secretion ; Membrane Proteins/genetics/*metabolism/secretion ; Mice ; Molecular Sequence Data ; Muscle Fibers, Skeletal/cytology/physiology ; Notophthalmus viridescens/genetics/injuries/physiology ; Regeneration/*physiology ; Tail/cytology/injuries/physiology ; Wound Healing/physiology ; Xenopus ; Zebrafish
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-07-02
    Description: Multicellularity is often considered a prerequisite for morphological complexity, as seen in the camera-type eyes found in several groups of animals. A notable exception exists in single-celled eukaryotes called dinoflagellates, some of which have an eye-like 'ocelloid' consisting of subcellular analogues to a cornea, lens, iris, and retina. These planktonic cells are uncultivated and rarely encountered in environmental samples, obscuring the function and evolutionary origin of the ocelloid. Here we show, using a combination of electron microscopy, tomography, isolated-organelle genomics, and single-cell genomics, that ocelloids are built from pre-existing organelles, including a cornea-like layer made of mitochondria and a retinal body made of anastomosing plastids. We find that the retinal body forms the central core of a network of peridinin-type plastids, which in dinoflagellates and their relatives originated through an ancient endosymbiosis with a red alga. As such, the ocelloid is a chimaeric structure, incorporating organelles with different endosymbiotic histories. The anatomical complexity of single-celled organisms may be limited by the components available for differentiation, but the ocelloid shows that pre-existing organelles can be assembled into a structure so complex that it was initially mistaken for a multicellular eye. Although mitochondria and plastids are acknowledged chiefly for their metabolic roles, they can also be building blocks for greater structural complexity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavelis, Gregory S -- Hayakawa, Shiho -- White, Richard A 3rd -- Gojobori, Takashi -- Suttle, Curtis A -- Keeling, Patrick J -- Leander, Brian S -- England -- Nature. 2015 Jul 9;523(7559):204-7. doi: 10.1038/nature14593. Epub 2015 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. ; 1] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. ; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. ; 1] Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan [2] Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. ; 1] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [4] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada. ; 1] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada. ; 1] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26131935" target="_blank"〉PubMed〈/a〉
    Keywords: Dinoflagellida/*genetics/physiology/*ultrastructure ; Genome, Protozoan/genetics ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Mitochondria/metabolism/ultrastructure ; Molecular Sequence Data ; Plastids/metabolism/ultrastructure ; Protozoan Proteins/genetics ; Rhodophyta/genetics ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-07-24
    Description: Bacteria secrete peptides and proteins to communicate, to poison competitors, and to manipulate host cells. Among the various protein-translocation machineries, the peptidase-containing ATP-binding cassette transporters (PCATs) are appealingly simple. Each PCAT contains two peptidase domains that cleave the secretion signal from the substrate, two transmembrane domains that form a translocation pathway, and two nucleotide-binding domains that hydrolyse ATP. In Gram-positive bacteria, PCATs function both as maturation proteases and exporters for quorum-sensing or antimicrobial polypeptides. In Gram-negative bacteria, PCATs interact with two other membrane proteins to form the type 1 secretion system. Here we present crystal structures of PCAT1 from Clostridium thermocellum in two different conformations. These structures, accompanied by biochemical data, show that the translocation pathway is a large alpha-helical barrel sufficient to accommodate small folded proteins. ATP binding alternates access to the transmembrane pathway and also regulates the protease activity, thereby coupling substrate processing to translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, David Yin-wei -- Huang, Shuo -- Chen, Jue -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 23;523(7561):425-30. doi: 10.1038/nature14623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Membrane Biology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201595" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/deficiency/metabolism ; Clostridium thermocellum/*chemistry ; Crystallography, X-Ray ; Models, Molecular ; Peptides/*metabolism/secretion ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-07-15
    Description: Surface polysaccharides are important for bacterial interactions with multicellular organisms, and some are virulence factors in pathogens. In the legume-rhizobium symbiosis, bacterial exopolysaccharides (EPS) are essential for the development of infected root nodules. We have identified a gene in Lotus japonicus, Epr3, encoding a receptor-like kinase that controls this infection. We show that epr3 mutants are defective in perception of purified EPS, and that EPR3 binds EPS directly and distinguishes compatible and incompatible EPS in bacterial competition studies. Expression of Epr3 in epidermal cells within the susceptible root zone shows that the protein is involved in bacterial entry, while rhizobial and plant mutant studies suggest that Epr3 regulates bacterial passage through the plant's epidermal cell layer. Finally, we show that Epr3 expression is inducible and dependent on host perception of bacterial nodulation (Nod) factors. Plant-bacterial compatibility and bacterial access to legume roots is thus regulated by a two-stage mechanism involving sequential receptor-mediated recognition of Nod factor and EPS signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawaharada, Y -- Kelly, S -- Nielsen, M Wibroe -- Hjuler, C T -- Gysel, K -- Muszynski, A -- Carlson, R W -- Thygesen, M B -- Sandal, N -- Asmussen, M H -- Vinther, M -- Andersen, S U -- Krusell, L -- Thirup, S -- Jensen, K J -- Ronson, C W -- Blaise, M -- Radutoiu, S -- Stougaard, J -- England -- Nature. 2015 Jul 16;523(7560):308-12. doi: 10.1038/nature14611. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark [3] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Chemistry, University of Copenhagen, Frederiksberg 1871 C, Denmark. ; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153863" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carbohydrate Sequence ; Lipopolysaccharides/chemistry/*metabolism ; Lotus/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation/genetics ; Phenotype ; Plant Epidermis/metabolism/microbiology ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Root Nodulation ; Protein Kinases/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Rhizobium/*metabolism ; Root Nodules, Plant/metabolism/microbiology ; Signal Transduction ; Species Specificity ; Suppression, Genetic/genetics ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-05-23
    Description: Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keen, David A -- Goodwin, Andrew L -- England -- Nature. 2015 May 21;521(7552):303-9. doi: 10.1038/nature14453.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK. ; Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993960" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; *Crystallography ; Crystallography, X-Ray ; Electronics ; Ice/analysis ; Magnetic Phenomena ; Proteins/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-03-25
    Description: Wing polyphenism is an evolutionarily successful feature found in a wide range of insects. Long-winged morphs can fly, which allows them to escape adverse habitats and track changing resources, whereas short-winged morphs are flightless, but usually possess higher fecundity than the winged morphs. Studies on aphids, crickets and planthoppers have revealed that alternative wing morphs develop in response to various environmental cues, and that the response to these cues may be mediated by developmental hormones, although research in this area has yielded equivocal and conflicting results about exactly which hormones are involved. As it stands, the molecular mechanism underlying wing morph determination in insects has remained elusive. Here we show that two insulin receptors in the migratory brown planthopper Nilaparvata lugens, InR1 and InR2, have opposing roles in controlling long wing versus short wing development by regulating the activity of the forkhead transcription factor Foxo. InR1, acting via the phosphatidylinositol-3-OH kinase (PI(3)K)-protein kinase B (Akt) signalling cascade, leads to the long-winged morph if active and the short-winged morph if inactive. InR2, by contrast, functions as a negative regulator of the InR1-PI(3)K-Akt pathway: suppression of InR2 results in development of the long-winged morph. The brain-secreted ligand Ilp3 triggers development of long-winged morphs. Our findings provide the first evidence of a molecular basis for the regulation of wing polyphenism in insects, and they are also the first demonstration--to our knowledge--of binary control over alternative developmental outcomes, and thus deepen our understanding of the development and evolution of phenotypic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Hai-Jun -- Xue, Jian -- Lu, Bo -- Zhang, Xue-Chao -- Zhuo, Ji-Chong -- He, Shu-Fang -- Ma, Xiao-Fang -- Jiang, Ya-Qin -- Fan, Hai-Wei -- Xu, Ji-Yu -- Ye, Yu-Xuan -- Pan, Peng-Lu -- Li, Qiao -- Bao, Yan-Yuan -- Nijhout, H Frederik -- Zhang, Chuan-Xi -- England -- Nature. 2015 Mar 26;519(7544):464-7. doi: 10.1038/nature14286. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. ; Department of Biology, Duke University, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Forkhead Transcription Factors/deficiency/metabolism ; Hemiptera/*anatomy & histology/enzymology/genetics/*metabolism ; Insulin/metabolism ; Male ; Molecular Sequence Data ; Phosphatidylinositol 3-Kinases/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Receptor, Insulin/deficiency/*metabolism ; Signal Transduction ; Wings, Animal/anatomy & histology/enzymology/*growth & development/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-11-10
    Description: Gene expression is regulated by transcription factors (TFs), proteins that recognize short DNA sequence motifs. Such sequences are very common in the human genome, and an important determinant of the specificity of gene expression is the cooperative binding of multiple TFs to closely located motifs. However, interactions between DNA-bound TFs have not been systematically characterized. To identify TF pairs that bind cooperatively to DNA, and to characterize their spacing and orientation preferences, we have performed consecutive affinity-purification systematic evolution of ligands by exponential enrichment (CAP-SELEX) analysis of 9,400 TF-TF-DNA interactions. This analysis revealed 315 TF-TF interactions recognizing 618 heterodimeric motifs, most of which have not been previously described. The observed cooperativity occurred promiscuously between TFs from diverse structural families. Structural analysis of the TF pairs, including a novel crystal structure of MEIS1 and DLX3 bound to their identified recognition site, revealed that the interactions between the TFs were predominantly mediated by DNA. Most TF pair sites identified involved a large overlap between individual TF recognition motifs, and resulted in recognition of composite sites that were markedly different from the individual TF's motifs. Together, our results indicate that the DNA molecule commonly plays an active role in cooperative interactions that define the gene regulatory lexicon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jolma, Arttu -- Yin, Yimeng -- Nitta, Kazuhiro R -- Dave, Kashyap -- Popov, Alexander -- Taipale, Minna -- Enge, Martin -- Kivioja, Teemu -- Morgunova, Ekaterina -- Taipale, Jussi -- England -- Nature. 2015 Nov 19;527(7578):384-8. doi: 10.1038/nature15518. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83, Sweden. ; European Synchrotron Radiation Facility, 38043 Grenoble, France. ; Genome-Scale Biology Program, University of Helsinki, P.O. Box 63, FI-00014, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550823" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites/genetics ; Crystallography, X-Ray ; DNA/*genetics/*metabolism ; Gene Expression Regulation/genetics ; Humans ; Molecular Sequence Data ; Nucleotide Motifs/genetics ; Reproducibility of Results ; *Substrate Specificity/genetics ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-02-06
    Description: Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Youl -- Peterson, Francis C -- Mosquna, Assaf -- Yao, Jin -- Volkman, Brian F -- Cutler, Sean R -- England -- Nature. 2015 Apr 23;520(7548):545-8. doi: 10.1038/nature14123. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA [2] Institute for Integrative Genome Biology, Riverside, California 92521, USA. ; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652827" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Acclimatization/drug effects ; Agrochemicals/*pharmacology ; Amides/*pharmacology ; Arabidopsis/drug effects/genetics/metabolism ; Arabidopsis Proteins/*genetics/*metabolism ; Binding Sites ; Carboxylic Acids/*pharmacology ; Crystallography, X-Ray ; Droughts ; Genetic Engineering ; Genotype ; Ligands ; Lycopersicon esculentum/drug effects/genetics/metabolism ; Membrane Transport Proteins/*genetics/*metabolism ; Models, Molecular ; Plant Transpiration/drug effects ; Plants/*drug effects/genetics/*metabolism ; Plants, Genetically Modified ; Stress, Physiological/drug effects ; Structure-Activity Relationship ; Water/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-09-10
    Description: Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ong-Abdullah, Meilina -- Ordway, Jared M -- Jiang, Nan -- Ooi, Siew-Eng -- Kok, Sau-Yee -- Sarpan, Norashikin -- Azimi, Nuraziyan -- Hashim, Ahmad Tarmizi -- Ishak, Zamzuri -- Rosli, Samsul Kamal -- Malike, Fadila Ahmad -- Bakar, Nor Azwani Abu -- Marjuni, Marhalil -- Abdullah, Norziha -- Yaakub, Zulkifli -- Amiruddin, Mohd Din -- Nookiah, Rajanaidu -- Singh, Rajinder -- Low, Eng-Ti Leslie -- Chan, Kuang-Lim -- Azizi, Norazah -- Smith, Steven W -- Bacher, Blaire -- Budiman, Muhammad A -- Van Brunt, Andrew -- Wischmeyer, Corey -- Beil, Melissa -- Hogan, Michael -- Lakey, Nathan -- Lim, Chin-Ching -- Arulandoo, Xaviar -- Wong, Choo-Kien -- Choo, Chin-Nee -- Wong, Wei-Chee -- Kwan, Yen-Yen -- Alwee, Sharifah Shahrul Rabiah Syed -- Sambanthamurthi, Ravigadevi -- Martienssen, Robert A -- R01 GM067014/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):533-7. doi: 10.1038/nature15365. Epub 2015 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. ; Orion Genomics, 4041 Forest Park Avenue, St Louis, Missouri 63108, USA. ; United Plantations Berhad, Jendarata Estate, 36009 Teluk Intan, Perak, Malaysia. ; Applied Agricultural Resources Sdn Bhd, No. 11, Jalan Teknologi 3/6, Taman Sains Selangor 1, 47810 Kota Damansara, Petaling Jaya, Selangor, Malaysia. ; FELDA Global Ventures R&D Sdn Bhd, c/o FELDA Biotechnology Centre, PT 23417, Lengkuk Teknologi, 71760 Bandar Enstek, Negeri Sembilan, Malaysia. ; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26352475" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Alternative Splicing/genetics ; Arecaceae/*genetics/metabolism ; *DNA Methylation ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Fruit/genetics ; Genes, Homeobox/genetics ; Genetic Association Studies ; Genome, Plant/*genetics ; Introns/genetics ; Molecular Sequence Data ; *Phenotype ; Plant Oils/analysis/metabolism ; RNA Splice Sites/genetics ; RNA, Small Interfering/genetics ; Retroelements/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schimmel, Paul -- England -- Nature. 2015 May 21;521(7552):291. doi: 10.1038/521291a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Research Institute in Jupiter, Florida, and La Jolla, California. He was a colleague of Alexander Rich at the Massachusetts Institute of Technology in Cambridge from 1967 onwards.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993953" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/history ; Collagen/chemistry/history ; Crystallography, X-Ray ; DNA, Z-Form/chemistry/*history ; History, 20th Century ; *Nucleic Acid Conformation ; Peptides/chemistry/history ; Polyribosomes/metabolism ; RNA/chemistry/history ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-03-31
