ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (248)
  • Crystallography, X-Ray  (74)
  • Nature Publishing Group (NPG)  (321)
  • 2010-2014  (321)
  • 2013  (321)
Collection
Publisher
Years
  • 2010-2014  (321)
Year
  • 1
    Publication Date: 2013-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Peter -- England -- Nature. 2013 Feb 21;494(7437):316-7. doi: 10.1038/494316a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23426319" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthropology ; Australia ; Chromosomes, Human, Y/genetics ; Continental Population Groups/genetics ; DNA, Mitochondrial/genetics ; *Dogs/genetics ; Female ; Gene Flow/genetics ; History, Ancient ; Human Migration/*history ; Humans ; India ; Paleontology ; Papua New Guinea ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kosik, Kenneth S -- England -- Nature. 2013 Mar 21;495(7441):322-4. doi: 10.1038/nature11956. Epub 2013 Feb 27.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23446351" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; *Gene Expression Regulation ; Humans ; Male ; MicroRNAs/*metabolism ; RNA/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-25
    Description: Mutations in SHANK3 and large duplications of the region spanning SHANK3 both cause a spectrum of neuropsychiatric disorders, indicating that proper SHANK3 dosage is critical for normal brain function. However, SHANK3 overexpression per se has not been established as a cause of human disorders because 22q13 duplications involve several genes. Here we report that Shank3 transgenic mice modelling a human SHANK3 duplication exhibit manic-like behaviour and seizures consistent with synaptic excitatory/inhibitory imbalance. We also identified two patients with hyperkinetic disorders carrying the smallest SHANK3-spanning duplications reported so far. These findings indicate that SHANK3 overexpression causes a hyperkinetic neuropsychiatric disorder. To probe the mechanism underlying the phenotype, we generated a Shank3 in vivo interactome and found that Shank3 directly interacts with the Arp2/3 complex to increase F-actin levels in Shank3 transgenic mice. The mood-stabilizing drug valproate, but not lithium, rescues the manic-like behaviour of Shank3 transgenic mice raising the possibility that this hyperkinetic disorder has a unique pharmacogenetic profile.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Kihoon -- Holder, J Lloyd Jr -- Schaaf, Christian P -- Lu, Hui -- Chen, Hongmei -- Kang, Hyojin -- Tang, Jianrong -- Wu, Zhenyu -- Hao, Shuang -- Cheung, Sau Wai -- Yu, Peng -- Sun, Hao -- Breman, Amy M -- Patel, Ankita -- Lu, Hui-Chen -- Zoghbi, Huda Y -- 1R01NS070302/NS/NINDS NIH HHS/ -- 2T32NS043124/NS/NINDS NIH HHS/ -- P30HD024064/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 7;503(7474):72-7. doi: 10.1038/nature12630. Epub 2013 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2] Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA [3] Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153177" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 2-3 Complex/metabolism ; Actins/metabolism ; Adult ; Animals ; Behavior, Animal ; Bipolar Disorder/*drug therapy/genetics/*physiopathology ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Excitatory Postsynaptic Potentials ; Female ; Gene Dosage/genetics ; Gene Expression/genetics ; Genes, Duplicate/genetics ; Humans ; Hyperkinesis/genetics/physiopathology ; Inhibitory Postsynaptic Potentials ; Lithium/pharmacology ; Male ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins/*genetics/*metabolism ; Seizures/genetics ; Valproic Acid/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-03-12
    Description: CLP1 was the first mammalian RNA kinase to be identified. However, determining its in vivo function has been elusive. Here we generated kinase-dead Clp1 (Clp1(K/K)) mice that show a progressive loss of spinal motor neurons associated with axonal degeneration in the peripheral nerves and denervation of neuromuscular junctions, resulting in impaired motor function, muscle weakness, paralysis and fatal respiratory failure. Transgenic rescue experiments show that CLP1 functions in motor neurons. Mechanistically, loss of CLP1 activity results in accumulation of a novel set of small RNA fragments, derived from aberrant processing of tyrosine pre-transfer RNA. These tRNA fragments sensitize cells to oxidative-stress-induced p53 (also known as TRP53) activation and p53-dependent cell death. Genetic inactivation of p53 rescues Clp1(K/K) mice from the motor neuron loss, muscle denervation and respiratory failure. Our experiments uncover a mechanistic link between tRNA processing, formation of a new RNA species and progressive loss of lower motor neurons regulated by p53.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674495/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674495/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanada, Toshikatsu -- Weitzer, Stefan -- Mair, Barbara -- Bernreuther, Christian -- Wainger, Brian J -- Ichida, Justin -- Hanada, Reiko -- Orthofer, Michael -- Cronin, Shane J -- Komnenovic, Vukoslav -- Minis, Adi -- Sato, Fuminori -- Mimata, Hiromitsu -- Yoshimura, Akihiko -- Tamir, Ido -- Rainer, Johannes -- Kofler, Reinhard -- Yaron, Avraham -- Eggan, Kevin C -- Woolf, Clifford J -- Glatzel, Markus -- Herbst, Ruth -- Martinez, Javier -- Penninger, Josef M -- K99NS077435-01A1/NS/NINDS NIH HHS/ -- NS038253/NS/NINDS NIH HHS/ -- P 19223/Austrian Science Fund FWF/Austria -- P 21667/Austrian Science Fund FWF/Austria -- R00 NS077435/NS/NINDS NIH HHS/ -- R01 NS038253/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Mar 28;495(7442):474-80. doi: 10.1038/nature11923. Epub 2013 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23474986" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis ; Animals ; Animals, Newborn ; Axons/metabolism/pathology ; Cell Death ; Diaphragm/innervation ; Embryo Loss ; Embryo, Mammalian/metabolism/pathology ; Exons/genetics ; Female ; Fibroblasts ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Motor Neurons/*metabolism/*pathology ; Muscular Atrophy, Spinal ; Neuromuscular Diseases/metabolism/pathology ; Oxidative Stress ; RNA Processing, Post-Transcriptional ; RNA, Transfer, Tyr/genetics/*metabolism ; Respiration ; Spinal Nerves/cytology ; Transcription Factors/deficiency/*metabolism ; Tumor Suppressor Protein p53/metabolism ; Tyrosine/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-12-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westly, Erica -- England -- Nature. 2013 Dec 5;504(7478):22-3. doi: 10.1038/504022a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24305135" target="_blank"〉PubMed〈/a〉
    Keywords: *Cause of Death ; Female ; Global Health/*statistics & numerical data ; Humans ; India/epidemiology ; Interviews as Topic ; Male ; Rural Population ; Urban Population
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-13
    Description: Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69-172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Piatak, Michael Jr -- Ventura, Abigail B -- Hughes, Colette M -- Gilbride, Roxanne M -- Ford, Julia C -- Oswald, Kelli -- Shoemaker, Rebecca -- Li, Yuan -- Lewis, Matthew S -- Gilliam, Awbrey N -- Xu, Guangwu -- Whizin, Nathan -- Burwitz, Benjamin J -- Planer, Shannon L -- Turner, John M -- Legasse, Alfred W -- Axthelm, Michael K -- Nelson, Jay A -- Fruh, Klaus -- Sacha, Jonah B -- Estes, Jacob D -- Keele, Brandon F -- Edlefsen, Paul T -- Lifson, Jeffrey D -- Picker, Louis J -- HHSN261200800001E/PHS HHS/ -- P01 AI094417/AI/NIAID NIH HHS/ -- P51OD011092/OD/NIH HHS/ -- R01 AI060392/AI/NIAID NIH HHS/ -- R01 DE021291/DE/NIDCR NIH HHS/ -- R37 AI054292/AI/NIAID NIH HHS/ -- U19 AI095985/AI/NIAID NIH HHS/ -- U19 AI096109/AI/NIAID NIH HHS/ -- U24 OD010850/OD/NIH HHS/ -- U42 OD010426/OD/NIH HHS/ -- England -- Nature. 2013 Oct 3;502(7469):100-4. doi: 10.1038/nature12519. Epub 2013 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24025770" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytomegalovirus/genetics/immunology ; Female ; Macaca mulatta ; Male ; Molecular Sequence Data ; SAIDS Vaccines/*immunology ; Simian Acquired Immunodeficiency Syndrome/*prevention & control/virology ; Simian Immunodeficiency Virus/*immunology ; Time Factors ; Vaccines, Attenuated/immunology ; Viral Load ; Virus Replication/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-27
    Description: Early sensory experience instructs the maturation of neural circuitry in the cortex. This has been studied extensively in the primary visual cortex, in which loss of vision to one eye permanently degrades cortical responsiveness to that eye, a phenomenon known as ocular dominance plasticity (ODP). Cortical inhibition mediates this process, but the precise role of specific classes of inhibitory neurons in ODP is controversial. Here we report that evoked firing rates of binocular excitatory neurons in the primary visual cortex immediately drop by half when vision is restricted to one eye, but gradually return to normal over the following twenty-four hours, despite the fact that vision remains restricted to one eye. This restoration of binocular-like excitatory firing rates after monocular deprivation results from a rapid, although transient, reduction in the firing rates of fast-spiking, parvalbumin-positive (PV) interneurons, which in turn can be attributed to a decrease in local excitatory circuit input onto PV interneurons. This reduction in PV-cell-evoked responses after monocular lid suture is restricted to the critical period for ODP and appears to be necessary for subsequent shifts in excitatory ODP. Pharmacologically enhancing inhibition at the time of sight deprivation blocks ODP and, conversely, pharmacogenetic reduction of PV cell firing rates can extend the critical period for ODP. These findings define the microcircuit changes initiating competitive plasticity during critical periods of cortical development. Moreover, they show that the restoration of evoked firing rates of layer 2/3 pyramidal neurons by PV-specific disinhibition is a key step in the progression of ODP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962838/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962838/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhlman, Sandra J -- Olivas, Nicholas D -- Tring, Elaine -- Ikrar, Taruna -- Xu, Xiangmin -- Trachtenberg, Joshua T -- EY016052/EY/NEI NIH HHS/ -- NS078434/NS/NINDS NIH HHS/ -- R00 DA023700/DA/NIDA NIH HHS/ -- R01 EY023871/EY/NEI NIH HHS/ -- R01 NS078434/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):543-6. doi: 10.1038/nature12485. Epub 2013 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23975100" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Critical Period (Psychology) ; Dominance, Ocular/drug effects/*physiology ; Female ; Interneurons/cytology/drug effects ; Lasers ; Male ; Mice ; *Neural Inhibition/drug effects ; Neuronal Plasticity/drug effects/*physiology ; Parvalbumins/metabolism ; Photic Stimulation ; Sensory Deprivation/physiology ; Vision, Binocular/drug effects/physiology ; Vision, Monocular/drug effects/*physiology ; Visual Cortex/cytology/drug effects/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monastersky, Richard -- England -- Nature. 2013 May 30;497(7451):545-6. doi: 10.1038/497545a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719440" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Animals ; Birds/physiology ; Entomology ; Female ; Hemiptera/classification/genetics/growth & development/*physiology ; Larva/genetics/growth & development/physiology ; Life Cycle Stages/*physiology ; Male ; *Periodicity ; Plant Roots/metabolism ; Population Dynamics ; Predatory Behavior/physiology ; Research Personnel ; Sexual Behavior, Animal/physiology ; Survival Rate ; Time Factors ; United States ; Vocalization, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-05-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Kerri -- England -- Nature. 2013 May 23;497(7450):S4-5. doi: 10.1038/497S4a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cats ; Female ; Hippocampus/physiology ; Humans ; Infant ; Memory/*physiology ; Models, Neurological ; Neuronal Plasticity/physiology ; Rats ; Sleep/*physiology ; Sleep, REM/physiology ; Wakefulness/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-06-28
    Description: The activation-induced cytidine deaminase (AID; also known as AICDA) enzyme is required for somatic hypermutation and class switch recombination at the immunoglobulin locus. In germinal-centre B cells, AID is highly expressed, and has an inherent mutator activity that helps generate antibody diversity. However, AID may also regulate gene expression epigenetically by directly deaminating 5-methylcytosine in concert with base-excision repair to exchange cytosine. This pathway promotes gene demethylation, thereby removing epigenetic memory. For example, AID promotes active demethylation of the genome in primordial germ cells. However, different studies have suggested either a requirement or a lack of function for AID in promoting pluripotency in somatic nuclei after fusion with embryonic stem cells. Here we tested directly whether AID regulates epigenetic memory by comparing the relative ability of cells lacking AID to reprogram from a differentiated murine cell type to an induced pluripotent stem cell. We show that Aid-null cells are transiently hyper-responsive to the reprogramming process. Although they initiate expression of pluripotency genes, they fail to stabilize in the pluripotent state. The genome of Aid-null cells remains hypermethylated in reprogramming cells, and hypermethylated genes associated with pluripotency fail to be stably upregulated, including many MYC target genes. Recent studies identified a late step of reprogramming associated with methylation status, and implicated a secondary set of pluripotency network components. AID regulates this late step, removing epigenetic memory to stabilize the pluripotent state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762466/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762466/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Ritu -- DiMenna, Lauren -- Schrode, Nadine -- Liu, Ting-Chun -- Franck, Philipp -- Munoz-Descalzo, Silvia -- Hadjantonakis, Anna-Katerina -- Zarrin, Ali A -- Chaudhuri, Jayanta -- Elemento, Olivier -- Evans, Todd -- AI072194/AI/NIAID NIH HHS/ -- HL056182/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 HD052115/HD/NICHD NIH HHS/ -- R37 HL056182/HL/NHLBI NIH HHS/ -- T32 AI007621/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Aug 1;500(7460):89-92. doi: 10.1038/nature12299. Epub 2013 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Weill Cornell Medical College, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Dedifferentiation/genetics ; Cellular Reprogramming/genetics ; Cytidine Deaminase/genetics/*metabolism ; Epigenesis, Genetic/*genetics ; Female ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; HEK293 Cells ; Humans ; Male ; Mice ; Pluripotent Stem Cells/*cytology/enzymology/*metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-10-11
    Description: Cell cycle quiescence is a critical feature contributing to haematopoietic stem cell (HSC) maintenance. Although various candidate stromal cells have been identified as potential HSC niches, the spatial localization of quiescent HSCs in the bone marrow remains unclear. Here, using a novel approach that combines whole-mount confocal immunofluorescence imaging techniques and computational modelling to analyse significant three-dimensional associations in the mouse bone marrow among vascular structures, stromal cells and HSCs, we show that quiescent HSCs associate specifically with small arterioles that are preferentially found in endosteal bone marrow. These arterioles are ensheathed exclusively by rare NG2 (also known as CSPG4)(+) pericytes, distinct from sinusoid-associated leptin receptor (LEPR)(+) cells. Pharmacological or genetic activation of the HSC cell cycle alters the distribution of HSCs from NG2(+) periarteriolar niches to LEPR(+) perisinusoidal niches. Conditional depletion of NG2(+) cells induces HSC cycling and reduces functional long-term repopulating HSCs in the bone marrow. These results thus indicate that arteriolar niches are indispensable for maintaining HSC quiescence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821873/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821873/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kunisaki, Yuya -- Bruns, Ingmar -- Scheiermann, Christoph -- Ahmed, Jalal -- Pinho, Sandra -- Zhang, Dachuan -- Mizoguchi, Toshihide -- Wei, Qiaozhi -- Lucas, Daniel -- Ito, Keisuke -- Mar, Jessica C -- Bergman, Aviv -- Frenette, Paul S -- HL069438/HL/NHLBI NIH HHS/ -- HL097700/HL/NHLBI NIH HHS/ -- R00 CA139009/CA/NCI NIH HHS/ -- R01 DK056638/DK/NIDDK NIH HHS/ -- R01 DK098263/DK/NIDDK NIH HHS/ -- R01 DK100689/DK/NIDDK NIH HHS/ -- R01 HL069438/HL/NHLBI NIH HHS/ -- R01 HL097700/HL/NHLBI NIH HHS/ -- R01 HL116340/HL/NHLBI NIH HHS/ -- T32 063754/PHS HHS/ -- England -- Nature. 2013 Oct 31;502(7473):637-43. doi: 10.1038/nature12612. Epub 2013 Oct 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24107994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arterioles/*cytology ; Bone Marrow/blood supply ; Cell Division ; Cell Separation ; Female ; Flow Cytometry ; Hematopoietic Stem Cells/*cytology/metabolism ; Male ; Mesenchymal Stromal Cells/cytology ; Mice ; Mice, Inbred C57BL ; Nestin/metabolism ; *Stem Cell Niche
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-06-07
    Description: G-protein-gated inward rectifier K(+) (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5 A resolution crystal structure of the mammalian GIRK2 channel in complex with betagamma G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K(+) channel activity. Short-range atomic and long-range electrostatic interactions stabilize four betagamma G-protein subunits at the interfaces between four K(+) channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation that is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with 'membrane delimited' activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) and intracellular Na(+) ions participate in multi-ligand regulation of GIRK channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whorton, Matthew R -- MacKinnon, Roderick -- 1S10RR022321-01/RR/NCRR NIH HHS/ -- 1S10RR027037-01/RR/NCRR NIH HHS/ -- S10 RR027037/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 13;498(7453):190-7. doi: 10.1038/nature12241. Epub 2013 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23739333" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; G Protein-Coupled Inwardly-Rectifying Potassium ; Channels/*chemistry/genetics/metabolism ; Heterotrimeric GTP-Binding Proteins/*chemistry/genetics/metabolism ; Humans ; Ion Channel Gating ; Models, Biological ; Models, Molecular ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Subunits/chemistry/metabolism ; Sodium/metabolism ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-03-29
    Description: Protein N-myristoylation is a 14-carbon fatty-acid modification that is conserved across eukaryotic species and occurs on nearly 1% of the cellular proteome. The ability of the myristoyl group to facilitate dynamic protein-protein and protein-membrane interactions (known as the myristoyl switch) makes it an essential feature of many signal transduction systems. Thus pathogenic strategies that facilitate protein demyristoylation would markedly alter the signalling landscape of infected host cells. Here we describe an irreversible mechanism of protein demyristoylation catalysed by invasion plasmid antigen J (IpaJ), a previously uncharacterized Shigella flexneri type III effector protein with cysteine protease activity. A yeast genetic screen for IpaJ substrates identified ADP-ribosylation factor (ARF)1p and ARF2p, small molecular mass GTPases that regulate cargo transport through the Golgi apparatus. Mass spectrometry showed that IpaJ cleaved the peptide bond between N-myristoylated glycine-2 and asparagine-3 of human ARF1, thereby providing a new mechanism for host secretory inhibition by a bacterial pathogen. We further demonstrate that IpaJ cleaves an array of N-myristoylated proteins involved in cellular growth, signal transduction, autophagasome maturation and organelle function. Taken together, these findings show a previously unrecognized pathogenic mechanism for the site-specific elimination of N-myristoyl protein modification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722872/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722872/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burnaevskiy, Nikolay -- Fox, Thomas G -- Plymire, Daniel A -- Ertelt, James M -- Weigele, Bethany A -- Selyunin, Andrey S -- Way, Sing Sing -- Patrie, Steven M -- Alto, Neal M -- 5T32AI007520/AI/NIAID NIH HHS/ -- R01 AI083359/AI/NIAID NIH HHS/ -- R01 AI087830/AI/NIAID NIH HHS/ -- R01 AI100934/AI/NIAID NIH HHS/ -- R01 GM100486/GM/NIGMS NIH HHS/ -- R01AI083359/AI/NIAID NIH HHS/ -- R01GM100486/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 4;496(7443):106-9. doi: 10.1038/nature12004. Epub 2013 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535599" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factor 1/chemistry/metabolism ; ADP-Ribosylation Factors/metabolism ; Amino Acid Sequence ; Animals ; Antigens, Bacterial/*metabolism ; Asparagine/metabolism ; Autophagy ; Biocatalysis ; Cysteine Proteases/metabolism ; Dysentery, Bacillary ; Female ; Glycine/metabolism ; Golgi Apparatus/metabolism/pathology ; HEK293 Cells ; HeLa Cells ; Humans ; Listeria monocytogenes/physiology ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Myristic Acid/*metabolism ; Phagosomes/metabolism ; *Protein Processing, Post-Translational ; *Proteolysis ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Sequence Alignment ; Shigella flexneri/enzymology/*metabolism ; Signal Transduction ; Substrate Specificity ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-13
