ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (86)
  • Models, Molecular
  • American Association for the Advancement of Science (AAAS)  (113)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (113)
  • 1965-1969
  • 2005  (113)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (113)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
Years
  • 2005-2009  (113)
  • 1965-1969
Year
  • 1
    Publication Date: 2005-02-26
    Description: The genomic diversity and relative importance of distinct genotypes within natural bacterial populations have remained largely unknown. Here, we analyze the diversity and annual dynamics of a group of coastal bacterioplankton (greater than 99% 16S ribosomal RNA identity to Vibrio splendidus). We show that this group consists of at least a thousand distinct genotypes, each occurring at extremely low environmental concentrations (on average less than one cell per milliliter). Overall, the genomes show extensive allelic diversity and size variation. Individual genotypes rarely recurred in samples, and allelic distribution did not show spatial or temporal substructure. Ecological considerations suggest that much genotypic and possibly phenotypic variation within natural populations should be considered neutral.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, Janelle R -- Pacocha, Sarah -- Pharino, Chanathip -- Klepac-Ceraj, Vanja -- Hunt, Dana E -- Benoit, Jennifer -- Sarma-Rupavtarm, Ramahi -- Distel, Daniel L -- Polz, Martin F -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1311-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731455" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chaperonin 60/genetics ; *Ecosystem ; Electrophoresis, Gel, Pulsed-Field ; *Genetic Variation ; Genome, Bacterial ; Genotype ; Molecular Sequence Data ; Plankton/classification/*genetics/growth & development/isolation & purification ; Polymerase Chain Reaction ; Ribotyping ; Seawater/*microbiology ; Time Factors ; Vibrio/classification/*genetics/isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-02-01
    Description: Pollen tube guidance precedes the double fertilization of flowering plants. Here, we report the identification of a small maize protein of 94 amino acids involved in short-range signaling required for pollen tube attraction by the female gametophyte. ZmEA1 is exclusively expressed in the egg apparatus, consisting of the egg cell and two synergids. Chimeric ZmEA1 fused to green fluorescent protein (ZmEA1:GFP) was first visible within the filiform apparatus and later was localized to nucellar cell walls below the micropylar opening of the ovule. Transgenic down-regulation of the ZmEA1 gene led to ovule sterility caused by loss of close-range pollen tube guidance to the micropyle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marton, Mihaela L -- Cordts, Simone -- Broadhvest, Jean -- Dresselhaus, Thomas -- New York, N.Y. -- Science. 2005 Jan 28;307(5709):573-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biocenter Klein Flottbek, Developmental Biology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681383" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antisense Elements (Genetics) ; Crosses, Genetic ; DNA, Complementary ; Flowers/growth & development/*physiology ; Genes, Plant ; Green Fluorescent Proteins/metabolism ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/*physiology ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Reproduction ; Seeds/physiology ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Zea mays/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-10-29
    Description: Recurrent chromosomal rearrangements have not been well characterized in common carcinomas. We used a bioinformatics approach to discover candidate oncogenic chromosomal aberrations on the basis of outlier gene expression. Two ETS transcription factors, ERG and ETV1, were identified as outliers in prostate cancer. We identified recurrent gene fusions of the 5' untranslated region of TMPRSS2 to ERG or ETV1 in prostate cancer tissues with outlier expression. By using fluorescence in situ hybridization, we demonstrated that 23 of 29 prostate cancer samples harbor rearrangements in ERG or ETV1. Cell line experiments suggest that the androgen-responsive promoter elements of TMPRSS2 