    Description: In response to adenosine 5'-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 A resolution, and with a non-nucleotide antagonist BPTU at 2.2 A resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1R's unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Dandan -- Gao, Zhan-Guo -- Zhang, Kaihua -- Kiselev, Evgeny -- Crane, Steven -- Wang, Jiang -- Paoletta, Silvia -- Yi, Cuiying -- Ma, Limin -- Zhang, Wenru -- Han, Gye Won -- Liu, Hong -- Cherezov, Vadim -- Katritch, Vsevolod -- Jiang, Hualiang -- Stevens, Raymond C -- Jacobson, Kenneth A -- Zhao, Qiang -- Wu, Beili -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54GM094618/GM/NIGMS NIH HHS/ -- Z01 DK031116-21/Intramural NIH HHS/ -- Z01DK031116-26/DK/NIDDK NIH HHS/ -- ZIA DK031116-26/Intramural NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):317-21. doi: 10.1038/nature14287. Epub 2015 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA. ; Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA [2] Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25822790" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/analogs & derivatives/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism/pharmacology ; Humans ; Ligands ; Models, Molecular ; Molecular Conformation ; Purinergic P2Y Receptor Antagonists/*chemistry/metabolism/pharmacology ; Receptors, Purinergic P2Y1/*chemistry/*metabolism ; Thionucleotides/chemistry/metabolism ; Uracil/*analogs & derivatives/chemistry/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-11
    Description: The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase. The hormone-dependent formation of the COI1-JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins from transcriptional repression. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. Here we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete alpha-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Feng -- Yao, Jian -- Ke, Jiyuan -- Zhang, Li -- Lam, Vinh Q -- Xin, Xiu-Fang -- Zhou, X Edward -- Chen, Jian -- Brunzelle, Joseph -- Griffin, Patrick R -- Zhou, Mingguo -- Xu, H Eric -- Melcher, Karsten -- He, Sheng Yang -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 GM102545/GM/NIGMS NIH HHS/ -- R01AI060761/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 10;525(7568):269-73. doi: 10.1038/nature14661. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA. ; DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA. ; College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China. ; Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA. ; Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. ; Department of Molecular Therapeutics, Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. ; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. ; Department of Molecular Pharmacology and Biological Chemistry, Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois 60439, USA. ; Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. ; Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258305" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Apoproteins/chemistry/metabolism ; *Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*antagonists & inhibitors/*chemistry/genetics/*metabolism ; Binding, Competitive/genetics ; Crystallography, X-Ray ; Cyclopentanes/*metabolism ; Models, Molecular ; Nuclear Proteins/metabolism ; Oxylipins/*metabolism ; Plant Growth Regulators/*metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding/genetics ; Protein Conformation ; Repressor Proteins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Trans-Activators/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-06-18
    Description: The bacterial ubiD and ubiX or the homologous fungal fdc1 and pad1 genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone (also known as coenzyme Q) biosynthesis or microbial biodegradation of aromatic compounds, respectively. Despite biochemical studies on individual gene products, the composition and cofactor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear. Here we show that Fdc1 is solely responsible for the reversible decarboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesized by the associated UbiX/Pad1. Atomic resolution crystal structures reveal that two distinct isomers of the oxidized cofactor can be observed, an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with markedly altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests that 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. Although 1,3-dipolar cycloaddition is commonly used in organic chemistry, we propose that this presents the first example, to our knowledge, of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc1/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payne, Karl A P -- White, Mark D -- Fisher, Karl -- Khara, Basile -- Bailey, Samuel S -- Parker, David -- Rattray, Nicholas J W -- Trivedi, Drupad K -- Goodacre, Royston -- Beveridge, Rebecca -- Barran, Perdita -- Rigby, Stephen E J -- Scrutton, Nigel S -- Hay, Sam -- Leys, David -- BB/K017802/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/M/017702/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Jun 25;522(7557):497-501. doi: 10.1038/nature14560. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK. ; Innovation/Biodomain, Shell International Exploration and Production, Westhollow Technology Center, 3333 Highway 6 South, Houston, Texas 77082-3101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083754" target="_blank"〉PubMed〈/a〉
    Keywords: Alkenes/chemistry/metabolism ; Aspergillus niger/enzymology/genetics ; *Biocatalysis ; Carboxy-Lyases/chemistry/genetics/*metabolism ; Crystallography, X-Ray ; *Cycloaddition Reaction ; Decarboxylation ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Flavins/biosynthesis/chemistry/metabolism ; Isomerism ; Ligands ; Models, Molecular ; Ubiquinone/biosynthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-02-25
    Description: V(D)J recombination in the vertebrate immune system generates a highly diverse population of immunoglobulins and T-cell receptors by combinatorial joining of segments of coding DNA. The RAG1-RAG2 protein complex initiates this site-specific recombination by cutting DNA at specific sites flanking the coding segments. Here we report the crystal structure of the mouse RAG1-RAG2 complex at 3.2 A resolution. The 230-kilodalton RAG1-RAG2 heterotetramer is 'Y-shaped', with the amino-terminal domains of the two RAG1 chains forming an intertwined stalk. Each RAG1-RAG2 heterodimer composes one arm of the 'Y', with the active site in the middle and RAG2 at its tip. The RAG1-RAG2 structure rationalizes more than 60 mutations identified in immunodeficient patients, as well as a large body of genetic and biochemical data. The architectural similarity between RAG1 and the hairpin-forming transposases Hermes and Tn5 suggests the evolutionary conservation of these DNA rearrangements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Min-Sung -- Lapkouski, Mikalai -- Yang, Wei -- Gellert, Martin -- Z01 DK036147-01/Intramural NIH HHS/ -- Z01 DK036147-02/Intramural NIH HHS/ -- Z01 DK036167-01/Intramural NIH HHS/ -- Z01 DK036167-02/Intramural NIH HHS/ -- ZIA DK036147-03/Intramural NIH HHS/ -- ZIA DK036147-04/Intramural NIH HHS/ -- ZIA DK036147-05/Intramural NIH HHS/ -- ZIA DK036147-06/Intramural NIH HHS/ -- ZIA DK036147-07/Intramural NIH HHS/ -- ZIA DK036147-08/Intramural NIH HHS/ -- ZIA DK036167-03/Intramural NIH HHS/ -- ZIA DK036167-04/Intramural NIH HHS/ -- ZIA DK036167-05/Intramural NIH HHS/ -- ZIA DK036167-06/Intramural NIH HHS/ -- ZIA DK036167-07/Intramural NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):507-11. doi: 10.1038/nature14174. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Homeodomain Proteins/*chemistry/genetics/metabolism ; Humans ; Mice ; Models, Molecular ; Mutation/genetics ; Protein Multimerization ; Protein Structure, Quaternary ; Severe Combined Immunodeficiency/genetics ; Transposases/chemistry ; VDJ Recombinases/*chemistry/metabolism ; X-Linked Combined Immunodeficiency Diseases/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-02-18
    Description: The BCR-ABL1 fusion gene is a driver oncogene in chronic myeloid leukaemia and 30-50% of cases of adult acute lymphoblastic leukaemia. Introduction of ABL1 kinase inhibitors (for example, imatinib) has markedly improved patient survival, but acquired drug resistance remains a challenge. Point mutations in the ABL1 kinase domain weaken inhibitor binding and represent the most common clinical resistance mechanism. The BCR-ABL1 kinase domain gatekeeper mutation Thr315Ile (T315I) confers resistance to all approved ABL1 inhibitors except ponatinib, which has toxicity limitations. Here we combine comprehensive drug sensitivity and resistance profiling of patient cells ex vivo with structural analysis to establish the VEGFR tyrosine kinase inhibitor axitinib as a selective and effective inhibitor for T315I-mutant BCR-ABL1-driven leukaemia. Axitinib potently inhibited BCR-ABL1(T315I), at both biochemical and cellular levels, by binding to the active form of ABL1(T315I) in a mutation-selective binding mode. These findings suggest that the T315I mutation shifts the conformational equilibrium of the kinase in favour of an active (DFG-in) A-loop conformation, which has more optimal binding interactions with axitinib. Treatment of a T315I chronic myeloid leukaemia patient with axitinib resulted in a rapid reduction of T315I-positive cells from bone marrow. Taken together, our findings demonstrate an unexpected opportunity to repurpose axitinib, an anti-angiogenic drug approved for renal cancer, as an inhibitor for ABL1 gatekeeper mutant drug-resistant leukaemia patients. This study shows that wild-type proteins do not always sample the conformations available to disease-relevant mutant proteins and that comprehensive drug testing of patient-derived cells can identify unpredictable, clinically significant drug-repositioning opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pemovska, Tea -- Johnson, Eric -- Kontro, Mika -- Repasky, Gretchen A -- Chen, Jeffrey -- Wells, Peter -- Cronin, Ciaran N -- McTigue, Michele -- Kallioniemi, Olli -- Porkka, Kimmo -- Murray, Brion W -- Wennerberg, Krister -- England -- Nature. 2015 Mar 5;519(7541):102-5. doi: 10.1038/nature14119. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland. ; La Jolla Laboratories, Pfizer Worldwide Research &Development, San Diego, California 92121, USA. ; Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, 00290 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686603" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/chemistry/pharmacology/therapeutic use ; Cell Line ; Cell Proliferation/drug effects ; Crystallization ; Crystallography, X-Ray ; Drug Repositioning ; Drug Resistance, Neoplasm/genetics ; Drug Screening Assays, Antitumor ; Fusion Proteins, bcr-abl/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Humans ; Imidazoles/*chemistry/*pharmacology/therapeutic use ; Indazoles/*chemistry/*pharmacology/therapeutic use ; Kidney Neoplasms/drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy/genetics/metabolism ; Models, Molecular ; Molecular Conformation ; Phosphorylation/drug effects ; Protein Binding ; Protein Kinase Inhibitors/chemistry/pharmacology/therapeutic use ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/genetics/metabolism ; Vascular Endothelial Growth Factor Receptor-2/antagonists & ; inhibitors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-11-13
    Description: Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (〉16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉VanBuren, Robert -- Bryant, Doug -- Edger, Patrick P -- Tang, Haibao -- Burgess, Diane -- Challabathula, Dinakar -- Spittle, Kristi -- Hall, Richard -- Gu, Jenny -- Lyons, Eric -- Freeling, Michael -- Bartels, Dorothea -- Ten Hallers, Boudewijn -- Hastie, Alex -- Michael, Todd P -- Mockler, Todd C -- England -- Nature. 2015 Nov 26;527(7579):508-11. doi: 10.1038/nature15714. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA. ; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA. ; Department of Horticulture, Michigan State University, East Lansing, Michigan 48823, USA. ; iPlant Collaborative, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA. ; Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou 350002, China. ; IMBIO, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany. ; Pacific Biosciences, Menlo Park, California 94025, USA. ; BioNano Genomics, San Diego, California 92121, USA. ; Ibis Biosciences, Carlsbad, California 92008, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560029" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/genetics ; Contig Mapping ; Dehydration ; Desiccation ; Droughts ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genomics ; Molecular Sequence Data ; Poaceae/*genetics ; Sequence Analysis, DNA/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-01-22
    Description: Low-molecular-mass thiols in organisms are well known for their redox-relevant role in protection against various endogenous and exogenous stresses. In eukaryotes and Gram-negative bacteria, the primary thiol is glutathione (GSH), a cysteinyl-containing tripeptide. In contrast, mycothiol (MSH), a cysteinyl pseudo-disaccharide, is dominant in Gram-positive actinobacteria, including antibiotic-producing actinomycetes and pathogenic mycobacteria. MSH is equivalent to GSH, either as a cofactor or as a substrate, in numerous biochemical processes, most of which have not been characterized, largely due to the dearth of information concerning MSH-dependent proteins. Actinomycetes are able to produce another thiol, ergothioneine (EGT), a histidine betaine derivative that is widely assimilated by plants and animals for variable physiological activities. The involvement of EGT in enzymatic reactions, however, lacks any precedent. Here we report that the unprecedented coupling of two bacterial thiols, MSH and EGT, has a constructive role in the biosynthesis of lincomycin A, a sulfur-containing lincosamide (C8 sugar) antibiotic that has been widely used for half a century to treat Gram-positive bacterial infections. EGT acts as a carrier to template the molecular assembly, and MSH is the sulfur donor for lincomycin maturation after thiol exchange. These thiols function through two unusual S-glycosylations that program lincosamide transfer, activation and modification, providing the first paradigm for EGT-associated biochemical processes and for the poorly understood MSH-dependent biotransformations, a newly described model that is potentially common in the incorporation of sulfur, an element essential for life and ubiquitous in living systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Qunfei -- Wang, Min -- Xu, Dongxiao -- Zhang, Qinglin -- Liu, Wen -- England -- Nature. 2015 Feb 5;518(7537):115-9. doi: 10.1038/nature14137. Epub 2015 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. ; Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China. ; 1] State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China [2] Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607359" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*biosynthesis ; Biological Products/metabolism ; Biosynthetic Pathways/genetics ; Biotransformation ; Cysteine/chemistry/*metabolism ; Ergothioneine/chemistry/*metabolism ; Glycopeptides/chemistry/*metabolism ; Glycosylation ; Inositol/chemistry/*metabolism ; Lincomycin/*biosynthesis ; Lincosamides/metabolism ; Molecular Sequence Data ; Streptomyces/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-10-20
