ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (43)
  • Mice, Inbred C57BL  (42)
  • *Extinction, Biological  (34)
  • American Association for the Advancement of Science (AAAS)  (119)
  • 2010-2014  (119)
  • 1980-1984
  • 1925-1929
  • 2013  (119)
Collection
Keywords
Publisher
Years
  • 2010-2014  (119)
  • 1980-1984
  • 1925-1929
Year
  • 1
    Publication Date: 2013-04-06
    Description: The 21st amino acid, selenocysteine (Sec), is synthesized on its cognate transfer RNA (tRNA(Sec)). In bacteria, SelA synthesizes Sec from Ser-tRNA(Sec), whereas in archaea and eukaryotes SepSecS forms Sec from phosphoserine (Sep) acylated to tRNA(Sec). We determined the crystal structures of Aquifex aeolicus SelA complexes, which revealed a ring-shaped homodecamer that binds 10 tRNA(Sec) molecules, each interacting with four SelA subunits. The SelA N-terminal domain binds the tRNA(Sec)-specific D-arm structure, thereby discriminating Ser-tRNA(Sec) from Ser-tRNA(Ser). A large cleft is created between two subunits and accommodates the 3'-terminal region of Ser-tRNA(Sec). The SelA structures together with in vivo and in vitro enzyme assays show decamerization to be essential for SelA function. SelA catalyzes pyridoxal 5'-phosphate-dependent Sec formation involving Arg residues nonhomologous to those in SepSecS. Different protein architecture and substrate coordination of the bacterial enzyme provide structural evidence for independent evolution of the two Sec synthesis systems present in nature.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itoh, Yuzuru -- Brocker, Markus J -- Sekine, Shun-ichi -- Hammond, Gifty -- Suetsugu, Shiro -- Soll, Dieter -- Yokoyama, Shigeyuki -- GM22854/GM/NIGMS NIH HHS/ -- R01 GM022854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):75-8. doi: 10.1126/science.1229521.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23559248" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Bacteria/*enzymology ; Bacterial Proteins/*chemistry ; Catalysis ; Catalytic Domain ; Crystallography, X-Ray ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridoxal Phosphate/chemistry ; RNA, Transfer, Amino Acyl/*chemistry ; Selenocysteine/*biosynthesis ; Transferases/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-28
    Description: The essential bacterial protein FtsZ is a guanosine triphosphatase that self-assembles into a structure at the division site termed the "Z ring". During cytokinesis, the Z ring exerts a constrictive force on the membrane by using the chemical energy of guanosine triphosphate hydrolysis. However, the structural basis of this constriction remains unresolved. Here, we present the crystal structure of a guanosine diphosphate-bound Mycobacterium tuberculosis FtsZ protofilament, which exhibits a curved conformational state. The structure reveals a longitudinal interface that is important for function. The protofilament curvature highlights a hydrolysis-dependent conformational switch at the T3 loop that leads to longitudinal bending between subunits, which could generate sufficient force to drive cytokinesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ying -- Hsin, Jen -- Zhao, Lingyun -- Cheng, Yiwen -- Shang, Weina -- Huang, Kerwyn Casey -- Wang, Hong-Wei -- Ye, Sheng -- 1F32GM100677-01A1/GM/NIGMS NIH HHS/ -- DP2 OD006466/OD/NIH HHS/ -- DP2OD006466/OD/NIH HHS/ -- F32 GM100677/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):392-5. doi: 10.1126/science.1239248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, P.R. China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888039" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/physiology ; Crystallography, X-Ray ; *Cytokinesis ; Cytoskeletal Proteins/*chemistry/genetics/*metabolism ; Escherichia coli/chemistry ; Guanosine Diphosphate/chemistry/metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mycobacterium tuberculosis/*chemistry/physiology ; Point Mutation ; Protein Conformation ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Staphylococcus aureus/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-21
    Description: The generation of high-affinity antibodies depends on the ability of B cells to extract antigens from the surfaces of antigen-presenting cells. B cells that express high-affinity B cell receptors (BCRs) acquire more antigen and obtain better T cell help. However, the mechanisms by which B cells extract antigen remain unclear. Using fluid and flexible membrane substrates to mimic antigen-presenting cells, we showed that B cells acquire antigen by dynamic myosin IIa-mediated contractions that pull out and invaginate the presenting membranes. The forces generated by myosin IIa contractions ruptured most individual BCR-antigen bonds and promoted internalization of only high-affinity, multivalent BCR microclusters. Thus, B cell contractility contributes to affinity discrimination by mechanically testing the strength of antigen binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natkanski, Elizabeth -- Lee, Wing-Yiu -- Mistry, Bhakti -- Casal, Antonio -- Molloy, Justin E -- Tolar, Pavel -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117597138/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117597138/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1587-90. doi: 10.1126/science.1237572. Epub 2013 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23686338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Affinity ; *Antigen Presentation ; Antigens/*immunology ; B-Lymphocytes/*immunology ; Cells, Cultured ; Mechanical Processes ; Mice ; Mice, Inbred C57BL ; Microscopy, Atomic Force ; Nonmuscle Myosin Type IIA/*physiology ; Receptors, Antigen, B-Cell/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-27
    Description: Secondary bacterial pneumonia leads to increased morbidity and mortality from influenza virus infections. What causes this increased susceptibility, however, is not well defined. Host defense from infection relies not only on immune resistance mechanisms but also on the ability to tolerate a given level of pathogen burden. Failure of either resistance or tolerance can contribute to disease severity, making it hard to distinguish their relative contribution. We employ a coinfection mouse model of influenza virus and Legionella pneumophila in which we can separate resistance and tolerance. We demonstrate that influenza virus can promote susceptibility to lethal bacterial coinfection, even when bacterial infection is controlled by the immune system. We propose that this failure of host defense is due to impaired ability to tolerate tissue damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jamieson, Amanda M -- Pasman, Lesley -- Yu, Shuang -- Gamradt, Pia -- Homer, Robert J -- Decker, Thomas -- Medzhitov, Ruslan -- AI R01 055502/AI/NIAID NIH HHS/ -- R01 046688/PHS HHS/ -- R01 AI046688/AI/NIAID NIH HHS/ -- R01 AI055502/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1230-4. doi: 10.1126/science.1233632. Epub 2013 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA. amanda_jamieson@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23618765" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspase 1 ; Coinfection/*immunology/pathology ; Disease Models, Animal ; Host-Pathogen Interactions/immunology ; Interleukin-1beta/metabolism ; *Legionella pneumophila ; Legionnaires' Disease/*immunology/pathology ; Lung/microbiology/pathology/virology ; Mice ; Mice, Inbred C57BL ; *Orthomyxoviridae ; Orthomyxoviridae Infections/*immunology/pathology ; Pneumonia, Bacterial/*immunology/pathology ; Toll-Like Receptor 2/metabolism ; Toll-Like Receptor 3/metabolism ; Toll-Like Receptor 4/metabolism ; Tumor Necrosis Factor-alpha/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-25
    Description: Ca(2+)/cation antiporters catalyze the exchange of Ca(2+) with various cations across biological membranes to regulate cytosolic calcium levels. The recently reported structure of a prokaryotic Na(+)/Ca(2+) exchanger (NCX_Mj) revealed its overall architecture in an outward-facing state. Here, we report the crystal structure of a H(+)/Ca(2+) exchanger from Archaeoglobus fulgidus (CAX_Af) in the two representatives of the inward-facing conformation at 2.3 A resolution. The structures suggested Ca(2+) or H(+) binds to the cation-binding site mutually exclusively. Structural comparison of CAX_Af with NCX_Mj revealed that the first and sixth transmembrane helices alternately create hydrophilic cavities on the intra- and extracellular sides. The structures and functional analyses provide insight into the mechanism of how the inward- to outward-facing state transition is triggered by the Ca(2+) and H(+) binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishizawa, Tomohiro -- Kita, Satomi -- Maturana, Andres D -- Furuya, Noritaka -- Hirata, Kunio -- Kasuya, Go -- Ogasawara, Satoshi -- Dohmae, Naoshi -- Iwamoto, Takahiro -- Ishitani, Ryuichiro -- Nureki, Osamu -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):168-72. doi: 10.1126/science.1239002. Epub 2013 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704374" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Archaeal Proteins/*chemistry/genetics/metabolism ; Archaeoglobus fulgidus/*metabolism ; Binding Sites ; Calcium/chemistry/metabolism ; Cation Transport Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Hydrogen/chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-01-26
    Description: Caspases are either apoptotic or inflammatory. Among inflammatory caspases, caspase-1 and -11 trigger pyroptosis, a form of programmed cell death. Whereas both can be detrimental in inflammatory disease, only caspase-1 has an established protective role during infection. Here, we report that caspase-11 is required for innate immunity to cytosolic, but not vacuolar, bacteria. Although Salmonella typhimurium and Legionella pneumophila normally reside in the vacuole, specific mutants (sifA and sdhA, respectively) aberrantly enter the cytosol. These mutants triggered caspase-11, which enhanced clearance of S. typhimurium sifA in vivo. This response did not require NLRP3, NLRC4, or ASC inflammasome pathways. Burkholderia species that naturally invade the cytosol also triggered caspase-11, which protected mice from lethal challenge with B. thailandensis and B. pseudomallei. Thus, caspase-11 is critical for surviving exposure to ubiquitous environmental pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697099/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697099/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aachoui, Youssef -- Leaf, Irina A -- Hagar, Jon A -- Fontana, Mary F -- Campos, Cristine G -- Zak, Daniel E -- Tan, Michael H -- Cotter, Peggy A -- Vance, Russell E -- Aderem, Alan -- Miao, Edward A -- AI057141/AI/NIAID NIH HHS/ -- AI063302/AI/NIAID NIH HHS/ -- AI065359/AI/NIAID NIH HHS/ -- AI075039/AI/NIAID NIH HHS/ -- AI080749/AI/NIAID NIH HHS/ -- AI097518/AI/NIAID NIH HHS/ -- P01 AI063302/AI/NIAID NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 AI075039/AI/NIAID NIH HHS/ -- R01 AI080749/AI/NIAID NIH HHS/ -- R01 AI097518/AI/NIAID NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- U54 AI065359/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):975-8. doi: 10.1126/science.1230751. Epub 2013 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23348507" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Burkholderia/pathogenicity/physiology ; Burkholderia Infections/enzymology/immunology/metabolism ; Burkholderia pseudomallei/pathogenicity/physiology ; Caspases/*metabolism ; *Cell Death ; Cytosol/*microbiology ; Gram-Negative Bacterial Infections/enzymology/*immunology/microbiology ; Immunity, Innate ; Inflammasomes/metabolism ; Macrophages/immunology/*microbiology ; Mice ; Mice, Inbred C57BL ; Phagosomes/microbiology ; Salmonella Infections, Animal/enzymology/immunology/microbiology ; Salmonella typhimurium/pathogenicity/physiology ; Vacuoles/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-28
    Description: Tropical forests continue to be felled and fragmented around the world. A key question is how rapidly species disappear from forest fragments and how quickly humans must restore forest connectivity to minimize extinctions. We surveyed small mammals on forest islands in Chiew Larn Reservoir in Thailand 5 to 7 and 25 to 26 years after isolation and observed the near-total loss of native small mammals within 5 years from 〈10-hectare (ha) fragments and within 25 years from 10- to 56-ha fragments. Based on our results, we developed an island biogeographic model and estimated mean extinction half-life (50% of resident species disappearing) to be 13.9 years. These catastrophic extinctions were probably partly driven by an invasive rat species; such biotic invasions are becoming increasingly common in human-modified landscapes. Our results are thus particularly relevant to other fragmented forest landscapes and suggest that small fragments are potentially even more vulnerable to biodiversity loss than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Luke -- Lynam, Antony J -- Bradshaw, Corey J A -- He, Fangliang -- Bickford, David P -- Woodruff, David S -- Bumrungsri, Sara -- Laurance, William F -- New York, N.Y. -- Science. 2013 Sep 27;341(6153):1508-10. doi: 10.1126/science.1240495.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore. lggibson@nus.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072921" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Conservation of Natural Resources ; *Extinction, Biological ; Humans ; Islands ; Mammals/*classification ; Thailand ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-03-02
    Description: Prenatal infection and exposure to traumatizing experiences during peripuberty have each been associated with increased risk for neuropsychiatric disorders. Evidence is lacking for the cumulative impact of such prenatal and postnatal environmental challenges on brain functions and vulnerability to psychiatric disease. Here, we show in a translational mouse model that combined exposure to prenatal immune challenge and peripubertal stress induces synergistic pathological effects on adult behavioral functions and neurochemistry. We further demonstrate that the prenatal insult markedly increases the vulnerability of the pubescent offspring to brain immune changes in response to stress. Our findings reveal interactions between two adverse environmental factors that have individually been associated with neuropsychiatric disease and support theories that mental illnesses with delayed onsets involve multiple environmental hits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giovanoli, Sandra -- Engler, Harald -- Engler, Andrea -- Richetto, Juliet -- Voget, Mareike -- Willi, Roman -- Winter, Christine -- Riva, Marco A -- Mortensen, Preben B -- Feldon, Joram -- Schedlowski, Manfred -- Meyer, Urs -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1095-9. doi: 10.1126/science.1228261.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytokines/immunology ; Disease Models, Animal ; Female ; Humans ; Mental Disorders/*immunology ; Mice ; Mice, Inbred C57BL ; Poly I-C/immunology/pharmacology ; Pregnancy ; Prenatal Exposure Delayed Effects/*immunology/virology ; Puberty/*immunology ; Stress, Physiological/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-19
    Description: Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, Michele -- Hauschild, Robert -- Schwarz, Jan -- Moussion, Christine -- de Vries, Ingrid -- Legler, Daniel F -- Luther, Sanjiv A -- Bollenbach, Tobias -- Sixt, Michael -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):328-32. doi: 10.1126/science.1228456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemokine CCL19/metabolism ; Chemokine CCL21/chemistry/*immunology ; Chemotaxis/*immunology ; Dendritic Cells/*immunology ; Heparitin Sulfate/chemistry ; Immobilized Proteins/chemistry/immunology ; Lymphatic Vessels/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Receptors, CCR7/genetics ; Skin/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharon, Michal -- New York, N.Y. -- Science. 2013 May 31;340(6136):1059-60. doi: 10.1126/science.1236303.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel. michal.sharon@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723227" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Mass Spectrometry/*methods ; Microscopy, Electron ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-04-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sherkow, Jacob S -- Greely, Henry T -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):32-3. doi: 10.1126/science.1236965.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Law and the Biosciences, Stanford Law School, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23559235" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breeding/*methods ; Cloning, Organism/*methods ; *Endangered Species ; *Extinction, Biological ; Genetic Engineering ; Genomics ; Marsupialia/*genetics ; Selection, Genetic ; Tasmania
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-07