    Description: Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming. By bone marrow transplantation, we demonstrate that haematopoietic cells can also be reprogrammed in vivo. Notably, reprogrammable mice present circulating iPS cells in the blood and, at the transcriptome level, these in vivo generated iPS cells are closer to embryonic stem cells (ES cells) than standard in vitro generated iPS cells. Moreover, in vivo iPS cells efficiently contribute to the trophectoderm lineage, suggesting that they achieve a more plastic or primitive state than ES cells. Finally, intraperitoneal injection of in vivo iPS cells generates embryo-like structures that express embryonic and extraembryonic markers. We conclude that reprogramming in vivo is feasible and confers totipotency features absent in standard iPS or ES cells. These discoveries could be relevant for future applications of reprogramming in regenerative medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abad, Maria -- Mosteiro, Lluc -- Pantoja, Cristina -- Canamero, Marta -- Rayon, Teresa -- Ors, Inmaculada -- Grana, Osvaldo -- Megias, Diego -- Dominguez, Orlando -- Martinez, Dolores -- Manzanares, Miguel -- Ortega, Sagrario -- Serrano, Manuel -- England -- Nature. 2013 Oct 17;502(7471):340-5. doi: 10.1038/nature12586. Epub 2013 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24025773" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Cells/cytology/metabolism ; Cell Dedifferentiation ; Cell Separation ; Cells, Cultured ; *Cellular Reprogramming/genetics ; Ectoderm/cytology ; Embryoid Bodies/cytology/metabolism ; Embryonic Stem Cells/cytology/metabolism ; Female ; Fibroblasts/cytology ; Gene Expression Profiling ; Induced Pluripotent Stem Cells/*cytology/metabolism ; Intestines/cytology ; Kidney/cytology ; Kruppel-Like Transcription Factors/genetics/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Octamer Transcription Factor-3/genetics/metabolism ; Organ Specificity ; Pancreas/cytology ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; SOXB1 Transcription Factors/genetics/metabolism ; Stomach/cytology ; Teratoma/genetics/*metabolism/pathology ; Totipotent Stem Cells/*cytology/metabolism ; Transcriptome/genetics ; Trophoblasts/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-05-03
    Description: DNA methylation is an epigenetic modification that has critical roles in gene silencing, development and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24-nucleotide small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate siRNA biogenesis, and Pol-V, which functions to generate scaffold transcripts that recruit downstream RdDM factors. To understand the mechanisms controlling Pol-IV targeting we investigated the function of SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), a Pol-IV-interacting protein. Here we show that SHH1 acts upstream in the RdDM pathway to enable siRNA production from a large subset of the most active RdDM targets, and that SHH1 is required for Pol-IV occupancy at these same loci. We also show that the SHH1 SAWADEE domain is a novel chromatin-binding module that adopts a unique tandem Tudor-like fold and functions as a dual lysine reader, probing for both unmethylated K4 and methylated K9 modifications on the histone 3 (H3) tail. Finally, we show that key residues within both lysine-binding pockets of SHH1 are required in vivo to maintain siRNA and DNA methylation levels as well as Pol-IV occupancy at RdDM targets, demonstrating a central role for methylated H3K9 binding in SHH1 function and providing the first insights into the mechanism of Pol-IV targeting. Given the parallels between methylation systems in plants and mammals, a further understanding of this early targeting step may aid our ability to control the expression of endogenous and newly introduced genes, which has broad implications for agriculture and gene therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, Julie A -- Du, Jiamu -- Hale, Christopher J -- Feng, Suhua -- Krajewski, Krzysztof -- Palanca, Ana Marie S -- Strahl, Brian D -- Patel, Dinshaw J -- Jacobsen, Steven E -- GM60398/GM/NIGMS NIH HHS/ -- GM85394/GM/NIGMS NIH HHS/ -- R01 GM060398/GM/NIGMS NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 20;498(7454):385-9. doi: 10.1038/nature12178. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636332" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*enzymology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Binding Sites/genetics ; Chromatin/chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA Methylation/*genetics ; DNA-Directed RNA Polymerases/genetics/*metabolism ; Epigenesis, Genetic/genetics ; Histones/chemistry/metabolism ; Homeodomain Proteins/chemistry/*metabolism ; Lysine/chemistry/metabolism ; Methyltransferases/genetics/metabolism ; Models, Molecular ; Mutation ; Protein Folding ; Protein Structure, Tertiary ; RNA, Small Interfering/biosynthesis/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moyer, Melinda Wenner -- England -- Nature. 2013 Jun 27;498(7455):S16. doi: 10.1038/498S16a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803945" target="_blank"〉PubMed〈/a〉
    Keywords: *Blood Banks ; *Cord Blood Stem Cell Transplantation/adverse effects ; Female ; *Graft vs Leukemia Effect/immunology ; Health Education ; Humans ; Infant, Newborn ; Interleukin-7/immunology/therapeutic use ; Leukemia/immunology/pathology/*therapy ; Leukemia, Myeloid, Acute/immunology/pathology/therapy ; Male ; Pregnancy ; Umbilical Cord/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rachman, Stanley -- England -- Nature. 2013 Nov 7;503(7474):7. doi: 10.1038/503007a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24201246" target="_blank"〉PubMed〈/a〉
    Keywords: Clinical Trials as Topic ; Cognitive Therapy ; Conditioning (Psychology) ; Fear/psychology ; Female ; Humans ; Obsessive-Compulsive Disorder/*psychology/*therapy ; Rape/psychology/rehabilitation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, Stephen S -- England -- Nature. 2013 Feb 21;494(7437):296-9. doi: 10.1038/494296a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23426306" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal, Humanized ; Caenorhabditis elegans/*genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/metabolism ; Copulation ; Eating/genetics ; Exploratory Behavior ; Female ; *Genetics, Behavioral ; Humans ; Male ; Neuropeptides/genetics/metabolism ; *Neurosciences ; Receptors, Neuropeptide Y/genetics/metabolism ; Smell/genetics ; Social Behavior ; Taste/genetics ; Trastuzumab
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-05-07
    Description: MicroRNAs (miRNAs) show differential expression across breast cancer subtypes, and have both oncogenic and tumour-suppressive roles. Here we report the miRNA expression profiles of 1,302 breast tumours with matching detailed clinical annotation, long-term follow-up and genomic and messenger RNA expression data. This provides a comprehensive overview of the quantity, distribution and variation of the miRNA population and provides information on the extent to which genomic, transcriptional and post-transcriptional events contribute to miRNA expression architecture, suggesting an important role for post-transcriptional regulation. The key clinical parameters and cellular pathways related to the miRNA landscape are characterized, revealing context-dependent interactions, for example with regards to cell adhesion and Wnt signalling. Notably, only prognostic miRNA signatures derived from breast tumours devoid of somatic copy-number aberrations (CNA-devoid) are consistently prognostic across several other subtypes and can be validated in external cohorts. We then use a data-driven approach to seek the effects of miRNAs associated with differential co-expression of mRNAs, and find that miRNAs act as modulators of mRNA-mRNA interactions rather than as on-off molecular switches. We demonstrate such an important modulatory role for miRNAs in the biology of CNA-devoid breast cancers, a common subtype in which the immune response is prominent. These findings represent a new framework for studying the biology of miRNAs in human breast cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dvinge, Heidi -- Git, Anna -- Graf, Stefan -- Salmon-Divon, Mali -- Curtis, Christina -- Sottoriva, Andrea -- Zhao, Yongjun -- Hirst, Martin -- Armisen, Javier -- Miska, Eric A -- Chin, Suet-Feung -- Provenzano, Elena -- Turashvili, Gulisa -- Green, Andrew -- Ellis, Ian -- Aparicio, Sam -- Caldas, Carlos -- 11832/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 May 16;497(7449):378-82. doi: 10.1038/nature12108. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644459" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Breast Neoplasms/*genetics/pathology ; DNA Copy Number Variations ; Female ; Follow-Up Studies ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Genome, Human/genetics ; Humans ; Kaplan-Meier Estimate ; MicroRNAs/*genetics/metabolism ; Prognosis ; Proportional Hazards Models ; RNA, Messenger/genetics/metabolism ; RNA, Neoplasm/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-09-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abbott, Alison -- England -- Nature. 2013 Sep 5;501(7465):18. doi: 10.1038/501018a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24005397" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aging/physiology ; Biomedical Enhancement/*methods ; Computers ; Female ; Humans ; Middle Aged ; Mild Cognitive Impairment/*prevention & control ; Neuronal Plasticity/physiology ; Neuropsychological Tests ; Psychomotor Performance ; *Task Performance and Analysis ; Time Factors ; *Video Games
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-21
    Description: Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rais, Yoach -- Zviran, Asaf -- Geula, Shay -- Gafni, Ohad -- Chomsky, Elad -- Viukov, Sergey -- Mansour, Abed AlFatah -- Caspi, Inbal -- Krupalnik, Vladislav -- Zerbib, Mirie -- Maza, Itay -- Mor, Nofar -- Baran, Dror -- Weinberger, Leehee -- Jaitin, Diego A -- Lara-Astiaso, David -- Blecher-Gonen, Ronnie -- Shipony, Zohar -- Mukamel, Zohar -- Hagai, Tzachi -- Gilad, Shlomit -- Amann-Zalcenstein, Daniela -- Tanay, Amos -- Amit, Ido -- Novershtern, Noa -- Hanna, Jacob H -- England -- Nature. 2013 Oct 3;502(7469):65-70. doi: 10.1038/nature12587. Epub 2013 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24048479" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/genetics/*physiology ; DNA-Binding Proteins/genetics ; Embryonic Stem Cells ; Female ; Gene Expression Regulation ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Male ; Mice ; *Models, Biological ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-05-28
    Description: Neutrophil recruitment from blood to extravascular sites of sterile or infectious tissue damage is a hallmark of early innate immune responses, and the molecular events leading to cell exit from the bloodstream have been well defined. Once outside the vessel, individual neutrophils often show extremely coordinated chemotaxis and cluster formation reminiscent of the swarming behaviour of insects. The molecular players that direct this response at the single-cell and population levels within the complexity of an inflamed tissue are unknown. Using two-photon intravital microscopy in mouse models of sterile injury and infection, we show a critical role for intercellular signal relay among neutrophils mediated by the lipid leukotriene B4, which acutely amplifies local cell death signals to enhance the radius of highly directed interstitial neutrophil recruitment. Integrin receptors are dispensable for long-distance migration, but have a previously unappreciated role in maintaining dense cellular clusters when congregating neutrophils rearrange the collagenous fibre network of the dermis to form a collagen-free zone at the wound centre. In this newly formed environment, integrins, in concert with neutrophil-derived leukotriene B4 and other chemoattractants, promote local neutrophil interaction while forming a tight wound seal. This wound seal has borders that cease to grow in kinetic concert with late recruitment of monocytes and macrophages at the edge of the displaced collagen fibres. Together, these data provide an initial molecular map of the factors that contribute to neutrophil swarming in the extravascular space of a damaged tissue. They reveal how local events are propagated over large-range distances, and how auto-signalling produces coordinated, self-organized neutrophil-swarming behaviour that isolates the wound or infectious site from surrounding viable tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879961/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879961/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lammermann, Tim -- Afonso, Philippe V -- Angermann, Bastian R -- Wang, Ji Ming -- Kastenmuller, Wolfgang -- Parent, Carole A -- Germain, Ronald N -- ZIA AI000545-24/Intramural NIH HHS/ -- England -- Nature. 2013 Jun 20;498(7454):371-5. doi: 10.1038/nature12175. Epub 2013 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0421, USA. laemmermannt@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23708969" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death ; Chemotactic Factors/immunology/*metabolism ; *Chemotaxis, Leukocyte/immunology ; Collagen/metabolism ; Female ; Immunity, Innate ; Integrins/*metabolism ; Leukotriene B4/immunology/*metabolism ; Lymph Nodes/cytology/immunology ; Macrophages/cytology/microbiology/pathology ; Male ; Mice ; *Neutrophil Infiltration ; Neutrophils/*cytology/physiology ; Pseudomonas aeruginosa/pathogenicity ; Receptors, G-Protein-Coupled/metabolism ; Skin/cytology/injuries/pathology ; Wound Healing/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2013 Jan 17;493(7432):272.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23330183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Wild/*genetics/*physiology ; Behavior, Animal/*physiology ; *Biological Evolution ; *Ecosystem ; Female ; Male ; Multigene Family/*genetics ; Peromyscus/*genetics/*physiology ; Quantitative Trait Loci/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-10-22
    Description: Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863936/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863936/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dougan, Stephanie K -- Ashour, Joseph -- Karssemeijer, Roos A -- Popp, Maximilian W -- Avalos, Ana M -- Barisa, Marta -- Altenburg, Arwen F -- Ingram, Jessica R -- Cragnolini, Juan Jose -- Guo, Chunguang -- Alt, Frederick W -- Jaenisch, Rudolf -- Ploegh, Hidde L -- DP1 GM106409/GM/NIGMS NIH HHS/ -- R01 AI033456/AI/NIAID NIH HHS/ -- R01 AI087879/AI/NIAID NIH HHS/ -- R01 GM100518/GM/NIGMS NIH HHS/ -- R01 HD045022/HD/NICHD NIH HHS/ -- R37 HD045022/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 21;503(7476):406-9. doi: 10.1038/nature12637. Epub 2013 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24141948" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/metabolism ; Antibody Specificity/immunology ; B-Lymphocytes/*immunology/pathology/secretion/*virology ; Cell Death ; Female ; Hemagglutinin Glycoproteins, Influenza Virus/immunology/metabolism ; Immunoglobulin G/immunology/metabolism ; Lung/cytology/immunology/secretion/virology ; Lymph Nodes/cytology/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Neutralization Tests ; Nuclear Transfer Techniques ; Orthomyxoviridae/pathogenicity/*physiology ; Receptors, Antigen, B-Cell/*immunology/metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayden, Erika Check -- England -- Nature. 2013 May 30;497(7451):546-7. doi: 10.1038/497546a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719441" target="_blank"〉PubMed〈/a〉
    Keywords: Aged, 80 and over ; *Awards and Prizes ; Exome/genetics ; Female ; Genomics/*economics/*methods/trends ; Goals ; Humans ; Inventions/*economics ; Male ; Marketing ; Public Opinion ; Quality Control ; Sequence Analysis, DNA/*economics/*methods/trends ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-03-05
    Description: The contraction and relaxation of muscle cells is controlled by the successive rise and fall of cytosolic Ca(2+), initiated by the release of Ca(2+) from the sarcoplasmic reticulum and terminated by re-sequestration of Ca(2+) into the sarcoplasmic reticulum as the main mechanism of Ca(2+) removal. Re-sequestration requires active transport and is catalysed by the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), which has a key role in defining the contractile properties of skeletal and heart muscle tissue. The activity of SERCA is regulated by two small, homologous membrane proteins called phospholamban (PLB, also known as PLN) and sarcolipin (SLN). Detailed structural information explaining this regulatory mechanism has been lacking, and the structural features defining the pathway through which cytoplasmic Ca(2+) enters the intramembranous binding sites of SERCA have remained unknown. Here we report the crystal structure of rabbit SERCA1a (also known as ATP2A1) in complex with SLN at 3.1 A resolution. The regulatory SLN traps the Ca(2+)-ATPase in a previously undescribed E1 state, with exposure of the Ca(2+) sites through an open cytoplasmic pathway stabilized by Mg(2+). The structure suggests a mechanism for selective Ca(2+) loading and activation of SERCA, and provides new insight into how SLN and PLB inhibition arises from stabilization of this E1 intermediate state without bound Ca(2+). These findings may prove useful in studying how autoinhibitory domains of other ion pumps modulate transport across biological membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winther, Anne-Marie L -- Bublitz, Maike -- Karlsen, Jesper L -- Moller, Jesper V -- Hansen, John B -- Nissen, Poul -- Buch-Pedersen, Morten J -- England -- Nature. 2013 Mar 14;495(7440):265-9. doi: 10.1038/nature11900. Epub 2013 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pcovery, Thorvaldsensvej 57, DK-1871 Frederiksberg, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23455424" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/*metabolism ; Calcium-Binding Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Cytoplasm/*metabolism ; Enzyme Activation ; Magnesium/metabolism ; Models, Molecular ; Muscle Proteins/chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Proteolipids/chemistry/*metabolism ; Rabbits ; Sarcoplasmic Reticulum Calcium-Transporting ATPases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayden, Erika Check -- England -- Nature. 2013 May 9;497(7448):172-4. doi: 10.1038/497172a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23657330" target="_blank"〉PubMed〈/a〉
    Keywords: *Anonymous Testing/ethics/standards ; Chromosomes, Human, Y/genetics ; *Databases, Genetic ; Female ; *Genetic Privacy/standards ; Genome, Human/*genetics ; HeLa Cells ; Humans ; Internet ; Jews/genetics ; Male ; Microsatellite Repeats/genetics ; Software ; *Truth Disclosure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-12-18