    Description: Anaerobic ammonium oxidation (anammox) has a major role in the Earth's nitrogen cycle and is used in energy-efficient wastewater treatment. This bacterial process combines nitrite and ammonium to form dinitrogen (N2) gas, and has been estimated to synthesize up to 50% of the dinitrogen gas emitted into our atmosphere from the oceans. Strikingly, the anammox process relies on the highly unusual, extremely reactive intermediate hydrazine, a compound also used as a rocket fuel because of its high reducing power. So far, the enzymatic mechanism by which hydrazine is synthesized is unknown. Here we report the 2.7 A resolution crystal structure, as well as biophysical and spectroscopic studies, of a hydrazine synthase multiprotein complex isolated from the anammox organism Kuenenia stuttgartiensis. The structure shows an elongated dimer of heterotrimers, each of which has two unique c-type haem-containing active sites, as well as an interaction point for a redox partner. Furthermore, a system of tunnels connects these active sites. The crystal structure implies a two-step mechanism for hydrazine synthesis: a three-electron reduction of nitric oxide to hydroxylamine at the active site of the gamma-subunit and its subsequent condensation with ammonia, yielding hydrazine in the active centre of the alpha-subunit. Our results provide the first, to our knowledge, detailed structural insight into the mechanism of biological hydrazine synthesis, which is of major significance for our understanding of the conversion of nitrogenous compounds in nature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dietl, Andreas -- Ferousi, Christina -- Maalcke, Wouter J -- Menzel, Andreas -- de Vries, Simon -- Keltjens, Jan T -- Jetten, Mike S M -- Kartal, Boran -- Barends, Thomas R M -- P41-GM103311/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Nov 19;527(7578):394-7. doi: 10.1038/nature15517. Epub 2015 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany. ; Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands. ; Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland. ; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands. ; Department of Biochemistry and Microbiology, Laboratory of Microbiology, Gent University, Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26479033" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Hydrazines/*metabolism ; Hydroxylamine/metabolism ; Metalloproteins/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/*chemistry/*metabolism ; Nitric Oxide/metabolism ; Protein Multimerization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-08-19
    Description: Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca(2+)- and Mg(2+)-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca(2+)-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca(2+)-triggered neurotransmitter release in mouse hippocampal neuronal synapses and for Ca(2+)-triggered vesicle fusion in a reconstituted system. We propose that this interface forms before Ca(2+) triggering, moves en bloc as Ca(2+) influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Qiangjun -- Lai, Ying -- Bacaj, Taulant -- Zhao, Minglei -- Lyubimov, Artem Y -- Uervirojnangkoorn, Monarin -- Zeldin, Oliver B -- Brewster, Aaron S -- Sauter, Nicholas K -- Cohen, Aina E -- Soltis, S Michael -- Alonso-Mori, Roberto -- Chollet, Matthieu -- Lemke, Henrik T -- Pfuetzner, Richard A -- Choi, Ucheor B -- Weis, William I -- Diao, Jiajie -- Sudhof, Thomas C -- Brunger, Axel T -- GM095887/GM/NIGMS NIH HHS/ -- GM102520/GM/NIGMS NIH HHS/ -- MH086403/MH/NIMH NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P50 MH086403/MH/NIMH NIH HHS/ -- R01 GM077071/GM/NIGMS NIH HHS/ -- R01 GM095887/GM/NIGMS NIH HHS/ -- R01 GM102520/GM/NIGMS NIH HHS/ -- R37 MH063105/MH/NIMH NIH HHS/ -- R37MH63105/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 3;525(7567):62-7. doi: 10.1038/nature14975. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA. ; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; SLAC National Accelerator Laboratory, Stanford, California 94305, USA. ; Departments of Structural Biology, Molecular and Cellular Physiology, and Photon Science, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280336" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites/genetics ; Calcium/chemistry/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Electrons ; *Exocytosis ; Hippocampus/cytology ; Lasers ; Magnesium/chemistry/metabolism ; Membrane Fusion ; Mice ; Models, Biological ; Models, Molecular ; Mutation/genetics ; Neurons/chemistry/cytology/*metabolism/secretion ; SNARE Proteins/*chemistry/genetics/*metabolism ; Synaptic Transmission ; Synaptic Vesicles/chemistry/metabolism/secretion ; Synaptotagmins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-13
    Description: The flipping of membrane-embedded lipids containing large, polar head groups is slow and energetically unfavourable, and is therefore catalysed by flippases, the mechanisms of which are unknown. A prominent example of a flipping reaction is the translocation of lipid-linked oligosaccharides that serve as donors in N-linked protein glycosylation. In Campylobacter jejuni, this process is catalysed by the ABC transporter PglK. Here we present a mechanism of PglK-catalysed lipid-linked oligosaccharide flipping based on crystal structures in distinct states, a newly devised in vitro flipping assay, and in vivo studies. PglK can adopt inward- and outward-facing conformations in vitro, but only outward-facing states are required for flipping. While the pyrophosphate-oligosaccharide head group of lipid-linked oligosaccharides enters the translocation cavity and interacts with positively charged side chains, the lipidic polyprenyl tail binds and activates the transporter but remains exposed to the lipid bilayer during the reaction. The proposed mechanism is distinct from the classical alternating-access model applied to other transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perez, Camilo -- Gerber, Sabina -- Boilevin, Jeremy -- Bucher, Monika -- Darbre, Tamis -- Aebi, Markus -- Reymond, Jean-Louis -- Locher, Kaspar P -- England -- Nature. 2015 Aug 27;524(7566):433-8. doi: 10.1038/nature14953. Epub 2015 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland. ; Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26266984" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/*metabolism ; Adenosine Triphosphatases/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; *Biocatalysis ; Campylobacter jejuni/cytology/*enzymology/metabolism ; Crystallography, X-Ray ; Hydrolysis ; Lipid Bilayers/metabolism ; Lipopolysaccharides/*metabolism ; Models, Molecular ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-11
    Description: The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abitua, Philip Barron -- Gainous, T Blair -- Kaczmarczyk, Angela N -- Winchell, Christopher J -- Hudson, Clare -- Kamata, Kaori -- Nakagawa, Masashi -- Tsuda, Motoyuki -- Kusakabe, Takehiro G -- Levine, Michael -- NS076542/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):462-5. doi: 10.1038/nature14657. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Genomics, Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Sorbonne Universites, Universite Pierre et Marie Curie, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Observatoire Oceanologique, 06230 Villefranche-sur-mer, France. ; Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan. ; Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258298" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Bone Morphogenetic Proteins ; Ciona intestinalis/*cytology/*embryology/genetics/metabolism ; Ectoderm/metabolism ; Gonadotropin-Releasing Hormone/metabolism ; HEK293 Cells ; Homeodomain Proteins/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Larva/cytology/metabolism ; Molecular Sequence Data ; Neurons/*cytology/metabolism ; Protein Tyrosine Phosphatases/metabolism ; Receptors, G-Protein-Coupled/metabolism ; Vertebrates/*anatomy & histology/*embryology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-08-27
    Description: Methane-oxidizing bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase. Certain methanotrophs are also able to switch to using the iron-containing soluble methane monooxygenase to catalyse methane oxidation, with this switchover regulated by copper. Methane monooxygenases are nature's primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and methane monooxygenases have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. Here we discover and characterize a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for particulate methane monooxygenase. Csp1 is a tetramer of four-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realized. Cytosolic homologues of Csp1 are present in diverse bacteria, thus challenging the dogma that such organisms do not use copper in this location.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561512/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561512/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vita, Nicolas -- Platsaki, Semeli -- Basle, Arnaud -- Allen, Stephen J -- Paterson, Neil G -- Crombie, Andrew T -- Murrell, J Colin -- Waldron, Kevin J -- Dennison, Christopher -- 098375/Z/12/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Sep 3;525(7567):140-3. doi: 10.1038/nature14854. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK. ; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK. ; School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308900" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/*chemistry/*metabolism ; Copper/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Methane/chemistry/*metabolism ; Methylosinus trichosporium/*chemistry/enzymology ; Models, Molecular ; Oxidation-Reduction ; Oxygenases/metabolism ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-12-18
    Description: Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks. The overall architecture of tandem repeat protein structures--which is dictated by the internal geometry and local packing of the repeat building blocks--is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the amino (N) and carboxy (C) termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that--to our knowledge--is not yet present in the protein structure database.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727831/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727831/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doyle, Lindsey -- Hallinan, Jazmine -- Bolduc, Jill -- Parmeggiani, Fabio -- Baker, David -- Stoddard, Barry L -- Bradley, Philip -- R01 GM049857/GM/NIGMS NIH HHS/ -- R01 GM115545/GM/NIGMS NIH HHS/ -- R01GM49857/GM/NIGMS NIH HHS/ -- R21 GM106117/GM/NIGMS NIH HHS/ -- R21GM106117/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 24;528(7583):585-8. doi: 10.1038/nature16191. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, Washington 98109, USA. ; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA. ; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA. ; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, Washington 98019, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675735" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Motifs ; *Bioengineering ; *Computer Simulation ; Crystallography, X-Ray ; Databases, Protein ; Models, Molecular ; *Protein Structure, Secondary ; Proteins/*chemistry ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-08-19
    Description: Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C-P lyase core complex (PhnG-PhnH-PhnI-PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seweryn, Paulina -- Van, Lan Bich -- Kjeldgaard, Morten -- Russo, Christopher J -- Passmore, Lori A -- Hove-Jensen, Bjarne -- Jochimsen, Bjarne -- Brodersen, Ditlev E -- MC_U105192715/Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 3;525(7567):68-72. doi: 10.1038/nature14683. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280334" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Biocatalysis ; Carbon/chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Hydrolysis ; Iron/chemistry/metabolism ; Lyases/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Organophosphonates/metabolism ; Phosphorus/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sulfur/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-11-27
    Description: Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daims, Holger -- Lebedeva, Elena V -- Pjevac, Petra -- Han, Ping -- Herbold, Craig -- Albertsen, Mads -- Jehmlich, Nico -- Palatinszky, Marton -- Vierheilig, Julia -- Bulaev, Alexandr -- Kirkegaard, Rasmus H -- von Bergen, Martin -- Rattei, Thomas -- Bendinger, Bernd -- Nielsen, Per H -- Wagner, Michael -- England -- Nature. 2015 Dec 24;528(7583):504-9. doi: 10.1038/nature16461. Epub 2015 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. ; Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia. ; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark. ; Helmholtz-Centre for Environmental Research - UFZ, Department of Proteomics, Permoserstrasse 15, 04318 Leipzig, Germany. ; Helmholtz-Centre for Environmental Research - UFZ, Department of Metabolomics, Permoserstrasse 15, 04318 Leipzig, Germany. ; Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. ; DVGW-Forschungsstelle TUHH, Hamburg University of Technology, 21073 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26610024" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonia/*metabolism ; Bacteria/enzymology/genetics/growth & development/*metabolism ; Evolution, Molecular ; Genome, Bacterial/genetics ; Molecular Sequence Data ; Nitrates/*metabolism ; *Nitrification/genetics ; Nitrites/*metabolism ; Oxidation-Reduction ; Oxidoreductases/genetics/metabolism ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-03-25
    Description: The first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA-binding protein DGCR8 and the type III RNase DROSHA. This initial event requires recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product. While the mechanisms underlying pri-miRNA processing have been determined, the mechanism by which DGCR8 recognizes and binds pri-miRNAs, as opposed to other secondary structures present in transcripts, is not understood. Here we find in mammalian cells that methyltransferase-like 3 (METTL3) methylates pri-miRNAs, marking them for recognition and processing by DGCR8. Consistent with this, METTL3 depletion reduced the binding of DGCR8 to pri-miRNAs and resulted in the global reduction of mature miRNAs and concomitant accumulation of unprocessed pri-miRNAs. In vitro processing reactions confirmed the sufficiency of the N(6)-methyladenosine (m(6)A) mark in promoting pri-miRNA processing. Finally, gain-of-function experiments revealed that METTL3 is sufficient to enhance miRNA maturation in a global and non-cell-type-specific manner. Our findings reveal that the m(6)A mark acts as a key post-transcriptional modification that promotes the initiation of miRNA biogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alarcon, Claudio R -- Lee, Hyeseung -- Goodarzi, Hani -- Halberg, Nils -- Tavazoie, Sohail F -- T32 CA009673/CA/NCI NIH HHS/ -- England -- Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799998" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Base Sequence ; Cell Line ; Gene Expression Regulation ; Humans ; Methylation ; Methyltransferases/deficiency/metabolism ; MicroRNAs/*chemistry/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Processing, Post-Transcriptional ; RNA-Binding Proteins/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-02-25
    Description: Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385744/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385744/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heler, Robert -- Samai, Poulami -- Modell, Joshua W -- Weiner, Catherine -- Goldberg, Gregory W -- Bikard, David -- Marraffini, Luciano A -- 1DP2AI104556-01/AI/NIAID NIH HHS/ -- DP2 AI104556/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; 1] Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Synthetic Biology Group, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707807" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CRISPR-Associated Proteins/*metabolism ; *CRISPR-Cas Systems/immunology ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics/immunology ; DNA, Viral/*genetics/immunology/metabolism ; Molecular Sequence Data ; Nucleotide Motifs ; Protein Binding ; Protein Structure, Tertiary ; Staphylococcus aureus ; Streptococcus pyogenes/*enzymology/*genetics/immunology/virology ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-10-23