    Description: An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu(226) --〉 Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Yi -- Zhang, Wei -- Wang, Fei -- Qi, Jianxun -- Wu, Ying -- Song, Hao -- Gao, Feng -- Bi, Yuhai -- Zhang, Yanfang -- Fan, Zheng -- Qin, Chengfeng -- Sun, Honglei -- Liu, Jinhua -- Haywood, Joel -- Liu, Wenjun -- Gong, Weimin -- Wang, Dayan -- Shu, Yuelong -- Wang, Yu -- Yan, Jinghua -- Gao, George F -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):243-7. doi: 10.1126/science.1242917. Epub 2013 Sep 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009358" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds ; Crystallography, X-Ray ; Glycine/chemistry/genetics/metabolism ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/metabolism ; Humans ; Influenza A virus/*metabolism ; Influenza in Birds/*virology ; Influenza, Human/*virology ; Protein Conformation ; Receptors, Cell Surface/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-07-03
    Description: Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N identical withN triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a mu-eta(1):eta(2):eta(2)-end-on-side-on fashion to give a mu2-N/mu3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the mu2-N nitrido unit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shima, Takanori -- Hu, Shaowei -- Luo, Gen -- Kang, Xiaohui -- Luo, Yi -- Hou, Zhaomin -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1549-52. doi: 10.1126/science.1238663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812710" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Crystallography, X-Ray ; Hydrogenation ; Magnetic Resonance Spectroscopy ; Nitrogen/*chemistry ; Titanium/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-05-11
    Description: gamma-aminobutyric acid-mediated (GABAergic) inhibition plays a critical role in shaping neuronal activity in the neocortex. Numerous experimental investigations have examined perisomatic inhibitory synapses, which control action potential output from pyramidal neurons. However, most inhibitory synapses in the neocortex are formed onto pyramidal cell dendrites, where theoretical studies suggest they may focally regulate cellular activity. The precision of GABAergic control over dendritic electrical and biochemical signaling is unknown. By using cell type-specific optical stimulation in combination with two-photon calcium (Ca(2+)) imaging, we show that somatostatin-expressing interneurons exert compartmentalized control over postsynaptic Ca(2+) signals within individual dendritic spines. This highly focal inhibitory action is mediated by a subset of GABAergic synapses that directly target spine heads. GABAergic inhibition thus participates in localized control of dendritic electrical and biochemical signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiu, Chiayu Q -- Lur, Gyorgy -- Morse, Thomas M -- Carnevale, Nicholas T -- Ellis-Davies, Graham C R -- Higley, Michael J -- DC009977/DC/NIDCD NIH HHS/ -- GM053395/GM/NIGMS NIH HHS/ -- K01 MH097961/MH/NIMH NIH HHS/ -- MH099045/MH/NIMH NIH HHS/ -- NS011613/NS/NINDS NIH HHS/ -- NS069720/NS/NINDS NIH HHS/ -- R01 DC009977/DC/NIDCD NIH HHS/ -- R01 GM053395/GM/NIGMS NIH HHS/ -- R01 MH099045/MH/NIMH NIH HHS/ -- R01 NS011613/NS/NINDS NIH HHS/ -- R01 NS069720/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 10;340(6133):759-62. doi: 10.1126/science.1234274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661763" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Computer Simulation ; Dendritic Spines/*physiology ; Female ; Glutamic Acid/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neocortex/*physiology ; *Neural Inhibition ; Photic Stimulation ; Pyramidal Cells/*physiology ; Rhodopsin/metabolism ; Synapses/physiology ; gamma-Aminobutyric Acid/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-03-02
    Description: The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-epsilon as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-epsilon was not induced by known PRR pathways; instead, IFN-epsilon was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-epsilon-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-epsilon is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung, Ka Yee -- Mangan, Niamh E -- Cumming, Helen -- Horvat, Jay C -- Mayall, Jemma R -- Stifter, Sebastian A -- De Weerd, Nicole -- Roisman, Laila C -- Rossjohn, Jamie -- Robertson, Sarah A -- Schjenken, John E -- Parker, Belinda -- Gargett, Caroline E -- Nguyen, Hong P T -- Carr, Daniel J -- Hansbro, Philip M -- Hertzog, Paul J -- R01 AI053108/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1088-92. doi: 10.1126/science.1233321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chlamydia Infections/genetics/*immunology ; *Chlamydia muridarum ; Estrogens/administration & dosage/immunology ; Female ; HEK293 Cells ; Herpes Genitalis/genetics/*immunology ; *Herpesvirus 2, Human ; Humans ; Interferons/genetics/*immunology ; Ligands ; Mice ; Mice, Inbred C57BL ; Oligodeoxyribonucleotides/immunology ; Poly I-C/immunology ; Poly dA-dT/immunology ; Toll-Like Receptors/*immunology ; Uterus/immunology ; Vagina/*immunology/microbiology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-21
    Description: The Na(+), K(+)-adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na(+) and K(+) across the plasma membrane--a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K(+)-bound or ouabain-blocked forms. We present the crystal structure of a Na(+)-bound Na(+), K(+)-ATPase as determined at 4.3 A resolution. Compared with the K(+)-bound form, large conformational changes are observed in the alpha subunit whereas the beta and gamma subunit structures are maintained. The locations of the three Na(+) sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na(+) from IIIb through IIIa, followed by exchange of Na(+) for K(+) at sites I and II, is suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nyblom, Maria -- Poulsen, Hanne -- Gourdon, Pontus -- Reinhard, Linda -- Andersson, Magnus -- Lindahl, Erik -- Fedosova, Natalya -- Nissen, Poul -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):123-7. doi: 10.1126/science.1243352. Epub 2013 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Membrane Pumps in Cells and Disease-PUMPkin, Danish National Research Foundation, DK-8000 Aarhus, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24051246" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/enzymology ; Crystallography, X-Ray ; *Models, Molecular ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium/*chemistry ; Sodium-Potassium-Exchanging ATPase/*chemistry/genetics ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Alan -- Fraser, Gavin -- Snowball, Jen -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1167. doi: 10.1126/science.340.6137.1167-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744925" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Extinction, Biological ; *Horns ; *Perissodactyla
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-02-01
    Description: Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667500/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667500/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Michelle I -- Yatsunenko, Tanya -- Manary, Mark J -- Trehan, Indi -- Mkakosya, Rajhab -- Cheng, Jiye -- Kau, Andrew L -- Rich, Stephen S -- Concannon, Patrick -- Mychaleckyj, Josyf C -- Liu, Jie -- Houpt, Eric -- Li, Jia V -- Holmes, Elaine -- Nicholson, Jeremy -- Knights, Dan -- Ursell, Luke K -- Knight, Rob -- Gordon, Jeffrey I -- DK078669/DK/NIDDK NIH HHS/ -- DK30292/DK/NIDDK NIH HHS/ -- F32 DK091044/DK/NIDDK NIH HHS/ -- P01 DK078669/DK/NIDDK NIH HHS/ -- P30 DK056341/DK/NIDDK NIH HHS/ -- R37 DK030292/DK/NIDDK NIH HHS/ -- T32 HD049338/HD/NICHD NIH HHS/ -- T32-HD049338/HD/NICHD NIH HHS/ -- T35 DK074375/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):548-54. doi: 10.1126/science.1229000. Epub 2013 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23363771" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; Arachis ; Carbohydrate Metabolism ; Child, Preschool ; Diseases in Twins/*microbiology ; Feces/microbiology ; Female ; Gastrointestinal Tract/*microbiology ; Germ-Free Life ; Humans ; Infant ; Kwashiorkor/diet therapy/epidemiology/*microbiology ; Longitudinal Studies ; Malawi/epidemiology ; Male ; *Metagenome ; Mice ; Mice, Inbred C57BL
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-04-06
    Description: A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fang -- Travins, Jeremy -- DeLaBarre, Byron -- Penard-Lacronique, Virginie -- Schalm, Stefanie -- Hansen, Erica -- Straley, Kimberly -- Kernytsky, Andrew -- Liu, Wei -- Gliser, Camelia -- Yang, Hua -- Gross, Stefan -- Artin, Erin -- Saada, Veronique -- Mylonas, Elena -- Quivoron, Cyril -- Popovici-Muller, Janeta -- Saunders, Jeffrey O -- Salituro, Francesco G -- Yan, Shunqi -- Murray, Stuart -- Wei, Wentao -- Gao, Yi -- Dang, Lenny -- Dorsch, Marion -- Agresta, Sam -- Schenkein, David P -- Biller, Scott A -- Su, Shinsan M -- de Botton, Stephane -- Yen, Katharine E -- New York, N.Y. -- Science. 2013 May 3;340(6132):622-6. doi: 10.1126/science.1234769. Epub 2013 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, MA 02139-4169, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23558173" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Antineoplastic Agents/chemistry/metabolism/pharmacology ; Catalytic Domain ; Cell Line, Tumor ; Cell Proliferation ; Cells, Cultured ; Crystallography, X-Ray ; Enzyme Inhibitors/chemistry/metabolism/*pharmacology ; Erythropoiesis/drug effects ; Gene Expression Regulation, Leukemic ; Glutarates/metabolism ; Hematopoiesis/*drug effects ; Humans ; Isocitrate Dehydrogenase/*antagonists & inhibitors/chemistry/*genetics/metabolism ; Leukemia, Erythroblastic, Acute ; Leukemia, Myeloid, Acute/drug therapy/*enzymology/genetics/pathology ; Molecular Targeted Therapy ; Mutant Proteins/antagonists & inhibitors/chemistry/metabolism ; Phenylurea Compounds/chemistry/metabolism/*pharmacology ; Point Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Small Molecule Libraries ; Sulfonamides/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-03-23
    Description: Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Chong -- Jiang, Yi -- Ma, Jinming -- Wu, Huixian -- Wacker, Daniel -- Katritch, Vsevolod -- Han, Gye Won -- Liu, Wei -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Gao, Xiang -- Zhou, X Edward -- Melcher, Karsten -- Zhang, Chenghai -- Bai, Fang -- Yang, Huaiyu -- Yang, Linlin -- Jiang, Hualiang -- Roth, Bryan L -- Cherezov, Vadim -- Stevens, Raymond C -- Xu, H Eric -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- R01 DA27170/DA/NIDA NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):610-4. doi: 10.1126/science.1232807. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519210" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dihydroergotamine/chemistry/*metabolism ; Ergotamine/chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Sequence Data ; Mutagenesis ; Norfenfluramine/chemistry/metabolism ; Pindolol/analogs & derivatives/chemistry/metabolism ; Propranolol/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/*chemistry/genetics/*metabolism ; Serotonin 5-HT1 Receptor Agonists/*chemistry/*metabolism ; Tryptamines/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-12-18
    Description: The central nervous system rapidly learns that particular stimuli predict imminent danger. This learning is thought to involve associations between neutral and harmful stimuli in cortical and limbic brain regions, though associative neuroplasticity in sensory structures is increasingly appreciated. We observed the synaptic output of olfactory sensory neurons (OSNs) in individual mice before and after they learned that a particular odor indicated an impending foot shock. OSNs are the first cells in the olfactory system, physically contacting the odor molecules in the nose and projecting their axons to the brain's olfactory bulb. OSN output evoked by the shock-predictive odor was selectively facilitated after fear conditioning. These results indicate that affective information about a stimulus can be encoded in its very earliest representation in the nervous system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011636/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011636/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kass, Marley D -- Rosenthal, Michelle C -- Pottackal, Joseph -- McGann, John P -- DC009442/DC/NIDCD NIH HHS/ -- DC013090/DC/NIDCD NIH HHS/ -- MH101293/MH/NIMH NIH HHS/ -- R00 DC009442/DC/NIDCD NIH HHS/ -- R01 DC013090/DC/NIDCD NIH HHS/ -- R01 MH101293/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1389-92. doi: 10.1126/science.1244916.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Behavioral and Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conditioning, Classical/physiology ; Fear/*psychology ; Learning/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity ; *Odors ; Olfactory Receptor Neurons/*physiology ; Smell/*physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-12-18
    Description: Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid-containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Ping -- Dong, Suwei -- Shieh, Jae-Hung -- Peguero, Elizabeth -- Hendrickson, Ronald -- Moore, Malcolm A S -- Danishefsky, Samuel J -- HL025848/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM109760/GM/NIGMS NIH HHS/ -- R01 HL025848/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1357-60. doi: 10.1126/science.1245095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337294" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Cells, Cultured ; Consensus Sequence ; Dose-Response Relationship, Drug ; Erythrocyte Count ; Erythropoietin/*administration & dosage/*chemical synthesis/chemistry ; Glycophorin/chemistry ; Glycosylation ; Injections, Subcutaneous ; Mannose/chemistry ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; N-Acetylneuraminic Acid/chemistry ; Oligosaccharides/chemistry ; Reticulocytes/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-08-31
    Description: MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the development of antibiotics, but the lack of a structure has hindered mechanistic understanding of this critical enzyme and the enzyme superfamily in general. The superfamily includes enzymes involved in bacterial lipopolysaccharide/teichoic acid formation and eukaryotic N-linked glycosylation, modifications that are central in many biological processes. We present the crystal structure of MraY from Aquifex aeolicus (MraYAA) at 3.3 A resolution, which allows us to visualize the overall architecture, locate Mg(2+) within the active site, and provide a structural basis of catalysis for this class of enzyme.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906829/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906829/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Ben C -- Zhao, Jinshi -- Gillespie, Robert A -- Kwon, Do-Yeon -- Guan, Ziqiang -- Hong, Jiyong -- Zhou, Pei -- Lee, Seok-Yong -- AI-55588/AI/NIAID NIH HHS/ -- GM-069338/GM/NIGMS NIH HHS/ -- GM-51310/GM/NIGMS NIH HHS/ -- R01 AI055588/AI/NIAID NIH HHS/ -- R01 GM051310/GM/NIGMS NIH HHS/ -- R01 GM100984/GM/NIGMS NIH HHS/ -- U54 GM069338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1012-6. doi: 10.1126/science.1236501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990562" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*enzymology ; Bacterial Proteins/*chemistry/genetics ; Catalytic Domain ; Cell Wall/*chemistry/enzymology ; Crystallography, X-Ray ; Cytoplasm/enzymology ; Membrane Proteins/*chemistry/genetics ; Periplasm/enzymology ; Protein Conformation ; Protein Structure, Secondary ; Transferases/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-10-19
    Description: The conservation of sleep across all animal species suggests that sleep serves a vital function. We here report that sleep has a critical function in ensuring metabolic homeostasis. Using real-time assessments of tetramethylammonium diffusion and two-photon imaging in live mice, we show that natural sleep or anesthesia are associated with a 60% increase in the interstitial space, resulting in a striking increase in convective exchange of cerebrospinal fluid with interstitial fluid. In turn, convective fluxes of interstitial fluid increased the rate of beta-amyloid clearance during sleep. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880190/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880190/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, Lulu -- Kang, Hongyi -- Xu, Qiwu -- Chen, Michael J -- Liao, Yonghong -- Thiyagarajan, Meenakshisundaram -- O'Donnell, John -- Christensen, Daniel J -- Nicholson, Charles -- Iliff, Jeffrey J -- Takano, Takahiro -- Deane, Rashid -- Nedergaard, Maiken -- NS028642/NS/NINDS NIH HHS/ -- NS078167/NS/NINDS NIH HHS/ -- NS078304/NS/NINDS NIH HHS/ -- R01 DE022743/DE/NIDCR NIH HHS/ -- R01 NS075177/NS/NINDS NIH HHS/ -- R01 NS078167/NS/NINDS NIH HHS/ -- R01 NS078304/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136970" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic Antagonists/administration & dosage ; Amyloid beta-Peptides/*metabolism ; Animals ; Brain/*metabolism/physiology ; Cerebral Cortex/metabolism/physiology ; Cerebrospinal Fluid/metabolism ; Diffusion ; Electroencephalography ; Extracellular Space ; Intracellular Space ; Male ; Mice ; Mice, Inbred C57BL ; Neurodegenerative Diseases/*metabolism ; Quaternary Ammonium Compounds/chemistry ; Receptors, Adrenergic/metabolism ; Sleep/*physiology ; Wakefulness/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-07-23