    Description: Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibres of the extracellular matrix (ECM). Even within a single tissue, fibroblasts exhibit considerable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing in mice, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle, which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesize the bulk of the fibrillar ECM, and the preadipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialization. Epidermal beta-catenin activation stimulates the expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles. They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868929/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868929/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Driskell, Ryan R -- Lichtenberger, Beate M -- Hoste, Esther -- Kretzschmar, Kai -- Simons, Ben D -- Charalambous, Marika -- Ferron, Sacri R -- Herault, Yann -- Pavlovic, Guillaume -- Ferguson-Smith, Anne C -- Watt, Fiona M -- 079249/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- 095606/Wellcome Trust/United Kingdom -- 096540/Wellcome Trust/United Kingdom -- 098357/Wellcome Trust/United Kingdom -- G0600796/Medical Research Council/United Kingdom -- Department of Health/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):277-81. doi: 10.1038/nature12783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK [2] Centre for Stem Cells and Regenerative Medicine, King's College London, 28th floor, Tower Wing, Guy's Hospital, London SE1 9RT, UK. ; 1] Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK [2] Centre for Stem Cells and Regenerative Medicine, King's College London, 28th floor, Tower Wing, Guy's Hospital, London SE1 9RT, UK [3]. ; 1] Centre for Stem Cells and Regenerative Medicine, King's College London, 28th floor, Tower Wing, Guy's Hospital, London SE1 9RT, UK [2] Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK [3]. ; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK. ; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK. ; Institut Clinique de la Souris, Parc d'Innovation, 67404 Illkrich-Graffenstaden, Cedex, France. ; Centre for Stem Cells and Regenerative Medicine, King's College London, 28th floor, Tower Wing, Guy's Hospital, London SE1 9RT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336287" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/metabolism ; Animals ; *Cell Lineage ; Dermis/anatomy & histology/cytology/embryology/growth & development ; Female ; Fibroblasts/*cytology/transplantation ; Hair Follicle/cytology/metabolism ; In Vitro Techniques ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Mice, Transgenic ; Muscle, Smooth/cytology/metabolism ; Skin/anatomy & histology/*cytology/embryology/*growth & development ; Wound Healing/*physiology ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-08-06
    Description: The germ-cell lineage ensures the continuity of life through the generation of male and female gametes, which unite to form a totipotent zygote. We have previously demonstrated that, by using cytokines, embryonic stem cells and induced pluripotent stem cells can be induced into epiblast-like cells (EpiLCs) and then into primordial germ cell (PGC)-like cells with the capacity for both spermatogenesis and oogenesis, creating an opportunity for understanding and regulating mammalian germ-cell development in both sexes in vitro. Here we show that, without cytokines, simultaneous overexpression of three transcription factors, Blimp1 (also known as Prdm1), Prdm14 and Tfap2c (also known as AP2gamma), directs EpiLCs, but not embryonic stem cells, swiftly and efficiently into a PGC state. Notably, Prdm14 alone, but not Blimp1 or Tfap2c, suffices for the induction of the PGC state in EpiLCs. The transcription-factor-induced PGC state, irrespective of the transcription factors used, reconstitutes key transcriptome and epigenetic reprogramming in PGCs, but bypasses a mesodermal program that accompanies PGC or PGC-like-cell specification by cytokines including bone morphogenetic protein 4. Notably, the transcription-factor-induced PGC-like cells contribute to spermatogenesis and fertile offspring. Our findings provide a new insight into the transcriptional logic for PGC specification, and create a foundation for the transcription-factor-based reconstitution and regulation of mammalian gametogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakaki, Fumio -- Hayashi, Katsuhiko -- Ohta, Hiroshi -- Kurimoto, Kazuki -- Yabuta, Yukihiro -- Saitou, Mitinori -- England -- Nature. 2013 Sep 12;501(7466):222-6. doi: 10.1038/nature12417. Epub 2013 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23913270" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation/genetics ; *Cell Lineage/genetics ; Embryonic Stem Cells/cytology/metabolism ; Epigenesis, Genetic ; Female ; Fertility ; Gene Expression Profiling ; Germ Cells/*cytology/*metabolism ; Germ Layers/cytology ; Male ; Mesoderm/cytology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred ICR ; Mice, Transgenic ; Spermatogenesis ; Transcription Factor AP-2/genetics/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Surmeier, D James -- England -- Nature. 2013 Feb 14;494(7436):178-9. doi: 10.1038/nature11856. Epub 2013 Jan 23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23354047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Male ; Movement/*physiology ; Neostriatum/*cytology/*physiology ; Neural Pathways/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-10-15
    Description: Appetite suppression occurs after a meal and in conditions when it is unfavourable to eat, such as during illness or exposure to toxins. A brain region proposed to play a role in appetite suppression is the parabrachial nucleus, a heterogeneous population of neurons surrounding the superior cerebellar peduncle in the brainstem. The parabrachial nucleus is thought to mediate the suppression of appetite induced by the anorectic hormones amylin and cholecystokinin, as well as by lithium chloride and lipopolysaccharide, compounds that mimic the effects of toxic foods and bacterial infections, respectively. Hyperactivity of the parabrachial nucleus is also thought to cause starvation after ablation of orexigenic agouti-related peptide neurons in adult mice. However, the identities of neurons in the parabrachial nucleus that regulate feeding are unknown, as are the functionally relevant downstream projections. Here we identify calcitonin gene-related peptide-expressing neurons in the outer external lateral subdivision of the parabrachial nucleus that project to the laterocapsular division of the central nucleus of the amygdala as forming a functionally important circuit for suppressing appetite. Using genetically encoded anatomical, optogenetic and pharmacogenetic tools, we demonstrate that activation of these neurons projecting to the central nucleus of the amygdala suppresses appetite. In contrast, inhibition of these neurons increases food intake in circumstances when mice do not normally eat and prevents starvation in adult mice whose agouti-related peptide neurons are ablated. Taken together, our data demonstrate that this neural circuit from the parabrachial nucleus to the central nucleus of the amygdala mediates appetite suppression in conditions when it is unfavourable to eat. This neural circuit may provide targets for therapeutic intervention to overcome or promote appetite.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, Matthew E -- Soden, Marta E -- Zweifel, Larry S -- Palmiter, Richard D -- R01 DA024908/DA/NIDA NIH HHS/ -- R01 MH094536/MH/NIMH NIH HHS/ -- R01DA024908/DA/NIDA NIH HHS/ -- R01MH094536/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 7;503(7474):111-4. doi: 10.1038/nature12596. Epub 2013 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA [2] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [3] Department of Biology, Williams College, Williamstown, Massachusetts 01267, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24121436" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/anatomy & histology/cytology/drug effects/physiology ; Animals ; Appetite/drug effects/*genetics/*physiology ; Calcitonin Gene-Related Peptide/metabolism ; Eating/drug effects/genetics/physiology ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/drug effects/*physiology ; Neurons/drug effects ; Optogenetics ; Pons/anatomy & histology/cytology/drug effects/physiology ; Proto-Oncogene Proteins c-fos/metabolism ; Satiety Response/drug effects/*physiology ; Starvation/drug therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-03-29
    Description: Multidrug and toxic compound extrusion (MATE) family transporters are conserved in the three primary domains of life (Archaea, Bacteria and Eukarya), and export xenobiotics using an electrochemical gradient of H(+) or Na(+) across the membrane. MATE transporters confer multidrug resistance to bacterial pathogens and cancer cells, thus causing critical reductions in the therapeutic efficacies of antibiotics and anti-cancer drugs, respectively. Therefore, the development of MATE inhibitors has long been awaited in the field of clinical medicine. Here we present the crystal structures of the H(+)-driven MATE transporter from Pyrococcus furiosus in two distinct apo-form conformations, and in complexes with a derivative of the antibacterial drug norfloxacin and three in vitro selected thioether-macrocyclic peptides, at 2.1-3.0 A resolutions. The structures, combined with functional analyses, show that the protonation of Asp 41 on the amino (N)-terminal lobe induces the bending of TM1, which in turn collapses the N-lobe cavity, thereby extruding the substrate drug to the extracellular space. Moreover, the macrocyclic peptides bind the central cleft in distinct manners, which correlate with their inhibitory activities. The strongest inhibitory peptide that occupies the N-lobe cavity may pave the way towards the development of efficient inhibitors against MATE transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, Yoshiki -- Hipolito, Christopher J -- Maturana, Andres D -- Ito, Koichi -- Kuroda, Teruo -- Higuchi, Takashi -- Katoh, Takayuki -- Kato, Hideaki E -- Hattori, Motoyuki -- Kumazaki, Kaoru -- Tsukazaki, Tomoya -- Ishitani, Ryuichiro -- Suga, Hiroaki -- Nureki, Osamu -- England -- Nature. 2013 Apr 11;496(7444):247-51. doi: 10.1038/nature12014. Epub 2013 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535598" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antiporters/*chemistry/*metabolism ; Apoproteins/chemistry/metabolism ; Archaeal Proteins/*chemistry/*metabolism ; Aspartic Acid/chemistry ; Crystallography, X-Ray ; DNA Mutational Analysis ; Macrocyclic Compounds/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Norfloxacin/chemistry/metabolism ; Peptides/chemistry/metabolism ; Protein Conformation ; Protons ; Pyrococcus furiosus/*chemistry ; Structure-Activity Relationship ; Sulfides/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-07-19
    Description: Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hollenstein, Kaspar -- Kean, James -- Bortolato, Andrea -- Cheng, Robert K Y -- Dore, Andrew S -- Jazayeri, Ali -- Cooke, Robert M -- Weir, Malcolm -- Marshall, Fiona H -- England -- Nature. 2013 Jul 25;499(7459):438-43. doi: 10.1038/nature12357. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863939" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Aminopyridines/chemistry/metabolism/pharmacology ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Corticotropin-Releasing Hormone/antagonists & ; inhibitors/*chemistry/*classification/metabolism ; Receptors, Dopamine D3/antagonists & inhibitors/chemistry/classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-07-03
    Description: During normal translation, the binding of a release factor to one of the three stop codons (UGA, UAA or UAG) results in the termination of protein synthesis. However, modification of the initial uridine to a pseudouridine (Psi) allows efficient recognition and read-through of these stop codons by a transfer RNA (tRNA), although it requires the formation of two normally forbidden purine-purine base pairs. Here we determined the crystal structure at 3.1 A resolution of the 30S ribosomal subunit in complex with the anticodon stem loop of tRNA(Ser) bound to the PsiAG stop codon in the A site. The PsiA base pair at the first position is accompanied by the formation of purine-purine base pairs at the second and third positions of the codon, which show an unusual Watson-Crick/Hoogsteen geometry. The structure shows a previously unsuspected ability of the ribosomal decoding centre to accommodate non-canonical base pairs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732562/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732562/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez, Israel S -- Ng, Chyan Leong -- Kelley, Ann C -- Wu, Guowei -- Yu, Yi-Tao -- Ramakrishnan, V -- 096570/Wellcome Trust/United Kingdom -- GM104077/GM/NIGMS NIH HHS/ -- MC_U105184332/Medical Research Council/United Kingdom -- R01 GM104077/GM/NIGMS NIH HHS/ -- R21 AG039559/AG/NIA NIH HHS/ -- U105184332/Medical Research Council/United Kingdom -- England -- Nature. 2013 Aug 1;500(7460):107-10. doi: 10.1038/nature12302. Epub 2013 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812587" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/chemistry/genetics/metabolism ; *Base Pairing ; Base Sequence ; Codon, Terminator/chemistry/*genetics/*metabolism ; Crystallography, X-Ray ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Pseudouridine/chemistry/genetics/metabolism ; RNA, Transfer, Ser/chemistry/genetics/metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/genetics/metabolism ; Ribosomes/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-05-17
    Description: Diacylglycerol kinase catalyses the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid for use in shuttling water-soluble components to membrane-derived oligosaccharide and lipopolysaccharide in the cell envelope of Gram-negative bacteria. For half a century, this 121-residue kinase has served as a model for investigating membrane protein enzymology, folding, assembly and stability. Here we present crystal structures for three functional forms of this unique and paradigmatic kinase, one of which is wild type. These reveal a homo-trimeric enzyme with three transmembrane helices and an amino-terminal amphiphilic helix per monomer. Bound lipid substrate and docked ATP identify the putative active site that is of the composite, shared site type. The crystal structures rationalize extensive biochemical and biophysical data on the enzyme. They are, however, at variance with a published solution NMR model in that domain swapping, a key feature of the solution form, is not observed in the crystal structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740270/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740270/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Dianfan -- Lyons, Joseph A -- Pye, Valerie E -- Vogeley, Lutz -- Aragao, David -- Kenyon, Colin P -- Shah, Syed T A -- Doherty, Christine -- Aherne, Margaret -- Caffrey, Martin -- GM75915/GM/NIGMS NIH HHS/ -- P41 RR015301/RR/NCRR NIH HHS/ -- P50GM073210/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- U54GM094599/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):521-4. doi: 10.1038/nature12179. Epub 2013 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biochemistry and Immunology & School of Medicine, Trinity College Dublin, Dublin 2, Ireland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23676677" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Bacterial Proteins/*chemistry/genetics/metabolism ; Catalytic Domain ; Cell Membrane/*metabolism ; Crystallography, X-Ray ; Diacylglycerol Kinase/*chemistry/genetics/*metabolism ; Enzyme Activation/drug effects ; Enzyme Stability ; Lipids ; Magnesium/metabolism ; Membrane Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Zinc/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-03
    Description: beta-barrel membrane proteins are essential for nutrient import, signalling, motility and survival. In Gram-negative bacteria, the beta-barrel assembly machinery (BAM) complex is responsible for the biogenesis of beta-barrel membrane proteins, with homologous complexes found in mitochondria and chloroplasts. Here we describe the structure of BamA, the central and essential component of the BAM complex, from two species of bacteria: Neisseria gonorrhoeae and Haemophilus ducreyi. BamA consists of a large periplasmic domain attached to a 16-strand transmembrane beta-barrel domain. Three structural features shed light on the mechanism by which BamA catalyses beta-barrel assembly. First, the interior cavity is accessible in one BamA structure and conformationally closed in the other. Second, an exterior rim of the beta-barrel has a distinctly narrowed hydrophobic surface, locally destabilizing the outer membrane. And third, the beta-barrel can undergo lateral opening, suggesting a route from the interior cavity in BamA into the outer membrane.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noinaj, Nicholas -- Kuszak, Adam J -- Gumbart, James C -- Lukacik, Petra -- Chang, Hoshing -- Easley, Nicole C -- Lithgow, Trevor -- Buchanan, Susan K -- K22 AI100927/AI/NIAID NIH HHS/ -- K22-AI100927/AI/NIAID NIH HHS/ -- R01 GM067887/GM/NIGMS NIH HHS/ -- R01-GM67887/GM/NIGMS NIH HHS/ -- RC2GM093307/GM/NIGMS NIH HHS/ -- Z99 DK999999/Intramural NIH HHS/ -- ZIA DK036139-06/Intramural NIH HHS/ -- England -- Nature. 2013 Sep 19;501(7467):385-90. doi: 10.1038/nature12521. Epub 2013 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23995689" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*biosynthesis/*chemistry/genetics ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry/genetics ; Escherichia coli Proteins/chemistry/genetics ; Haemophilus/*chemistry ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Mutagenesis ; Neisseria gonorrhoeae/*chemistry ; Protein Conformation ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-12-03
    Description: Genomic imprinting is an allele-specific gene expression system that is important for mammalian development and function. The molecular basis of genomic imprinting is allele-specific DNA methylation. Although it is well known that the de novo DNA methyltransferases Dnmt3a and Dnmt3b are responsible for the establishment of genomic imprinting, how the methylation mark is erased during primordial germ cell (PGC) reprogramming remains unclear. Tet1 is one of the ten-eleven translocation family proteins, which have the capacity to oxidize 5-methylcytosine (5mC), specifically expressed in reprogramming PGCs. Here we report that Tet1 has a critical role in the erasure of genomic imprinting. We show that despite their identical genotype, progenies derived from mating between Tet1 knockout males and wild-Peg10 and Peg3, which exhibit aberrant hypermethylation in the paternal allele of differential methylated regions (DMRs). RNA-seq reveals extensive dysregulation of imprinted genes in the next generation due to paternal loss of Tet1 function. Genome-wide DNA methylation analysis of embryonic day 13.5 PGCs and sperm of Tet1 knockout mice revealed hypermethylation of DMRs of imprinted genes in sperm, which can be traced back to PGCs. Analysis of the DNA methylation dynamics in reprogramming PGCs indicates that Tet1 functions to wipe out remaining methylation, including imprinted genes, at the late reprogramming stage. Furthermore, we provide evidence supporting the role of Tet1 in the erasure of paternal imprints in the female germ line. Thus, our study establishes a critical function of Tet1 in the erasure of genomic imprinting.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957231/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957231/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamaguchi, Shinpei -- Shen, Li -- Liu, Yuting -- Sendler, Damian -- Zhang, Yi -- U01 DK089565/DK/NIDDK NIH HHS/ -- U01DK089565/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 19;504(7480):460-4. doi: 10.1038/nature12805. Epub 2013 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [3] Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; 1] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [3] Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA [4] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [5] Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24291790" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cellular Reprogramming/genetics ; Crosses, Genetic ; DNA Methylation/genetics ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Dioxygenases/deficiency/genetics/metabolism ; Embryo Loss/enzymology/genetics ; Embryo, Mammalian/embryology/enzymology/metabolism ; Female ; *Genomic Imprinting/genetics ; Genotype ; Germ Cells/*metabolism ; Male ; Mice ; Mice, Knockout ; Proto-Oncogene Proteins/deficiency/genetics/*metabolism ; Spermatozoa/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-10-25
