ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-07
    Description: MicroRNAs (miRNAs) show differential expression across breast cancer subtypes, and have both oncogenic and tumour-suppressive roles. Here we report the miRNA expression profiles of 1,302 breast tumours with matching detailed clinical annotation, long-term follow-up and genomic and messenger RNA expression data. This provides a comprehensive overview of the quantity, distribution and variation of the miRNA population and provides information on the extent to which genomic, transcriptional and post-transcriptional events contribute to miRNA expression architecture, suggesting an important role for post-transcriptional regulation. The key clinical parameters and cellular pathways related to the miRNA landscape are characterized, revealing context-dependent interactions, for example with regards to cell adhesion and Wnt signalling. Notably, only prognostic miRNA signatures derived from breast tumours devoid of somatic copy-number aberrations (CNA-devoid) are consistently prognostic across several other subtypes and can be validated in external cohorts. We then use a data-driven approach to seek the effects of miRNAs associated with differential co-expression of mRNAs, and find that miRNAs act as modulators of mRNA-mRNA interactions rather than as on-off molecular switches. We demonstrate such an important modulatory role for miRNAs in the biology of CNA-devoid breast cancers, a common subtype in which the immune response is prominent. These findings represent a new framework for studying the biology of miRNAs in human breast cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dvinge, Heidi -- Git, Anna -- Graf, Stefan -- Salmon-Divon, Mali -- Curtis, Christina -- Sottoriva, Andrea -- Zhao, Yongjun -- Hirst, Martin -- Armisen, Javier -- Miska, Eric A -- Chin, Suet-Feung -- Provenzano, Elena -- Turashvili, Gulisa -- Green, Andrew -- Ellis, Ian -- Aparicio, Sam -- Caldas, Carlos -- 11832/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 May 16;497(7449):378-82. doi: 10.1038/nature12108. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644459" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Breast Neoplasms/*genetics/pathology ; DNA Copy Number Variations ; Female ; Follow-Up Studies ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Genome, Human/genetics ; Humans ; Kaplan-Meier Estimate ; MicroRNAs/*genetics/metabolism ; Prognosis ; Proportional Hazards Models ; RNA, Messenger/genetics/metabolism ; RNA, Neoplasm/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-05
    Description: Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353498/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353498/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brawand, David -- Wagner, Catherine E -- Li, Yang I -- Malinsky, Milan -- Keller, Irene -- Fan, Shaohua -- Simakov, Oleg -- Ng, Alvin Y -- Lim, Zhi Wei -- Bezault, Etienne -- Turner-Maier, Jason -- Johnson, Jeremy -- Alcazar, Rosa -- Noh, Hyun Ji -- Russell, Pamela -- Aken, Bronwen -- Alfoldi, Jessica -- Amemiya, Chris -- Azzouzi, Naoual -- Baroiller, Jean-Francois -- Barloy-Hubler, Frederique -- Berlin, Aaron -- Bloomquist, Ryan -- Carleton, Karen L -- Conte, Matthew A -- D'Cotta, Helena -- Eshel, Orly -- Gaffney, Leslie -- Galibert, Francis -- Gante, Hugo F -- Gnerre, Sante -- Greuter, Lucie -- Guyon, Richard -- Haddad, Natalie S -- Haerty, Wilfried -- Harris, Rayna M -- Hofmann, Hans A -- Hourlier, Thibaut -- Hulata, Gideon -- Jaffe, David B -- Lara, Marcia -- Lee, Alison P -- MacCallum, Iain -- Mwaiko, Salome -- Nikaido, Masato -- Nishihara, Hidenori -- Ozouf-Costaz, Catherine -- Penman, David J -- Przybylski, Dariusz -- Rakotomanga, Michaelle -- Renn, Suzy C P -- Ribeiro, Filipe J -- Ron, Micha -- Salzburger, Walter -- Sanchez-Pulido, Luis -- Santos, M Emilia -- Searle, Steve -- Sharpe, Ted -- Swofford, Ross -- Tan, Frederick J -- Williams, Louise -- Young, Sarah -- Yin, Shuangye -- Okada, Norihiro -- Kocher, Thomas D -- Miska, Eric A -- Lander, Eric S -- Venkatesh, Byrappa -- Fernald, Russell D -- Meyer, Axel -- Ponting, Chris P -- Streelman, J Todd -- Lindblad-Toh, Kerstin -- Seehausen, Ole -- Di Palma, Federica -- 2R01DE019637-04/DE/NIDCR NIH HHS/ -- F30 DE023013/DE/NIDCR NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- R01 DE019637/DE/NIDCR NIH HHS/ -- R01 NS034950/NS/NINDS NIH HHS/ -- U54 HG002045/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Sep 18;513(7518):375-81. doi: 10.1038/nature13726. Epub 2014 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK [3]. ; 1] Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution &Biogeochemistry, CH-6047 Kastanienbaum, Switzerland [2] Division of Aquatic Ecology, Institute of Ecology &Evolution, University of Bern, CH-3012 Bern, Switzerland [3]. ; 1] MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK [2]. ; 1] Gurdon Institute, Cambridge CB2 1QN, UK [2] Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK. ; Division of Aquatic Ecology, Institute of Ecology &Evolution, University of Bern, CH-3012 Bern, Switzerland. ; Department of Biology, University of Konstanz, D-78457 Konstanz, Germany. ; 1] Department of Biology, University of Konstanz, D-78457 Konstanz, Germany [2] European Molecular Biology Laboratory, 69117 Heidelberg, Germany. ; Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore. ; Department of Biology, Reed College, Portland, Oregon 97202, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Biology Department, Stanford University, Stanford, California 94305-5020, USA. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK. ; Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA. ; Institut Genetique et Developpement, CNRS/University of Rennes, 35043 Rennes, France. ; CIRAD, Campus International de Baillarguet, TA B-110/A, 34398 Montpellier cedex 5, France. ; School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA. ; Department of Biology, University of Maryland, College Park, Maryland 20742, USA. ; Animal Genetics, Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, 50250 Israel. ; Zoological Institute, University of Basel, CH-4051 Basel, Switzerland. ; 1] Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution &Biogeochemistry, CH-6047 Kastanienbaum, Switzerland [2] Division of Aquatic Ecology, Institute of Ecology &Evolution, University of Bern, CH-3012 Bern, Switzerland. ; MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK. ; Department of Integrative Biology, Center for Computational Biology and Bioinformatics; The University of Texas at Austin, Austin, Texas 78712, USA. ; Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution &Biogeochemistry, CH-6047 Kastanienbaum, Switzerland. ; Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 226-8501 Yokohama, Japan. ; Systematique, Adaptation, Evolution, National Museum of Natural History, 75005 Paris, France. ; Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK. ; Carnegie Institution of Washington, Department of Embryology, 3520 San Martin Drive Baltimore, Maryland 21218, USA. ; 1] Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 226-8501 Yokohama, Japan [2] National Cheng Kung University, Tainan City, 704 Taiwan. ; Gurdon Institute, Cambridge CB2 1QN, UK. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Vertebrate and Health Genomics, The Genome Analysis Centre, Norwich NR18 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25186727" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Eastern ; Animals ; Cichlids/*classification/*genetics ; DNA Transposable Elements/genetics ; *Evolution, Molecular ; Gene Duplication/genetics ; Gene Expression Regulation/genetics ; *Genetic Speciation ; Genome/*genetics ; Genomics ; Lakes ; MicroRNAs/genetics ; Phylogeny ; Polymorphism, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-04-28
    Description: MicroRNAs are a class of small RNAs that are increasingly being recognized as important regulators of gene expression. Although hundreds of microRNAs are present in the mammalian genome, genetic studies addressing their physiological roles are at an early stage. We have shown that mice deficient for bic/microRNA-155 are immunodeficient and display increased lung airway remodeling. We demonstrate a requirement of bic/microRNA-155 for the function of B and T lymphocytes and dendritic cells. Transcriptome analysis of bic/microRNA-155-deficient CD4+ T cells identified a wide spectrum of microRNA-155-regulated genes, including cytokines, chemokines, and transcription factors. Our work suggests that bic/microRNA-155 plays a key role in the homeostasis and function of the immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610435/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610435/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, Antony -- Vigorito, Elena -- Clare, Simon -- Warren, Madhuri V -- Couttet, Philippe -- Soond, Dalya R -- van Dongen, Stijn -- Grocock, Russell J -- Das, Partha P -- Miska, Eric A -- Vetrie, David -- Okkenhaug, Klaus -- Enright, Anton J -- Dougan, Gordon -- Turner, Martin -- Bradley, Allan -- 077187/Wellcome Trust/United Kingdom -- G117/424/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Apr 27;316(5824):608-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463290" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; B-Lymphocytes/*immunology ; Cytokines/biosynthesis ; Dendritic Cells/*immunology ; Gene Expression Regulation ; Gene Targeting ; Homeostasis ; Immune System/*physiology ; Immunoglobulin G/biosynthesis ; Lung/pathology ; Lung Diseases/immunology/pathology ; Lymphocyte Activation ; Mice ; MicroRNAs/genetics/*physiology ; Oligonucleotide Array Sequence Analysis ; Proto-Oncogene Proteins c-maf/genetics/physiology ; Salmonella Infections, Animal/immunology ; T-Lymphocytes/*immunology ; Th1 Cells/immunology ; Th2 Cells/immunology ; Vaccination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-16