    Description: Mora et al. disputed that most species will be discovered before they go extinct, but not our main recommendations to accelerate species' discoveries. We show that our conclusions would be unaltered by discoveries of more microscopic species and reinforce our estimates of species description and extinction rates, that taxonomic effort has never been greater, and that there are 2 to 8 million species on Earth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Costello, Mark J -- May, Robert M -- Stork, Nigel E -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):237. doi: 10.1126/science.1237381.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Post Office Box 349, Warkworth, New Zealand. m.costello@auckland.ac.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Classification ; *Extinction, Biological ; *Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-01-19
    Description: A paper by Wearn et al. (Reports, 13 July 2012, p. 228) yields new insights on extinction debt. However, it leaves out the area dependence of the relaxation process. We show that this is not warranted on theoretical or observational grounds and that it may lead to erroneous conservation recommendations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halley, John M -- Iwasa, Yoh -- Vokou, Despoina -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):271. doi: 10.1126/science.1231438.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece. jhalley@cc.uoi.gr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329033" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; *Extinction, Biological ; *Trees ; *Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-26
    Description: Some people despair that most species will go extinct before they are discovered. However, such worries result from overestimates of how many species may exist, beliefs that the expertise to describe species is decreasing, and alarmist estimates of extinction rates. We argue that the number of species on Earth today is 5 +/- 3 million, of which 1.5 million are named. New databases show that there are more taxonomists describing species than ever before, and their number is increasing faster than the rate of species description. Conservation efforts and species survival in secondary habitats are at least delaying extinctions. Extinction rates are, however, poorly quantified, ranging from 0.01 to 1% (at most 5%) per decade. We propose practical actions to improve taxonomic productivity and associated understanding and conservation of biodiversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Costello, Mark J -- May, Robert M -- Stork, Nigel E -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):413-6. doi: 10.1126/science.1230318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Leigh Marine Laboratory, University of Auckland, Post Office Box 349, Warkworth, New Zealand. m.costello@auckland.ac.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349283" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Classification ; Conservation of Natural Resources ; Databases, Factual ; Ecosystem ; Endangered Species ; *Extinction, Biological ; *Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-03-23
    Description: Kinesin-mediated cargo transport is required for many cellular functions and plays a key role in pathological processes. Structural information on how kinesins recognize their cargoes is required for a molecular understanding of this fundamental and ubiquitous process. Here, we present the crystal structure of the tetratricopeptide repeat domain of kinesin light chain 2 in complex with a cargo peptide harboring a "tryptophan-acidic" motif derived from SKIP (SifA-kinesin interacting protein), a critical host determinant in Salmonella pathogenesis and a regulator of lysosomal positioning. Structural data together with biophysical, biochemical, and cellular assays allow us to propose a framework for intracellular transport based on the binding by kinesin-1 of W-acidic cargo motifs through a combination of electrostatic interactions and sequence-specific elements, providing direct molecular evidence of the mechanisms for kinesin-1:cargo recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pernigo, Stefano -- Lamprecht, Anneri -- Steiner, Roberto A -- Dodding, Mark P -- 097316/Wellcome Trust/United Kingdom -- British Heart Foundation/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):356-9. doi: 10.1126/science.1234264. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519214" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Glycoproteins/*chemistry/metabolism ; HeLa Cells ; Humans ; Mice ; Microtubule-Associated Proteins/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Tryptophan/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-12-07
    Description: The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike alpha2-6-linked receptors and strong preference for a subset of avian-like alpha2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Rui -- de Vries, Robert P -- Zhu, Xueyong -- Nycholat, Corwin M -- McBride, Ryan -- Yu, Wenli -- Paulson, James C -- Wilson, Ian A -- GM62116/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R56 AI099275/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1230-5. doi: 10.1126/science.1243761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311689" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; Humans ; Influenza A Virus, H7N9 Subtype/*metabolism/*pathogenicity ; Influenza in Birds/transmission/virology ; Influenza, Human/transmission/virology ; Ligands ; Microarray Analysis ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Polysaccharides/chemistry/*metabolism ; Receptors, Virus/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-16
    Description: Increased fear memory generalization is associated with posttraumatic stress disorder, but the circuit mechanisms that regulate memory specificity remain unclear. Here, we define a neural circuit-composed of the medial prefrontal cortex, the nucleus reuniens (NR), and the hippocampus-that controls fear memory generalization. Inactivation of prefrontal inputs into the NR or direct silencing of NR projections enhanced fear memory generalization, whereas constitutive activation of NR neurons decreased memory generalization. Direct optogenetic activation of phasic and tonic action-potential firing of NR neurons during memory acquisition enhanced or reduced memory generalization, respectively. We propose that the NR determines the specificity and generalization of memory attributes for a particular context by processing information from the medial prefrontal cortex en route to the hippocampus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Wei -- Sudhof, Thomas C -- K99 MH099153/MH/NIMH NIH HHS/ -- NS077906/NS/NINDS NIH HHS/ -- P50 MH086403/MH/NIMH NIH HHS/ -- R01 NS077906/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1290-5. doi: 10.1126/science.1229534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94304-5453, USA. weixu@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493706" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Dependovirus ; Fear/*physiology ; *Generalization (Psychology) ; Green Fluorescent Proteins/genetics/metabolism ; Hippocampus/physiology ; Male ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; Midline Thalamic Nuclei/physiology ; Neural Pathways ; Prefrontal Cortex/*physiology ; Synapses/physiology ; Vesicle-Associated Membrane Protein 2/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-11-02
    Description: Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site O, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site O when exposed to extremes of pH, osmolality, and temperature. Six RSV F crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site O-stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Chen, Man -- Joyce, M Gordon -- Sastry, Mallika -- Stewart-Jones, Guillaume B E -- Yang, Yongping -- Zhang, Baoshan -- Chen, Lei -- Srivatsan, Sanjay -- Zheng, Anqi -- Zhou, Tongqing -- Graepel, Kevin W -- Kumar, Azad -- Moin, Syed -- Boyington, Jeffrey C -- Chuang, Gwo-Yu -- Soto, Cinque -- Baxa, Ulrich -- Bakker, Arjen Q -- Spits, Hergen -- Beaumont, Tim -- Zheng, Zizheng -- Xia, Ningshao -- Ko, Sung-Youl -- Todd, John-Paul -- Rao, Srinivas -- Graham, Barney S -- Kwong, Peter D -- ZIA AI005024-11/Intramural NIH HHS/ -- ZIA AI005061-10/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):592-8. doi: 10.1126/science.1243283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179220" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology ; Antigens, Viral/*chemistry/genetics/immunology ; Crystallography, X-Ray ; Cysteine/chemistry/genetics ; Glycoproteins/*chemistry/genetics/immunology ; Humans ; Macaca ; Mice ; Protein Engineering ; Protein Multimerization ; Protein Stability ; Protein Structure, Tertiary ; Respiratory Syncytial Virus Infections/*prevention & control ; Respiratory Syncytial Virus Vaccines/*chemistry ; Vaccination ; Viral Fusion Proteins/*chemistry/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-06-08
    Description: Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Christian H -- Healey, Eleanor -- van Erp, Susan -- Bishop, Benjamin -- Tang, Chenxiang -- Gilbert, Robert J C -- Aricescu, A Radu -- Pasterkamp, R Jeroen -- Siebold, Christian -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 097301/Wellcome Trust/United Kingdom -- A14414/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):77-80. doi: 10.1126/science.1232322. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. christian@strubi.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744777" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biophysical Phenomena ; Cell Adhesion Molecules, Neuronal/*chemistry/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Membrane Proteins/*chemistry ; Mutation ; Oligopeptides/chemistry ; Protein Structure, Tertiary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-03-23
    Description: Toll-like receptor 7 (TLR7) and TLR8 recognize single-stranded RNA and initiate innate immune responses. Several synthetic agonists of TLR7-TLR8 display novel therapeutic potential; however, the molecular basis for ligand recognition and activation of signaling by TLR7 or TLR8 is largely unknown. In this study, the crystal structures of unliganded and ligand-induced activated human TLR8 dimers were elucidated. Ligand recognition was mediated by a dimerization interface formed by two protomers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C termini were brought into proximity. The loop between leucine-rich repeat 14 (LRR14) and LRR15 was cleaved; however, the N- and C-terminal halves remained associated and contributed to ligand recognition and dimerization. Thus, ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanji, Hiromi -- Ohto, Umeharu -- Shibata, Takuma -- Miyake, Kensuke -- Shimizu, Toshiyuki -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1426-9. doi: 10.1126/science.1229159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Imidazoles/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Quinolines/chemistry/*metabolism ; Signal Transduction ; Thiazoles/chemistry/*metabolism ; Toll-Like Receptor 8/*agonists/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-05-25
    Description: The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structures of sepiapterin reductase with bound sulfa drugs reveal how structurally diverse sulfa drugs achieve specific inhibition of the enzyme. The effect of sulfa drugs on tetrahydrobiopterin-dependent neurotransmitter biosynthesis in cell-based assays provides a rationale for some of their central nervous system-related side effects, particularly in high-dose sulfamethoxazole therapy of Pneumocystis pneumonia. Our findings reveal an unexpected aspect of the pharmacology of sulfa drugs and might translate into their improved medical use.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haruki, Hirohito -- Pedersen, Miriam Gronlund -- Gorska, Katarzyna Irena -- Pojer, Florence -- Johnsson, Kai -- New York, N.Y. -- Science. 2013 May 24;340(6135):987-91. doi: 10.1126/science.1232972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EPFL, Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research in Chemical Biology, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704574" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Hydroxytryptophan/biosynthesis ; Adult ; Alcohol Oxidoreductases/*antagonists & inhibitors/*chemistry ; Anti-Infective Agents/adverse effects/*pharmacology/therapeutic use ; Biopterin/*analogs & derivatives/biosynthesis ; Cell Line ; Central Nervous System/drug effects ; Crystallography, X-Ray ; Fibroblasts/drug effects/metabolism ; Humans ; Levodopa/biosynthesis ; NADP/chemistry ; Nausea/chemically induced ; Pneumonia, Pneumocystis/drug therapy ; Protein Conformation ; Structure-Activity Relationship ; Sulfamethoxazole/adverse effects/*pharmacology/therapeutic use ; Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology/therapeutic use ; Vomiting/chemically induced
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-01-19
    Description: Although invasive plant species often reduce diversity, they rarely cause plant extinctions. We surveyed paired invaded and uninvaded plant communities from three biomes. We reconcile the discrepancy in diversity loss from invaders by showing that invaded communities have lower local richness but steeper species accumulation with area than that of uninvaded communities, leading to proportionately fewer species loss at broader spatial scales. We show that invaders drive scale-dependent biodiversity loss through strong neutral sampling effects on the number of individuals in a community. We also show that nonneutral species extirpations are due to a proportionately larger effect of invaders on common species, suggesting that rare species are buffered against extinction. Our study provides a synthetic perspective on the threat of invasions to biodiversity loss across spatial scales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Powell, Kristin I -- Chase, Jonathan M -- Knight, Tiffany M -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):316-8. doi: 10.1126/science.1226817.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA. kipowell@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329045" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; *Extinction, Biological ; Ferns/*physiology ; Florida ; Hawaii ; *Introduced Species ; Lonicera/*physiology ; Missouri ; Myricaceae/*physiology ; Trees/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-04-13
    Description: During persistent viral infections, chronic immune activation, negative immune regulator expression, an elevated interferon signature, and lymphoid tissue destruction correlate with disease progression. We demonstrated that blockade of type I interferon (IFN-I) signaling using an IFN-I receptor neutralizing antibody reduced immune system activation, decreased expression of negative immune regulatory molecules, and restored lymphoid architecture in mice persistently infected with lymphocytic choriomeningitis virus. IFN-I blockade before and after establishment of persistent virus infection resulted in enhanced virus clearance and was CD4 T cell-dependent. Hence, we demonstrate a direct causal link between IFN-I signaling, immune activation, negative immune regulator expression, lymphoid tissue disorganization, and virus persistence. Our results suggest that therapies targeting IFN-I may help control persistent virus infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640797/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640797/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teijaro, John R -- Ng, Cherie -- Lee, Andrew M -- Sullivan, Brian M -- Sheehan, Kathleen C F -- Welch, Megan -- Schreiber, Robert D -- de la Torre, Juan Carlos -- Oldstone, Michael B A -- AI007354/AI/NIAID NIH HHS/ -- AI047140/AI/NIAID NIH HHS/ -- AI077719/AI/NIAID NIH HHS/ -- AI09484/AI/NIAID NIH HHS/ -- CA43059/CA/NCI NIH HHS/ -- HL007195/HL/NHLBI NIH HHS/ -- NS041219/NS/NINDS NIH HHS/ -- R01 AI009484/AI/NIAID NIH HHS/ -- R01 AI047140/AI/NIAID NIH HHS/ -- R01 AI077719/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- U54AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):207-11. doi: 10.1126/science.1235214.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580529" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/blood ; Antigens, CD274/metabolism ; Arenaviridae Infections/*immunology/pathology/*virology ; CD4-Positive T-Lymphocytes/immunology ; Cytokines/metabolism ; Dendritic Cells/immunology/virology ; Female ; Immune Tolerance ; Interferon Type I/immunology/*metabolism ; Interleukin-10/metabolism ; Lymphocytes/immunology/virology ; Lymphocytic choriomeningitis virus/*immunology/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Receptor, Interferon alpha-beta/immunology/metabolism ; *Signal Transduction ; Spleen/immunology/pathology ; Viremia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-06-15