    Description: Protein biosynthesis depends on the availability of ribosomes, which in turn relies on ribosomal RNA production. In eukaryotes, this process is carried out by RNA polymerase I (Pol I), a 14-subunit enzyme, the activity of which is a major determinant of cell growth. Here we present the crystal structure of Pol I from Saccharomyces cerevisiae at 3.0 A resolution. The Pol I structure shows a compact core with a wide DNA-binding cleft and a tightly anchored stalk. An extended loop mimics the DNA backbone in the cleft and may be involved in regulating Pol I transcription. Subunit A12.2 extends from the A190 jaw to the active site and inserts a transcription elongation factor TFIIS-like zinc ribbon into the nucleotide triphosphate entry pore, providing insight into the role of A12.2 in RNA cleavage and Pol I insensitivity to alpha-amanitin. The A49-A34.5 heterodimer embraces subunit A135 through extended arms, thereby contacting and potentially regulating subunit A12.2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez-Tornero, Carlos -- Moreno-Morcillo, Maria -- Rashid, Umar J -- Taylor, Nicholas M I -- Ruiz, Federico M -- Gruene, Tim -- Legrand, Pierre -- Steuerwald, Ulrich -- Muller, Christoph W -- England -- Nature. 2013 Oct 31;502(7473):644-9. doi: 10.1038/nature12636. Epub 2013 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040 Madrid, Spain [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153184" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Models, Molecular ; Peptide Chain Elongation, Translational ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Subunits/*chemistry ; RNA Polymerase I/*chemistry ; RNA Polymerase II/chemistry ; RNA Polymerase III/chemistry ; Saccharomyces cerevisiae/*enzymology ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-07-26
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409124/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409124/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swarup, Vivek -- Geschwind, Daniel H -- P30 HD004612/HD/NICHD NIH HHS/ -- England -- Nature. 2013 Aug 1;500(7460):34-5. doi: 10.1038/nature12457. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883924" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics ; Apolipoprotein E4/*genetics ; Female ; Genome, Human/*genetics ; *Genomics ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-03
    Description: Circulating lymphocytes continuously enter lymph nodes for immune surveillance through specialized blood vessels named high endothelial venules, a process that increases markedly during immune responses. How high endothelial venules (HEVs) permit lymphocyte transmigration while maintaining vascular integrity is unknown. Here we report a role for the transmembrane O-glycoprotein podoplanin (PDPN, also known as gp38 and T1alpha) in maintaining HEV barrier function. Mice with postnatal deletion of Pdpn lost HEV integrity and exhibited spontaneous bleeding in mucosal lymph nodes, and bleeding in the draining peripheral lymph nodes after immunization. Blocking lymphocyte homing rescued bleeding, indicating that PDPN is required to protect the barrier function of HEVs during lymphocyte trafficking. Further analyses demonstrated that PDPN expressed on fibroblastic reticular cells, which surround HEVs, functions as an activating ligand for platelet C-type lectin-like receptor 2 (CLEC-2, also known as CLEC1B). Mice lacking fibroblastic reticular cell PDPN or platelet CLEC-2 exhibited significantly reduced levels of VE-cadherin (also known as CDH5), which is essential for overall vascular integrity, on HEVs. Infusion of wild-type platelets restored HEV integrity in Clec-2-deficient mice. Activation of CLEC-2 induced release of sphingosine-1-phosphate from platelets, which promoted expression of VE-cadherin on HEVs ex vivo. Furthermore, draining peripheral lymph nodes of immunized mice lacking sphingosine-1-phosphate had impaired HEV integrity similar to Pdpn- and Clec-2-deficient mice. These data demonstrate that local sphingosine-1-phosphate release after PDPN-CLEC-2-mediated platelet activation is critical for HEV integrity during immune responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791160/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791160/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herzog, Brett H -- Fu, Jianxin -- Wilson, Stephen J -- Hess, Paul R -- Sen, Aslihan -- McDaniel, J Michael -- Pan, Yanfang -- Sheng, Minjia -- Yago, Tadayuki -- Silasi-Mansat, Robert -- McGee, Samuel -- May, Frauke -- Nieswandt, Bernhard -- Morris, Andrew J -- Lupu, Florea -- Coughlin, Shaun R -- McEver, Rodger P -- Chen, Hong -- Kahn, Mark L -- Xia, Lijun -- GM097747/GM/NIGMS NIH HHS/ -- GM103441/GM/NIGMS NIH HHS/ -- HL065590/HL/NHLBI NIH HHS/ -- HL085607/HL/NHLBI NIH HHS/ -- HL093242/HL/NHLBI NIH HHS/ -- HL103432/HL/NHLBI NIH HHS/ -- HL112788/HL/NHLBI NIH HHS/ -- P01 HL085607/HL/NHLBI NIH HHS/ -- P20 GM103527/GM/NIGMS NIH HHS/ -- P20 RR018758/RR/NCRR NIH HHS/ -- R01 GM097747/GM/NIGMS NIH HHS/ -- R01 HL103432/HL/NHLBI NIH HHS/ -- R01 HL112788/HL/NHLBI NIH HHS/ -- S10 RR024598/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Oct 3;502(7469):105-9. doi: 10.1038/nature12501. Epub 2013 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23995678" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Cadherins/metabolism ; Endothelium, Lymphatic/immunology/*metabolism ; Female ; Gene Expression Regulation ; Intercellular Junctions/genetics/immunology ; Lectins, C-Type/*metabolism ; Lymph Nodes/metabolism/pathology ; Lysophospholipids/metabolism ; Male ; Membrane Glycoproteins/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Sphingosine/analogs & derivatives/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-05-24
    Description: Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair. Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module embraces the alpha1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hondele, Maria -- Stuwe, Tobias -- Hassler, Markus -- Halbach, Felix -- Bowman, Andrew -- Zhang, Elisa T -- Nijmeijer, Bianca -- Kotthoff, Christiane -- Rybin, Vladimir -- Amlacher, Stefan -- Hurt, Ed -- Ladurner, Andreas G -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jul 4;499(7456):111-4. doi: 10.1038/nature12242. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Butenandt Institute and LMU Biomedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, Butenandtstrasse 5, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698368" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Chaetomium/*chemistry ; Conserved Sequence ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Replication ; Fungal Proteins/*chemistry/*metabolism ; Histones/chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Chaperones/*chemistry/*metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erez, Neta -- England -- Nature. 2013 Aug 1;500(7460):37-8. doi: 10.1038/nature12459. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Neoplasms/*secondary ; Brain Neoplasms/*secondary ; Breast Neoplasms/*pathology ; Endothelium, Vascular/*pathology ; Female ; Humans ; Lung Neoplasms/*secondary ; Neoplasm, Residual/*pathology ; *Neovascularization, Pathologic ; Pericytes/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-11-12
    Description: Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the alpha1 subunit of soluble guanylyl cyclase (alpha1-sGC), and CCT7 encodes CCTeta, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce alpha1-sGC as well as beta1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in alpha1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erdmann, Jeanette -- Stark, Klaus -- Esslinger, Ulrike B -- Rumpf, Philipp Moritz -- Koesling, Doris -- de Wit, Cor -- Kaiser, Frank J -- Braunholz, Diana -- Medack, Anja -- Fischer, Marcus -- Zimmermann, Martina E -- Tennstedt, Stephanie -- Graf, Elisabeth -- Eck, Sebastian -- Aherrahrou, Zouhair -- Nahrstaedt, Janja -- Willenborg, Christina -- Bruse, Petra -- Braenne, Ingrid -- Nothen, Markus M -- Hofmann, Per -- Braund, Peter S -- Mergia, Evanthia -- Reinhard, Wibke -- Burgdorf, Christof -- Schreiber, Stefan -- Balmforth, Anthony J -- Hall, Alistair S -- Bertram, Lars -- Steinhagen-Thiessen, Elisabeth -- Li, Shu-Chen -- Marz, Winfried -- Reilly, Muredach -- Kathiresan, Sekar -- McPherson, Ruth -- Walter, Ulrich -- CARDIoGRAM -- Ott, Jurg -- Samani, Nilesh J -- Strom, Tim M -- Meitinger, Thomas -- Hengstenberg, Christian -- Schunkert, Heribert -- British Heart Foundation/United Kingdom -- England -- Nature. 2013 Dec 19;504(7480):432-6. doi: 10.1038/nature12722. Epub 2013 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [3]. ; 1] Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany [2] Department of Genetic Epidemiology, University of Regensburg, 93053 Regensburg, Germany [3]. ; 1] Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany [2] Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S937 Paris, France [3]. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany [3]. ; Department of Pharmacology and Toxicology, Ruhr-University Bochum, 44801 Bochum, Germany. ; 1] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [2] Institut fur Physiologie, Universitat zu Lubeck, 23562 Lubeck, Germany. ; 1] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [2] Institut fur Humangenetik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Institut fur Humangenetik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany. ; 1] Institute of Human Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany [2] Institute of Human Genetics, Technische Universitat Munchen, 81675 Munchen, Germany. ; 1] Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany. ; 1] Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany [2] Department of Genomics, Research Center Life & Brain, University of Bonn, 53127 Bonn, Germany. ; 1] Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany [2] Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, 4003 Basel, Switzerland. ; 1] Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK [2] Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester LE1 7RH, UK. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany. ; Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany. ; Institute of Clinical Molecular Biology, Christian-Albrecht-Universitat, 24105 Kiel, Germany. ; Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK. ; Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK. ; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. ; Charite Research Group on Geriatrics, Charite-Universitatsmedizin, 10117 Berlin, Germany. ; 1] Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany [2] Department of Psychology, TU Dresden, 01062 Dresden, Germany. ; 1] Synlab Academy and Business Development, synlab Services GmbH, 68165 Mannheim, Germany [2] Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria [3] Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany. ; The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts 02215, USA [2] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02215, USA [3] Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02215, USA. ; University of Ottawa, Heart Institute, Ottawa, Ontario K1Y 4W7, Canada. ; 1] Centrum fur Thrombose und Hamostase (CTH), Universitatsmedizin Mainz, 55131 Mainz, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site RheinMain, 55131 Mainz, Germany. ; 1] Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, China [2] Laboratory of Statistical Genetics, Rockefeller University, New York 10065, USA. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] Institute of Human Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany [3] Institute of Human Genetics, Technische Universitat Munchen, 81675 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24213632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chaperonin Containing TCP-1/genetics/metabolism ; Cyclic GMP/metabolism ; Disease Susceptibility/*metabolism ; Exome/genetics ; Female ; Genetic Predisposition to Disease ; Guanylate Cyclase/deficiency/genetics/metabolism ; HEK293 Cells ; Humans ; Male ; Mice ; Mutation/genetics ; Myocardial Infarction/genetics/*metabolism/physiopathology ; Nitric Oxide/*metabolism ; Pedigree ; Platelet Activation ; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/metabolism ; Reproducibility of Results ; *Signal Transduction ; Solubility ; Thrombosis/metabolism ; Vasodilation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cannon, Bill -- England -- Nature. 2013 Jan 31;493(7434):S2-3. doi: 10.1038/493S2a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23364768" target="_blank"〉PubMed〈/a〉
    Keywords: Behavior ; Biochemistry ; Cardiovascular Diseases/*epidemiology/mortality/pathology/*prevention & control ; Female ; Humans ; Male ; Risk Factors ; Socioeconomic Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-01-04
    Description: Protein kinase M-zeta (PKM-zeta) is a constitutively active form of atypical protein kinase C that is exclusively expressed in the brain and implicated in the maintenance of long-term memory. Most studies that support a role for PKM-zeta in memory maintenance have used pharmacological PKM-zeta inhibitors such as the myristoylated zeta inhibitory peptide (ZIP) or chelerythrine. Here we use a genetic approach and target exon 9 of the Prkcz gene to generate mice that lack both protein kinase C-zeta (PKC-zeta) and PKM-zeta (Prkcz(-/-) mice). Prkcz(-/-) mice showed normal behaviour in a cage environment and in baseline tests of motor function and sensory perception, but displayed reduced anxiety-like behaviour. Notably, Prkcz(-/-) mice did not show deficits in learning or memory in tests of cued fear conditioning, novel object recognition, object location recognition, conditioned place preference for cocaine, or motor learning, when compared with wild-type littermates. ZIP injection into the nucleus accumbens reduced expression of cocaine-conditioned place preference in Prkcz(-/-) mice. In vitro, ZIP and scrambled ZIP inhibited PKM-zeta, PKC-iota and PKC-zeta with similar inhibition constant (K(i)) values. Chelerythrine was a weak inhibitor of PKM-zeta (K(i) = 76 muM). Our findings show that absence of PKM-zeta does not impair learning and memory in mice, and that ZIP can erase reward memory even when PKM-zeta is not present.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548047/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548047/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Anna M -- Kanter, Benjamin R -- Wang, Dan -- Lim, Jana P -- Zou, Mimi E -- Qiu, Chichen -- McMahon, Thomas -- Dadgar, Jahan -- Fischbach-Weiss, Sarah C -- Messing, Robert O -- AA017072/AA/NIAAA NIH HHS/ -- P50 AA017072/AA/NIAAA NIH HHS/ -- T32 GM007618/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jan 17;493(7432):416-9. doi: 10.1038/nature11803. Epub 2013 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton Street, Suite 200, Emeryville, California 94608, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23283171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/genetics ; Behavior, Animal ; Benzophenanthridines/pharmacology ; Cocaine ; Conditioning, Classical ; Cues ; Exons/genetics ; Fear ; Female ; *Gene Deletion ; Male ; Memory/*physiology ; Mice ; Protein Kinase C/analysis/*deficiency/*genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-11-05
    Description: The development and severity of inflammatory bowel diseases and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that mice with an intestinal epithelial cell (IEC)-specific deletion of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3(DeltaIEC) mice) exhibited extensive dysregulation of IEC-intrinsic gene expression, including decreased basal expression of genes associated with antimicrobial defence. Critically, conventionally housed HDAC3(DeltaIEC) mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3(DeltaIEC) mice showed significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 has a central role in maintaining intestinal homeostasis. Re-derivation of HDAC3(DeltaIEC) mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis and intestinal barrier function were largely restored in the absence of commensal bacteria. Although the specific mechanisms through which IEC-intrinsic HDAC3 expression regulates these complex phenotypes remain to be determined, these data indicate that HDAC3 is a critical factor that integrates commensal-bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949438/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949438/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alenghat, Theresa -- Osborne, Lisa C -- Saenz, Steven A -- Kobuley, Dmytro -- Ziegler, Carly G K -- Mullican, Shannon E -- Choi, Inchan -- Grunberg, Stephanie -- Sinha, Rohini -- Wynosky-Dolfi, Meghan -- Snyder, Annelise -- Giacomin, Paul R -- Joyce, Karen L -- Hoang, Tram B -- Bewtra, Meenakshi -- Brodsky, Igor E -- Sonnenberg, Gregory F -- Bushman, Frederic D -- Won, Kyoung-Jae -- Lazar, Mitchell A -- Artis, David -- 2-P30 CA016520/CA/NCI NIH HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- AI106697/AI/NIAID NIH HHS/ -- DK043806/DK/NIDDK NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- F31-GM082187/GM/NIGMS NIH HHS/ -- K08 DK084347/DK/NIDDK NIH HHS/ -- K08 DK093784/DK/NIDDK NIH HHS/ -- K08-DK084347/DK/NIDDK NIH HHS/ -- K08-DK093784/DK/NIDDK NIH HHS/ -- P01 AI106697/AI/NIAID NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30-DK050306/DK/NIDDK NIH HHS/ -- P30-DK19525/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI083480/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- R21 AI105346/AI/NIAID NIH HHS/ -- R21-AI105346/AI/NIAID NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- T32-RR007063/RR/NCRR NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Dec 5;504(7478):153-7. doi: 10.1038/nature12687. Epub 2013 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24185009" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Bacteria/genetics ; Colitis, Ulcerative/enzymology/genetics/microbiology ; Crohn Disease/enzymology/genetics/microbiology ; Female ; Gene Deletion ; Gene Expression Profiling ; *Gene Expression Regulation ; Histone Deacetylases/genetics/*metabolism ; *Homeostasis ; Humans ; Intestinal Mucosa/*enzymology/pathology ; Intestines/*microbiology ; Male ; Mice ; Mice, Inbred C57BL ; Paneth Cells/cytology/metabolism ; RNA, Ribosomal, 16S/genetics ; Signal Transduction ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-11-15
    Description: Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic beta-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lloyd, David J -- St Jean, David J Jr -- Kurzeja, Robert J M -- Wahl, Robert C -- Michelsen, Klaus -- Cupples, Rod -- Chen, Michelle -- Wu, John -- Sivits, Glenn -- Helmering, Joan -- Komorowski, Renee -- Ashton, Kate S -- Pennington, Lewis D -- Fotsch, Christopher -- Vazir, Mukta -- Chen, Kui -- Chmait, Samer -- Zhang, Jiandong -- Liu, Longbin -- Norman, Mark H -- Andrews, Kristin L -- Bartberger, Michael D -- Van, Gwyneth -- Galbreath, Elizabeth J -- Vonderfecht, Steven L -- Wang, Minghan -- Jordan, Steven R -- Veniant, Murielle M -- Hale, Clarence -- England -- Nature. 2013 Dec 19;504(7480):437-40. doi: 10.1038/nature12724. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA. ; Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA. ; Department of Comparative Biology & Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226772" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Blood Glucose/metabolism ; Carrier Proteins/*antagonists & inhibitors/metabolism ; Cell Nucleus/enzymology ; Crystallography, X-Ray ; Diabetes Mellitus, Type 2/blood/*drug therapy/enzymology ; Disease Models, Animal ; Hepatocytes ; Humans ; Hyperglycemia/blood/drug therapy/enzymology ; Hypoglycemic Agents/chemistry/*pharmacology/*therapeutic use ; Liver/cytology/enzymology/metabolism ; Male ; Models, Molecular ; Organ Specificity ; Phosphorylation/drug effects ; Piperazines/chemistry/metabolism/pharmacology/therapeutic use ; Protein Binding/drug effects ; Protein Transport/drug effects ; Rats ; Rats, Wistar ; Sulfonamides/chemistry/metabolism/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carmichael, Mary -- England -- Nature. 2013 Jun 27;498(7455):S14-5. doi: 10.1038/498S14a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803944" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Antineoplastic Agents/*adverse effects/therapeutic use ; Bone Marrow Transplantation/adverse effects ; Child ; Doxorubicin/adverse effects/therapeutic use ; Drug-Related Side Effects and Adverse ; Reactions/*complications/genetics/prevention & control ; Female ; Humans ; Leukemia/*complications/*drug therapy/genetics ; Metabolic Syndrome X/complications/etiology/genetics ; Patient Safety/*statistics & numerical data ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications/drug ; therapy/genetics ; Survivors/*statistics & numerical data ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-03-19