    Description: The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 degrees C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wegener, Gunter -- Krukenberg, Viola -- Riedel, Dietmar -- Tegetmeyer, Halina E -- Boetius, Antje -- England -- Nature. 2015 Oct 22;526(7574):587-90. doi: 10.1038/nature15733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck Institute for Marine Microbiology, 28359 Bremen, Germany. ; MARUM, Center for Marine Environmental Sciences, University Bremen, 28359 Bremen, Germany. ; Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany. ; Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26490622" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Archaea/*metabolism ; Bacteria/*metabolism ; Cytochromes/metabolism ; Electron Transport ; Fimbriae, Bacterial/metabolism ; Geologic Sediments/microbiology ; Heme/metabolism ; Hydrogen/metabolism ; Hydrothermal Vents/microbiology ; Methane/*metabolism ; Microbiota/physiology ; Molecular Sequence Data ; Oceans and Seas ; Sulfates/metabolism ; Symbiosis ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-05-07
    Description: The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444528/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444528/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spang, Anja -- Saw, Jimmy H -- Jorgensen, Steffen L -- Zaremba-Niedzwiedzka, Katarzyna -- Martijn, Joran -- Lind, Anders E -- van Eijk, Roel -- Schleper, Christa -- Guy, Lionel -- Ettema, Thijs J G -- 310039/European Research Council/International -- England -- Nature. 2015 May 14;521(7551):173-9. doi: 10.1038/nature14447. Epub 2015 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden. ; Department of Biology, Centre for Geobiology, University of Bergen, N-5020 Bergen, Norway. ; 1] Department of Biology, Centre for Geobiology, University of Bergen, N-5020 Bergen, Norway [2] Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria. ; 1] Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden [2] Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25945739" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actins/genetics/metabolism ; Archaea/*classification/genetics/metabolism ; Arctic Regions ; Endosomal Sorting Complexes Required for Transport/genetics/metabolism ; Eukaryota/*classification/genetics/metabolism ; Eukaryotic Cells/classification/metabolism ; *Evolution, Molecular ; Hydrothermal Vents/*microbiology ; Metagenome/genetics ; Molecular Sequence Data ; Monomeric GTP-Binding Proteins/genetics/metabolism ; *Phylogeny ; Prokaryotic Cells/*classification ; Proteome/genetics/isolation & purification/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-06-23
    Description: Stearoyl-CoA desaturase (SCD) is conserved in all eukaryotes and introduces the first double bond into saturated fatty acyl-CoAs. Because the monounsaturated products of SCD are key precursors of membrane phospholipids, cholesterol esters and triglycerides, SCD is pivotal in fatty acid metabolism. Humans have two SCD homologues (SCD1 and SCD5), while mice have four (SCD1-SCD4). SCD1-deficient mice do not become obese or diabetic when fed a high-fat diet because of improved lipid metabolic profiles and insulin sensitivity. Thus, SCD1 is a pharmacological target in the treatment of obesity, diabetes and other metabolic diseases. SCD1 is an integral membrane protein located in the endoplasmic reticulum, and catalyses the formation of a cis-double bond between the ninth and tenth carbons of stearoyl- or palmitoyl-CoA. The reaction requires molecular oxygen, which is activated by a di-iron centre, and cytochrome b5, which regenerates the di-iron centre. To understand better the structural basis of these characteristics of SCD function, here we crystallize and solve the structure of mouse SCD1 bound to stearoyl-CoA at 2.6 A resolution. The structure shows a novel fold comprising four transmembrane helices capped by a cytosolic domain, and a plausible pathway for lateral substrate access and product egress. The acyl chain of the bound stearoyl-CoA is enclosed in a tunnel buried in the cytosolic domain, and the geometry of the tunnel and the conformation of the bound acyl chain provide a structural basis for the regioselectivity and stereospecificity of the desaturation reaction. The dimetal centre is coordinated by a unique spacial arrangement of nine conserved histidine residues that implies a potentially novel mechanism for oxygen activation. The structure also illustrates a possible route for electron transfer from cytochrome b5 to the di-iron centre.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689147/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689147/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Yonghong -- McCoy, Jason G -- Levin, Elena J -- Sobrado, Pablo -- Rajashankar, Kanagalaghatta R -- Fox, Brian G -- Zhou, Ming -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41GM103403/GM/NIGMS NIH HHS/ -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 GM098878/GM/NIGMS NIH HHS/ -- R01 HL086392/HL/NHLBI NIH HHS/ -- R01DK088057/DK/NIDDK NIH HHS/ -- R01GM050853/GM/NIGMS NIH HHS/ -- R01GM098878/GM/NIGMS NIH HHS/ -- R01HL086392/HL/NHLBI NIH HHS/ -- U54 GM094584/GM/NIGMS NIH HHS/ -- U54GM094584/GM/NIGMS NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 13;524(7564):252-6. doi: 10.1038/nature14549. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ; NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098370" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Coenzyme A/chemistry/metabolism ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cytochromes b5/chemistry/metabolism ; Electron Transport ; Histidine/chemistry/metabolism ; Iron/metabolism ; Mice ; Models, Molecular ; Oxygen/metabolism ; Protein Structure, Tertiary ; Static Electricity ; Stearoyl-CoA Desaturase/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-06-18
    Description: Ubiquinone (also known as coenzyme Q) is a ubiquitous lipid-soluble redox cofactor that is an essential component of electron transfer chains. Eleven genes have been implicated in bacterial ubiquinone biosynthesis, including ubiX and ubiD, which are responsible for decarboxylation of the 3-octaprenyl-4-hydroxybenzoate precursor. Despite structural and biochemical characterization of UbiX as a flavin mononucleotide (FMN)-binding protein, no decarboxylase activity has been detected. Here we report that UbiX produces a novel flavin-derived cofactor required for the decarboxylase activity of UbiD. UbiX acts as a flavin prenyltransferase, linking a dimethylallyl moiety to the flavin N5 and C6 atoms. This adds a fourth non-aromatic ring to the flavin isoalloxazine group. In contrast to other prenyltransferases, UbiX is metal-independent and requires dimethylallyl-monophosphate as substrate. Kinetic crystallography reveals that the prenyltransferase mechanism of UbiX resembles that of the terpene synthases. The active site environment is dominated by pi systems, which assist phosphate-C1' bond breakage following FMN reduction, leading to formation of the N5-C1' bond. UbiX then acts as a chaperone for adduct reorientation, via transient carbocation species, leading ultimately to formation of the dimethylallyl C3'-C6 bond. Our findings establish the mechanism for formation of a new flavin-derived cofactor, extending both flavin and terpenoid biochemical repertoires.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, Mark D -- Payne, Karl A P -- Fisher, Karl -- Marshall, Stephen A -- Parker, David -- Rattray, Nicholas J W -- Trivedi, Drupad K -- Goodacre, Royston -- Rigby, Stephen E J -- Scrutton, Nigel S -- Hay, Sam -- Leys, David -- BB/K017802/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/M017702/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Jun 25;522(7557):502-6. doi: 10.1038/nature14559. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK. ; Innovation/Biodomain, Shell International Exploration and Production, Westhollow Technology Center, 3333 Highway 6 South, Houston, Texas 77082-3101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083743" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/chemistry/metabolism ; Aspergillus niger/enzymology/genetics ; *Biocatalysis ; Carboxy-Lyases/chemistry/genetics/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Cycloaddition Reaction ; Decarboxylation ; Dimethylallyltranstransferase/chemistry/genetics/*metabolism ; Electron Transport ; Flavin Mononucleotide/metabolism ; Flavins/biosynthesis/chemistry/*metabolism ; Models, Molecular ; Pseudomonas aeruginosa/*enzymology/genetics/*metabolism ; Ubiquinone/*biosynthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-09-08
    Description: To contend with hazards posed by environmental fluoride, microorganisms export this anion through F(-)-specific ion channels of the Fluc family. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including strong selectivity for F(-) over Cl(-) and dual-topology dimeric assembly. To understand the chemical basis for F(-) permeation and how the antiparallel subunits convene to form a F(-)-selective pore, here we solve the crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F(-) present, to a maximum resolution of 2.1 A. The structures reveal a surprising 'double-barrelled' channel architecture in which two F(-) ion pathways span the membrane, and the dual-topology arrangement includes a centrally coordinated cation, most likely Na(+). F(-) selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stockbridge, Randy B -- Kolmakova-Partensky, Ludmila -- Shane, Tania -- Koide, Akiko -- Koide, Shohei -- Miller, Christopher -- Newstead, Simon -- 102890/Z/13/Z/Wellcome Trust/United Kingdom -- K99 GM111767/GM/NIGMS NIH HHS/ -- K99-GM-111767/GM/NIGMS NIH HHS/ -- R01 GM107023/GM/NIGMS NIH HHS/ -- R01-GM107023/GM/NIGMS NIH HHS/ -- U54 GM087519/GM/NIGMS NIH HHS/ -- U54-GM087519/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):548-51. doi: 10.1038/nature14981. Epub 2015 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA. ; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA. ; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QU, UK. ; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26344196" target="_blank"〉PubMed〈/a〉
    Keywords: Anions/chemistry/metabolism/pharmacology ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Fluorides/chemistry/*metabolism/*pharmacology ; Ion Channels/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Phenylalanine/metabolism ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-11-03
    Description: DNA methylation is an important epigenetic modification. Ten-eleven translocation (TET) proteins are involved in DNA demethylation through iteratively oxidizing 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Here we show that human TET1 and TET2 are more active on 5mC-DNA than 5hmC/5fC-DNA substrates. We determine the crystal structures of TET2-5hmC-DNA and TET2-5fC-DNA complexes at 1.80 A and 1.97 A resolution, respectively. The cytosine portion of 5hmC/5fC is specifically recognized by TET2 in a manner similar to that of 5mC in the TET2-5mC-DNA structure, and the pyrimidine base of 5mC/5hmC/5fC adopts an almost identical conformation within the catalytic cavity. However, the hydroxyl group of 5hmC and carbonyl group of 5fC face towards the opposite direction because the hydroxymethyl group of 5hmC and formyl group of 5fC adopt restrained conformations through forming hydrogen bonds with the 1-carboxylate of NOG and N4 exocyclic nitrogen of cytosine, respectively. Biochemical analyses indicate that the substrate preference of TET2 results from the different efficiencies of hydrogen abstraction in TET2-mediated oxidation. The restrained conformation of 5hmC and 5fC within the catalytic cavity may prevent their abstractable hydrogen(s) adopting a favourable orientation for hydrogen abstraction and thus result in low catalytic efficiency. Our studies demonstrate that the substrate preference of TET2 results from the intrinsic value of its substrates at their 5mC derivative groups and suggest that 5hmC is relatively stable and less prone to further oxidation by TET proteins. Therefore, TET proteins are evolutionarily tuned to be less reactive towards 5hmC and facilitate the generation of 5hmC as a potentially stable mark for regulatory functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Lulu -- Lu, Junyan -- Cheng, Jingdong -- Rao, Qinhui -- Li, Ze -- Hou, Haifeng -- Lou, Zhiyong -- Zhang, Lei -- Li, Wei -- Gong, Wei -- Liu, Mengjie -- Sun, Chang -- Yin, Xiaotong -- Li, Jie -- Tan, Xiangshi -- Wang, Pengcheng -- Wang, Yinsheng -- Fang, Dong -- Cui, Qiang -- Yang, Pengyuan -- He, Chuan -- Jiang, Hualiang -- Luo, Cheng -- Xu, Yanhui -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 5;527(7576):118-22. doi: 10.1038/nature15713. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China. ; MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing 100084, China. ; Department of Chemistry, University of California-Riverside, Riverside, California 92521-0403, USA. ; Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA. ; Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524525" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Cytosine/analogs & derivatives/metabolism ; DNA/*chemistry/*metabolism ; DNA Methylation ; DNA-Binding Proteins/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Oxidation-Reduction ; Protein Binding ; Proto-Oncogene Proteins/*chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-10-28
    Description: Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 A, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hengrung, Narin -- El Omari, Kamel -- Serna Martin, Itziar -- Vreede, Frank T -- Cusack, Stephen -- Rambo, Robert P -- Vonrhein, Clemens -- Bricogne, Gerard -- Stuart, David I -- Grimes, Jonathan M -- Fodor, Ervin -- 075491/Z/04/Wellcome Trust/United Kingdom -- 092931/Z/10/Z/Wellcome Trust/United Kingdom -- G1000099/Medical Research Council/United Kingdom -- G1100138/Medical Research Council/United Kingdom -- MR/K000241/1/Medical Research Council/United Kingdom -- England -- Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. ; Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK. ; European Molecular Biology Laboratory, Grenoble Outstation and University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France. ; Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK. ; Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503046" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endonucleases/chemistry/metabolism ; Enzyme Activation ; Influenzavirus C/*enzymology ; Models, Molecular ; Peptide Chain Initiation, Translational ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Caps/metabolism ; RNA Replicase/*chemistry/metabolism ; RNA, Viral/biosynthesis/metabolism ; Ribonucleoproteins/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-08-25
    Description: The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reubold, Thomas F -- Faelber, Katja -- Plattner, Nuria -- Posor, York -- Ketel, Katharina -- Curth, Ute -- Schlegel, Jeanette -- Anand, Roopsee -- Manstein, Dietmar J -- Noe, Frank -- Haucke, Volker -- Daumke, Oliver -- Eschenburg, Susanne -- England -- Nature. 2015 Sep 17;525(7569):404-8. doi: 10.1038/nature14880. Epub 2015 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. ; Max-Delbruck-Centrum fur Molekulare Medizin, Kristallographie, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; Institut fur Mathematik, Freie Universitat Berlin, Arnimallee 6, 14195 Berlin, Germany. ; Leibniz-Institut fur Molekulare Pharmakologie, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; Forschungseinrichtung Strukturanalyse, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. ; Institut fur Chemie und Biochemie, Freie Universitat Berlin, Takustrasse 6, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26302298" target="_blank"〉PubMed〈/a〉