    Description: Nucleotide-binding and oligomerization domain-like receptor (NLR) proteins oligomerize into multiprotein complexes termed inflammasomes when activated. Their autoinhibition mechanism remains poorly defined. Here, we report the crystal structure of mouse NLRC4 in a closed form. The adenosine diphosphate-mediated interaction between the central nucleotide-binding domain (NBD) and the winged-helix domain (WHD) was critical for stabilizing the closed conformation of NLRC4. The helical domain HD2 repressively contacted a conserved and functionally important alpha-helix of the NBD. The C-terminal leucine-rich repeat (LRR) domain is positioned to sterically occlude one side of the NBD domain and consequently sequester NLRC4 in a monomeric state. Disruption of ADP-mediated NBD-WHD or NBD-HD2/NBD-LRR interactions resulted in constitutive activation of NLRC4. Together, our data reveal the NBD-organized cooperative autoinhibition mechanism of NLRC4 and provide insight into its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Zehan -- Yan, Chuangye -- Liu, Peiyuan -- Huang, Zhiwei -- Ma, Rui -- Zhang, Chenlu -- Wang, Ruiyong -- Zhang, Yueteng -- Martinon, Fabio -- Miao, Di -- Deng, Haiteng -- Wang, Jiawei -- Chang, Junbiao -- Chai, Jijie -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):172-5. doi: 10.1126/science.1236381. Epub 2013 Jun 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23765277" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Animals ; Apoptosis Regulatory Proteins/*antagonists & inhibitors/*chemistry ; Calcium-Binding Proteins/*antagonists & inhibitors/*chemistry ; Crystallography, X-Ray ; Mice ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, Richard -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):230-3. doi: 10.1126/science.341.6143.230.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868998" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Armadillos ; *Extinction, Biological ; Marine Biology ; Marsupialia ; Models, Biological ; Panama ; *Phylogeography ; Porcupines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-11-10
    Description: Circadian clocks regulate numerous physiological processes that vary across the day-night (diurnal) cycle, but if and how the circadian clock regulates the adaptive immune system is mostly unclear. Interleukin-17-producing CD4(+) T helper (T(H)17) cells are proinflammatory immune cells that protect against bacterial and fungal infections at mucosal surfaces. Their lineage specification is regulated by the orphan nuclear receptor RORgammat. We show that the transcription factor NFIL3 suppresses T(H)17 cell development by directly binding and repressing the Rorgammat promoter. NFIL3 links T(H)17 cell development to the circadian clock network through the transcription factor REV-ERBalpha. Accordingly, TH17 lineage specification varies diurnally and is altered in Rev-erbalpha(-/-) mice. Light-cycle disruption elevated intestinal T(H)17 cell frequencies and increased susceptibility to inflammatory disease. Thus, lineage specification of a key immune cell is under direct circadian control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiaofei -- Rollins, Darcy -- Ruhn, Kelly A -- Stubblefield, Jeremy J -- Green, Carla B -- Kashiwada, Masaki -- Rothman, Paul B -- Takahashi, Joseph S -- Hooper, Lora V -- R01 DK070855/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):727-30. doi: 10.1126/science.1243884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24202171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic-Leucine Zipper Transcription Factors/genetics/*metabolism ; CLOCK Proteins/genetics ; Cell Differentiation/*genetics ; Cell Lineage/genetics ; Circadian Clocks/genetics/*immunology ; *Gene Expression Regulation ; Germ-Free Life ; HEK293 Cells ; Humans ; Intestine, Small/immunology/microbiology ; Jurkat Cells ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/metabolism ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Promoter Regions, Genetic ; Th17 Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-04-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, Richard -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):19. doi: 10.1126/science.340.6128.19.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23559229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cloning, Organism ; Columbidae/*anatomy & histology/*genetics ; *Endangered Species ; *Extinction, Biological ; Quantitative Trait, Heritable
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-02-09
    Description: Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present (40)Ar/(39)Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renne, Paul R -- Deino, Alan L -- Hilgen, Frederik J -- Kuiper, Klaudia F -- Mark, Darren F -- Mitchell, William S 3rd -- Morgan, Leah E -- Mundil, Roland -- Smit, Jan -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):684-7. doi: 10.1126/science.1230492.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA. prenne@bgc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393261" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argon ; Chronology as Topic ; *Ecosystem ; *Extinction, Biological ; Geologic Sediments ; Mammals ; Mexico ; *Minor Planets ; Radioisotopes ; Radiometric Dating
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-01-05
    Description: Microtubule-stabilizing agents (MSAs) are efficacious chemotherapeutic drugs widely used for the treatment of cancer. Despite the importance of MSAs for medical applications and basic research, their molecular mechanisms of action on tubulin and microtubules remain elusive. We determined high-resolution crystal structures of alphabeta-tubulin in complex with two unrelated MSAs, zampanolide and epothilone A. Both compounds were bound to the taxane pocket of beta-tubulin and used their respective side chains to induce structuring of the M-loop into a short helix. Because the M-loop establishes lateral tubulin contacts in microtubules, these findings explain how taxane-site MSAs promote microtubule assembly and stability. Further, our results offer fundamental structural insights into the control mechanisms of microtubule dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prota, Andrea E -- Bargsten, Katja -- Zurwerra, Didier -- Field, Jessica J -- Diaz, Jose Fernando -- Altmann, Karl-Heinz -- Steinmetz, Michel O -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):587-90. doi: 10.1126/science.1230582. Epub 2013 Jan 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23287720" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*chemistry/pharmacology ; Binding Sites ; Bridged Compounds/chemistry/pharmacology ; Cattle ; Chickens ; Crystallography, X-Ray ; Epothilones/*chemistry/pharmacology ; Macrolides/*chemistry/pharmacology ; Microtubules/*drug effects ; Protein Structure, Secondary ; Taxoids/chemistry/pharmacology ; Tubulin/*chemistry ; Tubulin Modulators/*chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-03-30
    Description: Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a-factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavity containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136949/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136949/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pryor, Edward E Jr -- Horanyi, Peter S -- Clark, Kathleen M -- Fedoriw, Nadia -- Connelly, Sara M -- Koszelak-Rosenblum, Mary -- Zhu, Guangyu -- Malkowski, Michael G -- Wiener, Michael C -- Dumont, Mark E -- P30 CA044579/CA/NCI NIH HHS/ -- U54 GM094611/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1600-4. doi: 10.1126/science.1232048.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Membrane Protein Structural Biology Consortium, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539602" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Cell Membrane/*enzymology ; Crystallography, X-Ray ; Membrane Proteins/*chemistry ; Metalloendopeptidases/*chemistry ; Molecular Sequence Data ; Protein Structure, Secondary ; Saccharomyces cerevisiae Proteins/*chemistry ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laurance, William F -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1275. doi: 10.1126/science.339.6125.1275-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493697" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Classification ; *Extinction, Biological ; *Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-12-07
    Description: Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazarus, Michael B -- Jiang, Jiaoyang -- Kapuria, Vaibhav -- Bhuiyan, Tanja -- Janetzko, John -- Zandberg, Wesley F -- Vocadlo, David J -- Herr, Winship -- Walker, Suzanne -- R01 GM094263/GM/NIGMS NIH HHS/ -- R01GM094263/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1235-9. doi: 10.1126/science.1243990.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311690" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Catalytic Domain ; Crystallography, X-Ray ; Glycosylation ; Host Cell Factor C1/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; N-Acetylglucosaminyltransferases/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Proteolysis ; Pyrrolidonecarboxylic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Uridine Diphosphate N-Acetylglucosamine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-21
    Description: Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millien, Valentine Ongeri -- Lu, Wen -- Shaw, Joanne -- Yuan, Xiaoyi -- Mak, Garbo -- Roberts, Luz -- Song, Li-Zhen -- Knight, J Morgan -- Creighton, Chad J -- Luong, Amber -- Kheradmand, Farrah -- Corry, David B -- AI057696/AI/NIAID NIH HHS/ -- AI070973/AI/NIAID NIH HHS/ -- CA125123/CA/NCI NIH HHS/ -- HL75243/HL/NHLBI NIH HHS/ -- K02 HL075243/HL/NHLBI NIH HHS/ -- R01 AI057696/AI/NIAID NIH HHS/ -- R01 HL095382/HL/NHLBI NIH HHS/ -- R01 HL117181/HL/NHLBI NIH HHS/ -- R25GM56929/GM/NIGMS NIH HHS/ -- T32 GM088129/GM/NIGMS NIH HHS/ -- T32GM088129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):792-6. doi: 10.1126/science.1240342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspergillus niger/growth & development/*immunology ; Aspergillus oryzae/enzymology ; Bronchoalveolar Lavage Fluid/cytology ; Epithelial Cells/immunology/metabolism ; Fibrinogen/*metabolism ; Immunity, Innate ; Ligands ; Macrophage Activation ; Macrophages/immunology/metabolism/microbiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Peptide Hydrolases/immunology/*metabolism ; Respiratory Hypersensitivity/*immunology/*metabolism ; Respiratory Mucosa/cytology/immunology/metabolism ; Th2 Cells/immunology ; Toll-Like Receptor 4/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-31
    Description: Intraflagellar transport (IFT) of ciliary precursors such as tubulin from the cytoplasm to the ciliary tip is involved in the construction of the cilium, a hairlike organelle found on most eukaryotic cells. However, the molecular mechanisms of IFT are poorly understood. Here, we found that the two core IFT proteins IFT74 and IFT81 form a tubulin-binding module and mapped the interaction to a calponin homology domain of IFT81 and a highly basic domain in IFT74. Knockdown of IFT81 and rescue experiments with point mutants showed that tubulin binding by IFT81 was required for ciliogenesis in human cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhogaraju, Sagar -- Cajanek, Lukas -- Fort, Cecile -- Blisnick, Thierry -- Weber, Kristina -- Taschner, Michael -- Mizuno, Naoko -- Lamla, Stefan -- Bastin, Philippe -- Nigg, Erich A -- Lorentzen, Esben -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1009-12. doi: 10.1126/science.1240985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990561" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Chlamydomonas reinhardtii/genetics/metabolism ; Cilia/genetics/*physiology ; Crystallography, X-Ray ; Cytoskeletal Proteins/chemistry/genetics/*metabolism ; Gene Knockdown Techniques ; Humans ; Muscle Proteins/chemistry/genetics/*metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Point Mutation ; Protein Structure, Tertiary ; Protein Transport ; RNA, Small Interfering/genetics ; Tubulin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-22
    Description: Most species disappear by the processes of background extinction, yet those processes are poorly understood. We analyzed the evolutionary dynamics of 19 Cenozoic terrestrial mammalian clades with rich fossil records that are now fully extinct or in diversity decline. We find their diversity loss was not just a consequence of "gamblers ruin" but resulted from the evolutionary loss to the Red Queen, a failure to keep pace with a deteriorating environment. Diversity loss is driven equally by both depressed origination rates and elevated extinction rates. Although we find diversity-dependent origination and extinction rates, the diversity of each clade only transiently equaled the implied equilibrium diversity. Thus, the processes that drove diversity loss in terrestrial mammal clades were fundamentally nonequilibrial and overwhelmed diversity-dependent processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quental, Tiago B -- Marshall, Charles R -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):290-2. doi: 10.1126/science.1239431. Epub 2013 Jun 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universidade de Sao Paulo, Departamento de Ecologia, Sao Paulo, SP, Brazil. tbquental@usp.br〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23788731" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Biological Evolution ; *Extinction, Biological ; Fossils ; *Mammals
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-12-21
    Description: The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However, the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has a lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a nonsynonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMRP interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2, and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine-response phenotypes. We propose that CYFIP2 is a key regulator of cocaine response in mammals and present a framework to use mouse substrains to identify previously unknown genes and alleles regulating behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Vivek -- Kim, Kyungin -- Joseph, Chryshanthi -- Kourrich, Said -- Yoo, Seung-Hee -- Huang, Hung Chung -- Vitaterna, Martha H -- de Villena, Fernando Pardo-Manuel -- Churchill, Gary -- Bonci, Antonello -- Takahashi, Joseph S -- F32 DA024556/DA/NIDA NIH HHS/ -- F32DA024556/DA/NIDA NIH HHS/ -- U01 MH061915/MH/NIMH NIH HHS/ -- U01MH61915/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1508-12. doi: 10.1126/science.1245503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Central Nervous System Stimulants/administration & dosage ; Cocaine/*administration & dosage ; Cocaine-Related Disorders/*genetics/*psychology ; *Drug-Seeking Behavior ; Methamphetamine/administration & dosage ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Activity/drug effects ; Mutation ; Nerve Tissue Proteins/genetics/*physiology ; Phenylalanine/genetics ; Polymorphism, Single Nucleotide ; Psychomotor Performance/drug effects ; Quantitative Trait Loci ; Serine/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biggs, Duan -- Courchamp, Franck -- Martin, Rowan -- Possingham, Hugh P -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1168-9. doi: 10.1126/science.340.6137.1168-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Extinction, Biological ; *Horns ; *Perissodactyla
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-03-30
    Description: Mutations in the nuclear membrane zinc metalloprotease ZMPSTE24 lead to diseases of lamin processing (laminopathies), such as the premature aging disease progeria and metabolic disorders. ZMPSTE24 processes prelamin A, a component of the nuclear lamina intermediate filaments, by cleaving it at two sites. Failure of this processing results in accumulation of farnesylated, membrane-associated prelamin A. The 3.4 angstrom crystal structure of human ZMPSTE24 has a seven transmembrane alpha-helical barrel structure, surrounding a large, water-filled, intramembrane chamber, capped by a zinc metalloprotease domain with the catalytic site facing into the chamber. The 3.8 angstrom structure of a complex with a CSIM tetrapeptide showed that the mode of binding of the substrate resembles that of an insect metalloprotease inhibitor in thermolysin. Laminopathy-associated mutations predicted to reduce ZMPSTE24 activity map to the zinc metalloprotease peptide-binding site and to the bottom of the chamber.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quigley, Andrew -- Dong, Yin Yao -- Pike, Ashley C W -- Dong, Liang -- Shrestha, Leela -- Berridge, Georgina -- Stansfeld, Phillip J -- Sansom, Mark S P -- Edwards, Aled M -- Bountra, Chas -- von Delft, Frank -- Bullock, Alex N -- Burgess-Brown, Nicola A -- Carpenter, Elisabeth P -- 092809/Wellcome Trust/United Kingdom -- Canadian Institutes of Health Research/Canada -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1604-7. doi: 10.1126/science.1231513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Oxford, Oxford, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539603" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Lamin Type A ; Membrane Proteins/*chemistry/genetics ; Metabolism, Inborn Errors/genetics/*metabolism ; Metalloendopeptidases/*chemistry/genetics ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*metabolism ; Progeria/genetics/metabolism ; Protein Conformation ; Protein Precursors/chemistry/genetics/*metabolism ; Substrate Specificity ; Thermolysin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-01-12