    Description: The cryptochrome (CRY) flavoproteins act as blue-light receptors in plants and insects, but perform light-independent functions at the core of the mammalian circadian clock. To drive clock oscillations, mammalian CRYs associate with the Period proteins (PERs) and together inhibit the transcription of their own genes. The SCF(FBXL3) ubiquitin ligase complex controls this negative feedback loop by promoting CRY ubiquitination and degradation. However, the molecular mechanisms of their interactions and the functional role of flavin adenine dinucleotide (FAD) binding in CRYs remain poorly understood. Here we report crystal structures of mammalian CRY2 in its apo, FAD-bound and FBXL3-SKP1-complexed forms. Distinct from other cryptochromes of known structures, mammalian CRY2 binds FAD dynamically with an open cofactor pocket. Notably, the F-box protein FBXL3 captures CRY2 by simultaneously occupying its FAD-binding pocket with a conserved carboxy-terminal tail and burying its PER-binding interface. This novel F-box-protein-substrate bipartite interaction is susceptible to disruption by both FAD and PERs, suggesting a new avenue for pharmacological targeting of the complex and a multifaceted regulatory mechanism of CRY ubiquitination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618506/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618506/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xing, Weiman -- Busino, Luca -- Hinds, Thomas R -- Marionni, Samuel T -- Saifee, Nabiha H -- Bush, Matthew F -- Pagano, Michele -- Zheng, Ning -- 5T32-HL007151/HL/NHLBI NIH HHS/ -- K99 CA166181/CA/NCI NIH HHS/ -- R01 GM057587/GM/NIGMS NIH HHS/ -- R01-CA107134/CA/NCI NIH HHS/ -- R01-GM057587/GM/NIGMS NIH HHS/ -- R21-CA161108/CA/NCI NIH HHS/ -- R37 CA076584/CA/NCI NIH HHS/ -- R37-CA-076584/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 4;496(7443):64-8. doi: 10.1038/nature11964. Epub 2013 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23503662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoproteins/chemistry/metabolism ; Binding Sites ; Cryptochromes/chemistry/*metabolism ; Crystallography, X-Ray ; Deoxyribodipyrimidine Photo-Lyase/chemistry ; Drosophila melanogaster/chemistry ; F-Box Proteins/chemistry/*metabolism ; Flavin-Adenine Dinucleotide/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; S-Phase Kinase-Associated Proteins/chemistry/metabolism ; SKP Cullin F-Box Protein Ligases/chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-04-26
    Description: Cell-surface-receptor binding by influenza viruses is a key determinant of their transmissibility, both from avian and animal species to humans as well as from human to human. Highly pathogenic avian H5N1 viruses that are a threat to public health have been observed to acquire affinity for human receptors, and transmissible-mutant-selection experiments have identified a virus that is transmissible in ferrets, the generally accepted experimental model for influenza in humans. Here, our quantitative biophysical measurements of the receptor-binding properties of haemagglutinin (HA) from the transmissible mutant indicate a small increase in affinity for human receptor and a marked decrease in affinity for avian receptor. From analysis of virus and HA binding data we have derived an algorithm that predicts virus avidity from the affinity of individual HA-receptor interactions. It reveals that the transmissible-mutant virus has a 200-fold preference for binding human over avian receptors. The crystal structure of the transmissible-mutant HA in complex with receptor analogues shows that it has acquired the ability to bind human receptor in the same folded-back conformation as seen for HA from the 1918, 1957 (ref. 4), 1968 (ref. 5) and 2009 (ref. 6) pandemic viruses. This binding mode is substantially different from that by which non-transmissible wild-type H5 virus HA binds human receptor. The structure of the complex also explains how the change in preference from avian to human receptors arises from the Gln226Leu substitution, which facilitates binding to human receptor but restricts binding to avian receptor. Both features probably contribute to the acquisition of transmissibility by this mutant virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, Xiaoli -- Coombs, Peter J -- Martin, Stephen R -- Liu, Junfeng -- Xiao, Haixia -- McCauley, John W -- Locher, Kathrin -- Walker, Philip A -- Collins, Patrick J -- Kawaoka, Yoshihiro -- Skehel, John J -- Gamblin, Steven J -- BB/E010806/Biotechnology and Biological Sciences Research Council/United Kingdom -- MC_U117512723/Medical Research Council/United Kingdom -- MC_U117584222/Medical Research Council/United Kingdom -- U117512723/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117584222/Medical Research Council/United Kingdom -- England -- Nature. 2013 May 16;497(7449):392-6. doi: 10.1038/nature12144. Epub 2013 Apr 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23615615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/metabolism/virology ; Chick Embryo ; Crystallography, X-Ray ; Ferrets/*virology ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/genetics/*metabolism ; *Host Specificity ; Humans ; Influenza A Virus, H5N1 Subtype/chemistry/*genetics/*metabolism/pathogenicity ; Models, Biological ; Models, Molecular ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Protein Conformation ; Receptors, Virus/*metabolism ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-06-14
    Description: 53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fradet-Turcotte, Amelie -- Canny, Marella D -- Escribano-Diaz, Cristina -- Orthwein, Alexandre -- Leung, Charles C Y -- Huang, Hao -- Landry, Marie-Claude -- Kitevski-LeBlanc, Julianne -- Noordermeer, Sylvie M -- Sicheri, Frank -- Durocher, Daniel -- 84297-1/Canadian Institutes of Health Research/Canada -- 84297-2/Canadian Institutes of Health Research/Canada -- MOP84297/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 4;499(7456):50-4. doi: 10.1038/nature12318. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760478" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA-Binding Proteins/chemistry/deficiency/genetics ; Female ; Histones/*chemistry/*metabolism ; Humans ; Intracellular Signaling Peptides and ; Proteins/chemistry/deficiency/genetics/*metabolism ; Lysine/*metabolism ; Male ; Mice ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Schizosaccharomyces ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction ; Ubiquitin/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-09-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, Kyle M -- Lim, Bing -- England -- Nature. 2013 Oct 3;502(7469):41-2. doi: 10.1038/nature12561. Epub 2013 Sep 18.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24048472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*physiology ; Female ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Male ; *Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-01-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frankland, Paul W -- Josselyn, Sheena A -- England -- Nature. 2013 Jan 17;493(7432):312-3. doi: 10.1038/nature11850. Epub 2013 Jan 2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23283170" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; *Gene Deletion ; Hippocampus/*physiology ; Male ; Memory/*physiology ; Memory, Long-Term/*physiology ; Neuronal Plasticity/*physiology ; Protein Kinase C/*deficiency/*genetics/*metabolism ; Synapses/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-06-01
    Description: Cytosolic DNA arising from intracellular bacterial or viral infections is a powerful pathogen-associated molecular pattern (PAMP) that leads to innate immune host defence by the production of type I interferon and inflammatory cytokines. Recognition of cytosolic DNA by the recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of cGAMP to activate the stimulator of interferon genes (STING). Here we report the crystal structure of cGAS alone and in complex with DNA, ATP and GTP along with functional studies. Our results explain the broad DNA sensing specificity of cGAS, show how cGAS catalyses dinucleotide formation and indicate activation by a DNA-induced structural switch. cGAS possesses a remarkable structural similarity to the antiviral cytosolic double-stranded RNA sensor 2'-5'oligoadenylate synthase (OAS1), but contains a unique zinc thumb that recognizes B-form double-stranded DNA. Our results mechanistically unify dsRNA and dsDNA innate immune sensing by OAS1 and cGAS nucleotidyl transferases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768140/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768140/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Civril, Filiz -- Deimling, Tobias -- de Oliveira Mann, Carina C -- Ablasser, Andrea -- Moldt, Manuela -- Witte, Gregor -- Hornung, Veit -- Hopfner, Karl-Peter -- 243046/European Research Council/International -- U19 AI083025/AI/NIAID NIH HHS/ -- U19AI083025/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jun 20;498(7454):332-7. doi: 10.1038/nature12305. Epub 2013 May 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23722159" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/chemistry/metabolism ; Animals ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; *Cytosol ; DNA/chemistry/*metabolism/pharmacology ; Guanosine Triphosphate/chemistry/metabolism ; HEK293 Cells ; Humans ; Membrane Proteins/genetics/metabolism ; Mice ; Models, Biological ; Models, Molecular ; Mutation ; Nucleotidyltransferases/*chemistry/genetics/metabolism ; Protein Conformation/drug effects ; Structure-Activity Relationship ; Substrate Specificity ; Swine ; Uridine Triphosphate/chemistry/metabolism ; Zinc/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-05-24
    Description: Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Findley, Keisha -- Oh, Julia -- Yang, Joy -- Conlan, Sean -- Deming, Clayton -- Meyer, Jennifer A -- Schoenfeld, Deborah -- Nomicos, Effie -- Park, Morgan -- NIH Intramural Sequencing Center Comparative Sequencing Program -- Kong, Heidi H -- Segre, Julia A -- 1K99AR059222/AR/NIAMS NIH HHS/ -- 1UH2AR057504-01/AR/NIAMS NIH HHS/ -- 4UH3AR057504-02/AR/NIAMS NIH HHS/ -- ZIA BC010938-05/Intramural NIH HHS/ -- ZIA HG000180-12/Intramural NIH HHS/ -- England -- Nature. 2013 Jun 20;498(7454):367-70. doi: 10.1038/nature12171. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698366" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bacteria/classification/genetics/*isolation & purification ; *Biodiversity ; Databases, Genetic ; District of Columbia ; Female ; Fungi/classification/genetics/*isolation & purification ; Health ; Homeostasis ; Humans ; Malassezia/classification/genetics/isolation & purification ; Male ; Molecular Sequence Data ; Skin/anatomy & histology/*microbiology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-07-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connor, Jingmai -- Zheng, Xiaoting -- Zhou, Zhonghe -- England -- Nature. 2013 Jul 11;499(7457):E1-2. doi: 10.1038/nature12368.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Vertebrate Evolution and Human Origin, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. jingmai.oconnor@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23846662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology/*physiology ; Female ; *Fossils ; Ovarian Follicle/*anatomy & histology/*physiology ; Reproduction/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-07-23
    Description: During translation initiation in eukaryotes, the small ribosomal subunit binds messenger RNA at the 5' end and scans in the 5' to 3' direction to locate the initiation codon, form the 80S initiation complex and start protein synthesis. This simple, yet intricate, process is guided by multiple initiation factors. Here we determine the structures of three complexes of the small ribosomal subunit that represent distinct steps in mammalian translation initiation. These structures reveal the locations of eIF1, eIF1A, mRNA and initiator transfer RNA bound to the small ribosomal subunit and provide insights into the details of translation initiation specific to eukaryotes. Conformational changes associated with the captured functional states reveal the dynamics of the interactions in the P site of the ribosome. These results have functional implications for the mechanism of mRNA scanning.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748252/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748252/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lomakin, Ivan B -- Steitz, Thomas A -- GM022778/GM/NIGMS NIH HHS/ -- P01 GM022778/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Aug 15;500(7462):307-11. doi: 10.1038/nature12355. Epub 2013 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA. ivan.lomakin@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23873042" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-1/chemistry/metabolism ; Humans ; *Models, Molecular ; Protein Binding ; *Protein Biosynthesis ; Protein Structure, Quaternary ; RNA, Messenger/*chemistry/*metabolism ; RNA, Transfer, Met/chemistry/metabolism ; Rabbits ; Ribosome Subunits, Small, Eukaryotic/chemistry/metabolism ; Ribosomes/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-03-22
    Description: Macrophages consist of at least two subgroups, M1 and M2 (refs 1-3). Whereas M1 macrophages are proinflammatory and have a central role in host defence against bacterial and viral infections, M2 macrophages are associated with responses to anti-inflammatory reactions, helminth infection, tissue remodelling, fibrosis and tumour progression. Trib1 is an adaptor protein involved in protein degradation by interacting with COP1 ubiquitin ligase. Genome-wide association studies in humans have implicated TRIB1 in lipid metabolism. Here we show that Trib1 is critical for the differentiation of F4/80(+)MR(+) tissue-resident macrophages--that share characteristics with M2 macrophages (which we term M2-like macrophages)--and eosinophils but not for the differentiation of M1 myeloid cells. Trib1 deficiency results in a severe reduction of M2-like macrophages in various organs, including bone marrow, spleen, lung and adipose tissues. Aberrant expression of C/EBPalpha in Trib1-deficient bone marrow cells is responsible for the defects in macrophage differentiation. Unexpectedly, mice lacking Trib1 in haematopoietic cells show diminished adipose tissue mass accompanied by evidence of increased lipolysis, even when fed a normal diet. Supplementation of M2-like macrophages rescues the pathophysiology, indicating that a lack of these macrophages is the cause of lipolysis. In response to a high-fat diet, mice lacking Trib1 in haematopoietic cells develop hypertriglyceridaemia and insulin resistance, together with increased proinflammatory cytokine gene induction. Collectively, these results demonstrate that Trib1 is critical for adipose tissue maintenance and suppression of metabolic disorders by controlling the differentiation of tissue-resident M2-like macrophages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Satoh, Takashi -- Kidoya, Hiroyasu -- Naito, Hisamichi -- Yamamoto, Masahiro -- Takemura, Naoki -- Nakagawa, Katsuhiro -- Yoshioka, Yoshichika -- Morii, Eiichi -- Takakura, Nobuyuki -- Takeuchi, Osamu -- Akira, Shizuo -- P01 AI070167/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Mar 28;495(7442):524-8. doi: 10.1038/nature11930. Epub 2013 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23515163" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*cytology/metabolism/pathology ; Animals ; Bone Marrow Cells/cytology/metabolism ; CCAAT-Enhancer-Binding Protein-alpha/metabolism ; Cell Count ; Cell Cycle Proteins/deficiency/genetics/metabolism ; *Cell Differentiation ; Cytokines/genetics ; Diet, High-Fat/adverse effects ; Eosinophils/cytology/metabolism ; Female ; Hypertriglyceridemia/chemically induced/genetics ; Inflammation Mediators/metabolism ; Insulin Resistance/genetics ; Intracellular Signaling Peptides and ; Proteins/chemistry/deficiency/genetics/*metabolism ; Lipodystrophy/chemically induced/metabolism/pathology ; Lipolysis ; Lung/cytology ; Macrophages/classification/*cytology/*metabolism ; Male ; Mice ; Neutrophils/cytology/metabolism ; Organ Specificity ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*antagonists & ; inhibitors/chemistry/deficiency/genetics/metabolism ; Spleen/cytology ; Ubiquitin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-10-29
    Description: Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI-ATPH and PSAJ-RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5' or 3' exonucleases, PPR10 defines the corresponding 5' and 3' messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45 A, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Ping -- Li, Quanxiu -- Yan, Chuangye -- Liu, Ying -- Liu, Junjie -- Yu, Feng -- Wang, Zheng -- Long, Jiafu -- He, Jianhua -- Wang, Hong-Wei -- Wang, Jiawei -- Zhu, Jian-Kang -- Shi, Yigong -- Yan, Nieng -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 5;504(7478):168-71. doi: 10.1038/nature12651. Epub 2013 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24162847" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; *Models, Molecular ; Plant Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA/chemistry/*metabolism ; Zea mays/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-06-21
    Description: Human outer subventricular zone (OSVZ) neural progenitors and Drosophila type II neuroblasts both generate intermediate neural progenitors (INPs) that populate the adult cerebral cortex or central complex, respectively. It is unknown whether INPs simply expand or also diversify neural cell types. Here we show that Drosophila INPs sequentially generate distinct neural subtypes, that INPs sequentially express Dichaete, Grainy head and Eyeless transcription factors, and that these transcription factors are required for the production of distinct neural subtypes. Moreover, parental type II neuroblasts also sequentially express transcription factors and generate different neuronal/glial progeny over time, providing a second temporal identity axis. We conclude that neuroblast and INP temporal patterning axes act together to generate increased neural diversity within the adult central complex; OSVZ progenitors may use similar mechanisms to increase neural diversity in the human brain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941985/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941985/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bayraktar, Omer Ali -- Doe, Chris Q -- R01 HD027056/HD/NICHD NIH HHS/ -- R01HD27056/HD/NICHD NIH HHS/ -- R37 HD027056/HD/NICHD NIH HHS/ -- T32GM007413/GM/NIGMS NIH HHS/ -- T32HD216345/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 27;498(7455):449-55. doi: 10.1038/nature12266. Epub 2013 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23783519" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/metabolism ; Brain/anatomy & histology/cytology/physiology ; *Cell Lineage ; DNA-Binding Proteins/metabolism ; Drosophila Proteins/metabolism ; Drosophila melanogaster/anatomy & histology/*cytology/metabolism/physiology ; Female ; Gene Expression Regulation ; Neural Stem Cells/*cytology/metabolism ; Neuroglia/cytology/metabolism ; Neurons/*cytology/*metabolism ; Time Factors ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-05-07
    Description: Semaphorin 3A (Sema3A) is a diffusible axonal chemorepellent that has an important role in axon guidance. Previous studies have demonstrated that Sema3a(-/-) mice have multiple developmental defects due to abnormal neuronal innervations. Here we show in mice that Sema3A is abundantly expressed in bone, and cell-based assays showed that Sema3A affected osteoblast differentiation in a cell-autonomous fashion. Accordingly, Sema3a(-/-) mice had a low bone mass due to decreased bone formation. However, osteoblast-specific Sema3A-deficient mice (Sema3acol1(-/-) and Sema3aosx(-/-) mice) had normal bone mass, even though the expression of Sema3A in bone was substantially decreased. In contrast, mice lacking Sema3A in neurons (Sema3asynapsin(-/-) and Sema3anestin(-/-) mice) had low bone mass, similar to Sema3a(-/-) mice, indicating that neuron-derived Sema3A is responsible for the observed bone abnormalities independent of the local effect of Sema3A in bone. Indeed, the number of sensory innervations of trabecular bone was significantly decreased in Sema3asynapsin(-/-) mice, whereas sympathetic innervations of trabecular bone were unchanged. Moreover, ablating sensory nerves decreased bone mass in wild-type mice, whereas it did not reduce the low bone mass in Sema3anestin(-/-) mice further, supporting the essential role of the sensory nervous system in normal bone homeostasis. Finally, neuronal abnormalities in Sema3a(-/-) mice, such as olfactory development, were identified in Sema3asynasin(-/-) mice, demonstrating that neuron-derived Sema3A contributes to the abnormal neural development seen in Sema3a(-/-) mice, and indicating that Sema3A produced in neurons regulates neural development in an autocrine manner. This study demonstrates that Sema3A regulates bone remodelling indirectly by modulating sensory nerve development, but not directly by acting on osteoblasts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fukuda, Toru -- Takeda, Shu -- Xu, Ren -- Ochi, Hiroki -- Sunamura, Satoko -- Sato, Tsuyoshi -- Shibata, Shinsuke -- Yoshida, Yutaka -- Gu, Zirong -- Kimura, Ayako -- Ma, Chengshan -- Xu, Cheng -- Bando, Waka -- Fujita, Koji -- Shinomiya, Kenichi -- Hirai, Takashi -- Asou, Yoshinori -- Enomoto, Mitsuhiro -- Okano, Hideyuki -- Okawa, Atsushi -- Itoh, Hiroshi -- NS065048/NS/NINDS NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):490-3. doi: 10.1038/nature12115. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, School of Medicine, Keio University, Shinanomachi 35, Shinjyuku-ku, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Remodeling ; Bone and Bones/anatomy & histology/*innervation/*metabolism ; Cell Differentiation ; Cells, Cultured ; Female ; Male ; Mice ; Organ Size ; Osteoblasts/cytology/metabolism ; Semaphorin-3A/deficiency/genetics/*metabolism ; Sensory Receptor Cells/cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-06-19