    Keywords: Charcot-Marie-Tooth Disease ; Crystallography, X-Ray ; Dynamins/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Humans ; Markov Chains ; Models, Molecular ; Molecular Dynamics Simulation ; Mutant Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Mutation/genetics ; Myopathies, Structural, Congenital ; Nucleotides ; *Protein Multimerization/genetics ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-08-08
    Description: Activation of the mu-opioid receptor (muOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for muOR activation, here we report a 2.1 A X-ray crystal structure of the murine muOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the muOR binding pocket are subtle and differ from those observed for agonist-bound structures of the beta2-adrenergic receptor (beta2AR) and the M2 muscarinic receptor. Comparison with active beta2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the muOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Weijiao -- Manglik, Aashish -- Venkatakrishnan, A J -- Laeremans, Toon -- Feinberg, Evan N -- Sanborn, Adrian L -- Kato, Hideaki E -- Livingston, Kathryn E -- Thorsen, Thor S -- Kling, Ralf C -- Granier, Sebastien -- Gmeiner, Peter -- Husbands, Stephen M -- Traynor, John R -- Weis, William I -- Steyaert, Jan -- Dror, Ron O -- Kobilka, Brian K -- R01GM083118/GM/NIGMS NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- R37DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA. ; Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA. ; Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany. ; Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. ; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245379" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Crystallography, X-Ray ; Heterotrimeric GTP-Binding Proteins/chemistry/metabolism ; Mice ; Models, Molecular ; Molecular Dynamics Simulation ; Morphinans/chemistry/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Structure, Tertiary ; Pyrroles/chemistry/metabolism/pharmacology ; Receptor, Muscarinic M2/chemistry ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/agonists/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-02-06
    Description: The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 A resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352134/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352134/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colussi, Timothy M -- Costantino, David A -- Zhu, Jianyu -- Donohue, John Paul -- Korostelev, Andrei A -- Jaafar, Zane A -- Plank, Terra-Dawn M -- Noller, Harry F -- Kieft, Jeffrey S -- GM-103105/GM/NIGMS NIH HHS/ -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- GM-81346/GM/NIGMS NIH HHS/ -- GM-97333/GM/NIGMS NIH HHS/ -- R01 GM097333/GM/NIGMS NIH HHS/ -- R01 GM106105/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 5;519(7541):110-3. doi: 10.1038/nature14219. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California at Santa Cruz, Santa Cruz, California 95064, USA. ; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652826" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*genetics ; Base Sequence ; Conserved Sequence/genetics ; Crystallography, X-Ray ; Dicistroviridae/genetics ; Eukaryota/*genetics ; Models, Molecular ; *Nucleic Acid Conformation ; Peptide Chain Initiation, Translational/genetics ; Protein Biosynthesis/*genetics ; RNA/*chemistry/*genetics/metabolism ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Viral/chemistry/genetics/metabolism ; Ribosomes/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-07-23
    Description: Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane emissions from paddies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, J -- Hu, C -- Yan, X -- Jin, Y -- Chen, Z -- Guan, Q -- Wang, Y -- Zhong, D -- Jansson, C -- Wang, F -- Schnurer, A -- Sun, C -- England -- Nature. 2015 Jul 30;523(7562):602-6. doi: 10.1038/nature14673. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China [2] Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden. ; Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden. ; 1] Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden [2] Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China. ; Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China. ; The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, PO Box 999, K8-93 Richland, Washington 99352, USA. ; Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200336" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/methods/trends ; Atmosphere/chemistry ; Biomass ; Carbon Cycle ; China ; Conservation of Natural Resources/methods ; Food Supply/methods ; Genotype ; Global Warming/prevention & control ; Greenhouse Effect/*prevention & control ; Hordeum/*genetics ; Methane/biosynthesis/*metabolism ; Molecular Sequence Data ; Oryza/genetics/growth & development/*metabolism ; Phenotype ; Photosynthesis ; Plant Components, Aerial/metabolism ; Plant Proteins/genetics/*metabolism ; Plant Roots/metabolism ; Plants, Genetically Modified ; Rhizosphere ; Seeds/metabolism ; Starch/biosynthesis/*metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-11-03
    Description: Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-pi interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mullins, Elwood A -- Shi, Rongxin -- Parsons, Zachary D -- Yuen, Philip K -- David, Sheila S -- Igarashi, Yasuhiro -- Eichman, Brandt F -- R01 ES019625/ES/NIEHS NIH HHS/ -- R01CA067985/CA/NCI NIH HHS/ -- R01ES019625/ES/NIEHS NIH HHS/ -- S10RR026915/RR/NCRR NIH HHS/ -- T32 ES007028/ES/NIEHS NIH HHS/ -- T32ES07028/ES/NIEHS NIH HHS/ -- England -- Nature. 2015 Nov 12;527(7577):254-8. doi: 10.1038/nature15728. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA. ; Department of Chemistry, University of California, Davis, California 95616, USA. ; Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524531" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus cereus/*enzymology ; Base Pairing ; *Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA Adducts/*chemistry/*metabolism ; DNA Damage ; DNA Glycosylases/*chemistry/*metabolism ; *DNA Repair ; Indoles ; Models, Molecular ; Pyrroles
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-04-10
    Description: Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 A resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanabe, Hiroaki -- Fujii, Yoshifumi -- Okada-Iwabu, Miki -- Iwabu, Masato -- Nakamura, Yoshihiro -- Hosaka, Toshiaki -- Motoyama, Kanna -- Ikeda, Mariko -- Wakiyama, Motoaki -- Terada, Takaho -- Ohsawa, Noboru -- Hato, Masakatsu -- Ogasawara, Satoshi -- Hino, Tomoya -- Murata, Takeshi -- Iwata, So -- Hirata, Kunio -- Kawano, Yoshiaki -- Yamamoto, Masaki -- Kimura-Someya, Tomomi -- Shirouzu, Mikako -- Yamauchi, Toshimasa -- Kadowaki, Takashi -- Yokoyama, Shigeyuki -- 062164/Z/00/Z/Wellcome Trust/United Kingdom -- 089809/Wellcome Trust/United Kingdom -- BB/G02325/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Apr 16;520(7547):312-6. doi: 10.1038/nature14301. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [4] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan [4] Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage, Chiba 263-8522, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan [4] Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK [5] Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK [6] RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan. ; RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855295" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Histidine/chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Receptors, Adiponectin/*chemistry/metabolism ; Structure-Activity Relationship ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-07-15
    Description: The E3 ubiquitin ligase PARKIN (encoded by PARK2) and the protein kinase PINK1 (encoded by PARK6) are mutated in autosomal-recessive juvenile Parkinsonism (AR-JP) and work together in the disposal of damaged mitochondria by mitophagy. PINK1 is stabilized on the outside of depolarized mitochondria and phosphorylates polyubiquitin as well as the PARKIN ubiquitin-like (Ubl) domain. These phosphorylation events lead to PARKIN recruitment to mitochondria, and activation by an unknown allosteric mechanism. Here we present the crystal structure of Pediculus humanus PARKIN in complex with Ser65-phosphorylated ubiquitin (phosphoUb), revealing the molecular basis for PARKIN recruitment and activation. The phosphoUb binding site on PARKIN comprises a conserved phosphate pocket and harbours residues mutated in patients with AR-JP. PhosphoUb binding leads to straightening of a helix in the RING1 domain, and the resulting conformational changes release the Ubl domain from the PARKIN core; this activates PARKIN. Moreover, phosphoUb-mediated Ubl release enhances Ubl phosphorylation by PINK1, leading to conformational changes within the Ubl domain and stabilization of an open, active conformation of PARKIN. We redefine the role of the Ubl domain not only as an inhibitory but also as an activating element that is restrained in inactive PARKIN and released by phosphoUb. Our work opens up new avenues to identify small-molecule PARKIN activators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wauer, Tobias -- Simicek, Michal -- Schubert, Alexander -- Komander, David -- U105192732/Medical Research Council/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):370-4. doi: 10.1038/nature14879. Epub 2015 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26161729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites/genetics ; Conserved Sequence/genetics ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Models, Molecular ; Mutation/genetics ; Parkinsonian Disorders/genetics ; Pediculus/*chemistry ; Phosphates/metabolism ; Phosphoproteins/chemistry/metabolism ; Phosphorylation ; Protein Binding ; Protein Kinases/metabolism ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Ubiquitin/*chemistry/*metabolism ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-02-03
    Description: The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 A resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe-Cu distance of 4.4 A. While the combination of metals is reminiscent of respiratory haem-copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due to photoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hermann, Bianca -- Kern, Melanie -- La Pietra, Luigi -- Simon, Jorg -- Einsle, Oliver -- England -- Nature. 2015 Apr 30;520(7549):706-9. doi: 10.1038/nature14109. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl Biochemie, Institut fur Biochemie, Albert-Ludwigs-Universitat Freiburg, Albertstrasse 21, 79104 Freiburg, Germany. ; Microbial Energy Conversion &Biotechnology, Department of Biology, Technische Universitat Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany. ; 1] Lehrstuhl Biochemie, Institut fur Biochemie, Albert-Ludwigs-Universitat Freiburg, Albertstrasse 21, 79104 Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, Schanzlestrasse 1, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642962" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/isolation & purification/metabolism ; Biocatalysis ; Catalytic Domain ; Copper/*metabolism ; Crystallography, X-Ray ; Cysteine/analogs & derivatives/metabolism ; Heme/*analogs & derivatives/metabolism ; Models, Molecular ; Oxidation-Reduction ; Oxidoreductases Acting on Sulfur Group Donors/*chemistry/isolation & ; purification/metabolism ; Sulfites/metabolism ; Sulfur Dioxide/metabolism ; Wolinella/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-10-04
    Description: Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617611/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617611/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudmant, Peter H -- Rausch, Tobias -- Gardner, Eugene J -- Handsaker, Robert E -- Abyzov, Alexej -- Huddleston, John -- Zhang, Yan -- Ye, Kai -- Jun, Goo -- Hsi-Yang Fritz, Markus -- Konkel, Miriam K -- Malhotra, Ankit -- Stutz, Adrian M -- Shi, Xinghua -- Paolo Casale, Francesco -- Chen, Jieming -- Hormozdiari, Fereydoun -- Dayama, Gargi -- Chen, Ken -- Malig, Maika -- Chaisson, Mark J P -- Walter, Klaudia -- Meiers, Sascha -- Kashin, Seva -- Garrison, Erik -- Auton, Adam -- Lam, Hugo Y K -- Jasmine Mu, Xinmeng -- Alkan, Can -- Antaki, Danny -- Bae, Taejeong -- Cerveira, Eliza -- Chines, Peter -- Chong, Zechen -- Clarke, Laura -- Dal, Elif -- Ding, Li -- Emery, Sarah -- Fan, Xian -- Gujral, Madhusudan -- Kahveci, Fatma -- Kidd, Jeffrey M -- Kong, Yu -- Lameijer, Eric-Wubbo -- McCarthy, Shane -- Flicek, Paul -- Gibbs, Richard A -- Marth, Gabor -- Mason, Christopher E -- Menelaou, Androniki -- Muzny, Donna M -- Nelson, Bradley J -- Noor, Amina -- Parrish, Nicholas F -- Pendleton, Matthew -- Quitadamo, Andrew -- Raeder, Benjamin -- Schadt, Eric E -- Romanovitch, Mallory -- Schlattl, Andreas -- Sebra, Robert -- Shabalin, Andrey A -- Untergasser, Andreas -- Walker, Jerilyn A -- Wang, Min -- Yu, Fuli -- Zhang, Chengsheng -- Zhang, Jing -- Zheng-Bradley, Xiangqun -- Zhou, Wanding -- Zichner, Thomas -- Sebat, Jonathan -- Batzer, Mark A -- McCarroll, Steven A -- 1000 Genomes Project Consortium -- Mills, Ryan E -- Gerstein, Mark B -- Bashir, Ali -- Stegle, Oliver -- Devine, Scott E -- Lee, Charles -- Eichler, Evan E -- Korbel, Jan O -- P01HG007497/HG/NHGRI NIH HHS/ -- R01 CA166661/CA/NCI NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01 HG002898/HG/NHGRI NIH HHS/ -- R01CA166661/CA/NCI NIH HHS/ -- R01GM59290/GM/NIGMS NIH HHS/ -- R01HG002898/HG/NHGRI NIH HHS/ -- R01HG007068/HG/NHGRI NIH HHS/ -- RR029676-01/RR/NCRR NIH HHS/ -- RR19895/RR/NCRR NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U41 HG007497/HG/NHGRI NIH HHS/ -- U41HG007497/HG/NHGRI NIH HHS/ -- WT085532/Z/08/Z/Wellcome Trust/United Kingdom -- WT104947/Z/14/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Oct 1;526(7571):75-81. doi: 10.1038/nature15394.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, Washington 98195-5065, USA. ; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Institute for Genome Sciences, University of Maryland School of Medicine, 801 W Baltimore Street, Baltimore, Maryland 21201, USA. ; Department of Genetics, Harvard Medical School, Boston, 25 Shattuck Street, Boston, Massachusetts 02115, USA. ; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA. ; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA. ; Program in Computational Biology and Bioinformatics, Yale University, BASS 432 &437, 266 Whitney Avenue, New Haven, Connecticut 06520, USA. ; Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA. ; The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. ; Department of Genetics, Washington University in St Louis, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. ; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, USA. ; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, 1200 Pressler St., Houston, Texas 77030, USA. ; Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA. ; The Jackson Laboratory for Genomic Medicine, 10 Discovery 263 Farmington Avenue, Farmington, Connecticut 06030, USA. ; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, USA. ; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA. ; Department of Computational Medicine &Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, Michigan 48109, USA. ; The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ; Department of Biology, Boston College, 355 Higgins Hall, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, USA. ; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, New York 10461, USA. ; Bina Technologies, Roche Sequencing, 555 Twin Dolphin Drive, Redwood City, California 94065, USA. ; Cancer Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey. ; University of California San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA. ; Department of Medicine, Washington University in St Louis, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. ; Siteman Cancer Center, 660 South Euclid Avenue, St Louis, Missouri 63110, USA. ; Department of Human Genetics, University of Michigan, 1241 Catherine Street, Ann Arbor, Michigan 48109, USA. ; Molecular Epidemiology, Leiden University Medical Center, Leiden 2300RA, The Netherlands. ; Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA. ; The Department of Physiology and Biophysics and the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, 1305 York Avenue, Weill Cornell Medical College, New York, New York 10065, USA. ; The Feil Family Brain and Mind Research Institute, 413 East 69th St, Weill Cornell Medical College, New York, New York 10065, USA. ; University of Oxford, 1 South Parks Road, Oxford OX3 9DS, UK. ; Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands. ; Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York School of Natural Sciences, 1428 Madison Avenue, New York, New York 10029, USA. ; Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. ; Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, McGuire Hall, Richmond, Virginia 23298-0581, USA. ; Zentrum fur Molekulare Biologie, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany. ; Department of Computer Science, Yale University, 51 Prospect Street, New Haven, Connecticut 06511, USA. ; Department of Graduate Studies - Life Sciences, Ewha Womans University, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, South Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26432246" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Genetic Predisposition to Disease ; Genetic Variation/*genetics ; Genetics, Medical ; Genetics, Population ; Genome, Human/*genetics ; Genome-Wide Association Study ; Genomics ; Genotype ; Haplotypes/genetics ; Homozygote ; Humans ; Molecular Sequence Data ; Mutation Rate ; *Physical Chromosome Mapping ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/genetics ; Sequence Analysis, DNA ; Sequence Deletion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-07-03