    Description: An extensive literature shows that astrocytes exhibit metabotropic glutamate receptor 5 (mGluR5)-dependent increases in cytosolic calcium ions (Ca(2+)) in response to glutamatergic transmission and, in turn, modulate neuronal activity by their Ca(2+)-dependent release of gliotransmitters. These findings, based on studies of young rodents, have led to the concept of the tripartite synapse, in which astrocytes actively participate in neurotransmission. Using genomic analysis, immunoelectron microscopy, and two-photon microscopy of astrocytic Ca(2+) signaling in vivo, we found that astrocytic expression of mGluR5 is developmentally regulated and is undetectable after postnatal week 3. In contrast, mGluR3, whose activation inhibits adenylate cyclase but not calcium signaling, was expressed in astrocytes at all developmental stages. Neuroglial signaling in the adult brain may therefore occur in a manner fundamentally distinct from that exhibited during development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569008/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569008/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Wei -- McConnell, Evan -- Pare, Jean-Francois -- Xu, Qiwu -- Chen, Michael -- Peng, Weiguo -- Lovatt, Ditte -- Han, Xiaoning -- Smith, Yoland -- Nedergaard, Maiken -- NS075177/NS/NINDS NIH HHS/ -- NS078304/NS/NINDS NIH HHS/ -- P51OD011132/OD/NIH HHS/ -- P51RR000165/RR/NCRR NIH HHS/ -- R01 NS075177/NS/NINDS NIH HHS/ -- R01 NS078167/NS/NINDS NIH HHS/ -- R01 NS078304/NS/NINDS NIH HHS/ -- RR00165/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):197-200. doi: 10.1126/science.1226740.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307741" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; *Aging ; Animals ; Astrocytes/*metabolism ; Calcium/metabolism ; *Calcium Signaling ; Cerebral Cortex/cytology/*metabolism/ultrastructure ; Female ; Glutamic Acid/*metabolism ; Hippocampus/cytology/metabolism/ultrastructure ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Receptor, Metabotropic Glutamate 5 ; Receptors, Metabotropic Glutamate/agonists/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-09-18
    Description: Goudemand et al. replot a subset of our well-constrained data using a new Early Triassic biostratigraphic scheme based on a lower-resolution ammonoid zonation scheme and hypothetical ammonoid-conodont correlation to produce a less distinct seawater temperature history. We dispute their unsubstantiated correlation and, consequently, their allegations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Yadong -- Joachimski, Michael M -- Wignall, Paul B -- Yan, Chunbo -- Chen, Yanlong -- Jiang, Haishui -- Wang, Lina -- Lai, Xulong -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1033. doi: 10.1126/science.1233090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, P.R. China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449581" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms ; *Extinction, Biological ; *Global Warming ; *Greenhouse Effect ; *Hot Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-10-12
    Description: Flagellin perception in Arabidopsis is through recognition of its highly conserved N-terminal epitope (flg22) by flagellin-sensitive 2 (FLS2). Flg22 binding induces FLS2 heteromerization with BRASSINOSTEROID INSENSITIVE 1-associated kinase 1 (BAK1) and their reciprocal activation followed by plant immunity. Here, we report the crystal structure of FLS2 and BAK1 ectodomains complexed with flg22 at 3.06 angstroms. A conserved and a nonconserved site from the inner surface of the FLS2 solenoid recognize the C- and N-terminal segment of flg22, respectively, without oligomerization or conformational changes in the FLS2 ectodomain. Besides directly interacting with FLS2, BAK1 acts as a co-receptor by recognizing the C terminus of the FLS2-bound flg22. Our data reveal the molecular mechanisms underlying FLS2-BAK1 complex recognition of flg22 and provide insight into the immune receptor complex activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Yadong -- Li, Lei -- Macho, Alberto P -- Han, Zhifu -- Hu, Zehan -- Zipfel, Cyril -- Zhou, Jian-Min -- Chai, Jijie -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):624-8. doi: 10.1126/science.1243825. Epub 2013 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, Beijing 100084, China, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24114786" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Antibody Complex/*chemistry ; Arabidopsis/*immunology ; Arabidopsis Proteins/*chemistry ; Crystallography, X-Ray ; Flagellin/*chemistry ; Protein Kinases/*chemistry ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-07-23
    Description: Costello et al. (Review, 25 January 2013, p. 413) challenged the common view that many species are disappearing before being described. We suggest that their conclusion is overly optimistic because of a limited selection and interpretation of available evidence that tends to overestimate rates of species description and underestimate the number of species on Earth and their current extinction rate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mora, Camilo -- Rollo, Audrey -- Tittensor, Derek P -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):237. doi: 10.1126/science.1237254.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geography, University of Hawaii, Honolulu, Hawaii, USA. cmora@hawaii.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Classification ; *Extinction, Biological ; *Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tylianakis, Jason M -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1532-3. doi: 10.1126/science.1235464. Epub 2013 Feb 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. jason.tylianakis@canterbury.ac.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/*physiology ; Crops, Agricultural/*growth & development ; *Extinction, Biological ; Fruit/*growth & development ; Insects/*physiology ; Poaceae/*growth & development ; *Pollination ; Trees/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-07-28
    Description: Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramirez, Steve -- Liu, Xu -- Lin, Pei-Ann -- Suh, Junghyup -- Pignatelli, Michele -- Redondo, Roger L -- Ryan, Tomas J -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):387-91. doi: 10.1126/science.1239073.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-Massachusetts Institute of Technology Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology, MIT, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888038" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/physiology ; Animals ; Association ; CA1 Region, Hippocampal/cytology/*physiology ; *Conditioning (Psychology) ; Dentate Gyrus/cytology/*physiology ; Dependovirus/genetics ; Doxycycline/administration & dosage ; Fear ; Genes, fos ; Light ; Memory/*physiology ; Mental Recall/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neurons/*physiology ; Optogenetics ; Rhodopsin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-12-18
    Description: Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable pores, and we present crystallographic evidence that CO molecules can coordinate with copper(II) ions. The unprecedented high selectivity was achieved by the synergetic effect of the local interaction between CO and accessible metal sites and a global transformation of the framework. This transformable crystalline material realized the separation of CO from mixtures with N2, a gas that is the most competitive to CO. The dynamic and efficient molecular trapping and releasing system is reminiscent of sophisticated biological systems such as heme proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Hiroshi -- Kosaka, Wataru -- Matsuda, Ryotaro -- Hori, Akihiro -- Hijikata, Yuh -- Belosludov, Rodion V -- Sakaki, Shigeyoshi -- Takata, Masaki -- Kitagawa, Susumu -- New York, N.Y. -- Science. 2014 Jan 10;343(6167):167-70. doi: 10.1126/science.1246423. Epub 2013 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 615-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336572" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Monoxide/*chemistry ; Copper/chemistry ; Crystallography, X-Ray ; Hemeproteins/chemistry ; Humans ; *Nanopores ; Nanostructures/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-31
    Description: The lateral habenula (LHb) has recently emerged as a key brain region in the pathophysiology of depression. However, the molecular mechanism by which LHb becomes hyperactive in depression remains unknown. Through a quantitative proteomic screen, we found that expression of the beta form of calcium/calmodulin-dependent protein kinase type II (betaCaMKappaIotaIota) was significantly up-regulated in the LHb of animal models of depression and down-regulated by antidepressants. Increasing beta-, but not alpha-, CaMKII in the LHb strongly enhanced the synaptic efficacy and spike output of LHb neurons and was sufficient to produce profound depressive symptoms, including anhedonia and behavioral despair. Down-regulation of betaCaMKII levels, blocking its activity or its target molecule the glutamate receptor GluR1 reversed the depressive symptoms. These results identify betaCaMKII as a powerful regulator of LHb neuron function and a key molecular determinant of depression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Kun -- Zhou, Tao -- Liao, Lujian -- Yang, Zhongfei -- Wong, Catherine -- Henn, Fritz -- Malinow, Roberto -- Yates, John R 3rd -- Hu, Hailan -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01 MH067880/MH/NIMH NIH HHS/ -- R01 MH091119/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1016-20. doi: 10.1126/science.1240729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P R China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/*biosynthesis/genetics ; Depressive Disorder, Major/*enzymology/genetics/psychology ; Disease Models, Animal ; Gene Knockdown Techniques ; Habenula/drug effects/*enzymology ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/enzymology ; Promoter Regions, Genetic ; Proteomics ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-03-30
    Description: Vaccine development to induce broadly neutralizing antibodies (bNAbs) against HIV-1 is a global health priority. Potent VRC01-class bNAbs against the CD4 binding site of HIV gp120 have been isolated from HIV-1-infected individuals; however, such bNAbs have not been induced by vaccination. Wild-type gp120 proteins lack detectable affinity for predicted germline precursors of VRC01-class bNAbs, making them poor immunogens to prime a VRC01-class response. We employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically. When multimerized on nanoparticles, this immunogen (eOD-GT6) activates germline and mature VRC01-class B cells. Thus, eOD-GT6 nanoparticles have promise as a vaccine prime. In principle, germline-targeting strategies could be applied to other epitopes and pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689846/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689846/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph -- Julien, Jean-Philippe -- Menis, Sergey -- Ota, Takayuki -- Kalyuzhniy, Oleksandr -- McGuire, Andrew -- Sok, Devin -- Huang, Po-Ssu -- MacPherson, Skye -- Jones, Meaghan -- Nieusma, Travis -- Mathison, John -- Baker, David -- Ward, Andrew B -- Burton, Dennis R -- Stamatatos, Leonidas -- Nemazee, David -- Wilson, Ian A -- Schief, William R -- 5T32AI007606-10/AI/NIAID NIH HHS/ -- AI081625/AI/NIAID NIH HHS/ -- AI33292/AI/NIAID NIH HHS/ -- AI84817/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P30 AI027767-24/AI/NIAID NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI073148/AI/NIAID NIH HHS/ -- R01 AI081625/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R37 AI033292/AI/NIAID NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- T32CA080416/CA/NCI NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 May 10;340(6133):711-6. doi: 10.1126/science.1234150. Epub 2013 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539181" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/genetics/*immunology ; Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Antigens, CD4/immunology ; B-Lymphocytes/immunology ; Crystallography, X-Ray ; DNA Mutational Analysis ; Germ Cells/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/*immunology ; HIV Infections/*prevention & control ; HIV-1/*immunology ; Humans ; Macaca ; Mice ; Models, Animal ; Molecular Sequence Data ; Nanoparticles ; Protein Engineering ; Protein Structure, Tertiary ; Receptors, Antigen, B-Cell/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-05-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindenmayer, David B -- Possingham, Hugh P -- New York, N.Y. -- Science. 2013 May 10;340(6133):680. doi: 10.1126/science.340.6133.680-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661738" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; *Endangered Species ; *Extinction, Biological ; Mining ; *Phalangeridae ; Victoria
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palike, Heiko -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):655-6. doi: 10.1126/science.1233948.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359 Bremen, Germany. hpaelike@marum.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; *Extinction, Biological ; *Minor Planets
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Litchfield, Carla A -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1168. doi: 10.1126/science.340.6137.1168-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744927" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Extinction, Biological ; *Horns ; *Perissodactyla
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kerr, Richard A -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1424. doi: 10.1126/science.342.6165.1424.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357278" target="_blank"〉PubMed〈/a〉
    Keywords: *Extinction, Biological ; Fossils ; History, Ancient ; Siberia ; Volcanic Eruptions/*history
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-09-28
    Description: A dense mucus layer in the large intestine prevents inflammation by shielding the underlying epithelium from luminal bacteria and food antigens. This mucus barrier is organized around the hyperglycosylated mucin MUC2. Here we show that the small intestine has a porous mucus layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs). Glycans associated with MUC2 imprinted DCs with anti-inflammatory properties by assembling a galectin-3-Dectin-1-FcgammaRIIB receptor complex that activated beta-catenin. This transcription factor interfered with DC expression of inflammatory but not tolerogenic cytokines by inhibiting gene transcription through nuclear factor kappaB. MUC2 induced additional conditioning signals in intestinal epithelial cells. Thus, mucus does not merely form a nonspecific physical barrier, but also constrains the immunogenicity of gut antigens by delivering tolerogenic signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shan, Meimei -- Gentile, Maurizio -- Yeiser, John R -- Walland, A Cooper -- Bornstein, Victor U -- Chen, Kang -- He, Bing -- Cassis, Linda -- Bigas, Anna -- Cols, Montserrat -- Comerma, Laura -- Huang, Bihui -- Blander, J Magarian -- Xiong, Huabao -- Mayer, Lloyd -- Berin, Cecilia -- Augenlicht, Leonard H -- Velcich, Anna -- Cerutti, Andrea -- AI073899/AI/NIAID NIH HHS/ -- AI095245/AI/NIAID NIH HHS/ -- AI57653/AI/NIAID NIH HHS/ -- AI61093/AI/NIAID NIH HHS/ -- AI74378/AI/NIAID NIH HHS/ -- AI95613/AI/NIAID NIH HHS/ -- AI96187/AI/NIAID NIH HHS/ -- DK072201/DK/NIDDK NIH HHS/ -- P01 AI061093/AI/NIAID NIH HHS/ -- P01 DK072201/DK/NIDDK NIH HHS/ -- P60 DK020541/DK/NIDDK NIH HHS/ -- R01 AI057653/AI/NIAID NIH HHS/ -- R01 AI093577/AI/NIAID NIH HHS/ -- U01 AI095613/AI/NIAID NIH HHS/ -- U19 AI096187/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):447-53. doi: 10.1126/science.1237910. Epub 2013 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendritic Cells/immunology ; Galectin 3/genetics/metabolism ; Glycosylation ; *Homeostasis ; Humans ; Immune Tolerance/genetics/*immunology ; Inflammation/immunology ; Intestinal Mucosa/immunology ; Intestine, Small/*immunology ; Lectins, C-Type/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Mouth/*immunology ; Mucin-2/genetics/physiology ; Mucus/*immunology ; NF-kappa B/metabolism ; Receptors, IgG/genetics/metabolism ; Transcription, Genetic ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-09-04