    Description: Efficient carbon utilization is critical to the survival of microorganisms in competitive environments. To optimize energy usage, bacteria have developed an integrated control system to preferentially uptake carbohydrates that support rapid growth. The availability of a preferred carbon source, such as glucose, represses the synthesis and activities of proteins necessary for the transport and metabolism of secondary carbon sources. This regulatory phenomenon is defined as carbon catabolite repression. In enteric bacteria, the key player of carbon catabolite repression is a component of the glucose-specific phosphotransferase system, enzyme IIA (EIIA(Glc)). It is known that unphosphorylated EIIA(Glc) binds to and inhibits a variety of transporters when glucose is available. However, understanding the underlying molecular mechanism has been hindered by the complete absence of structures for any EIIA(Glc)-transporter complexes. Here we present the 3.9 A crystal structure of Escherichia coli EIIA(Glc) in complex with the maltose transporter, an ATP-binding cassette (ABC) transporter. The structure shows that two EIIA(Glc) molecules bind to the cytoplasmic ATPase subunits, stabilizing the transporter in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis. We also show that the half-maximal inhibitory concentrations of the full-length EIIA(Glc) and an amino-terminal truncation mutant differ by 60-fold, consistent with the hypothesis that the amino-terminal region, disordered in the crystal structure, functions as a membrane anchor to increase the effective EIIA(Glc) concentration at the membrane. Together these data suggest a model of how the central regulatory protein EIIA(Glc) allosterically inhibits maltose uptake in E. coli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875231/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875231/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Shanshuang -- Oldham, Michael L -- Davidson, Amy L -- Chen, Jue -- GM070515/GM/NIGMS NIH HHS/ -- R01 GM070515/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jul 18;499(7458):364-8. doi: 10.1038/nature12232. Epub 2013 Jun 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23770568" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Carbon/metabolism ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry/metabolism ; Models, Molecular ; Phosphoenolpyruvate Sugar Phosphotransferase System/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-09-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behr, Marcel A -- Schurr, Erwin -- England -- Nature. 2013 Sep 26;501(7468):498-9. doi: 10.1038/nature12555. Epub 2013 Sep 4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24005328" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila melanogaster/*immunology/*microbiology ; Female ; Immunity, Innate/*immunology ; Male ; Mycobacterium marinum/*immunology ; Mycobacterium tuberculosis/*immunology ; Salmonella typhimurium/*immunology ; Ubiquitin-Protein Ligases/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-02-19
    Description: Complex I is the first and largest enzyme of the respiratory chain and has a central role in cellular energy production through the coupling of NADH:ubiquinone electron transfer to proton translocation. It is also implicated in many common human neurodegenerative diseases. Here, we report the first crystal structure of the entire, intact complex I (from Thermus thermophilus) at 3.3 A resolution. The structure of the 536-kDa complex comprises 16 different subunits, with a total of 64 transmembrane helices and 9 iron-sulphur clusters. The core fold of subunit Nqo8 (ND1 in humans) is, unexpectedly, similar to a half-channel of the antiporter-like subunits. Small subunits nearby form a linked second half-channel, which completes the fourth proton-translocation pathway (present in addition to the channels in three antiporter-like subunits). The quinone-binding site is unusually long, narrow and enclosed. The quinone headgroup binds at the deep end of this chamber, near iron-sulphur cluster N2. Notably, the chamber is linked to the fourth channel by a 'funnel' of charged residues. The link continues over the entire membrane domain as a flexible central axis of charged and polar residues, and probably has a leading role in the propagation of conformational changes, aided by coupling elements. The structure suggests that a unique, out-of-the-membrane quinone-reaction chamber enables the redox energy to drive concerted long-range conformational changes in the four antiporter-like domains, resulting in translocation of four protons per cycle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672946/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672946/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baradaran, Rozbeh -- Berrisford, John M -- Minhas, Gurdeep S -- Sazanov, Leonid A -- MC_U105674180/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2013 Feb 28;494(7438):443-8. doi: 10.1038/nature11871. Epub 2013 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23417064" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoquinones/chemistry/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; NAD/metabolism ; Oxidation-Reduction ; Protein Folding ; Protein Subunits/chemistry/metabolism ; Proton-Motive Force ; Protons ; Thermus thermophilus/*chemistry/cytology ; Ubiquinone/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-11-15
    Description: Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furusawa, Yukihiro -- Obata, Yuuki -- Fukuda, Shinji -- Endo, Takaho A -- Nakato, Gaku -- Takahashi, Daisuke -- Nakanishi, Yumiko -- Uetake, Chikako -- Kato, Keiko -- Kato, Tamotsu -- Takahashi, Masumi -- Fukuda, Noriko N -- Murakami, Shinnosuke -- Miyauchi, Eiji -- Hino, Shingo -- Atarashi, Koji -- Onawa, Satoshi -- Fujimura, Yumiko -- Lockett, Trevor -- Clarke, Julie M -- Topping, David L -- Tomita, Masaru -- Hori, Shohei -- Ohara, Osamu -- Morita, Tatsuya -- Koseki, Haruhiko -- Kikuchi, Jun -- Honda, Kenya -- Hase, Koji -- Ohno, Hiroshi -- England -- Nature. 2013 Dec 19;504(7480):446-50. doi: 10.1038/nature12721. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3]. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3] Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan [4]. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan [3]. ; RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan. ; Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan. ; Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Preventative Health National Research Flagship, CSIRO Food and Nutritional Sciences, South Australia 5000, Australia. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan [3] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan. ; 1] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan [2] RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3] PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226770" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Adoptive Transfer ; Animals ; Butyrates/analysis/*metabolism/pharmacology ; *Cell Differentiation/drug effects ; Colitis/drug therapy/pathology ; Colon/cytology/*immunology/metabolism/*microbiology ; Conserved Sequence ; Female ; *Fermentation ; Forkhead Transcription Factors/genetics ; Germ-Free Life ; Histones/metabolism ; Homeostasis/drug effects ; Intestinal Mucosa/cytology/immunology ; Lymphocyte Count ; Magnetic Resonance Spectroscopy ; Male ; Metabolome ; Mice ; Promoter Regions, Genetic/drug effects ; *Symbiosis ; T-Lymphocytes, Regulatory/*cytology/drug effects/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-11-01
    Description: To understand the processes that maintain genetic diversity is a long-standing challenge in evolutionary biology, with implications for predicting disease resistance, response to environmental change, and population persistence. Simple population genetic models are not sufficient to explain the high levels of genetic diversity sometimes observed in ecologically important traits. In guppies (Poecilia reticulata), male colour pattern is both diverse and heritable, and is arguably one of the most extreme examples of morphological polymorphism known. Negative frequency-dependent selection (NFDS), a form of selection in which genotypes are favoured when they are rare, can potentially maintain such extensive polymorphism, but few experimental studies have confirmed its operation in nature. Here we use highly replicated experimental manipulations of natural populations to show that males with rare colour patterns have higher reproductive fitness, demonstrating NFDS mediated by sexual selection. Rare males acquired more mates and sired more offspring compared to common males and, as previously reported, had higher rates of survival. Orange colour, implicated in other studies of sexual selection in guppies, did predict male reproductive success, but only in one of three populations. These data support the hypothesis that NFDS maintains diversity in the colour patterns of male guppies through two selective agents, mates and predators. Similar field-based manipulations of genotype frequencies could provide a powerful approach to reveal the underlying ecological and behavioural mechanisms that maintain genetic and phenotypic diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Kimberly A -- Houde, Anne E -- Price, Anna C -- Rodd, F Helen -- England -- Nature. 2013 Nov 7;503(7474):108-10. doi: 10.1038/nature12717. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172904" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Wild/genetics/*physiology ; Female ; Fertility/genetics/physiology ; Genetic Fitness/genetics/*physiology ; Genetic Variation/genetics ; Male ; Mating Preference, Animal/*physiology ; Models, Animal ; Phenotype ; Pigmentation/genetics/physiology ; Poecilia/genetics/*physiology ; Predatory Behavior ; Rivers ; Selection, Genetic/genetics/physiology ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-11-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2013 Nov 14;503(7475):165.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24236312" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Antimalarials/administration & dosage/economics ; Circumcision, Male/economics/standards ; Clinical Trials as Topic ; Female ; HIV/physiology ; HIV Infections/*prevention & control/transmission ; Health Education/standards ; Humans ; Malaria/*prevention & control ; Male ; Program Evaluation/economics/standards ; South America
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, David -- Barker, Mary -- Fleming, Tom -- Lampl, Michelle -- BB/F007450/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0100558/Medical Research Council/United Kingdom -- MC_UP_A620_1017/Medical Research Council/United Kingdom -- MC_UU_12011/4/Medical Research Council/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):209-11.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24350368" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birth Weight ; Child, Preschool ; Chronic Disease/prevention & control ; Female ; Health Education ; Humans ; Infant ; Infant, Newborn ; *Mothers/education ; Pregnancy ; Prenatal Care/*methods ; Prenatal Exposure Delayed Effects/*prevention & control ; *Prenatal Nutritional Physiological Phenomena ; Public Health/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-04-05
    Description: The Sir2 family of enzymes or sirtuins are known as nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and have been implicated in the regulation of transcription, genome stability, metabolism and lifespan. However, four of the seven mammalian sirtuins have very weak deacetylase activity in vitro. Here we show that human SIRT6 efficiently removes long-chain fatty acyl groups, such as myristoyl, from lysine residues. The crystal structure of SIRT6 reveals a large hydrophobic pocket that can accommodate long-chain fatty acyl groups. We demonstrate further that SIRT6 promotes the secretion of tumour necrosis factor-alpha (TNF-alpha) by removing the fatty acyl modification on K19 and K20 of TNF-alpha. Protein lysine fatty acylation has been known to occur in mammalian cells, but the function and regulatory mechanisms of this modification were unknown. Our data indicate that protein lysine fatty acylation is a novel mechanism that regulates protein secretion. The discovery of SIRT6 as an enzyme that controls protein lysine fatty acylation provides new opportunities to investigate the physiological function of a protein post-translational modification that has been little studied until now.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635073/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635073/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Hong -- Khan, Saba -- Wang, Yi -- Charron, Guillaume -- He, Bin -- Sebastian, Carlos -- Du, Jintang -- Kim, Ray -- Ge, Eva -- Mostoslavsky, Raul -- Hang, Howard C -- Hao, Quan -- Lin, Hening -- R01 CA175727/CA/NCI NIH HHS/ -- R01 DK088190/DK/NIDDK NIH HHS/ -- R01 GM086703/GM/NIGMS NIH HHS/ -- R01 GM087544/GM/NIGMS NIH HHS/ -- R01 GM093072/GM/NIGMS NIH HHS/ -- R01GM086703/GM/NIGMS NIH HHS/ -- R01GM087544/GM/NIGMS NIH HHS/ -- R01GM093072/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Apr 4;496(7443):110-3. doi: 10.1038/nature12038.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552949" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Binding Sites ; Crystallography, X-Ray ; Fatty Acids/*chemistry/*metabolism ; Humans ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Lysine/*analogs & derivatives/chemistry/*metabolism ; Protein Processing, Post-Translational ; Sirtuins/chemistry/*metabolism ; Tumor Necrosis Factor-alpha/chemistry/metabolism/*secretion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-08-02
    Description: Cancer research has been rightly and successfully focused on prevention, early detection, and identification of specific molecular targets that distinguish the malignant cells from the neighbouring benign cells. However, reducing lethal tissue injury caused by intensive chemoradiotherapy during treatment of late-stage metastatic cancers remains a key clinical challenge. Here we tested whether the induction of adult stem cells could repair chemoradiation-induced tissue injury and prolong overall survival in mice. We found that intestinal stem cells (ISCs) expressed Slit2 and its single-span transmembrane cell-surface receptor roundabout 1 (Robo1). Partial genetic deletion of Robo1 decreased ISC numbers and caused villus hypotrophy, whereas a Slit2 transgene increased ISC numbers and triggered villus hypertrophy. During lethal dosages of chemoradiation, administering a short pulse of R-spondin 1 (Rspo1; a Wnt agonist) plus Slit2 reduced ISC loss, mitigated gut impairment and protected animals from death, without concomitantly decreasing tumour sensitivity to chemotherapy. Therefore Rspo1 and Slit2 may act as therapeutic adjuvants to enhance host tolerance to aggressive chemoradiotherapy for eradicating metastatic cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888063/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888063/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Wei-Jie -- Geng, Zhen H -- Spence, Jason R -- Geng, Jian-Guo -- CA126897/CA/NCI NIH HHS/ -- K01 DK091415/DK/NIDDK NIH HHS/ -- R01 CA126897/CA/NCI NIH HHS/ -- England -- Nature. 2013 Sep 5;501(7465):107-11. doi: 10.1038/nature12416. Epub 2013 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Cell Proliferation/drug effects ; Female ; Homeostasis/drug effects ; Intercellular Signaling Peptides and Proteins/genetics/*metabolism/pharmacology ; Intestines/*cytology/drug effects/pathology/radiation effects ; Male ; Mice ; Mice, Inbred C57BL ; Neoplasm Metastasis/drug therapy/radiotherapy ; Neoplasms/*drug therapy/pathology/*radiotherapy ; Nerve Tissue Proteins/deficiency/genetics/*metabolism/pharmacology ; Receptors, Immunologic/deficiency/genetics/metabolism ; Regeneration/drug effects/radiation effects ; Signal Transduction/drug effects ; Stem Cells/*cytology/drug effects/*metabolism/radiation effects ; Survival Rate ; Thrombospondins/administration & dosage/*metabolism/pharmacology ; Wnt Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-06-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mace, Ruth -- England -- Nature. 2013 Jul 4;499(7456):32-3. doi: 10.1038/nature12257. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760482" target="_blank"〉PubMed〈/a〉
    Keywords: Bangladesh/epidemiology ; Birth Rate/*trends ; Child ; Child Mortality/trends ; Cost-Benefit Analysis ; *Family Characteristics ; Female ; Humans ; Motivation ; Socioeconomic Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Cyrus -- MC_UP_A620_1014/Medical Research Council/United Kingdom -- MC_UU_12011/1/Medical Research Council/United Kingdom -- England -- Nature. 2013 Oct 17;502(7471):304. doi: 10.1038/502304a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, UK. cc@mrc.soton.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132283" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Buruli Ulcer/etiology/history ; Cardiovascular Diseases/epidemiology/*etiology ; Chronic Disease/epidemiology ; Diabetes Mellitus/epidemiology/*etiology ; Epidemiology/*history ; Female ; Fetal Development ; Great Britain/epidemiology ; History, 20th Century ; History, 21st Century ; Humans ; Infant ; Infant, Newborn ; Maternal-Fetal Exchange/physiology ; Middle Aged ; *Models, Biological ; Pregnancy ; Prenatal Exposure Delayed Effects/*epidemiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schier, Alexander F -- England -- Nature. 2013 Apr 25;496(7446):443-4. doi: 10.1038/nature12094. Epub 2013 Apr 17.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23594741" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conserved Sequence/*genetics ; Female ; Genome/*genetics ; Humans ; Male ; Zebrafish/*genetics ; Zebrafish Proteins/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-05-15
    Description: Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent-offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left-right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes 'poised' promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaidi, Samir -- Choi, Murim -- Wakimoto, Hiroko -- Ma, Lijiang -- Jiang, Jianming -- Overton, John D -- Romano-Adesman, Angela -- Bjornson, Robert D -- Breitbart, Roger E -- Brown, Kerry K -- Carriero, Nicholas J -- Cheung, Yee Him -- Deanfield, John -- DePalma, Steve -- Fakhro, Khalid A -- Glessner, Joseph -- Hakonarson, Hakon -- Italia, Michael J -- Kaltman, Jonathan R -- Kaski, Juan -- Kim, Richard -- Kline, Jennie K -- Lee, Teresa -- Leipzig, Jeremy -- Lopez, Alexander -- Mane, Shrikant M -- Mitchell, Laura E -- Newburger, Jane W -- Parfenov, Michael -- Pe'er, Itsik -- Porter, George -- Roberts, Amy E -- Sachidanandam, Ravi -- Sanders, Stephan J -- Seiden, Howard S -- State, Mathew W -- Subramanian, Sailakshmi -- Tikhonova, Irina R -- Wang, Wei -- Warburton, Dorothy -- White, Peter S -- Williams, Ismee A -- Zhao, Hongyu -- Seidman, Jonathan G -- Brueckner, Martina -- Chung, Wendy K -- Gelb, Bruce D -- Goldmuntz, Elizabeth -- Seidman, Christine E -- Lifton, Richard P -- 5U54HG006504/HG/NHGRI NIH HHS/ -- F30 HL123238/HL/NHLBI NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- U01 HG006546/HG/NHGRI NIH HHS/ -- U01 HL098123/HL/NHLBI NIH HHS/ -- U01 HL098147/HL/NHLBI NIH HHS/ -- U01 HL098153/HL/NHLBI NIH HHS/ -- U01 HL098162/HL/NHLBI NIH HHS/ -- U01 HL098163/HL/NHLBI NIH HHS/ -- U01-HL098123/HL/NHLBI NIH HHS/ -- U01-HL098147/HL/NHLBI NIH HHS/ -- U01-HL098153/HL/NHLBI NIH HHS/ -- U01-HL098162/HL/NHLBI NIH HHS/ -- U01-HL098163/HL/NHLBI NIH HHS/ -- U01-HL098188/HL/NHLBI NIH HHS/ -- U54 HG006504/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 13;498(7453):220-3. doi: 10.1038/nature12141. Epub 2013 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23665959" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Case-Control Studies ; Child ; Chromatin/chemistry/metabolism ; DNA Mutational Analysis ; Enhancer Elements, Genetic/genetics ; Exome/genetics ; Female ; Genes, Developmental/genetics ; Heart Diseases/*congenital/*genetics/metabolism ; Histones/chemistry/*metabolism ; Humans ; Lysine/chemistry/metabolism ; Male ; Methylation ; Mutation ; Odds Ratio ; Promoter Regions, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-04-16