    Description: Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holleley, Clare E -- O'Meally, Denis -- Sarre, Stephen D -- Marshall Graves, Jennifer A -- Ezaz, Tariq -- Matsubara, Kazumi -- Azad, Bhumika -- Zhang, Xiuwen -- Georges, Arthur -- England -- Nature. 2015 Jul 2;523(7558):79-82. doi: 10.1038/nature14574.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia. ; 1] Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia [2] School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26135451" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; Australia ; Female ; Male ; Molecular Sequence Data ; Reptiles ; Sex Chromosomes/genetics ; Sex Determination Processes/genetics/*physiology ; Sex Ratio ; *Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-09-04
    Description: Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mou, Yun -- Yu, Jiun-Yann -- Wannier, Timothy M -- Guo, Chin-Lin -- Mayo, Stephen L -- England -- Nature. 2015 Sep 10;525(7568):230-3. doi: 10.1038/nature14874. Epub 2015 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26331548" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Computer Simulation ; Crystallization ; Crystallography, X-Ray ; DNA/*chemistry ; *Drug Design ; Homeodomain Proteins/chemistry/genetics/metabolism ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; Models, Molecular ; Nanotechnology ; Nanowires/*chemistry ; Protein Multimerization ; Transcription Factors/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-09-17
    Description: Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGlynn, Shawn E -- Chadwick, Grayson L -- Kempes, Christopher P -- Orphan, Victoria J -- England -- Nature. 2015 Oct 22;526(7574):531-5. doi: 10.1038/nature15512. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA. ; Exobiology Branch, National Aeronautics and Space Administration Ames Research Center, Moffett Field, California 94035, USA. ; Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, USA. ; SETI Institute, Mountain View, California 94034, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375009" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Archaea/cytology/*metabolism ; Cytochromes/genetics/metabolism/ultrastructure ; Deltaproteobacteria/cytology/*metabolism ; Diffusion ; Electron Transport ; Genome, Archaeal/genetics ; Genome, Bacterial/genetics ; Heme/metabolism ; Methane/*metabolism ; Microbiota/physiology ; Models, Biological ; Molecular Sequence Data ; *Single-Cell Analysis ; Sulfates/metabolism ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-05-29
    Description: Interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape ecosystem diversity. In marine ecosystems, these interactions are difficult to study partly because the major photosynthetic organisms are microscopic, unicellular phytoplankton. Coastal phytoplankton communities are dominated by diatoms, which generate approximately 40% of marine primary production and form the base of many marine food webs. Diatoms co-occur with specific bacterial taxa, but the mechanisms of potential interactions are mostly unknown. Here we tease apart a bacterial consortium associated with a globally distributed diatom and find that a Sulfitobacter species promotes diatom cell division via secretion of the hormone indole-3-acetic acid, synthesized by the bacterium using both diatom-secreted and endogenous tryptophan. Indole-3-acetic acid and tryptophan serve as signalling molecules that are part of a complex exchange of nutrients, including diatom-excreted organosulfur molecules and bacterial-excreted ammonia. The potential prevalence of this mode of signalling in the oceans is corroborated by metabolite and metatranscriptome analyses that show widespread indole-3-acetic acid production by Sulfitobacter-related bacteria, particularly in coastal environments. Our study expands on the emerging recognition that marine microbial communities are part of tightly connected networks by providing evidence that these interactions are mediated through production and exchange of infochemicals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amin, S A -- Hmelo, L R -- van Tol, H M -- Durham, B P -- Carlson, L T -- Heal, K R -- Morales, R L -- Berthiaume, C T -- Parker, M S -- Djunaedi, B -- Ingalls, A E -- Parsek, M R -- Moran, M A -- Armbrust, E V -- England -- Nature. 2015 Jun 4;522(7554):98-101. doi: 10.1038/nature14488. Epub 2015 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Oceanography, University of Washington, Seattle, Washington 98195, USA [2] Chemistry Faculty, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates. ; Department of Microbiology, University of Washington, Seattle, Washington 98195, USA. ; School of Oceanography, University of Washington, Seattle, Washington 98195, USA. ; Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA. ; Department of Marine Science, University of Georgia, Athens, Georgia 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26017307" target="_blank"〉PubMed〈/a〉
    Keywords: Diatoms/cytology/genetics/*metabolism/*microbiology ; *Ecosystem ; Indoleacetic Acids/*metabolism ; Metabolomics ; Molecular Sequence Data ; Oceans and Seas ; Photosynthesis ; Phytoplankton/cytology/genetics/*metabolism/*microbiology ; Rhodobacteraceae/genetics/*metabolism ; Seawater/chemistry ; Transcriptome ; Tryptophan/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-04-16
    Description: Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras(V12)/scrib(-/-) tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersen, Ditte S -- Colombani, Julien -- Palmerini, Valentina -- Chakrabandhu, Krittalak -- Boone, Emilie -- Rothlisberger, Michael -- Toggweiler, Janine -- Basler, Konrad -- Mapelli, Marina -- Hueber, Anne-Odile -- Leopold, Pierre -- England -- Nature. 2015 Jun 25;522(7557):482-6. doi: 10.1038/nature14298. Epub 2015 Apr 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [2] CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [3] INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [4] Genetics and Physiology of Growth laboratory, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France. ; Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy. ; 1] University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [2] CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [3] INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [4] Death receptors Signalling and Cancer Therapy laboratory, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France. ; Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25874673" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis/genetics ; Cell Adhesion Molecules/metabolism ; Cell Division/genetics ; *Cell Polarity/genetics ; Cell Transformation, Neoplastic/genetics ; Disease Models, Animal ; Drosophila Proteins/chemistry/deficiency/genetics/*metabolism ; Drosophila melanogaster/*cytology/enzymology/genetics/*metabolism ; Female ; Humans ; JNK Mitogen-Activated Protein Kinases/metabolism ; MAP Kinase Signaling System ; Male ; Matrix Metalloproteinase 1/metabolism ; Membrane Proteins/chemistry/deficiency/genetics/*metabolism ; Molecular Sequence Data ; Neoplasm Invasiveness/genetics ; Neoplasms/enzymology/genetics/*metabolism/*pathology ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-08-27
    Description: Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a beta-strand from the island domain of PSKR, forming an anti-beta-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jizong -- Li, Hongju -- Han, Zhifu -- Zhang, Heqiao -- Wang, Tong -- Lin, Guangzhong -- Chang, Junbiao -- Yang, Weicai -- Chai, Jijie -- England -- Nature. 2015 Sep 10;525(7568):265-8. doi: 10.1038/nature14858. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308901" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Arabidopsis/*chemistry ; Arabidopsis Proteins/*agonists/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Models, Molecular ; Mutation/genetics ; Peptide Hormones/chemistry/metabolism/pharmacology ; Plant Growth Regulators/*chemistry/metabolism/*pharmacology ; Plant Proteins/chemistry/metabolism/pharmacology ; Protein Binding ; Protein Kinases/chemistry/metabolism ; Protein Multimerization/drug effects ; Protein Stability ; Protein Structure, Secondary/drug effects ; Protein Structure, Tertiary/drug effects ; Protein-Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Cell Surface/*agonists/*chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-03-13
    Description: Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3-7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Tommy Tsan-Yuk -- Zhou, Boping -- Wang, Jia -- Chai, Yujuan -- Shen, Yongyi -- Chen, Xinchun -- Ma, Chi -- Hong, Wenshan -- Chen, Yin -- Zhang, Yanjun -- Duan, Lian -- Chen, Peiwen -- Jiang, Junfei -- Zhang, Yu -- Li, Lifeng -- Poon, Leo Lit Man -- Webby, Richard J -- Smith, David K -- Leung, Gabriel M -- Peiris, Joseph S M -- Holmes, Edward C -- Guan, Yi -- Zhu, Huachen -- HHSN272201400006C/PHS HHS/ -- England -- Nature. 2015 Jun 4;522(7554):102-5. doi: 10.1038/nature14348. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [3] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China. ; State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China. ; 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China. ; Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China. ; Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China. ; 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China. ; 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China. ; Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China. ; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chickens/*virology ; China/epidemiology ; Ecosystem ; *Evolution, Molecular ; Genotype ; Humans ; Influenza A Virus, H7N9 Subtype/classification/*genetics/*isolation & ; purification ; Influenza in Birds/*epidemiology/transmission/*virology ; Influenza, Human/epidemiology/transmission/virology ; Molecular Sequence Data ; Reassortant Viruses/genetics/isolation & purification ; Zoonoses/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-07-01
    Description: DNA methylation at selective cytosine residues (5-methylcytosine (5mC)) and their removal by TET-mediated DNA demethylation are critical for setting up pluripotent states in early embryonic development. TET enzymes successively convert 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), with 5fC and 5caC subject to removal by thymine DNA glycosylase (TDG) in conjunction with base excision repair. Early reports indicate that 5fC and 5caC could be stably detected on enhancers, promoters and gene bodies, with distinct effects on gene expression, but the mechanisms have remained elusive. Here we determined the X-ray crystal structure of yeast elongating RNA polymerase II (Pol II) in complex with a DNA template containing oxidized 5mCs, revealing specific hydrogen bonds between the 5-carboxyl group of 5caC and the conserved epi-DNA recognition loop in the polymerase. This causes a positional shift for incoming nucleoside 5'-triphosphate (NTP), thus compromising nucleotide addition. To test the implication of this structural insight in vivo, we determined the global effect of increased 5fC/5caC levels on transcription, finding that such DNA modifications indeed retarded Pol II elongation on gene bodies. These results demonstrate the functional impact of oxidized 5mCs on gene expression and suggest a novel role for Pol II as a specific and direct epigenetic sensor during transcription elongation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521995/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521995/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Lanfeng -- Zhou, Yu -- Xu, Liang -- Xiao, Rui -- Lu, Xingyu -- Chen, Liang -- Chong, Jenny -- Li, Hairi -- He, Chuan -- Fu, Xiang-Dong -- Wang, Dong -- GM052872/GM/NIGMS NIH HHS/ -- GM102362/GM/NIGMS NIH HHS/ -- HG004659/HG/NHGRI NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- R01 GM052872/GM/NIGMS NIH HHS/ -- R01 GM102362/GM/NIGMS NIH HHS/ -- R01 HG004659/HG/NHGRI NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 30;523(7562):621-5. doi: 10.1038/nature14482. Epub 2015 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26123024" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Cytosine/*analogs & derivatives/chemistry/metabolism ; DNA Methylation ; DNA Repair ; Epigenesis, Genetic ; Hydrogen Bonding ; Kinetics ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae/*enzymology/genetics/metabolism ; Substrate Specificity ; Templates, Genetic ; Thymine DNA Glycosylase/metabolism ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-02-18
    Description: Darwin's finches, inhabiting the Galapagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives. Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis), a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and, thereby, to an expanded utilization of food resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamichhaney, Sangeet -- Berglund, Jonas -- Almen, Markus Sallman -- Maqbool, Khurram -- Grabherr, Manfred -- Martinez-Barrio, Alvaro -- Promerova, Marta -- Rubin, Carl-Johan -- Wang, Chao -- Zamani, Neda -- Grant, B Rosemary -- Grant, Peter R -- Webster, Matthew T -- Andersson, Leif -- England -- Nature. 2015 Feb 19;518(7539):371-5. doi: 10.1038/nature14181. Epub 2015 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden. ; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden. ; 1] Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden [2] Department of Plant Physiology, Umea University, SE-901 87 Umea, Sweden. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. ; 1] Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden [2] Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden [3] Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686609" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics/metabolism ; Beak/*anatomy & histology ; Ecuador ; *Evolution, Molecular ; Female ; Finches/*anatomy & histology/classification/embryology/*genetics ; Gene Flow ; Genome/genetics ; Haplotypes/genetics ; Hybridization, Genetic ; Indian Ocean Islands ; Male ; Molecular Sequence Data ; Phylogeny ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-09-01