    Description: Halley et al. purport to show a power-law relationship between fragment size and relaxation rates. We use a much more extensive data set to show that area dependence of relaxation rates exists only for very small fragment sizes (〈60 hectares), which has limited relevance for our analyses conducted using 250,000-hectare grid squares. We also show that the example of Halley et al. is based on an unrealistic fragmentation model with an infinite number of fragments that have average size of zero hectares. A more realistic formulation of the model shows that relaxation is much less dependent on fragmentation than Halley et al. present.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wearn, Oliver R -- Reuman, Daniel C -- Ewers, Robert M -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):271. doi: 10.1126/science.1231618.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Imperial College London, Silwood Park, Ascot SL5 7PY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329034" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; *Extinction, Biological ; *Trees ; *Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-01-19
    Description: Environmental stressors during childhood and adolescence influence postnatal brain maturation and human behavioral patterns in adulthood. Accordingly, excess stressors result in adult-onset neuropsychiatric disorders. We describe an underlying mechanism in which glucocorticoids link adolescent stressors to epigenetic controls in neurons. In a mouse model of this phenomenon, a mild isolation stress affects the mesocortical projection of dopaminergic neurons in which DNA hypermethylation of the tyrosine hydroxylase gene is elicited, but only when combined with a relevant genetic risk for neuropsychiatric disorders. These molecular changes are associated with several neurochemical and behavioral deficits that occur in this mouse model, all of which are blocked by a glucocorticoid receptor antagonist. The biology and phenotypes of the mouse models resemble those of psychotic depression, a common and debilitating psychiatric disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617477/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617477/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niwa, Minae -- Jaaro-Peled, Hanna -- Tankou, Stephanie -- Seshadri, Saurav -- Hikida, Takatoshi -- Matsumoto, Yurie -- Cascella, Nicola G -- Kano, Shin-ichi -- Ozaki, Norio -- Nabeshima, Toshitaka -- Sawa, Akira -- K99 MH094408/MH/NIMH NIH HHS/ -- K99MH-094408/MH/NIMH NIH HHS/ -- MH-069853/MH/NIMH NIH HHS/ -- MH-084018/MH/NIMH NIH HHS/ -- MH-085226/MH/NIMH NIH HHS/ -- MH-088753/MH/NIMH NIH HHS/ -- MH-092443/MH/NIMH NIH HHS/ -- MH-094268/MH/NIMH NIH HHS/ -- R01 MH092443/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):335-9. doi: 10.1126/science.1226931.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329051" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; *Adolescent Behavior ; *Adolescent Development ; Affective Disorders, Psychotic/genetics/*metabolism ; Animals ; Disease Models, Animal ; Dopaminergic Neurons/*metabolism ; *Epigenesis, Genetic ; Glucocorticoids/*metabolism ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Tissue Proteins/genetics/metabolism ; Stress, Psychological/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-10
    Description: Brassinosteroids, which control plant growth and development, are sensed by the leucine-rich repeat (LRR) domain of the membrane receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1), but it is unknown how steroid binding at the cell surface activates the cytoplasmic kinase domain of the receptor. A family of somatic embryogenesis receptor kinases (SERKs) has been genetically implicated in mediating early brassinosteroid signaling events. We found a direct and steroid-dependent interaction between the BRI1 and SERK1 LRR domains by analysis of their complex crystal structure at 3.3 angstrom resolution. We show that the SERK1 LRR domain is involved in steroid sensing and, through receptor-co-receptor heteromerization, in the activation of the BRI1 signaling pathway. Our work reveals how known missense mutations in BRI1 and in SERKs modulate brassinosteroid signaling and the targeting mechanism of BRI1 receptor antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santiago, Julia -- Henzler, Christine -- Hothorn, Michael -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):889-92. doi: 10.1126/science.1242468. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, Tubingen 72076, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929946" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Brassinosteroids/*metabolism ; Crystallography, X-Ray ; Molecular Sequence Data ; Mutation, Missense ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Steroid/*agonists
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-03-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapron, Guillaume -- Lopez-Bao, Jose Vicente -- Kjellander, Petter -- Karlsson, Jens -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1521. doi: 10.1126/science.339.6127.1521-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539578" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Conservation of Natural Resources ; *Environmental Policy ; *Extinction, Biological ; Information Dissemination ; Sweden ; *Wolves
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-09-07
    Description: Epigenetic alterations are increasingly recognized as causes of human cancers and disease. These aberrations are likely to arise during genomic reprogramming in mammalian preimplantation embryos, when their epigenomes are most vulnerable. However, this process is only partially understood because of the experimental inaccessibility of early-stage embryos. Here, we introduce a methodologic advance, probing single cells for various DNA-methylation errors at multiple loci, to reveal failed maintenance of epigenetic mark results in chimeric mice, which display unpredictable phenotypes leading to developmental arrest. Yet we show that mouse pronuclear transfer can be used to ameliorate such reprogramming defects. This study not only details the epigenetic reprogramming dynamics in early mammalian embryos but also suggests diagnostic and potential future therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorthongpanich, Chanchao -- Cheow, Lih Feng -- Balu, Sathish -- Quake, Stephen R -- Knowles, Barbara B -- Burkholder, William F -- Solter, Davor -- Messerschmidt, Daniel M -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1110-2. doi: 10.1126/science.1240617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mammalian Development Group, Institute of Medical Biology, A*STAR, Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/*metabolism ; Cellular Reprogramming/*genetics ; *Chimerism ; *DNA Methylation ; *Epigenesis, Genetic ; Gene Deletion ; *Gene Expression Regulation, Developmental ; Genetic Loci ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nuclear Proteins/genetics ; Repressor Proteins/genetics ; Single-Cell Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-11-02
    Description: HIV-1 entry into CD4(+) target cells is mediated by cleaved envelope glycoprotein (Env) trimers that have been challenging to characterize structurally. Here, we describe the crystal structure at 4.7 angstroms of a soluble, cleaved Env trimer that is stabilized and antigenically near-native (termed the BG505 SOSIP.664 gp140 trimer) in complex with a potent broadly neutralizing antibody, PGT122. The structure shows a prefusion state of gp41, the interaction between the component gp120 and gp41 subunits, and how a close association between the gp120 V1/V2/V3 loops stabilizes the trimer apex around the threefold axis. The complete epitope of PGT122 on the trimer involves gp120 V1, V3, and several surrounding glycans. This trimer structure advances our understanding of how Env functions and is presented to the immune system, and provides a blueprint for structure-based vaccine design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886632/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886632/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Julien, Jean-Philippe -- Cupo, Albert -- Sok, Devin -- Stanfield, Robyn L -- Lyumkis, Dmitry -- Deller, Marc C -- Klasse, Per-Johan -- Burton, Dennis R -- Sanders, Rogier W -- Moore, John P -- Ward, Andrew B -- Wilson, Ian A -- GM103310/GM/NIGMS NIH HHS/ -- P01 AI082362/AI/NIAID NIH HHS/ -- P01 AI82362/AI/NIAID NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R01 AI33292/AI/NIAID NIH HHS/ -- R37 AI036082/AI/NIAID NIH HHS/ -- R37 AI36082/AI/NIAID NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1477-83. doi: 10.1126/science.1245625. Epub 2013 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179159" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry ; Antibodies, Viral/chemistry ; Crystallography, X-Ray ; HIV Envelope Protein gp120/chemistry/immunology ; HIV Envelope Protein gp41/chemistry/immunology ; Humans ; Protein Multimerization ; Protein Structure, Quaternary ; Recombinant Proteins/chemistry/immunology ; Solubility ; env Gene Products, Human Immunodeficiency Virus/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheil, Douglas -- Meijaard, Erik -- Angelsen, Arild -- Sayer, Jeff -- Vanclay, Jerome -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):270-1. doi: 10.1126/science.339.6117.270-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Birds ; *Capital Financing ; Conservation of Natural Resources/*economics ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-05-11
    Description: Brain plasticity as a neurobiological reflection of individuality is difficult to capture in animal models. Inspired by behavioral-genetic investigations of human monozygotic twins reared together, we obtained dense longitudinal activity data on 40 inbred mice living in one large enriched environment. The exploratory activity of the mice diverged over time, resulting in increasing individual differences with advancing age. Individual differences in cumulative roaming entropy, indicating the active coverage of territory, correlated positively with individual differences in adult hippocampal neurogenesis. Our results show that factors unfolding or emerging during development contribute to individual differences in structural brain plasticity and behavior. The paradigm introduced here serves as an animal model for identifying mechanisms of plasticity underlying nonshared environmental contributions to individual differences in behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freund, Julia -- Brandmaier, Andreas M -- Lewejohann, Lars -- Kirste, Imke -- Kritzler, Mareike -- Kruger, Antonio -- Sachser, Norbert -- Lindenberger, Ulman -- Kempermann, Gerd -- New York, N.Y. -- Science. 2013 May 10;340(6133):756-9. doi: 10.1126/science.1235294.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CRTD-DFG Research Center for Regenerative Therapies Dresden, Technische Universitat Dresden, Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Body Weight ; Brain/anatomy & histology/embryology/physiology ; Female ; Hippocampus/anatomy & histology/*embryology/physiology ; *Individuality ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Models, Animal ; *Neurogenesis ; Neuronal Plasticity/*genetics ; Organ Size
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-03-02
    Description: Sun et al. (Reports, 19 October 2012, p. 366) reconstructed Permian to Middle Triassic equatorial seawater temperatures. After correct temporal positioning of their data points, their presumed trends of temperature changes, and hence their assumption of a one-to-one relationship between putative "lethally hot" seawater temperatures and a disputable equatorial "eclipse" of some organisms, are no longer supported by their data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goudemand, N -- Romano, C -- Brayard, A -- Hochuli, P A -- Bucher, H -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1033. doi: 10.1126/science.1232924.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland. goudemand@pim.uzh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449580" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms ; *Extinction, Biological ; *Global Warming ; *Greenhouse Effect ; *Hot Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-03-23
    Description: Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for beta-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wacker, Daniel -- Wang, Chong -- Katritch, Vsevolod -- Han, Gye Won -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Jiang, Yi -- Chu, Meihua -- Siu, Fai Yiu -- Liu, Wei -- Xu, H Eric -- Cherezov, Vadim -- Roth, Bryan L -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):615-9. doi: 10.1126/science.1232808. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arrestin/metabolism ; Arrestins/metabolism ; Binding Sites ; Crystallography, X-Ray ; Ergolines/chemistry/metabolism ; Ergotamine/chemistry/*metabolism ; HEK293 Cells ; Humans ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/chemistry/*metabolism ; Receptor, Serotonin, 5-HT2B/*chemistry/*metabolism ; Receptors, Serotonin/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-11-02
    Description: Synapse formation in the developing brain depends on the coordinated activity of synaptogenic proteins, some of which have been implicated in a number of neurodevelopmental disorders. Here, we show that the sushi repeat-containing protein X-linked 2 (SRPX2) gene encodes a protein that promotes synaptogenesis in the cerebral cortex. In humans, SRPX2 is an epilepsy- and language-associated gene that is a target of the foxhead box protein P2 (FoxP2) transcription factor. We also show that FoxP2 modulates synapse formation through regulating SRPX2 levels and that SRPX2 reduction impairs development of ultrasonic vocalization in mice. Our results suggest FoxP2 modulates the development of neural circuits through regulating synaptogenesis and that SRPX2 is a synaptogenic factor that plays a role in the pathogenesis of language disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903157/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903157/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sia, G M -- Clem, R L -- Huganir, R L -- NS050274/NS/NINDS NIH HHS/ -- P30 NS050274/NS/NINDS NIH HHS/ -- P50 MH084020/MH/NIMH NIH HHS/ -- P50MH084020/MH/NIMH NIH HHS/ -- R01 MH095058/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):987-91. doi: 10.1126/science.1245079. Epub 2013 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/cytology ; Epilepsy/genetics ; Forkhead Transcription Factors/genetics/*metabolism ; Humans ; *Language ; Language Disorders/*genetics ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/genetics/*physiology ; Neurons/physiology ; Synapses/*physiology ; Transfection ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-02-09
    Description: Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004111/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004111/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winter, Sebastian E -- Winter, Maria G -- Xavier, Mariana N -- Thiennimitr, Parameth -- Poon, Victor -- Keestra, A Marijke -- Laughlin, Richard C -- Gomez, Gabriel -- Wu, Jing -- Lawhon, Sara D -- Popova, Ina E -- Parikh, Sanjai J -- Adams, L Garry -- Tsolis, Renee M -- Stewart, Valley J -- Baumler, Andreas J -- AI076246/AI/NIAID NIH HHS/ -- AI088122/AI/NIAID NIH HHS/ -- AI090387/AI/NIAID NIH HHS/ -- R21 AI107393/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):708-11. doi: 10.1126/science.1232467.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393266" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Animals ; Cattle ; Colitis/*metabolism/*microbiology ; Escherichia coli/genetics/*growth & development/*metabolism ; Ileum/microbiology ; Intestine, Large/*microbiology ; Mice ; Mice, Inbred C57BL ; Mutation ; Nitrates/*metabolism ; Nitric Oxide Synthase Type II/antagonists & inhibitors/deficiency/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-06-01
    Description: Local extinctions have cascading effects on ecosystem functions, yet little is known about the potential for the rapid evolutionary change of species in human-modified scenarios. We show that the functional extinction of large-gape seed dispersers in the Brazilian Atlantic forest is associated with the consistent reduction of the seed size of a keystone palm species. Among 22 palm populations, areas deprived of large avian frugivores for several decades present smaller seeds than nondefaunated forests, with negative consequences for palm regeneration. Coalescence and phenotypic selection models indicate that seed size reduction most likely occurred within the past 100 years, associated with human-driven fragmentation. The fast-paced defaunation of large vertebrates is most likely causing unprecedented changes in the evolutionary trajectories and community composition of tropical forests.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galetti, Mauro -- Guevara, Roger -- Cortes, Marina C -- Fadini, Rodrigo -- Von Matter, Sandro -- Leite, Abraao B -- Labecca, Fabio -- Ribeiro, Thiago -- Carvalho, Carolina S -- Collevatti, Rosane G -- Pires, Mathias M -- Guimaraes, Paulo R Jr -- Brancalion, Pedro H -- Ribeiro, Milton C -- Jordano, Pedro -- New York, N.Y. -- Science. 2013 May 31;340(6136):1086-90. doi: 10.1126/science.1233774.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departamento de Ecologia, Universidade Estadual Paulista, Rio Claro, Sao Paulo, Brazil. mgaletti@rc.unesp.br〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723235" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Arecaceae ; *Biological Evolution ; *Birds ; Brazil ; *Extinction, Biological ; *Feeding Behavior ; *Germination ; Seeds/*anatomy & histology/physiology ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-03-16