mediate the overexpression of ETS family members in prostate cancer. These results have implications in the development of carcinomas and the molecular diagnosis and treatment of prostate cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomlins, Scott A -- Rhodes, Daniel R -- Perner, Sven -- Dhanasekaran, Saravana M -- Mehra, Rohit -- Sun, Xiao-Wei -- Varambally, Sooryanarayana -- Cao, Xuhong -- Tchinda, Joelle -- Kuefer, Rainer -- Lee, Charles -- Montie, James E -- Shah, Rajal B -- Pienta, Kenneth J -- Rubin, Mark A -- Chinnaiyan, Arul M -- 5P30 CA46592/CA/NCI NIH HHS/ -- P50CA69568/CA/NCI NIH HHS/ -- R01 CA97063/CA/NCI NIH HHS/ -- R01AG21404/AG/NIA NIH HHS/ -- UO1 CA111275-01/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Oct 28;310(5748):644-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109-0602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16254181" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/metabolism ; Cell Line, Tumor ; DNA-Binding Proteins/*genetics ; Gene Expression Regulation, Neoplastic ; Gene Rearrangement ; Humans ; In Situ Hybridization, Fluorescence ; Male ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Neoplasm Proteins/*genetics ; Oncogene Proteins, Fusion/*genetics ; Polymerase Chain Reaction ; Prostatic Neoplasms/*genetics ; Serine Endopeptidases/*genetics ; Trans-Activators/*genetics ; Transcription Factors/*genetics ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-05-28
    Description: Searles Lake is a salt-saturated, alkaline brine unusually rich in the toxic element arsenic. Arsenic speciation changed from arsenate [As(V)] to arsenite [As(III)] with sediment depth. Incubated anoxic sediment slurries displayed dissimilatory As(V)-reductase activity that was markedly stimulated by H2 or sulfide, whereas aerobic slurries had rapid As(III)-oxidase activity. An anaerobic, extremely haloalkaliphilic bacterium was isolated from the sediment that grew via As(V) respiration, using either lactate or sulfide as its electron donor. Hence, a full biogeochemical cycle of arsenic occurs in Searles Lake, driven in part by inorganic electron donors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oremland, Ronald S -- Kulp, Thomas R -- Blum, Jodi Switzer -- Hoeft, Shelley E -- Baesman, Shaun -- Miller, Laurence G -- Stolz, John F -- New York, N.Y. -- Science. 2005 May 27;308(5726):1305-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey, ms 480, 345 Middlefield Road, Menlo Park, CA 94025, USA. roremlan@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15919992" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Arsenates/*metabolism ; Arsenites/*metabolism ; Bacteria, Anaerobic/classification/growth & development/*isolation & ; purification/*metabolism ; Bicarbonates/metabolism ; California ; Ecosystem ; Electron Transport ; Genes, rRNA ; Geologic Sediments/*microbiology ; Hydrogen-Ion Concentration ; Lactic Acid/metabolism ; Molecular Sequence Data ; Oxidation-Reduction ; Phylogeny ; *Salts ; Sodium Chloride ; Sulfides/metabolism ; Water/chemistry ; *Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-06-11
    Description: In animal societies, chemical communication plays an important role in conflict and cooperation. For ants, cuticular hydrocarbon (CHC) blends produced by non-nestmates elicit overt aggression. We describe a sensory sensillum on the antennae of the carpenter ant Camponotus japonicus that functions in nestmate discrimination. This sensillum is multiporous and responds only to non-nestmate CHC blends. This suggests a role for a peripheral recognition mechanism in detecting colony-specific chemical signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozaki, Mamiko -- Wada-Katsumata, Ayako -- Fujikawa, Kazuyo -- Iwasaki, Masayuki -- Yokohari, Fumio -- Satoji, Yuji -- Nisimura, Tomoyosi -- Yamaoka, Ryohei -- New York, N.Y. -- Science. 2005 Jul 8;309(5732):311-4. Epub 2005 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. mamiko@kit.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947139" target="_blank"〉PubMed〈/a〉