    Description: In all domains of life, DNA synthesis occurs bidirectionally from replication origins. Despite variable rates of replication fork progression, fork convergence often occurs at specific sites. Escherichia coli sets a 'replication fork trap' that allows the first arriving fork to enter but not to leave the terminus region. The trap is set by oppositely oriented Tus-bound Ter sites that block forks on approach from only one direction. However, the efficiency of fork blockage by Tus-Ter does not exceed 50% in vivo despite its apparent ability to almost permanently arrest replication forks in vitro. Here we use data from single-molecule DNA replication assays and structural studies to show that both polarity and fork-arrest efficiency are determined by a competition between rates of Tus displacement and rearrangement of Tus-Ter interactions that leads to blockage of slower moving replisomes by two distinct mechanisms. To our knowledge this is the first example where intrinsic differences in rates of individual replisomes have different biological outcomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elshenawy, Mohamed M -- Jergic, Slobodan -- Xu, Zhi-Qiang -- Sobhy, Mohamed A -- Takahashi, Masateru -- Oakley, Aaron J -- Dixon, Nicholas E -- Hamdan, Samir M -- England -- Nature. 2015 Sep 17;525(7569):394-8. doi: 10.1038/nature14866. Epub 2015 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia. ; Centre for Medical &Molecular Bioscience, Illawarra Health &Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26322585" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding, Competitive ; Chromosomes, Bacterial/genetics/metabolism ; Crystallography, X-Ray ; *DNA Replication ; DNA-Directed DNA Polymerase/chemistry/*metabolism ; Escherichia coli/*genetics/metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Kinetics ; Models, Biological ; Models, Molecular ; Movement ; Multienzyme Complexes/chemistry/*metabolism ; Protein Conformation ; Regulatory Sequences, Nucleic Acid/*genetics ; Surface Plasmon Resonance ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-08-13
    Description: Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merckx, Vincent S F T -- Hendriks, Kasper P -- Beentjes, Kevin K -- Mennes, Constantijn B -- Becking, Leontine E -- Peijnenburg, Katja T C A -- Afendy, Aqilah -- Arumugam, Nivaarani -- de Boer, Hugo -- Biun, Alim -- Buang, Matsain M -- Chen, Ping-Ping -- Chung, Arthur Y C -- Dow, Rory -- Feijen, Frida A A -- Feijen, Hans -- Feijen-van Soest, Cobi -- Geml, Jozsef -- Geurts, Rene -- Gravendeel, Barbara -- Hovenkamp, Peter -- Imbun, Paul -- Ipor, Isa -- Janssens, Steven B -- Jocque, Merlijn -- Kappes, Heike -- Khoo, Eyen -- Koomen, Peter -- Lens, Frederic -- Majapun, Richard J -- Morgado, Luis N -- Neupane, Suman -- Nieser, Nico -- Pereira, Joan T -- Rahman, Homathevi -- Sabran, Suzana -- Sawang, Anati -- Schwallier, Rachel M -- Shim, Phyau-Soon -- Smit, Harry -- Sol, Nicolien -- Spait, Maipul -- Stech, Michael -- Stokvis, Frank -- Sugau, John B -- Suleiman, Monica -- Sumail, Sukaibin -- Thomas, Daniel C -- van Tol, Jan -- Tuh, Fred Y Y -- Yahya, Bakhtiar E -- Nais, Jamili -- Repin, Rimi -- Lakim, Maklarin -- Schilthuizen, Menno -- England -- Nature. 2015 Aug 20;524(7565):347-50. doi: 10.1038/nature14949. Epub 2015 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands. ; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. ; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands. ; Wageningen University &Research centre, Marine Animal Ecology Group, PO Box 338, 6700 AH Wageningen, The Netherlands. ; Department of Environmental Science, Policy, &Management, University of California Berkeley, 130 Mulford Hall #3114, Berkeley, California 94720, USA. ; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands. ; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia. ; Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, Locked bag No.100, 17600 Jeli, Kelantan Darul Naim, Malaysia. ; Department of Organismal Biology, Uppsala University, Norbyvagen 18D, 75236 Uppsala, Sweden. ; Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway. ; Sabah Parks, Lot 45 &46, Level 1-5, Blok H, KK Times Square, 88806 Kota Kinabalu, Sabah, Malaysia. ; Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90175 Sandakan, Sabah, Malaysia. ; Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, 6700AP Wageningen, The Netherlands. ; University of Applied Sciences Leiden, Zernikedreef 11, 2333 CK Leiden, The Netherlands. ; Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia. ; Botanic Garden Meise, Nieuwelaan 38, 1860 Meise, Belgium. ; Royal Belgian Institute of Natural Sciences, Aquatic and Terrestrial Ecology, Vautierstraat 29, 1000 Brussels, Belgium. ; Rutgers, The State University of New Jersey, Department of Biological Sciences, 195 University Avenue, Boyden Hall, Newark, New Jersey 07102, USA. ; Zoological Institute, University of Cologne, Zulpicher Strasse 47b, D-50674 Cologne, Germany. ; Natuurmuseum Fryslan, Schoenmakersperk 2, 8911 EM Leeuwarden, The Netherlands. ; EEB Department, University of Connecticut, 75 N. Eagleville Road, Storrs, Connecticut 06269-3043, USA. ; School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China. ; Singapore Botanic Gardens, 1 Cluny Road, 259569 Singapore, Republic of Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26266979" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; Animal Migration ; Animals ; *Biota ; Climate Change ; DNA Barcoding, Taxonomic ; Extinction, Biological ; Introduced Species/*statistics & numerical data ; Malaysia ; Molecular Sequence Data ; *Phylogeny ; *Phylogeography ; Plants/classification/genetics ; Time Factors ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-12-23
    Description: Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here we present the crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca(2+). Ca(2+) binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain, the conformational changes of which are coupled to the pair of inner helices from the second 6-TM domains. Luminal Ca(2+) or Ba(2+) can modulate voltage activation by stabilizing the second voltage-sensing domain in the resting state and shift voltage activation towards more positive potentials. Our Ba(2+)-bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841471/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841471/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Jiangtao -- Zeng, Weizhong -- Chen, Qingfeng -- Lee, Changkeun -- Chen, Liping -- Yang, Yi -- Cang, Chunlei -- Ren, Dejian -- Jiang, Youxing -- GM079179/GM/NIGMS NIH HHS/ -- NS055293/NS/NINDS NIH HHS/ -- NS074257/NS/NINDS NIH HHS/ -- R01 GM079179/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 10;531(7593):196-201. doi: 10.1038/nature16446. Epub 2015 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA. ; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA. ; Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26689363" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*chemistry ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Barium/metabolism ; Binding Sites ; Calcium/metabolism/pharmacology ; Calcium Channels/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; EF Hand Motifs ; Electric Conductivity ; HEK293 Cells ; Humans ; Ion Channel Gating/drug effects ; Ion Transport/drug effects ; Membrane Potentials/drug effects ; Models, Molecular ; Molecular Sequence Data ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-04-29
    Description: Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 A resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493928/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493928/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bharat, Tanmay A M -- Murshudov, Garib N -- Sachse, Carsten -- Lowe, Jan -- 095514/Wellcome Trust/United Kingdom -- 095514/Z/11/Z/Wellcome Trust/United Kingdom -- MC-UP-A025-1012/Medical Research Council/United Kingdom -- MC_U105184326/Medical Research Council/United Kingdom -- U105184326/Medical Research Council/United Kingdom -- England -- Nature. 2015 Jul 2;523(7558):106-10. doi: 10.1038/nature14356. Epub 2015 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25915019" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/metabolism/*ultrastructure ; Adenylyl Imidodiphosphate/metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Escherichia coli/*chemistry/genetics/ultrastructure ; Escherichia coli Proteins/*chemistry/metabolism/*ultrastructure ; *Models, Molecular ; Plasmids/*metabolism ; Protein Binding ; Protein Structure, Quaternary ; *Spindle Apparatus/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-07-23
    Description: G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a approximately 20 degrees rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Yanyong -- Zhou, X Edward -- Gao, Xiang -- He, Yuanzheng -- Liu, Wei -- Ishchenko, Andrii -- Barty, Anton -- White, Thomas A -- Yefanov, Oleksandr -- Han, Gye Won -- Xu, Qingping -- de Waal, Parker W -- Ke, Jiyuan -- Tan, M H Eileen -- Zhang, Chenghai -- Moeller, Arne -- West, Graham M -- Pascal, Bruce D -- Van Eps, Ned -- Caro, Lydia N -- Vishnivetskiy, Sergey A -- Lee, Regina J -- Suino-Powell, Kelly M -- Gu, Xin -- Pal, Kuntal -- Ma, Jinming -- Zhi, Xiaoyong -- Boutet, Sebastien -- Williams, Garth J -- Messerschmidt, Marc -- Gati, Cornelius -- Zatsepin, Nadia A -- Wang, Dingjie -- James, Daniel -- Basu, Shibom -- Roy-Chowdhury, Shatabdi -- Conrad, Chelsie E -- Coe, Jesse -- Liu, Haiguang -- Lisova, Stella -- Kupitz, Christopher -- Grotjohann, Ingo -- Fromme, Raimund -- Jiang, Yi -- Tan, Minjia -- Yang, Huaiyu -- Li, Jun -- Wang, Meitian -- Zheng, Zhong -- Li, Dianfan -- Howe, Nicole -- Zhao, Yingming -- Standfuss, Jorg -- Diederichs, Kay -- Dong, Yuhui -- Potter, Clinton S -- Carragher, Bridget -- Caffrey, Martin -- Jiang, Hualiang -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Ernst, Oliver P -- Katritch, Vsevolod -- Gurevich, Vsevolod V -- Griffin, Patrick R -- Hubbell, Wayne L -- Stevens, Raymond C -- Cherezov, Vadim -- Melcher, Karsten -- Xu, H Eric -- DK071662/DK/NIDDK NIH HHS/ -- EY005216/EY/NEI NIH HHS/ -- EY011500/EY/NEI NIH HHS/ -- GM073197/GM/NIGMS NIH HHS/ -- GM077561/GM/NIGMS NIH HHS/ -- GM095583/GM/NIGMS NIH HHS/ -- GM097463/GM/NIGMS NIH HHS/ -- GM102545/GM/NIGMS NIH HHS/ -- GM103310/GM/NIGMS NIH HHS/ -- GM104212/GM/NIGMS NIH HHS/ -- GM108635/GM/NIGMS NIH HHS/ -- P30EY000331/EY/NEI NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 DK066202/DK/NIDDK NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 EY011500/EY/NEI NIH HHS/ -- R01 GM087413/GM/NIGMS NIH HHS/ -- R01 GM109955/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA. ; Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany. ; Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; The National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, New York 10027, USA. ; Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Beijing Computational Science Research Center, Haidian District, Beijing 10084, China. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA. ; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. ; 1] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA [2] Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA. ; Laboratory of Biomolecular Research at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biology, Universitat Konstanz, 78457 Konstanz, Germany. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; 1] Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany [2] Centre for Ultrafast Imaging, 22761 Hamburg, Germany. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [2] Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200343" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestin/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Humans ; Lasers ; Mice ; Models, Molecular ; Multiprotein Complexes/biosynthesis/chemistry/metabolism ; Protein Binding ; Reproducibility of Results ; Rhodopsin/*chemistry/*metabolism ; Signal Transduction ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-09-30
    Description: Influenza A viruses pose a major public health threat by causing seasonal epidemics and sporadic pandemics. Their epidemiological success relies on airborne transmission from person to person; however, the viral properties governing airborne transmission of influenza A viruses are complex. Influenza A virus infection is mediated via binding of the viral haemagglutinin (HA) to terminally attached alpha2,3 or alpha2,6 sialic acids on cell surface glycoproteins. Human influenza A viruses preferentially bind alpha2,6-linked sialic acids whereas avian influenza A viruses bind alpha2,3-linked sialic acids on complex glycans on airway epithelial cells. Historically, influenza A viruses with preferential association with alpha2,3-linked sialic acids have not been transmitted efficiently by the airborne route in ferrets. Here we observe efficient airborne transmission of a 2009 pandemic H1N1 (H1N1pdm) virus (A/California/07/2009) engineered to preferentially bind alpha2,3-linked sialic acids. Airborne transmission was associated with rapid selection of virus with a change at a single HA site that conferred binding to long-chain alpha2,6-linked sialic acids, without loss of alpha2,3-linked sialic acid binding. The transmissible virus emerged in experimentally infected ferrets within 24 hours after infection and was remarkably enriched in the soft palate, where long-chain alpha2,6-linked sialic acids predominate on the nasopharyngeal surface. Notably, presence of long-chain alpha2,6-linked sialic acids is conserved in ferret, pig and human soft palate. Using a loss-of-function approach with this one virus, we demonstrate that the ferret soft palate, a tissue not normally sampled in animal models of influenza, rapidly selects for transmissible influenza A viruses with human receptor (alpha2,6-linked sialic acids) preference.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lakdawala, Seema S -- Jayaraman, Akila -- Halpin, Rebecca A -- Lamirande, Elaine W -- Shih, Angela R -- Stockwell, Timothy B -- Lin, Xudong -- Simenauer, Ari -- Hanson, Christopher T -- Vogel, Leatrice -- Paskel, Myeisha -- Minai, Mahnaz -- Moore, Ian -- Orandle, Marlene -- Das, Suman R -- Wentworth, David E -- Sasisekharan, Ram -- Subbarao, Kanta -- HHSN272200900007C/PHS HHS/ -- R01 GM057073/GM/NIGMS NIH HHS/ -- R37 GM057073-13/GM/NIGMS NIH HHS/ -- U19 AI110819/AI/NIAID NIH HHS/ -- U19-AI-110819/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):122-5. doi: 10.1038/nature15379. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Singapore-MIT Alliance for Research and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; J. Craig Venter Institute, Rockville, Maryland 20850, USA. ; Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416728" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological/genetics ; Animals ; Epithelial Cells/metabolism/virology ; Female ; Ferrets/virology ; Hemagglutinin Glycoproteins, Influenza Virus/genetics/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/chemistry/genetics/*physiology ; Male ; Molecular Sequence Data ; Orthomyxoviridae Infections/transmission/virology ; Palate, Soft/chemistry/*metabolism/*virology ; Receptors, Virus/*metabolism ; Respiratory System/cytology/metabolism/virology ; *Selection, Genetic/genetics ; Sialic Acids/chemistry/metabolism ; Swine/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-05-15
    Description: Na(+)/Cl(-)-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine X-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine, a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants d-amphetamine and methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kevin H -- Penmatsa, Aravind -- Gouaux, Eric -- F32 MH093120/MH/NIMH NIH HHS/ -- P50 DA018165/DA/NIDA NIH HHS/ -- P50DA018165/DA/NIDA NIH HHS/ -- R37 MH070039/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 May 21;521(7552):322-7. doi: 10.1038/nature14431. Epub 2015 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. ; 1] Vollum Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA [2] Howard Hughes Medical Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970245" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/chemistry/metabolism ; Binding Sites ; Central Nervous System Stimulants/chemistry/*metabolism ; Chlorides/metabolism ; Cocaine/analogs & derivatives/chemistry/metabolism ; Crystallography, X-Ray ; Dextroamphetamine/chemistry/metabolism ; Dopamine/analogs & derivatives/chemistry/metabolism ; Dopamine Plasma Membrane Transport Proteins/*chemistry/*metabolism ; Drosophila melanogaster/*chemistry ; Ligands ; Methamphetamine/chemistry/metabolism ; Models, Molecular ; Molecular Conformation ; Neurotransmitter Agents/chemistry/*metabolism ; Phenethylamines/metabolism ; Protein Stability ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-12-25