    Description: During hematopoiesis, lineage- and stage-specific transcription factors work in concert with chromatin modifiers to direct the differentiation of all blood cells. We explored the role of KRAB-containing zinc finger proteins (KRAB-ZFPs) and their cofactor KAP1 in this process. In mice, hematopoietic-restricted deletion of Kap1 resulted in severe hypoproliferative anemia. Kap1-deleted erythroblasts failed to induce mitophagy-associated genes and retained mitochondria. This was due to persistent expression of microRNAs (miRNAs) targeting mitophagy transcripts, itself secondary to a lack of repression by stage-specific KRAB-ZFPs. The KRAB/KAP1-miRNA regulatory cascade is evolutionarily conserved, as it also controls mitophagy during human erythropoiesis. Thus, a multilayered transcription regulatory system is present, in which protein- and RNA-based repressors are superimposed in combinatorial fashion to govern the timely triggering of an important differentiation event.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678075/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678075/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barde, Isabelle -- Rauwel, Benjamin -- Marin-Florez, Ray Marcel -- Corsinotti, Andrea -- Laurenti, Elisa -- Verp, Sonia -- Offner, Sandra -- Marquis, Julien -- Kapopoulou, Adamandia -- Vanicek, Jiri -- Trono, Didier -- 268721/European Research Council/International -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):350-3. doi: 10.1126/science.1232398. Epub 2013 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493425" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia/genetics ; Animals ; Autophagy/*genetics ; Erythroblasts/*metabolism/ultrastructure ; Erythropoiesis/*genetics ; Female ; Male ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; MicroRNAs/genetics/*metabolism ; Mitochondria/genetics/*physiology ; Mitochondrial Proteins/metabolism ; Nuclear Proteins/genetics/*metabolism ; Repressor Proteins/genetics/*metabolism ; Transcription Factors/*metabolism ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-03-02
    Description: The initial phase in the development of a migraine is still poorly understood. Here, we describe a previously unknown signaling pathway between stressed neurons and trigeminal afferents during cortical spreading depression (CSD), the putative cause of migraine aura and headache. CSD caused neuronal Pannexin1 (Panx1) megachannel opening and caspase-1 activation followed by high-mobility group box 1 (HMGB1) release from neurons and nuclear factor kappaB activation in astrocytes. Suppression of this cascade abolished CSD-induced trigeminovascular activation, dural mast cell degranulation, and headache. CSD-induced neuronal megachannel opening may promote sustained activation of trigeminal afferents via parenchymal inflammatory cascades reaching glia limitans. This pathway may function to alarm an organism with headache when neurons are stressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karatas, Hulya -- Erdener, Sefik Evren -- Gursoy-Ozdemir, Yasemin -- Lule, Sevda -- Eren-Kocak, Emine -- Sen, Zumrut Duygu -- Dalkara, Turgay -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1092-5. doi: 10.1126/science.1231897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449592" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways ; Animals ; Astrocytes/metabolism/physiology ; Caspase 1/metabolism ; Connexins/antagonists & inhibitors/*biosynthesis ; *Cortical Spreading Depression ; HMGB1 Protein/metabolism ; Mice ; Mice, Inbred C57BL ; Migraine Disorders/metabolism/*physiopathology ; NF-kappa B/metabolism ; Nerve Fibers/physiology ; Nerve Tissue Proteins/antagonists & inhibitors/*biosynthesis ; Neurons/metabolism/*physiology ; Protein Transport ; Signal Transduction ; Trigeminal Nerve/metabolism/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-07-06
    Description: Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Patrick M -- Howitt, Michael R -- Panikov, Nicolai -- Michaud, Monia -- Gallini, Carey Ann -- Bohlooly-Y, Mohammad -- Glickman, Jonathan N -- Garrett, Wendy S -- F32 DK095506/DK/NIDDK NIH HHS/ -- F32 DK098826/DK/NIDDK NIH HHS/ -- F32DK095506/DK/NIDDK NIH HHS/ -- F32DK098826/DK/NIDDK NIH HHS/ -- K08 AI078942/AI/NIAID NIH HHS/ -- K08AI078942/AI/NIAID NIH HHS/ -- P30 DK034854/DK/NIDDK NIH HHS/ -- R01 CA154426/CA/NCI NIH HHS/ -- R01 GM099537/GM/NIGMS NIH HHS/ -- R01CA154426/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):569-73. doi: 10.1126/science.1241165. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*metabolism ; Colitis/metabolism ; Colon/*microbiology ; DNA-Binding Proteins/genetics ; Fatty Acids, Volatile/administration & dosage/*metabolism ; Fermentation ; Germ-Free Life ; *Homeostasis ; Humans ; *Metagenome ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Receptors, G-Protein-Coupled/genetics/metabolism ; T-Lymphocytes, Regulatory/*physiology/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-02-23
    Description: Influenza antiviral agents play important roles in modulating disease severity and in controlling pandemics while vaccines are prepared, but the development of resistance to agents like the commonly used neuraminidase inhibitor oseltamivir may limit their future utility. We report here on a new class of specific, mechanism-based anti-influenza drugs that function through the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme, and we confirm this mode of action with structural and mechanistic studies. These compounds function in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro. The similarity of their structure to that of the natural substrate and their mechanism-based design make these attractive antiviral candidates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jin-Hyo -- Resende, Ricardo -- Wennekes, Tom -- Chen, Hong-Ming -- Bance, Nicole -- Buchini, Sabrina -- Watts, Andrew G -- Pilling, Pat -- Streltsov, Victor A -- Petric, Martin -- Liggins, Richard -- Barrett, Susan -- McKimm-Breschkin, Jennifer L -- Niikura, Masahiro -- Withers, Stephen G -- G0600514/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):71-5. doi: 10.1126/science.1232552. Epub 2013 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23429702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/*chemistry/pharmacology ; Crystallography, X-Ray ; Dogs ; Enzyme Inhibitors/*chemistry/pharmacology ; Humans ; Madin Darby Canine Kidney Cells ; Neuraminidase/*antagonists & inhibitors/chemistry ; Orthomyxoviridae/*drug effects/enzymology ; Oseltamivir/chemistry/pharmacology ; Protein Conformation ; Sialic Acids/*chemistry/pharmacology ; Structure-Activity Relationship ; Zanamivir/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-06-08
    Description: Hox genes are major determinants of the animal body plan, where they organize structures along both the trunk and appendicular axes. During mouse limb development, Hoxd genes are transcribed in two waves: early on, when the arm and forearm are specified, and later, when digits form. The transition between early and late regulations involves a functional switch between two opposite topological domains. This switch is reflected by a subset of Hoxd genes mapping centrally into the cluster, which initially interact with the telomeric domain and subsequently swing toward the centromeric domain, where they establish new contacts. This transition between independent regulatory landscapes illustrates both the modularity of the limbs and the distinct evolutionary histories of its various pieces. It also allows the formation of an intermediate area of low HOX proteins content, which develops into the wrist, the transition between our arms and our hands. This regulatory strategy accounts for collinear Hox gene regulation in land vertebrate appendages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrey, Guillaume -- Montavon, Thomas -- Mascrez, Benedicte -- Gonzalez, Federico -- Noordermeer, Daan -- Leleu, Marion -- Trono, Didier -- Spitz, Francois -- Duboule, Denis -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1234167. doi: 10.1126/science.1234167.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744951" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Forelimb/*embryology ; *Gene Expression Regulation, Developmental ; *Gene Order ; *Genes, Homeobox ; *Genes, Switch ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; *Multigene Family ; Telomere/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-09-14
    Description: Inflammatory caspases, such as caspase-1 and -11, mediate innate immune detection of pathogens. Caspase-11 induces pyroptosis, a form of programmed cell death, and specifically defends against bacterial pathogens that invade the cytosol. During endotoxemia, however, excessive caspase-11 activation causes shock. We report that contamination of the cytoplasm by lipopolysaccharide (LPS) is the signal that triggers caspase-11 activation in mice. Specifically, caspase-11 responds to penta- and hexa-acylated lipid A, whereas tetra-acylated lipid A is not detected, providing a mechanism of evasion for cytosol-invasive Francisella. Priming the caspase-11 pathway in vivo resulted in extreme sensitivity to subsequent LPS challenge in both wild-type and Tlr4-deficient mice, whereas Casp11-deficient mice were relatively resistant. Together, our data reveal a new pathway for detecting cytoplasmic LPS.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagar, Jon A -- Powell, Daniel A -- Aachoui, Youssef -- Ernst, Robert K -- Miao, Edward A -- AI007273/AI/NIAID NIH HHS/ -- AI057141/AI/NIAID NIH HHS/ -- AI097518/AI/NIAID NIH HHS/ -- AI101685/AI/NIAID NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 AI097518/AI/NIAID NIH HHS/ -- R21 AI101685/AI/NIAID NIH HHS/ -- T32 AI007273/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 13;341(6151):1250-3. doi: 10.1126/science.1240988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24031018" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/genetics ; Calcium-Binding Proteins/genetics ; Caspases/*biosynthesis/genetics ; Cross-Priming ; Enzyme Activation ; Francisella ; Gram-Negative Bacterial Infections/immunology ; Lipid A/*immunology ; Mice ; Mice, Inbred C57BL ; Poly I-C/immunology ; Salmonella ; Salmonella Infections/immunology ; Shock, Septic/*immunology ; Toll-Like Receptor 4/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-03-16
    Description: Upon infection, antigen-specific CD8(+) T lymphocyte responses display a highly reproducible pattern of expansion and contraction that is thought to reflect a uniform behavior of individual cells. We tracked the progeny of individual mouse CD8(+) T cells by in vivo lineage tracing and demonstrated that, even for T cells bearing identical T cell receptors, both clonal expansion and differentiation patterns are heterogeneous. As a consequence, individual naive T lymphocytes contributed differentially to short- and long-term protection, as revealed by participation of their progeny during primary versus recall infections. The discordance in fate of individual naive T cells argues against asymmetric division as a singular driver of CD8(+) T cell heterogeneity and demonstrates that reproducibility of CD8(+) T cell responses is achieved through population averaging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerlach, Carmen -- Rohr, Jan C -- Perie, Leila -- van Rooij, Nienke -- van Heijst, Jeroen W J -- Velds, Arno -- Urbanus, Jos -- Naik, Shalin H -- Jacobs, Heinz -- Beltman, Joost B -- de Boer, Rob J -- Schumacher, Ton N M -- New York, N.Y. -- Science. 2013 May 3;340(6132):635-9. doi: 10.1126/science.1235487. Epub 2013 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493421" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Asymmetric Cell Division ; CD8-Positive T-Lymphocytes/*cytology/*immunology ; *Cell Differentiation ; Cell Lineage ; Cell Proliferation ; *Immunity, Cellular ; *Immunologic Memory ; Immunophenotyping ; Listeria monocytogenes ; Listeriosis/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Immunological ; Receptors, Antigen, T-Cell/immunology ; Single-Cell Analysis ; Stochastic Processes ; T-Lymphocyte Subsets/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-04-27
    Description: The prefusion state of respiratory syncytial virus (RSV) fusion (F) glycoprotein is the target of most RSV-neutralizing activity in human sera, but its metastability has hindered characterization. To overcome this obstacle, we identified prefusion-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab. The cocrystal structure for one of these antibodies, D25, in complex with the F glycoprotein revealed D25 to lock F in its prefusion state by binding to a quaternary epitope at the trimer apex. Electron microscopy showed that two other antibodies, AM22 and 5C4, also bound to the newly identified site of vulnerability, which we named antigenic site O. These studies should enable design of improved vaccine antigens and define new targets for passive prevention of RSV-induced disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459498/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459498/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Chen, Man -- Leung, Sherman -- Graepel, Kevin W -- Du, Xiulian -- Yang, Yongping -- Zhou, Tongqing -- Baxa, Ulrich -- Yasuda, Etsuko -- Beaumont, Tim -- Kumar, Azad -- Modjarrad, Kayvon -- Zheng, Zizheng -- Zhao, Min -- Xia, Ningshao -- Kwong, Peter D -- Graham, Barney S -- ZIA AI005024-11/Intramural NIH HHS/ -- ZIA AI005061-10/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 May 31;340(6136):1113-7. doi: 10.1126/science.1234914. Epub 2013 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. mclellanja@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23618766" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal, Humanized/immunology ; Antibodies, Neutralizing/chemistry/*immunology ; Crystallography, X-Ray ; Female ; Glycoproteins/chemistry/*immunology ; HEK293 Cells ; Humans ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Neutralization Tests ; Palivizumab ; Protein Conformation ; Protein Multimerization ; Respiratory Syncytial Virus Vaccines/chemistry/*immunology ; Respiratory Syncytial Viruses/*immunology/physiology ; Viral Fusion Proteins/chemistry/*immunology ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-01-19
    Description: Metazoan replication-dependent histone messenger RNAs (mRNAs) have a conserved stem-loop (SL) at their 3'-end. The stem-loop binding protein (SLBP) specifically recognizes the SL to regulate histone mRNA metabolism, and the 3'-5' exonuclease 3'hExo trims its 3'-end after processing. We report the crystal structure of a ternary complex of human SLBP RNA binding domain, human 3'hExo, and a 26-nucleotide SL RNA. Only one base of the SL is recognized specifically by SLBP, and the two proteins primarily recognize the shape of the RNA. SLBP and 3'hExo have no direct contact with each other, and induced structural changes in the loop of the SL mediate their cooperative binding. The 3' flanking sequence is positioned in the 3'hExo active site, but the ternary complex limits the extent of trimming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552377/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552377/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Dazhi -- Marzluff, William F -- Dominski, Zbigniew -- Tong, Liang -- GM029832/GM/NIGMS NIH HHS/ -- GM077175/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM029832/GM/NIGMS NIH HHS/ -- R01 GM077175/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):318-21. doi: 10.1126/science.1228705.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329046" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; Exoribonucleases/*chemistry ; Histones/chemistry ; Humans ; Nuclear Proteins/*chemistry ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; RNA, Messenger/*chemistry ; Ternary Complex Factors/*chemistry ; mRNA Cleavage and Polyadenylation Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-07-23
    Description: Pluripotent stem cells can be induced from somatic cells, providing an unlimited cell resource, with potential for studying disease and use in regenerative medicine. However, genetic manipulation and technically challenging strategies such as nuclear transfer used in reprogramming limit their clinical applications. Here, we show that pluripotent stem cells can be generated from mouse somatic cells at a frequency up to 0.2% using a combination of seven small-molecule compounds. The chemically induced pluripotent stem cells resemble embryonic stem cells in terms of their gene expression profiles, epigenetic status, and potential for differentiation and germline transmission. By using small molecules, exogenous "master genes" are dispensable for cell fate reprogramming. This chemical reprogramming strategy has potential use in generating functional desirable cell types for clinical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hou, Pingping -- Li, Yanqin -- Zhang, Xu -- Liu, Chun -- Guan, Jingyang -- Li, Honggang -- Zhao, Ting -- Ye, Junqing -- Yang, Weifeng -- Liu, Kang -- Ge, Jian -- Xu, Jun -- Zhang, Qiang -- Zhao, Yang -- Deng, Hongkui -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):651-4. doi: 10.1126/science.1239278. Epub 2013 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868920" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cadherins/genetics ; Cell Engineering/*methods ; Cellular Reprogramming/*drug effects/genetics ; Epithelial-Mesenchymal Transition/drug effects/genetics ; Fibroblasts/cytology/*drug effects ; Gene Expression Profiling ; Green Fluorescent Proteins/genetics ; Induced Pluripotent Stem Cells/*cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred ICR ; Octamer Transcription Factor-3/genetics/metabolism ; Promoter Regions, Genetic/drug effects ; Small Molecule Libraries/chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-11-30