    Keywords: Aggression ; Amino Acid Sequence ; Animals ; Ants/*physiology ; Base Sequence ; *Behavior, Animal ; Carrier Proteins/chemistry/isolation & purification/metabolism ; Chemoreceptor Cells/*physiology ; Cues ; Electrophysiology ; *Hydrocarbons ; Insect Proteins/chemistry/isolation & purification/metabolism ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; Neurons, Afferent/*physiology ; Sense Organs/physiology ; Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-12-17
    Description: Translesion synthesis (TLS) is the major pathway by which mammalian cells replicate across DNA lesions. Upon DNA damage, ubiquitination of proliferating cell nuclear antigen (PCNA) induces bypass of the lesion by directing the replication machinery into the TLS pathway. Yet, how this modification is recognized and interpreted in the cell remains unclear. Here we describe the identification of two ubiquitin (Ub)-binding domains (UBM and UBZ), which are evolutionarily conserved in all Y-family TLS polymerases (pols). These domains are required for binding of poleta and poliota to ubiquitin, their accumulation in replication factories, and their interaction with monoubiquitinated PCNA. Moreover, the UBZ domain of poleta is essential to efficiently restore a normal response to ultraviolet irradiation in xeroderma pigmentosum variant (XP-V) fibroblasts. Our results indicate that Ub-binding domains of Y-family polymerases play crucial regulatory roles in TLS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bienko, Marzena -- Green, Catherine M -- Crosetto, Nicola -- Rudolf, Fabian -- Zapart, Grzegorz -- Coull, Barry -- Kannouche, Patricia -- Wider, Gerhard -- Peter, Matthias -- Lehmann, Alan R -- Hofmann, Kay -- Dikic, Ivan -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357261" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Line ; Computational Biology ; DNA/*biosynthesis ; *DNA Damage ; DNA Repair ; DNA Replication ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Point Mutation ; Proliferating Cell Nuclear Antigen/metabolism ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Transfection ; Ubiquitin/*metabolism ; Xeroderma Pigmentosum/genetics ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-07-16
    Description: Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II-directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivens, Alasdair C -- Peacock, Christopher S -- Worthey, Elizabeth A -- Murphy, Lee -- Aggarwal, Gautam -- Berriman, Matthew -- Sisk, Ellen -- Rajandream, Marie-Adele -- Adlem, Ellen -- Aert, Rita -- Anupama, Atashi -- Apostolou, Zina -- Attipoe, Philip -- Bason, Nathalie -- Bauser, Christopher -- Beck, Alfred -- Beverley, Stephen M -- Bianchettin, Gabriella -- Borzym, Katja -- Bothe, Gordana -- Bruschi, Carlo V -- Collins, Matt -- Cadag, Eithon -- Ciarloni, Laura -- Clayton, Christine -- Coulson, Richard M R -- Cronin, Ann -- Cruz, Angela K -- Davies, Robert M -- De Gaudenzi, Javier -- Dobson, Deborah E -- Duesterhoeft, Andreas -- Fazelina, Gholam -- Fosker, Nigel -- Frasch, Alberto Carlos -- Fraser, Audrey -- Fuchs, Monika -- Gabel, Claudia -- Goble, Arlette -- Goffeau, Andre -- Harris, David -- Hertz-Fowler, Christiane -- Hilbert, Helmut -- Horn, David -- Huang, Yiting -- Klages, Sven -- Knights, Andrew -- Kube, Michael -- Larke, Natasha -- Litvin, Lyudmila -- Lord, Angela -- Louie, Tin -- Marra, Marco -- Masuy, David -- Matthews, Keith -- Michaeli, Shulamit -- Mottram, Jeremy C -- Muller-Auer, Silke -- Munden, Heather -- Nelson, Siri -- Norbertczak, Halina -- Oliver, Karen -- O'neil, Susan -- Pentony, Martin -- Pohl, Thomas M -- Price, Claire -- Purnelle, Benedicte -- Quail, Michael A -- Rabbinowitsch, Ester -- Reinhardt, Richard -- Rieger, Michael -- Rinta, Joel -- Robben, Johan -- Robertson, Laura -- Ruiz, Jeronimo C -- Rutter, Simon -- Saunders, David -- Schafer, Melanie -- Schein, Jacquie -- Schwartz, David C -- Seeger, Kathy -- Seyler, Amber -- Sharp, Sarah -- Shin, Heesun -- Sivam, Dhileep -- Squares, Rob -- Squares, Steve -- Tosato, Valentina -- Vogt, Christy -- Volckaert, Guido -- Wambutt, Rolf -- Warren, Tim -- Wedler, Holger -- Woodward, John -- Zhou, Shiguo -- Zimmermann, Wolfgang -- Smith, Deborah F -- Blackwell, Jenefer M -- Stuart, Kenneth D -- Barrell, Bart -- Myler, Peter J -- R01 AI040599/AI/NIAID NIH HHS/ -- R01 AI053667/AI/NIAID NIH HHS/ -- U01 AI040599/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):436-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. alicat@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020728" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/genetics/metabolism ; Gene Expression Regulation ; Genes, Protozoan ; Genes, rRNA ; *Genome, Protozoan ; Glycoconjugates/biosynthesis/metabolism ; Leishmania major/chemistry/*genetics/metabolism ; Leishmaniasis, Cutaneous/parasitology ; Lipid Metabolism ; Membrane Proteins/biosynthesis/chemistry/genetics/metabolism ; Molecular Sequence Data ; Multigene Family ; Protein Biosynthesis ; Protein Processing, Post-Translational ; Protozoan Proteins/biosynthesis/chemistry/genetics/metabolism ; RNA Processing, Post-Transcriptional ; RNA Splicing ; RNA, Protozoan/genetics/metabolism ; *Sequence Analysis, DNA ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-03-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1554-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15761136" target="_blank"〉PubMed〈/a〉
    Keywords: Automation ; Biomedical Technology ; Budgets ; Computer Simulation ; Costs and Cost Analysis ; Crystallization ; Crystallography, X-Ray ; *Genomics/economics/instrumentation/methods ; Models, Molecular ; National Institutes of Health (U.S.)/economics ; *Protein Conformation ; Proteins/*chemistry/genetics/isolation & purification ; *Proteomics/economics/instrumentation/methods ; Robotics ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-08-20
    Description: The SAR11 clade consists of very small, heterotrophic marine alpha-proteobacteria that are found throughout the oceans, where they account for about 25% of all microbial cells. Pelagibacter ubique, the first cultured member of this clade, has the smallest genome and encodes the smallest number of predicted open reading frames known for a free-living microorganism. In contrast to parasitic bacteria and archaea with small genomes, P. ubique has complete biosynthetic pathways for all 20 amino acids and all but a few cofactors. P. ubique has no pseudogenes, introns, transposons, extrachromosomal elements, or inteins; few paralogs; and the shortest intergenic spacers yet observed for any cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giovannoni, Stephen J -- Tripp, H James -- Givan, Scott -- Podar, Mircea -- Vergin, Kevin L -- Baptista, Damon -- Bibbs, Lisa -- Eads, Jonathan -- Richardson, Toby H -- Noordewier, Michiel -- Rappe, Michael S -- Short, Jay M -- Carrington, James C -- Mathur, Eric J -- New York, N.Y. -- Science. 2005 Aug 19;309(5738):1242-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA. steve.giovannoni@oregonstate.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16109880" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaproteobacteria/classification/*genetics/isolation & purification/physiology ; Bacterial Proteins/genetics/metabolism ; Base Composition ; Biological Evolution ; Carbon/metabolism ; Computational Biology ; DNA, Bacterial/chemistry/genetics ; DNA, Intergenic ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; *Genome, Bacterial ; Membrane Transport Proteins/genetics/metabolism ; Molecular Sequence Data ; Oceans and Seas ; Phosphates/metabolism ; Phylogeny ; Seawater/*microbiology ; Selection, Genetic ; Sigma Factor/genetics ; Thymidylate Synthase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-12-17
    Description: Lighter variations of pigmentation in humans are associated with diminished number, size, and density of melanosomes, the pigmented organelles of melanocytes. Here we show that zebrafish golden mutants share these melanosomal changes and that golden encodes a putative cation exchanger slc24a5 (nckx5) that localizes to an intracellular membrane, likely the melanosome or its precursor. The human ortholog is highly similar in sequence and functional in zebrafish. The evolutionarily conserved ancestral allele of a human coding polymorphism predominates in African and East Asian populations. In contrast, the variant allele is nearly fixed in European populations, is associated with a substantial reduction in regional heterozygosity, and correlates with lighter skin pigmentation in admixed populations, suggesting a key role for the SLC24A5 gene in human pigmentation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamason, Rebecca L -- Mohideen, Manzoor-Ali P K -- Mest, Jason R -- Wong, Andrew C -- Norton, Heather L -- Aros, Michele C -- Jurynec, Michael