    Description: Piwi-interacting RNAs (piRNAs) are small RNAs required to maintain germline integrity and fertility, but their mechanism of action is poorly understood. Here we demonstrate that Caenorhabditis elegans piRNAs silence transcripts in trans through imperfectly complementary sites. Target silencing is independent of Piwi endonuclease activity or "slicing." Instead, piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes and tend to overlap the start and end of transposons in sense and antisense, respectively. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNA interference in C. elegans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951736/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951736/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bagijn, Marloes P -- Goldstein, Leonard D -- Sapetschnig, Alexandra -- Weick, Eva-Maria -- Bouasker, Samir -- Lehrbach, Nicolas J -- Simard, Martin J -- Miska, Eric A -- 092096/Wellcome Trust/United Kingdom -- 11832/Cancer Research UK/United Kingdom -- A14492/Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- Cancer Research UK/United Kingdom -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Aug 3;337(6094):574-8. doi: 10.1126/science.1220952. Epub 2012 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gurdon Institute and Department of Biochemistry, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics ; Caenorhabditis elegans/*genetics ; Caenorhabditis elegans Proteins/genetics ; Evolution, Molecular ; Mutation ; *RNA Interference ; RNA, Double-Stranded/biosynthesis/genetics ; RNA, Small Interfering/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarkies, Peter -- Miska, Eric A -- 092096/Wellcome Trust/United Kingdom -- 11832/Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):467-8. doi: 10.1126/science.1243175.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908213" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/*metabolism ; Caenorhabditis elegans Proteins/metabolism ; Humans ; Membrane Proteins/metabolism ; RNA Interference ; *RNA Transport ; RNA, Double-Stranded/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-19
    Description: The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700 meters in diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet, and trophic morphology. With whole-genome sequences of 146 fish, we identified 98 clearly demarcated genomic "islands" of high differentiation and demonstrated the association of genotypes across these islands with divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight-vision-associated genes), hormone signaling, and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700518/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700518/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malinsky, Milan -- Challis, Richard J -- Tyers, Alexandra M -- Schiffels, Stephan -- Terai, Yohey -- Ngatunga, Benjamin P -- Miska, Eric A -- Durbin, Richard -- Genner, Martin J -- Turner, George F -- 097677/Z/11/Z/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):1493-8. doi: 10.1126/science.aac9927.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK. Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK. ; School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK. ; Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK. ; Department of Evolutionary Studies of Biosystems, SOKENDAI, Kanagawa 240-0193, Japan. ; Tanzania Fisheries Research Institute, Box 9750, Dar es Salaam, Tanzania. ; School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK. george.turner@bangor.ac.uk m.genner@bristol.ac.uk. ; School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK. george.turner@bangor.ac.uk m.genner@bristol.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680190" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animals ; Cichlids/classification/*genetics/*physiology ; *Genomic Islands ; Lakes ; *Mating Preference, Animal ; Phylogeny ; Polymorphism, Single Nucleotide ; Species Specificity ; Tanzania
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 57 (2000), S. 1184-1192 
    ISSN: 1420-9071
    Keywords: Key words. Acetyltransferase; histones; acetylation; transcription factors; gene expression; chromatin.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. In the nucleus, DNA is tightly packaged into higher-order structures, generating an environment that is highly repressive towards DNA processes such as gene transcription. Acetylation of lysine residues within proteins has recently emerged as a major mechanism used by the cell to overcome this repression. Acetylation of non-histone proteins, including transcription factors, as well as histones, appears to be involved in this process. Like phosphorylation, acetylation is a dynamic process that can regulate protein-DNA and protein-protein interactions. Moreover, a conserved domain, the bromodomain, has been implicated in the binding of acetylated peptides, suggesting a role for acetylation in intracellular signalling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2000-08-01
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-10-15
    Description: Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...