    Description: CRISPR/Cas (clustered regularly interspaced palindromic repeats/CRISPR-associated) systems are a bacterial defence against invading foreign nucleic acids derived from bacteriophages or exogenous plasmids. These systems use an array of small CRISPR RNAs (crRNAs) consisting of repetitive sequences flanking unique spacers to recognize their targets, and conserved Cas proteins to mediate target degradation. Recent studies have suggested that these systems may have broader functions in bacterial physiology, and it is unknown if they regulate expression of endogenous genes. Here we demonstrate that the Cas protein Cas9 of Francisella novicida uses a unique, small, CRISPR/Cas-associated RNA (scaRNA) to repress an endogenous transcript encoding a bacterial lipoprotein. As bacterial lipoproteins trigger a proinflammatory innate immune response aimed at combating pathogens, CRISPR/Cas-mediated repression of bacterial lipoprotein expression is critical for F. novicida to dampen this host response and promote virulence. Because Cas9 proteins are highly enriched in pathogenic and commensal bacteria, our work indicates that CRISPR/Cas-mediated gene regulation may broadly contribute to the regulation of endogenous bacterial genes, particularly during the interaction of such bacteria with eukaryotic hosts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651764/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651764/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sampson, Timothy R -- Saroj, Sunil D -- Llewellyn, Anna C -- Tzeng, Yih-Ling -- Weiss, David S -- R56 AI061031/AI/NIAID NIH HHS/ -- R56 AI087673/AI/NIAID NIH HHS/ -- R56-AI061031/AI/NIAID NIH HHS/ -- R56-AI87673/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54-AI057157/AI/NIAID NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):254-7. doi: 10.1038/nature12048. Epub 2013 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology and Molecular Genetics Program, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23584588" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Gammaproteobacteria/genetics/*immunology/metabolism/*pathogenicity ; Genes, Bacterial/genetics ; Host-Pathogen Interactions/immunology ; *Immune Evasion ; Immunity, Innate/*immunology ; Mice ; Mice, Inbred C57BL ; Phylogeny ; RNA, Bacterial/genetics/metabolism ; Time Factors ; Toll-Like Receptor 2/immunology/metabolism ; Virulence/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-24
    Description: Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviours. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed to be secondary to immune activation. Here we demonstrate that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils and monocytes is not necessary for Staphylococcus aureus-induced pain in mice. Mechanical and thermal hyperalgesia in mice is correlated with live bacterial load rather than tissue swelling or immune activation. Bacteria induce calcium flux and action potentials in nociceptor neurons, in part via bacterial N-formylated peptides and the pore-forming toxin alpha-haemolysin, through distinct mechanisms. Specific ablation of Nav1.8-lineage neurons, which include nociceptors, abrogated pain during bacterial infection, but concurrently increased local immune infiltration and lymphadenopathy of the draining lymph node. Thus, bacterial pathogens produce pain by directly activating sensory neurons that modulate inflammation, an unsuspected role for the nervous system in host-pathogen interactions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773968/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773968/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiu, Isaac M -- Heesters, Balthasar A -- Ghasemlou, Nader -- Von Hehn, Christian A -- Zhao, Fan -- Tran, Johnathan -- Wainger, Brian -- Strominger, Amanda -- Muralidharan, Sriya -- Horswill, Alexander R -- Bubeck Wardenburg, Juliane -- Hwang, Sun Wook -- Carroll, Michael C -- Woolf, Clifford J -- 5F32NS076297/NS/NINDS NIH HHS/ -- 5P01NS072040/NS/NINDS NIH HHS/ -- 5R01AI039246/AI/NIAID NIH HHS/ -- P01 NS072040/NS/NINDS NIH HHS/ -- P01AI078897/AI/NIAID NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30-HD018655/HD/NICHD NIH HHS/ -- R01 AI039246/AI/NIAID NIH HHS/ -- R01 NS039518/NS/NINDS NIH HHS/ -- R37 NS039518/NS/NINDS NIH HHS/ -- R37NS039518/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Sep 5;501(7465):52-7. doi: 10.1038/nature12479. Epub 2013 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23965627" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Bacterial Load ; Calcium Signaling ; Female ; Hemolysin Proteins/metabolism ; Host-Pathogen Interactions ; Hot Temperature ; Hyperalgesia/microbiology ; Immunity, Innate ; Inflammation/immunology/metabolism/*microbiology/pathology ; Lymphatic Diseases/immunology/microbiology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Monocytes ; Myeloid Differentiation Factor 88/immunology ; N-Formylmethionine Leucyl-Phenylalanine/metabolism ; NAV1.8 Voltage-Gated Sodium Channel/deficiency/immunology/metabolism ; Neutrophils ; Nociceptors/*metabolism ; Pain/immunology/metabolism/*microbiology/*physiopathology ; Protein Stability ; Staphylococcal Infections/immunology/metabolism/microbiology ; Staphylococcus aureus/immunology/metabolism/*pathogenicity ; Toll-Like Receptor 2/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-05-03
    Description: The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 A resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657389/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657389/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Chong -- Wu, Huixian -- Katritch, Vsevolod -- Han, Gye Won -- Huang, Xi-Ping -- Liu, Wei -- Siu, Fai Yiu -- Roth, Bryan L -- Cherezov, Vadim -- Stevens, Raymond C -- F32 DK088392/DK/NIDDK NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA017204/DA/NIDA NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- R01 DA27170/DA/NIDA NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 May 16;497(7449):338-43. doi: 10.1038/nature12167. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Antineoplastic Agents/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry ; Frizzled Receptors/chemistry/classification ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Phthalazines/*chemistry/metabolism ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry/classification/metabolism ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-10-15
    Description: The biogenic amine transporters (BATs) regulate endogenous neurotransmitter concentrations and are targets for a broad range of therapeutic agents including selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors (SNRIs) and tricyclic antidepressants (TCAs). Because eukaryotic BATs are recalcitrant to crystallographic analysis, our understanding of the mechanism of these inhibitors and antidepressants is limited. LeuT is a bacterial homologue of BATs and has proven to be a valuable paradigm for understanding relationships between their structure and function. However, because only approximately 25% of the amino acid sequence of LeuT is in common with that of BATs, and as LeuT is a promiscuous amino acid transporter, it does not recapitulate the pharmacological properties of BATs. Indeed, SSRIs and TCAs bind in the extracellular vestibule of LeuT and act as non-competitive inhibitors of transport. By contrast, multiple studies demonstrate that both TCAs and SSRIs are competitive inhibitors for eukaryotic BATs and bind to the primary binding pocket. Here we engineered LeuT to harbour human BAT-like pharmacology by mutating key residues around the primary binding pocket. The final LeuBAT mutant binds the SSRI sertraline with a binding constant of 18 nM and displays high-affinity binding to a range of SSRIs, SNRIs and a TCA. We determined 12 crystal structures of LeuBAT in complex with four classes of antidepressants. The chemically diverse inhibitors have a remarkably similar mode of binding in which they straddle transmembrane helix (TM) 3, wedge between TM3/TM8 and TM1/TM6, and lock the transporter in a sodium- and chloride-bound outward-facing open conformation. Together, these studies define common and simple principles for the action of SSRIs, SNRIs and TCAs on BATs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904662/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904662/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Hui -- Goehring, April -- Wang, Kevin H -- Penmatsa, Aravind -- Ressler, Ryan -- Gouaux, Eric -- R37 MH070039/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 7;503(7474):141-5. doi: 10.1038/nature12648. Epub 2013 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24121440" target="_blank"〉PubMed〈/a〉
    Keywords: Antidepressive Agents, Second-Generation/metabolism/*pharmacology ; Antidepressive Agents, Tricyclic/metabolism/*pharmacology ; Bacterial Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Binding, Competitive/drug effects ; Biogenic Amines/*metabolism ; Chlorides/metabolism ; Crystallography, X-Ray ; Humans ; Mazindol/metabolism/pharmacology ; Models, Molecular ; Mutation ; Norepinephrine/metabolism ; *Plasma Membrane Neurotransmitter Transport Proteins/antagonists & ; inhibitors/chemistry/genetics/metabolism ; Protein Conformation/drug effects ; Recombinant Fusion Proteins/*chemistry/genetics/metabolism ; Reproducibility of Results ; Serotonin Plasma Membrane Transport Proteins/*chemistry/genetics/*metabolism ; Serotonin Uptake Inhibitors/metabolism/*pharmacology ; Sertraline/metabolism/pharmacology ; Sodium/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-01-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bourke, Andrew F G -- Mank, Judith E -- BB/H002006/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2013 Jan 31;493(7434):612-3. doi: 10.1038/nature11854. Epub 2013 Jan 16.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334422" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*genetics ; *Behavior, Animal ; Female ; Male ; *Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-01-22
    Description: Intraspecific variability in social organization is common, yet the underlying causes are rarely known. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene. Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13 megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, John -- Wurm, Yannick -- Nipitwattanaphon, Mingkwan -- Riba-Grognuz, Oksana -- Huang, Yu-Ching -- Shoemaker, DeWayne -- Keller, Laurent -- BB/K004204/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2013 Jan 31;493(7434):664-8. doi: 10.1038/nature11832. Epub 2013 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland. johnwang@gate.sinica.edu.tw〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334415" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*genetics ; *Behavior, Animal ; Chromosomes/genetics ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genome, Insect/genetics ; Insect Proteins/genetics/metabolism ; Male ; Polymorphism, Genetic ; Receptors, Odorant/genetics/metabolism ; *Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-05-03
    Description: There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725830/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725830/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirey, Kari Ann -- Lai, Wendy -- Scott, Alison J -- Lipsky, Michael -- Mistry, Pragnesh -- Pletneva, Lioubov M -- Karp, Christopher L -- McAlees, Jaclyn -- Gioannini, Theresa L -- Weiss, Jerrold -- Chen, Wilbur H -- Ernst, Robert K -- Rossignol, Daniel P -- Gusovsky, Fabian -- Blanco, Jorge C G -- Vogel, Stefanie N -- AI018797/AI/NIAID NIH HHS/ -- AI057575/AI/NIAID NIH HHS/ -- AI059372/AI/NIAID NIH HHS/ -- NCRR K12-RR-023250/PHS HHS/ -- R01 AI018797/AI/NIAID NIH HHS/ -- R01 AI057575/AI/NIAID NIH HHS/ -- R01 AI059372/AI/NIAID NIH HHS/ -- T32 AI007540/AI/NIAID NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):498-502. doi: 10.1038/nature12118. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636320" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Lung Injury/complications/drug therapy/pathology/prevention & control ; Animals ; Antigens, CD14/metabolism ; Antiviral Agents/*pharmacology/therapeutic use ; Cytokines/genetics/immunology ; Disaccharides/metabolism/*pharmacology/*therapeutic use ; Female ; Influenza A Virus, H1N1 Subtype/*drug effects/*pathogenicity ; Ligands ; Lymphocyte Antigen 96/metabolism ; Mice ; Mice, Inbred C57BL ; Orthomyxoviridae Infections/*drug therapy/immunology/pathology/virology ; Sugar Phosphates/metabolism/*pharmacology/*therapeutic use ; Survival Analysis ; Time Factors ; Toll-Like Receptor 2/immunology/metabolism ; Toll-Like Receptor 4/*antagonists & inhibitors/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-02-15
    Description: G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatakrishnan, A J -- Deupi, Xavier -- Lebon, Guillaume -- Tate, Christopher G -- Schertler, Gebhard F -- Babu, M Madan -- MC_U105185859/Medical Research Council/United Kingdom -- MC_U105197215/Medical Research Council/United Kingdom -- U105185859/Medical Research Council/United Kingdom -- U105197215/Medical Research Council/United Kingdom -- England -- Nature. 2013 Feb 14;494(7436):185-94. doi: 10.1038/nature11896.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. ajv@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23407534" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; Humans ; Ligands ; Protein Conformation ; Protein Folding ; Receptors, G-Protein-Coupled/agonists/antagonists & ; inhibitors/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-02-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Vivien -- England -- Nature. 2013 Feb 7;494(7435):133-6. doi: 10.1038/494131a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23389545" target="_blank"〉PubMed〈/a〉
    Keywords: Acids/metabolism ; Biopsy/methods ; Cell Adhesion ; Cell Movement ; Cell Separation ; Epithelial-Mesenchymal Transition ; Extracellular Matrix/chemistry/metabolism ; Female ; Glycolysis ; Heart Neoplasms/secondary ; Humans ; Hydrogen-Ion Concentration ; Interdisciplinary Studies ; Male ; Myocardium/metabolism ; *Neoplasm Metastasis/diagnosis/genetics/pathology ; Neoplasms/blood/genetics/metabolism/*pathology ; Neoplastic Cells, Circulating/metabolism/pathology ; Oxygen/analysis/metabolism ; Tumor Microenvironment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masland, Richard H -- England -- Nature. 2013 Aug 8;500(7461):154-5. doi: 10.1038/500154a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925233" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Connectome ; Drosophila/*physiology ; Female ; *Models, Biological ; Motion Perception/*physiology ; Retina/*cytology/*physiology ; Retinal Ganglion Cells/*physiology ; Visual Pathways/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-02-05
    Description: Cancer control by adaptive immunity involves a number of defined death and clearance mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-gamma (IFN-gamma) requires additional undefined mechanisms that arrest cancer cell proliferation. Here we show that the combined action of the T-helper-1-cell cytokines IFN-gamma and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control. When combined, IFN-gamma and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-gamma- and TNFR1-dependent senescence. Conversely, Tnfr1(-/-)Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-gamma and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Braumuller, Heidi -- Wieder, Thomas -- Brenner, Ellen -- Assmann, Sonja -- Hahn, Matthias -- Alkhaled, Mohammed -- Schilbach, Karin -- Essmann, Frank -- Kneilling, Manfred -- Griessinger, Christoph -- Ranta, Felicia -- Ullrich, Susanne -- Mocikat, Ralph -- Braungart, Kilian -- Mehra, Tarun -- Fehrenbacher, Birgit -- Berdel, Julia -- Niessner, Heike -- Meier, Friedegund -- van den Broek, Maries -- Haring, Hans-Ulrich -- Handgretinger, Rupert -- Quintanilla-Martinez, Leticia -- Fend, Falko -- Pesic, Marina -- Bauer, Jurgen -- Zender, Lars -- Schaller, Martin -- Schulze-Osthoff, Klaus -- Rocken, Martin -- England -- Nature. 2013 Feb 21;494(7437):361-5. doi: 10.1038/nature11824. Epub 2013 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, Eberhard Karls University, Liebermeister Strasse 25, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23376950" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Polyomavirus Transforming/genetics/metabolism ; Cell Aging/*immunology ; Cell Cycle ; Cell Proliferation ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics/metabolism ; Cytokines/*immunology ; Disease Models, Animal ; Disease Progression ; Female ; Humans ; Interferon-gamma/immunology ; Male ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mice, Transgenic ; Neoplasms/*immunology/*pathology ; Oncogenes/genetics ; Phosphoserine/metabolism ; Receptors, Tumor Necrosis Factor, Type I/metabolism ; Retinoblastoma Protein/chemistry/metabolism ; STAT1 Transcription Factor/metabolism ; Th1 Cells/*immunology ; Time Factors ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/immunology ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-10-08
    Description: In the mammalian cerebral cortex the diversity of interneuronal subtypes underlies a division of labour subserving distinct modes of inhibitory control. A unique mode of inhibitory control may be provided by inhibitory neurons that specifically suppress the firing of other inhibitory neurons. Such disinhibition could lead to the selective amplification of local processing and serve the important computational functions of gating and gain modulation. Although several interneuron populations are known to target other interneurons to varying degrees, little is known about interneurons specializing in disinhibition and their in vivo function. Here we show that a class of interneurons that express vasoactive intestinal polypeptide (VIP) mediates disinhibitory control in multiple areas of neocortex and is recruited by reinforcement signals. By combining optogenetic activation with single-cell recordings, we examined the functional role of VIP interneurons in awake mice, and investigated the underlying circuit mechanisms in vitro in auditory and medial prefrontal cortices. We identified a basic disinhibitory circuit module in which activation of VIP interneurons transiently suppresses primarily somatostatin- and a fraction of parvalbumin-expressing inhibitory interneurons that specialize in the control of the input and output of principal cells, respectively. During the performance of an auditory discrimination task, reinforcement signals (reward and punishment) strongly and uniformly activated VIP neurons in auditory cortex, and in turn VIP recruitment increased the gain of a functional subpopulation of principal neurons. These results reveal a specific cell type and microcircuit underlying disinhibitory control in cortex and demonstrate that it is activated under specific behavioural conditions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pi, Hyun-Jae -- Hangya, Balazs -- Kvitsiani, Duda -- Sanders, Joshua I -- Huang, Z Josh -- Kepecs, Adam -- R01 NS075531/NS/NINDS NIH HHS/ -- R01NS075531/NS/NINDS NIH HHS/ -- U01 MH078844/MH/NIMH NIH HHS/ -- U01MH078844/MH/NIMH NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):521-4. doi: 10.1038/nature12676. Epub 2013 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24097352" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Auditory Cortex/physiology ; Cerebral Cortex/*cytology/*physiology ; Discrimination (Psychology)/physiology ; Female ; Interneurons/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neural Inhibition/*physiology ; Optogenetics ; Parvalbumins/metabolism ; Prefrontal Cortex/physiology ; Punishment ; Reward ; Single-Cell Analysis ; Somatostatin/metabolism ; Vasoactive Intestinal Peptide/metabolism ; Wakefulness/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-01-29