J -- Mao, Xianyun -- Humphreville, Vanessa R -- Humbert, Jasper E -- Sinha, Soniya -- Moore, Jessica L -- Jagadeeswaran, Pudur -- Zhao, Wei -- Ning, Gang -- Makalowska, Izabela -- McKeigue, Paul M -- O'donnell, David -- Kittles, Rick -- Parra, Esteban J -- Mangini, Nancy J -- Grunwald, David J -- Shriver, Mark D -- Canfield, Victor A -- Cheng, Keith C -- CA73935/CA/NCI NIH HHS/ -- EY11308/EY/NEI NIH HHS/ -- HD37572/HD/NICHD NIH HHS/ -- HD40179/HD/NICHD NIH HHS/ -- HG002154/HG/NHGRI NIH HHS/ -- HL077910/HL/NHLBI NIH HHS/ -- RR017441/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1782-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jake Gittlen Cancer Research Foundation, Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357253" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/genetics ; African Continental Ancestry Group/genetics ; Alanine/genetics ; Alleles ; Amino Acid Sequence ; Animals ; Antiporters/chemistry/*genetics/physiology ; Asian Continental Ancestry Group/genetics ; Biological Evolution ; Calcium/metabolism ; European Continental Ancestry Group/genetics ; Gene Frequency ; Genes ; Genetic Variation ; Haplotypes ; Heterozygote ; Humans ; Ion Transport ; Melanins/analysis ; Melanosomes/chemistry/ultrastructure ; Mice ; Molecular Sequence Data ; Multifactorial Inheritance ; Mutation ; Pigment Epithelium of Eye/chemistry/ultrastructure ; Polymorphism, Single Nucleotide ; Selection, Genetic ; Skin Pigmentation/*genetics ; Threonine/genetics ; Zebrafish/embryology/*genetics/metabolism ; Zebrafish Proteins/chemistry/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2005-09-17
    Description: The prediction of protein structure from amino acid sequence is a grand challenge of computational molecular biology. By using a combination of improved low- and high-resolution conformational sampling methods, improved atomically detailed potential functions that capture the jigsaw puzzle-like packing of protein cores, and high-performance computing, high-resolution structure prediction (〈1.5 angstroms) can be achieved for small protein domains (〈85 residues). The primary bottleneck to consistent high-resolution prediction appears to be conformational sampling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradley, Philip -- Misura, Kira M S -- Baker, David -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1868-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Washington, Department of Biochemistry, and Howard Hughes Medical Institute, Box 357350, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemistry, Physical ; *Computational Biology ; Computer Simulation ; Hydrogen Bonding ; Models, Molecular ; Monte Carlo Method ; Physicochemical Phenomena ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry ; Sequence Alignment ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2005-12-03
    Description: Proper chromosome segregation requires the attachment of sister kinetochores to microtubules from opposite spindle poles to form bi-oriented chromosomes on the metaphase spindle. The chromosome passenger complex containing Survivin and the kinase Aurora B regulates this process from the centromeres. We report that a de-ubiquitinating enzyme, hFAM, regulates chromosome alignment and segregation by controlling both the dynamic association of Survivin with centromeres and the proper targeting of Survivin and Aurora B to centromeres. Survivin is ubiquitinated in mitosis through both Lys(48) and Lys(63) ubiquitin linkages. Lys(63) de-ubiquitination mediated by hFAM is required for the dissociation of Survivin from centromeres, whereas Lys(63) ubiquitination mediated by the ubiquitin binding protein Ufd1 is required for the association of Survivin with centromeres. Thus, ubiquitinaton regulates dynamic protein-protein interactions and chromosome segregation independently of protein degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vong, Queenie P -- Cao, Kan -- Li, Hoi Y -- Iglesias, Pablo A -- Zheng, Yixian -- GM56312/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 2;310(5753):1499-504.