    Description: Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold beta sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Leopold -- Giang, Erick -- Nieusma, Travis -- Kadam, Rameshwar U -- Cogburn, Kristin E -- Hua, Yuanzi -- Dai, Xiaoping -- Stanfield, Robyn L -- Burton, Dennis R -- Ward, Andrew B -- Wilson, Ian A -- Law, Mansun -- AI071084/AI/NIAID NIH HHS/ -- AI079031/AI/NIAID NIH HHS/ -- AI080916/AI/NIAID NIH HHS/ -- AI084817/AI/NIAID NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI071084/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R21 AI080916/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1090-4. doi: 10.1126/science.1243876.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288331" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry ; Antigens, CD81/chemistry ; Antiviral Agents/chemistry ; Binding Sites ; Crystallography, X-Ray ; Drug Design ; Epitopes/chemistry/genetics ; Humans ; Immunoglobulin Fab Fragments/chemistry ; Mutagenesis, Site-Directed ; Protein Folding ; Protein Structure, Tertiary ; Viral Envelope Proteins/*chemistry/immunology ; Viral Hepatitis Vaccines/chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-04-20
    Description: alpha-Tocopherol (vitamin E) transfer protein (alpha-TTP) regulates the secretion of alpha-tocopherol from liver cells. Missense mutations of some arginine residues at the surface of alpha-TTP cause severe vitamin E deficiency in humans, but the role of these residues is unclear. Here, we found that wild-type alpha-TTP bound phosphatidylinositol phosphates (PIPs), whereas the arginine mutants did not. In addition, PIPs in the target membrane promoted the intermembrane transfer of alpha-tocopherol by alpha-TTP. The crystal structure of the alpha-TTP-PIPs complex revealed that the disease-related arginine residues interacted with phosphate groups of the PIPs and that the PIPs binding caused the lid of the alpha-tocopherol-binding pocket to open. Thus, PIPs have a role in promoting the release of a ligand from a lipid-transfer protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kono, Nozomu -- Ohto, Umeharu -- Hiramatsu, Tatsufumi -- Urabe, Michiko -- Uchida, Yasunori -- Satow, Yoshinori -- Arai, Hiroyuki -- New York, N.Y. -- Science. 2013 May 31;340(6136):1106-10. doi: 10.1126/science.1233508. Epub 2013 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599266" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Arginine/chemistry/genetics/metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Humans ; Mutation ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Protein Structure, Secondary ; Vitamin E Deficiency/*metabolism ; alpha-Tocopherol/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-21
    Description: Excessive intake of dietary fats leads to diminished brain dopaminergic function. It has been proposed that dopamine deficiency exacerbates obesity by provoking compensatory overfeeding as one way to restore reward sensitivity. However, the physiological mechanisms linking prolonged high-fat intake to dopamine deficiency remain elusive. We show that administering oleoylethanolamine, a gastrointestinal lipid messenger whose synthesis is suppressed after prolonged high-fat exposure, is sufficient to restore gut-stimulated dopamine release in high-fat-fed mice. Administering oleoylethanolamine to high-fat-fed mice also eliminated motivation deficits during flavorless intragastric feeding and increased oral intake of low-fat emulsions. Our findings suggest that high-fat-induced gastrointestinal dysfunctions play a key role in dopamine deficiency and that restoring gut-generated lipid signaling may increase the reward value of less palatable, yet healthier, foods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tellez, Luis A -- Medina, Sara -- Han, Wenfei -- Ferreira, Jozelia G -- Licona-Limon, Paula -- Ren, Xueying -- Lam, Tukiet T -- Schwartz, Gary J -- de Araujo, Ivan E -- DC009997/DC/NIDCD NIH HHS/ -- DK020541/DK/NIDDK NIH HHS/ -- DK026687/DK/NIDDK NIH HHS/ -- DK085579/DK/NIDDK NIH HHS/ -- P30 DK026687/DK/NIDDK NIH HHS/ -- UL1RR024139/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):800-2. doi: 10.1126/science.1239275.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The John B. Pierce Laboratory, New Haven, CT 06519, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950538" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appetite ; Corpus Striatum/*metabolism ; Dietary Fats/*administration & dosage ; Dopamine/deficiency/*metabolism ; Endocannabinoids/*administration & dosage/biosynthesis/*physiology ; Energy Intake ; Ethanolamines/*administration & dosage ; Feeding Behavior ; Gastrointestinal Tract/*metabolism ; Homeostasis ; Intestine, Small/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Oleic Acids/*administration & dosage/biosynthesis/*physiology ; PPAR alpha/genetics/metabolism ; Reward ; Signal Transduction ; Vagus Nerve/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prins, Herbert H T -- Okita-Ouma, Benson -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1167-8. doi: 10.1126/science.340.6137.1167-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Extinction, Biological ; *Horns ; *Perissodactyla
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-07-03
    Description: The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lapuente-Brun, Esther -- Moreno-Loshuertos, Raquel -- Acin-Perez, Rebeca -- Latorre-Pellicer, Ana -- Colas, Carmen -- Balsa, Eduardo -- Perales-Clemente, Ester -- Quiros, Pedro M -- Calvo, Enrique -- Rodriguez-Hernandez, M A -- Navas, Placido -- Cruz, Raquel -- Carracedo, Angel -- Lopez-Otin, Carlos -- Perez-Martos, Acisclo -- Fernandez-Silva, Patricio -- Fernandez-Vizarra, Erika -- Enriquez, Jose Antonio -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1567-70. doi: 10.1126/science.1230381.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812712" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cells, Cultured ; Cytochromes c/*metabolism ; Electron Transport ; Electron Transport Complex I/genetics/*metabolism ; Electron Transport Complex III/genetics/*metabolism ; Electron Transport Complex IV/genetics/*metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Mice ; Mice, Inbred C57BL ; Mitochondria/*enzymology ; Molecular Sequence Data ; Ubiquinone/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-03-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, Richard -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1371. doi: 10.1126/science.339.6126.1371.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520087" target="_blank"〉PubMed〈/a〉
    Keywords: *Amphibians ; Animals ; *Anura ; Conservation of Natural Resources ; *Endangered Species ; *Extinction, Biological ; Panama
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-02-09
    Description: E6 viral oncoproteins are key players in epithelial tumors induced by papillomaviruses in vertebrates, including cervical cancer in humans. E6 proteins target many host proteins by specifically interacting with acidic LxxLL motifs. We solved the crystal structures of bovine (BPV1) and human (HPV16) papillomavirus E6 proteins bound to LxxLL peptides from the focal adhesion protein paxillin and the ubiquitin ligase E6AP, respectively. In both E6 proteins, two zinc domains and a linker helix form a basic-hydrophobic pocket, which captures helical LxxLL motifs in a way compatible with other interaction modes. Mutational inactivation of the LxxLL binding pocket disrupts the oncogenic activities of both E6 proteins. This work reveals the structural basis of both the multifunctionality and the oncogenicity of E6 proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899395/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899395/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanier, Katia -- Charbonnier, Sebastian -- Sidi, Abdellahi Ould M'hamed Ould -- McEwen, Alastair G -- Ferrario, Maria Giovanna -- Poussin-Courmontagne, Pierre -- Cura, Vincent -- Brimer, Nicole -- Babah, Khaled Ould -- Ansari, Tina -- Muller, Isabelle -- Stote, Roland H -- Cavarelli, Jean -- Vande Pol, Scott -- Trave, Gilles -- CA08093/CA/NCI NIH HHS/ -- CA120352/CA/NCI NIH HHS/ -- CA134737/CA/NCI NIH HHS/ -- P30 CA044579/CA/NCI NIH HHS/ -- R01 CA134737/CA/NCI NIH HHS/ -- R01CA134737/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):694-8. doi: 10.1126/science.1229934.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393263" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bovine papillomavirus 1 ; Crystallography, X-Ray ; Human papillomavirus 16 ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Oncogene Proteins, Viral/*chemistry/genetics/*metabolism ; Paxillin/*chemistry/metabolism ; Peptide Fragments/chemistry/metabolism ; Point Mutation ; *Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/*metabolism ; Ubiquitin-Protein Ligases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-06-15
    Description: Aquaporins are membrane channels that facilitate the flow of water across biological membranes. Two conserved regions are central for selective function: the dual asparagine-proline-alanine (NPA) aquaporin signature motif and the aromatic and arginine selectivity filter (SF). Here, we present the crystal structure of a yeast aquaporin at 0.88 angstrom resolution. We visualize the H-bond donor interactions of the NPA motif's asparagine residues to passing water molecules; observe a polarized water-water H-bond configuration within the channel; assign the tautomeric states of the SF histidine and arginine residues; and observe four SF water positions too closely spaced to be simultaneously occupied. Strongly correlated movements break the connectivity of SF waters to other water molecules within the channel and prevent proton transport via a Grotthuss mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066176/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066176/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kosinska Eriksson, Urszula -- Fischer, Gerhard -- Friemann, Rosmarie -- Enkavi, Giray -- Tajkhorshid, Emad -- Neutze, Richard -- P41 GM104601/GM/NIGMS NIH HHS/ -- P41-GM104601/GM/NIGMS NIH HHS/ -- R01 GM086749/GM/NIGMS NIH HHS/ -- R01-GM086749/GM/NIGMS NIH HHS/ -- U54 GM087519/GM/NIGMS NIH HHS/ -- U54-GM087519/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 14;340(6138):1346-9. doi: 10.1126/science.1234306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Goteborg, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23766328" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Aquaporins/*chemistry ; Crystallography, X-Ray ; Fungal Proteins/*chemistry ; Histidine/chemistry ; Hydrogen Bonding ; Molecular Dynamics Simulation ; Oligopeptides/chemistry ; Pichia/*metabolism ; Protein Structure, Secondary ; Water/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-03
    Description: Protein synthesis by the ribosome requires the translocation of transfer RNAs and messenger RNA by one codon after each peptide bond is formed, a reaction that requires ribosomal subunit rotation and is catalyzed by the guanosine triphosphatase (GTPase) elongation factor G (EF-G). We determined 3 angstrom resolution x-ray crystal structures of EF-G complexed with a nonhydrolyzable guanosine 5'-triphosphate (GTP) analog and bound to the Escherichia coli ribosome in different states of ribosomal subunit rotation. The structures reveal that EF-G binding to the ribosome stabilizes switch regions in the GTPase active site, resulting in a compact EF-G conformation that favors an intermediate state of ribosomal subunit rotation. These structures suggest that EF-G controls the translocation reaction by cycles of conformational rigidity and relaxation before and after GTP hydrolysis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pulk, Arto -- Cate, Jamie H D -- R01 GM065050/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- R01-GM65050/GM/NIGMS NIH HHS/ -- R01GM105404/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1235970. doi: 10.1126/science.1235970.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812721" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*enzymology ; Guanosine Triphosphate/*chemistry ; Hydrolysis ; Models, Biological ; Peptide Elongation Factor G/*chemistry ; *Protein Biosynthesis ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry ; RNA, Transfer/chemistry ; Ribosome Subunits, Large, Bacterial/*chemistry ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-02-09
    Description: Piperidines are prevalent in natural products and pharmaceutical agents and are important synthetic targets for drug discovery and development. We report on a methodology that provides highly substituted piperidine derivatives with regiochemistry selectively tunable by varying the strength of acid used in the reaction. Readily available starting materials are first converted to dihydropyridines via a cascade reaction initiated by rhodium-catalyzed carbon-hydrogen bond activation. Subsequent divergent regio- and diastereoselective protonation of the dihydropyridines under either kinetic or thermodynamic control provides two distinct iminium ion intermediates that then undergo highly diastereoselective nucleophilic additions. X-ray structural characterization of both the kinetically and thermodynamically favored iminium ions along with density functional theory calculations provide a theoretical underpinning for the high selectivities achieved for the reaction sequences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809088/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809088/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duttwyler, Simon -- Chen, Shuming -- Takase, Michael K -- Wiberg, Kenneth B -- Bergman, Robert G -- Ellman, Jonathan A -- GM069559/GM/NIGMS NIH HHS/ -- R01 GM069559/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):678-82. doi: 10.1126/science.1230704.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393259" target="_blank"〉PubMed〈/a〉
    Keywords: Acids ; Catalysis ; Crystallography, X-Ray ; Dihydropyridines/chemistry ; Heterocyclic Compounds/*chemical synthesis/chemistry ; Hydrogen Bonding ; Kinetics ; Molecular Conformation ; Molecular Structure ; Nitrogen/*chemistry ; Piperidines/*chemical synthesis/*chemistry ; *Protons ; Rhodium ; Stereoisomerism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-12-07
    Description: The centrosome is essential for cytotoxic T lymphocyte (CTL) function, contacting the plasma membrane and directing cytotoxic granules for secretion at the immunological synapse. Centrosome docking at the plasma membrane also occurs during cilia formation. The primary cilium, formed in nonhematopoietic cells, is essential for vertebrate Hedgehog (Hh) signaling. Lymphocytes do not form primary cilia, but we found and describe here that Hh signaling played an important role in CTL killing. T cell receptor activation, which "prearms" CTLs with cytotoxic granules, also initiated Hh signaling. Hh pathway activation occurred intracellularly and triggered Rac1 synthesis. These events "prearmed" CTLs for action by promoting the actin remodeling required for centrosome polarization and granule release. Thus, Hh signaling plays a role in CTL function, and the immunological synapse may represent a modified cilium.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022134/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022134/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de la Roche, Maike -- Ritter, Alex T -- Angus, Karen L -- Dinsmore, Colin -- Earnshaw, Charles H -- Reiter, Jeremy F -- Griffiths, Gillian M -- 075880/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- R01 AR054396/AR/NIAMS NIH HHS/ -- R01 GM095941/GM/NIGMS NIH HHS/ -- R01AR05439/AR/NIAMS NIH HHS/ -- R01GM095941/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1247-50. doi: 10.1126/science.1244689.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology/metabolism ; Cell Polarity ; Cells, Cultured ; Centrosome/metabolism ; *Cytotoxicity, Immunologic ; Hedgehog Proteins/*metabolism ; *Immunological Synapses ; Kruppel-Like Transcription Factors/genetics/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Immunological ; Neuropeptides/genetics/metabolism ; Receptors, Antigen, T-Cell/immunology/metabolism ; Receptors, Cell Surface/metabolism ; Receptors, G-Protein-Coupled/metabolism ; *Signal Transduction ; T-Lymphocytes, Cytotoxic/*immunology/metabolism ; rac1 GTP-Binding Protein/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...