    Description: Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies. Although broadly reactive antibodies against these antigens could be useful as therapeutics and in vaccine design, their identification has proven elusive. Here we report the isolation of human monoclonal antibodies that recognize erythrocytes infected by different P. falciparum isolates and opsonize these cells by binding to members of the RIFIN family. These antibodies acquired broad reactivity through a novel mechanism of insertion of a large DNA fragment between the V and DJ segments. The insert, which is both necessary and sufficient for binding to RIFINs, encodes the entire 98 amino acid collagen-binding domain of LAIR1, an immunoglobulin superfamily inhibitory receptor encoded on chromosome 19. In each of the two donors studied, the antibodies are produced by a single expanded B-cell clone and carry distinct somatic mutations in the LAIR1 domain that abolish binding to collagen and increase binding to infected erythrocytes. These findings illustrate, with a biologically relevant example, a novel mechanism of antibody diversification by interchromosomal DNA transposition and demonstrate the existence of conserved epitopes that may be suitable candidates for the development of a malaria vaccine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Joshua -- Pieper, Kathrin -- Piccoli, Luca -- Abdi, Abdirahman -- Foglierini, Mathilde -- Geiger, Roger -- Tully, Claire Maria -- Jarrossay, David -- Ndungu, Francis Maina -- Wambua, Juliana -- Bejon, Philip -- Fregni, Chiara Silacci -- Fernandez-Rodriguez, Blanca -- Barbieri, Sonia -- Bianchi, Siro -- Marsh, Kevin -- Thathy, Vandana -- Corti, Davide -- Sallusto, Federica -- Bull, Peter -- Lanzavecchia, Antonio -- 077092/Wellcome Trust/United Kingdom -- 084113/Z/07/Z/Wellcome Trust/United Kingdom -- 084378/Z/07/A/Wellcome Trust/United Kingdom -- 084535/Wellcome Trust/United Kingdom -- 084538/Wellcome Trust/United Kingdom -- 092654/Wellcome Trust/United Kingdom -- 092741/Wellcome Trust/United Kingdom -- 099811/Wellcome Trust/United Kingdom -- England -- Nature. 2016 Jan 7;529(7584):105-9. doi: 10.1038/nature16450. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland. ; KEMRI-Wellcome Trust Research Programme, CGMRC, PO Box 230, 80108 Kilifi, Kenya. ; Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK. ; Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland. ; Humabs BioMed SA, 6500 Bellinzona, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700814" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/genetics/*immunology/therapeutic use ; *Antibody Specificity ; Antigenic Variation/*immunology ; Antigens, Protozoan/*immunology ; B-Lymphocytes/cytology/immunology ; Clone Cells/cytology/immunology ; Collagen/immunology/metabolism ; Conserved Sequence/immunology ; DNA Transposable Elements/genetics/immunology ; Epitopes, B-Lymphocyte/chemistry/immunology ; Erythrocytes/immunology/metabolism/parasitology ; Humans ; Kenya ; Malaria/*immunology/parasitology ; Malaria Vaccines/chemistry/immunology ; Membrane Proteins/chemistry/immunology ; Molecular Sequence Data ; Mutagenesis, Insertional/*genetics ; Plasmodium falciparum/*immunology ; Protein Structure, Tertiary/genetics ; Protozoan Proteins/chemistry/immunology ; Receptors, Immunologic/chemistry/genetics/*immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-01-13
    Description: Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies. We recently isolated human antibodies potently neutralizing all four dengue virus serotypes. Here we describe the X-ray structures of four of these broadly neutralizing antibodies in complex with the envelope glycoprotein E from dengue virus serotype 2, revealing that the recognition determinants are at a serotype-invariant site at the E-dimer interface, including the exposed main chain of the E fusion loop and the two conserved glycan chains. This 'E-dimer-dependent epitope' is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell, explaining its conservation across serotypes and highlighting an Achilles' heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouvinski, Alexander -- Guardado-Calvo, Pablo -- Barba-Spaeth, Giovanna -- Duquerroy, Stephane -- Vaney, Marie-Christine -- Kikuti, Carlos M -- Navarro Sanchez, M Erika -- Dejnirattisai, Wanwisa -- Wongwiwat, Wiyada -- Haouz, Ahmed -- Girard-Blanc, Christine -- Petres, Stephane -- Shepard, William E -- Despres, Philippe -- Arenzana-Seisdedos, Fernando -- Dussart, Philippe -- Mongkolsapaya, Juthathip -- Screaton, Gavin R -- Rey, Felix A -- 095541/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2015 Apr 2;520(7545):109-13. doi: 10.1038/nature14130. Epub 2015 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France. ; 1] Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France [3] Universite Paris-Sud, Faculte des Sciences, 91405 Orsay, France. ; Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK. ; Institut Pasteur, Proteopole, CNRS UMR 3528, 75724 Paris Cedex 15, France. ; Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif-sur-Yvette, France. ; Institut Pasteur, Departement de Virologie, Unite des Interactions Moleculaires Flavivirus-Hotes, 75724 Paris Cedex 15, France. ; Institut Pasteur, Departement de Virologie, Unite de Pathogenie Virale, INSERM U1108, 75724 Paris Cedex 15, France. ; Institut Pasteur de Guyane, BP 6010, 97306 Cayenne, French Guiana. ; 1] Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK [2] Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. ; 1] Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France [3] Institut Pasteur, Proteopole, CNRS UMR 3528, 75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25581790" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/*chemistry/genetics/*immunology ; Antibodies, Viral/*chemistry/genetics/*immunology ; Cross Reactions/immunology ; Crystallography, X-Ray ; Dengue Virus/*chemistry/classification/*immunology ; Epitopes/chemistry/immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation/genetics ; Protein Conformation ; Protein Multimerization ; Solubility ; Species Specificity ; Viral Envelope Proteins/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-01-22
    Description: Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing approximately 10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that impart genetic isolation by impeding horizontal gene transfer and now depend on the use of synthetic biochemical building blocks, advancing orthogonal barriers between engineered organisms and the environment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590768/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590768/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rovner, Alexis J -- Haimovich, Adrian D -- Katz, Spencer R -- Li, Zhe -- Grome, Michael W -- Gassaway, Brandon M -- Amiram, Miriam -- Patel, Jaymin R -- Gallagher, Ryan R -- Rinehart, Jesse -- Isaacs, Farren J -- K01 DK089006/DK/NIDDK NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- T32GM07205/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Feb 5;518(7537):89-93. doi: 10.1038/nature14095. Epub 2015 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA [2] Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA. ; 1] Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA [2] Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607356" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*chemical synthesis/chemistry/metabolism/*pharmacology ; Amino Acyl-tRNA Synthetases/genetics/metabolism ; Catalytic Domain/genetics ; Codon/genetics ; Containment of Biohazards/*methods ; Culture Media/chemistry/pharmacology ; Environment ; Escherichia coli/cytology/*drug effects/*genetics/metabolism ; Escherichia coli Proteins/biosynthesis/chemistry/genetics/metabolism ; Evolution, Molecular ; Gene Transfer, Horizontal/genetics ; Genes, Essential/genetics ; Genetic Code/genetics ; Genetic Engineering/methods ; Genome, Bacterial/genetics ; Microbial Viability/*drug effects/genetics ; Molecular Sequence Data ; Organisms, Genetically Modified/genetics/growth & development/metabolism ; Peptide Termination Factors/genetics ; Phenylalanine/chemistry/metabolism ; Protein Multimerization/genetics ; RNA, Transfer/genetics ; Synthetic Biology/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-10-28
    Description: Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662619/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662619/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nunez, James K -- Harrington, Lucas B -- Kranzusch, Philip J -- Engelman, Alan N -- Doudna, Jennifer A -- AI070042/AI/NIAID NIH HHS/ -- R01 AI070042/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 26;527(7579):535-8. doi: 10.1038/nature15760. Epub 2015 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720, USA. ; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA. ; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California 94720, USA. ; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503043" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptive Immunity ; Bacteriophage M13/genetics/immunology ; Base Sequence ; CRISPR-Associated Proteins/chemistry/*metabolism ; Catalytic Domain ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Crystallography, X-Ray ; DNA, Viral/chemistry/*genetics/*immunology/metabolism ; Escherichia coli/enzymology/genetics/immunology/virology ; Integrases/chemistry/metabolism ; Models, Molecular ; *Virus Integration/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-01-23
    Description: Low-valent late transition-metal catalysis has become indispensable to chemical synthesis, but homogeneous high-valent transition-metal catalysis is underdeveloped, mainly owing to the reactivity of high-valent transition-metal complexes and the challenges associated with synthesizing them. Here we report a carbon-carbon bond cleavage at ambient conditions by a Au(i) complex that generates a stable Au(iii) cationic complex. In contrast to the well-established soft and carbophilic Au(i) catalyst, this Au(iii) complex exhibits hard, oxophilic Lewis acidity. For example, we observed catalytic activation of alpha,beta-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(iii)-activated cinnamaldehyde intermediate. The concepts revealed suggest a strategy for accessing high-valent transition-metal catalysis from readily available precursors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304402/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304402/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Chung-Yeh -- Horibe, Takahiro -- Jacobsen, Christian Borch -- Toste, F Dean -- R01 GM073932/GM/NIGMS NIH HHS/ -- S10-RR027172/RR/NCRR NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):449-54. doi: 10.1038/nature14104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25612049" target="_blank"〉PubMed〈/a〉
    Keywords: Acrolein/analogs & derivatives/chemistry ; Aldehydes/chemistry ; Alkadienes/chemistry ; Carbon/chemistry ; Catalysis ; Crystallography, X-Ray ; Gold/*chemistry ; Lewis Acids/chemistry ; Models, Molecular ; Molecular Structure ; Oxidation-Reduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-08-08
    Description: The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1beta) subunits. Here we describe crystal structures for each of mouse HIF-2alpha-ARNT and HIF-1alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2alpha-ARNT and HIF-1alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Dalei -- Potluri, Nalini -- Lu, Jingping -- Kim, Youngchang -- Rastinejad, Fraydoon -- England -- Nature. 2015 Aug 20;524(7565):303-8. doi: 10.1038/nature14883. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolic Disease Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA. ; Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245371" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/chemistry/metabolism ; Animals ; Aryl Hydrocarbon Receptor Nuclear Translocator/*chemistry/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*chemistry/metabolism ; Binding Sites ; CLOCK Proteins/chemistry/metabolism ; Cell Hypoxia/genetics ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit/*chemistry/metabolism ; Mice ; Models, Molecular ; Mutation/genetics ; Neoplasms/genetics ; Phosphorylation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Response Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-01-07
    Description: Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Losee L -- Schneider, Tanja -- Peoples, Aaron J -- Spoering, Amy L -- Engels, Ina -- Conlon, Brian P -- Mueller, Anna -- Schaberle, Till F -- Hughes, Dallas E -- Epstein, Slava -- Jones, Michael -- Lazarides, Linos -- Steadman, Victoria A -- Cohen, Douglas R -- Felix, Cintia R -- Fetterman, K Ashley -- Millett, William P -- Nitti, Anthony G -- Zullo, Ashley M -- Chen, Chao -- Lewis, Kim -- AI085612/AI/NIAID NIH HHS/ -- T-RO1AI085585/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):455-9. doi: 10.1038/nature14098. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA. ; 1] Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany [2] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany. ; Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA. ; 1] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany [2] Institute for Pharmaceutical Biology, University of Bonn, Bonn 53115, Germany. ; Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA. ; Selcia, Ongar, Essex CM5 0GS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25561178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/biosynthesis/chemistry/isolation & ; purification/*pharmacology ; Betaproteobacteria/chemistry/genetics ; Biological Products/chemistry/isolation & purification/pharmacology ; Cell Wall/chemistry/drug effects/metabolism ; Depsipeptides/biosynthesis/chemistry/isolation & purification/*pharmacology ; Disease Models, Animal ; *Drug Resistance, Microbial/genetics ; Female ; Mice ; Microbial Sensitivity Tests ; Microbial Viability/*drug effects ; Molecular Sequence Data ; Multigene Family/genetics ; Mycobacterium tuberculosis/cytology/*drug effects/genetics ; Peptidoglycan/biosynthesis ; Staphylococcal Infections/drug therapy/microbiology ; Staphylococcus aureus/chemistry/cytology/*drug effects/genetics ; Teichoic Acids/biosynthesis ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-03-13
    Description: Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. Here we describe the crystal structure of Drosophila ORC at 3.5 A resolution, showing that the 270 kilodalton initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ (ATPases associated with a variety of cellular activities) folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident. These include highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighbouring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate an approximately 20 A wide channel in the centre of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the mini-chromosome maintenance 2-7 (MCM2-7) complex during replicative helicase loading; however, an observed out-of-plane rotation of more than 90 degrees for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bleichert, Franziska -- Botchan, Michael R -- Berger, James M -- CA R37-30490/CA/NCI NIH HHS/ -- GM071747/GM/NIGMS NIH HHS/ -- R01 GM071747/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 19;519(7543):321-6. doi: 10.1038/nature14239. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762138" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeal Proteins/chemistry/metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Replication ; Drosophila melanogaster/*chemistry ; Eukaryotic Cells/*chemistry ; Minichromosome Maintenance Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Origin Recognition Complex/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...