    Description: The basal ganglia are subcortical nuclei that control voluntary actions, and they are affected by a number of debilitating neurological disorders. The prevailing model of basal ganglia function proposes that two orthogonal projection circuits originating from distinct populations of spiny projection neurons (SPNs) in the striatum--the so-called direct and indirect pathways--have opposing effects on movement: activity of direct-pathway SPNs is thought to facilitate movement, whereas activity of indirect-pathway SPNs is presumed to inhibit movement. This model has been difficult to test owing to the lack of methods to selectively measure the activity of direct- and indirect-pathway SPNs in freely moving animals. Here we develop a novel in vivo method to specifically measure direct- and indirect-pathway SPN activity, using Cre-dependent viral expression of the genetically encoded calcium indicator (GECI) GCaMP3 in the dorsal striatum of D1-Cre (direct-pathway-specific) and A2A-Cre (indirect-pathway-specific) mice. Using fibre optics and time-correlated single-photon counting (TCSPC) in mice performing an operant task, we observed transient increases in neural activity in both direct- and indirect-pathway SPNs when animals initiated actions, but not when they were inactive. Concurrent activation of SPNs from both pathways in one hemisphere preceded the initiation of contraversive movements and predicted the occurrence of specific movements within 500 ms. These observations challenge the classical view of basal ganglia function and may have implications for understanding the origin of motor symptoms in basal ganglia disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039389/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039389/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cui, Guohong -- Jun, Sang Beom -- Jin, Xin -- Pham, Michael D -- Vogel, Steven S -- Lovinger, David M -- Costa, Rui M -- 243393/European Research Council/International -- ZIA AA000407-12/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Feb 14;494(7436):238-42. doi: 10.1038/nature11846. Epub 2013 Jan 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on In Vivo Neural Function, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23354054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Signaling ; Female ; Fiber Optic Technology/methods ; Fluorescence ; Integrases/genetics/metabolism ; Luminescent Measurements/methods ; Male ; Mice ; Models, Neurological ; Movement/*physiology ; Neostriatum/*cytology/*physiology ; Neural Pathways/*physiology ; Parkinson Disease ; Photons
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gwynne, Peter -- England -- Nature. 2013 Jan 31;493(7434):S7-8. doi: 10.1038/493S7a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23364771" target="_blank"〉PubMed〈/a〉
    Keywords: Cardiovascular Diseases/*diagnosis/epidemiology ; Diagnostic Techniques, Cardiovascular/instrumentation/standards/trends ; Female ; Humans ; Male ; Predictive Value of Tests ; Risk Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-07-19
    Description: Phosphorylated sphingolipids ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P) have emerged as key regulators of cell growth, survival, migration and inflammation. C1P produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2alpha (cPLA2alpha), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production, which contributes to disease pathogenesis in asthma or airway hyper-responsiveness, cancer, atherosclerosis and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking and presentation of C1P to specific cellular sites. Vesicular trafficking is likely but non-vesicular mechanisms for C1P sensing, transfer and presentation remain unexplored. Moreover, the molecular basis for selective recognition and binding among signalling lipids with phosphate headgroups, namely C1P, phosphatidic acid or their lyso-derivatives, remains unclear. Here, a ubiquitously expressed lipid transfer protein, human GLTPD1, named here CPTP, is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding through a novel surface-localized, phosphate headgroup recognition centre connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, alpha-helically-dominated 'sandwich' topology identifies CPTP as the prototype for a new glycolipid transfer protein fold subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi network, nucleus and plasma membrane. RNA interference-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2alpha release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951269/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951269/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simanshu, Dhirendra K -- Kamlekar, Ravi Kanth -- Wijesinghe, Dayanjan S -- Zou, Xianqiong -- Zhai, Xiuhong -- Mishra, Shrawan K -- Molotkovsky, Julian G -- Malinina, Lucy -- Hinchcliffe, Edward H -- Chalfant, Charles E -- Brown, Rhoderick E -- Patel, Dinshaw J -- CA121493/CA/NCI NIH HHS/ -- CA154314/CA/NCI NIH HHS/ -- GM072754/GM/NIGMS NIH HHS/ -- GM45928/GM/NIGMS NIH HHS/ -- I01 BX001792/BX/BLRD VA/ -- R01 CA121493/CA/NCI NIH HHS/ -- R01 CA154314/CA/NCI NIH HHS/ -- R01 GM045928/GM/NIGMS NIH HHS/ -- R01 GM072754/GM/NIGMS NIH HHS/ -- R01 HL072925/HL/NHLBI NIH HHS/ -- S10 OD010641/OD/NIH HHS/ -- T32 008695/PHS HHS/ -- England -- Nature. 2013 Aug 22;500(7463):463-7. doi: 10.1038/nature12332. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoproteins/chemistry ; Arachidonic Acid/metabolism ; Biological Transport ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Ceramides/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Eicosanoids/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Phosphatidic Acids/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Substrate Specificity ; trans-Golgi Network/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-07-12
    Description: Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Tokiko -- Kiso, Maki -- Fukuyama, Satoshi -- Nakajima, Noriko -- Imai, Masaki -- Yamada, Shinya -- Murakami, Shin -- Yamayoshi, Seiya -- Iwatsuki-Horimoto, Kiyoko -- Sakoda, Yoshihiro -- Takashita, Emi -- McBride, Ryan -- Noda, Takeshi -- Hatta, Masato -- Imai, Hirotaka -- Zhao, Dongming -- Kishida, Noriko -- Shirakura, Masayuki -- de Vries, Robert P -- Shichinohe, Shintaro -- Okamatsu, Masatoshi -- Tamura, Tomokazu -- Tomita, Yuriko -- Fujimoto, Naomi -- Goto, Kazue -- Katsura, Hiroaki -- Kawakami, Eiryo -- Ishikawa, Izumi -- Watanabe, Shinji -- Ito, Mutsumi -- Sakai-Tagawa, Yuko -- Sugita, Yukihiko -- Uraki, Ryuta -- Yamaji, Reina -- Eisfeld, Amie J -- Zhong, Gongxun -- Fan, Shufang -- Ping, Jihui -- Maher, Eileen A -- Hanson, Anthony -- Uchida, Yuko -- Saito, Takehiko -- Ozawa, Makoto -- Neumann, Gabriele -- Kida, Hiroshi -- Odagiri, Takato -- Paulson, James C -- Hasegawa, Hideki -- Tashiro, Masato -- Kawaoka, Yoshihiro -- AI058113/AI/NIAID NIH HHS/ -- AI099274/AI/NIAID NIH HHS/ -- HHSN266200700010C/AI/NIAID NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- T32 AI078985/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):551-5. doi: 10.1038/nature12392. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/pharmacology ; Cells, Cultured ; Chickens/virology ; DNA-Directed RNA Polymerases/antagonists & inhibitors ; Dogs ; Enzyme Inhibitors/pharmacology ; Female ; Ferrets/virology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology ; *Influenza A virus/chemistry/drug effects/isolation & purification/pathogenicity ; Influenza, Human/drug therapy/*virology ; Macaca fascicularis/virology ; Madin Darby Canine Kidney Cells ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Monkey Diseases/pathology/virology ; Neuraminidase/antagonists & inhibitors ; Orthomyxoviridae Infections/pathology/transmission/*virology ; Quail/virology ; Swine/virology ; Swine, Miniature/virology ; *Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-03-19
    Description: Embryonic stem (ES) cells are pluripotent and characterized by open chromatin and high transcription levels, achieved through auto-regulatory and feed-forward transcription factor loops. ES-cell identity is maintained by a core of factors including Oct4 (also known as Pou5f1), Sox2, Klf4, c-Myc (OSKM) and Nanog, and forced expression of the OSKM factors can reprogram somatic cells into induced pluripotent stem cells (iPSCs) resembling ES cells. These gene-specific factors for RNA-polymerase-II-mediated transcription recruit transcriptional cofactors and chromatin regulators that control access to and activity of the basal transcription machinery on gene promoters. How the basal transcription machinery is involved in setting and maintaining the pluripotent state is unclear. Here we show that knockdown of the transcription factor IID (TFIID) complex affects the pluripotent circuitry in mouse ES cells and inhibits reprogramming of fibroblasts. TFIID subunits and the OSKM factors form a feed-forward loop to induce and maintain a stable transcription state. Notably, transient expression of TFIID subunits greatly enhanced reprogramming. These results show that TFIID is critical for transcription-factor-mediated reprogramming. We anticipate that, by creating plasticity in gene expression programs, transcription complexes such as TFIID assist reprogramming into different cellular states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pijnappel, W W M Pim -- Esch, Daniel -- Baltissen, Marijke P A -- Wu, Guangming -- Mischerikow, Nikolai -- Bergsma, Atze J -- van der Wal, Erik -- Han, Dong Wook -- Bruch, Hermann vom -- Moritz, Soren -- Lijnzaad, Phillip -- Altelaar, A F Maarten -- Sameith, Katrin -- Zaehres, Holm -- Heck, Albert J R -- Holstege, Frank C P -- Scholer, Hans R -- Timmers, H T Marc -- England -- Nature. 2013 Mar 28;495(7442):516-9. doi: 10.1038/nature11970. Epub 2013 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23503660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/genetics ; Chromatin/genetics/metabolism ; Embryonic Stem Cells/cytology/metabolism ; Female ; Fibroblasts/cytology/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Male ; Mice ; Pluripotent Stem Cells/cytology/*metabolism ; Promoter Regions, Genetic/genetics ; RNA Polymerase II/metabolism ; TATA-Binding Protein Associated Factors/deficiency/genetics/metabolism ; TATA-Box Binding Protein/metabolism ; Transcription Factor TFIID/deficiency/genetics/*metabolism ; Transcription Factors/genetics/metabolism ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-10-18
    Description: Linus Pauling established the conceptual framework for understanding and mimicking enzymes more than six decades ago. The notion that enzymes selectively stabilize the rate-limiting transition state of the catalysed reaction relative to the bound ground state reduces the problem of design to one of molecular recognition. Nevertheless, past attempts to capitalize on this idea, for example by using transition state analogues to elicit antibodies with catalytic activities, have generally failed to deliver true enzymatic rates. The advent of computational design approaches, combined with directed evolution, has provided an opportunity to revisit this problem. Starting from a computationally designed catalyst for the Kemp elimination--a well-studied model system for proton transfer from carbon--we show that an artificial enzyme can be evolved that accelerates an elementary chemical reaction 6 x 10(8)-fold, approaching the exceptional efficiency of highly optimized natural enzymes such as triosephosphate isomerase. A 1.09 A resolution crystal structure of the evolved enzyme indicates that familiar catalytic strategies such as shape complementarity and precisely placed catalytic groups can be successfully harnessed to afford such high rate accelerations, making us optimistic about the prospects of designing more sophisticated catalysts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blomberg, Rebecca -- Kries, Hajo -- Pinkas, Daniel M -- Mittl, Peer R E -- Grutter, Markus G -- Privett, Heidi K -- Mayo, Stephen L -- Hilvert, Donald -- England -- Nature. 2013 Nov 21;503(7476):418-21. doi: 10.1038/nature12623. Epub 2013 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland [2] Corporate RD Division, Firmenich SA, 1211 Geneva, Switzerland (R.B.); Protabit, Pasadena, California 91101, USA (H.K.P.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132235" target="_blank"〉PubMed〈/a〉
    Keywords: *Biocatalysis ; Carbon/chemistry ; Catalytic Domain ; Crystallography, X-Ray ; *Directed Molecular Evolution ; Enzymes/*chemistry/genetics/*metabolism ; Kinetics ; Models, Molecular ; *Protein Engineering ; Protons ; Triazoles/chemistry/metabolism ; Triose-Phosphate Isomerase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-11-10
    Description: A heterogeneous population of inhibitory neurons controls the flow of information through a neural circuit. Inhibitory synapses that form on pyramidal neuron dendrites modulate the summation of excitatory synaptic potentials and prevent the generation of dendritic calcium spikes. Precisely timed somatic inhibition limits both the number of action potentials and the time window during which firing can occur. The activity-dependent transcription factor NPAS4 regulates inhibitory synapse number and function in cell culture, but how this transcription factor affects the inhibitory inputs that form on distinct domains of a neuron in vivo was unclear. Here we show that in the mouse hippocampus behaviourally driven expression of NPAS4 coordinates the redistribution of inhibitory synapses made onto a CA1 pyramidal neuron, simultaneously increasing inhibitory synapse number on the cell body while decreasing the number of inhibitory synapses on the apical dendrites. This rearrangement of inhibition is mediated in part by the NPAS4 target gene brain derived neurotrophic factor (Bdnf), which specifically regulates somatic, and not dendritic, inhibition. These findings indicate that sensory stimuli, by inducing NPAS4 and its target genes, differentially control spatial features of neuronal inhibition in a way that restricts the output of the neuron while creating a dendritic environment that is permissive for plasticity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169177/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169177/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloodgood, Brenda L -- Sharma, Nikhil -- Browne, Heidi Adlman -- Trepman, Alissa Z -- Greenberg, Michael E -- NS028829/NS/NINDS NIH HHS/ -- P01 NS047572/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 NS047101/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Nov 7;503(7474):121-5. doi: 10.1038/nature12743.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24201284" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/deficiency/genetics/*metabolism ; Brain-Derived Neurotrophic Factor/genetics/metabolism ; Dendrites/physiology ; Female ; Hippocampus/*cytology ; Male ; Mice ; Mice, Knockout ; *Neural Inhibition ; Neuronal Plasticity ; Neurons/cytology/*metabolism ; Pyramidal Cells/cytology/metabolism ; Synapses/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Visco, Frances -- England -- Nature. 2013 Jan 17;493(7432):304. doi: 10.1038/493304b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23325197" target="_blank"〉PubMed〈/a〉
    Keywords: *Breast Neoplasms ; Female ; *Goals ; Humans ; Patient Advocacy/*psychology ; *Public Opinion ; Trust/*psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-06-28
    Description: Attention is a critical component of perception. However, the mechanisms by which attention modulates neuronal communication to guide behaviour are poorly understood. To elucidate the synaptic mechanisms of attention, we developed a sensitive assay of attentional modulation of neuronal communication. In alert monkeys performing a visual spatial attention task, we probed thalamocortical communication by electrically stimulating neurons in the lateral geniculate nucleus of the thalamus while simultaneously recording shock-evoked responses from monosynaptically connected neurons in primary visual cortex. We found that attention enhances neuronal communication by increasing the efficacy of presynaptic input in driving postsynaptic responses, by increasing synchronous responses among ensembles of postsynaptic neurons receiving independent input, and by decreasing redundant signals between postsynaptic neurons receiving common input. The results demonstrate that attention finely tunes neuronal communication at the synaptic level by selectively altering synaptic weights, enabling enhanced detection of salient events in the noisy sensory environment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725204/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725204/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Briggs, Farran -- Mangun, George R -- Usrey, W Martin -- EY013588/EY/NEI NIH HHS/ -- EY18683/EY/NEI NIH HHS/ -- K99 EY018683/EY/NEI NIH HHS/ -- MH055714/MH/NIMH NIH HHS/ -- R00 EY018683/EY/NEI NIH HHS/ -- R01 EY013588/EY/NEI NIH HHS/ -- R01 MH055714/MH/NIMH NIH HHS/ -- England -- Nature. 2013 Jul 25;499(7459):476-80. doi: 10.1038/nature12276. Epub 2013 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, California 95618, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803766" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Attention/*physiology ; Electric Stimulation ; Female ; Geniculate Bodies/cytology/physiology ; Macaca mulatta/*physiology ; Neurons/*physiology ; Photic Stimulation ; Signal-To-Noise Ratio ; Synapses/*physiology ; *Synaptic Transmission ; Time Factors ; Visual Cortex/cytology/physiology ; Visual Pathways/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-01-22
    Description: Mitotic cells assume a spherical shape by increasing their surface tension and osmotic pressure by extensively reorganizing their interphase actin cytoskeleton into a cortical meshwork and their microtubules into the mitotic spindle. Mitotic entry is known to interfere with tissue morphogenetic events that require cell-shape changes controlled by the interphase cytoskeleton, such as apical constriction. However, here we show that mitosis plays an active role in the epithelial invagination of the Drosophila melanogaster tracheal placode. Invagination begins with a slow phase under the control of epidermal growth factor receptor (EGFR) signalling; in this process, the central apically constricted cells, which are surrounded by intercalating cells, form a shallow pit. This slow phase is followed by a fast phase, in which the pit is rapidly depressed, accompanied by mitotic entry, which leads to the internalization of all the cells in the placode. We found that mitotic cell rounding, but not cell division, of the central cells in the placode is required to accelerate invagination, in conjunction with EGFR-induced myosin II contractility in the surrounding cells. We propose that mitotic cell rounding causes the epithelium to buckle under pressure and acts as a switch for morphogenetic transition at the appropriate time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, Takefumi -- Hayashi, Shigeo -- England -- Nature. 2013 Feb 7;494(7435):125-9. doi: 10.1038/nature11792. Epub 2013 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Shape/*physiology ; Drosophila melanogaster/anatomy & histology/*cytology/*embryology ; Epidermal Growth Factor/metabolism ; Epithelial Cells/*cytology ; Female ; Fibroblast Growth Factors/metabolism ; *Mitosis ; Myosin Type II/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Respiratory System/anatomy & histology/cytology/embryology ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-07-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayr, Gerald -- Manegold, Albrecht -- England -- Nature. 2013 Jul 11;499(7457):E1. doi: 10.1038/nature12367.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23846661" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology/*physiology ; Female ; *Fossils ; Ovarian Follicle/*anatomy & histology/*physiology ; Reproduction/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadman, Meredith -- England -- Nature. 2013 Jun 27;498(7455):422-6. doi: 10.1038/498422a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803825" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Biomedical Research/ethics/*history ; Cell Aging ; Cell Culture Techniques/*history ; Cell Division ; Cell Line ; Child ; Female ; Fetus/*cytology ; HeLa Cells ; Helsinki Declaration/history ; History, 20th Century ; Humans ; Informed Consent ; Sweden ; Tissue and Organ Procurement/economics/ethics ; United States ; Viral Vaccines/history/supply & distribution
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gosden, Roger -- England -- Nature. 2013 May 16;497(7449):318. doi: 10.1038/497318a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Weill Cornell Medical College, New York, USA. roger.gosden@cantab.net〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23676748" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Fertilization in Vitro/*history ; History, 20th Century ; History, 21st Century ; Humans ; Nobel Prize
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pollitzer, Elizabeth -- England -- Nature. 2013 Aug 1;500(7460):23-4. doi: 10.1038/500023a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Portia, London. elizabeth@portiaweb.org.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903733" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research/*methods ; Female ; Gonadal Steroid Hormones/metabolism/pharmacology ; Humans ; Male ; Metabolic Networks and Pathways/drug effects ; Pharmacovigilance ; Phenylpropanolamine/adverse effects ; *Research Design ; *Sex Characteristics ; Sex Factors ; *Single-Cell Analysis ; Stem Cell Transplantation/methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...