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington and Howard Hughes Medical Institute, 3520 San Martin Drive, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16322459" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aurora Kinase B ; Aurora Kinases ; Centromere/*metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosome Segregation/*physiology ; Egg Proteins/metabolism ; Endopeptidases/metabolism ; HeLa Cells ; Humans ; Inhibitor of Apoptosis Proteins ; Lysine/metabolism ; Microtubule-Associated Proteins/metabolism ; Molecular Sequence Data ; Neoplasm Proteins/metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases/metabolism ; Ubiquitin/*metabolism ; Ubiquitin Thiolesterase ; Xenopus ; Xenopus Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davidson, Amy L -- Chen, Jue -- New York, N.Y. -- Science. 2005 May 13;308(5724):963-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA. davidson@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890866" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/*metabolism ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/*chemistry ; Crystallography, X-Ray ; Dimerization ; Electron Spin Resonance Spectroscopy ; Escherichia coli/chemistry ; Escherichia coli Proteins/chemistry/metabolism ; Hydrolysis ; Lipid A/metabolism ; Lipid Bilayers ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Salmonella typhimurium/*chemistry ; Spin Labels ; Vanadates/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2005-11-19
    Description: Interleukin-2 (IL-2) is an immunoregulatory cytokine that acts through a quaternary receptor signaling complex containing alpha (IL-2Ralpha), beta (IL-2Rbeta), and common gamma chain (gc) receptors. In the structure of the quaternary ectodomain complex as visualized at a resolution of 2.3 angstroms, the binding of IL-2Ralpha to IL-2 stabilizes a secondary binding site for presentation to IL-2Rbeta. gammac is then recruited to the composite surface formed by the IL-2/IL-2Rbeta complex. Consistent with its role as a shared receptor for IL-4, IL-7, IL-9, IL-15, and IL-21, gammac forms degenerate contacts with IL-2. The structure of gammac provides a rationale for loss-of-function mutations found in patients with X-linked severe combined immunodeficiency diseases (X-SCID). This complex structure provides a framework for other gammac-dependent cytokine-receptor interactions and for the engineering of improved IL-2 therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xinquan -- Rickert, Mathias -- Garcia, K Christopher -- AI51321/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 18;310(5751):1159-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Fairchild D319, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16293754" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Humans ; Interleukin Receptor Common gamma Subunit ; Interleukin-2/*chemistry/metabolism/therapeutic use ; Interleukin-2 Receptor alpha Subunit ; Interleukin-2 Receptor beta Subunit ; Models, Molecular ; Mutation ; Protein Binding ; Protein Conformation ; Receptors, Interleukin/*chemistry/metabolism ; Receptors, Interleukin-2/*chemistry/genetics/metabolism ; Recombinant Proteins/therapeutic use ; Severe Combined Immunodeficiency/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2005-11-15
    Description: The ancestry of modern Europeans is a subject of debate among geneticists, archaeologists, and anthropologists. A crucial question is the extent to which Europeans are descended from the first European farmers in the Neolithic Age 7500 years ago or from Paleolithic hunter-gatherers who were present in Europe since 40,000 years ago. Here we present an analysis of ancient DNA from early European farmers. We successfully extracted and sequenced intact stretches of maternally inherited mitochondrial DNA (mtDNA) from 24 out of 57 Neolithic skeletons from various locations in Germany, Austria, and Hungary. We found that 25% of the Neolithic farmers had one characteristic mtDNA type and that this type formerly was widespread among Neolithic farmers in Central Europe. Europeans today have a 150-times lower frequency (0.2%) of this mtDNA type, revealing that these first Neolithic farmers did not have a strong genetic influence on modern European female lineages. Our finding lends weight to a proposed Paleolithic ancestry for modern Europeans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haak, Wolfgang -- Forster, Peter -- Bramanti, Barbara -- Matsumura, Shuichi -- Brandt, Guido -- Tanzer, Marc -- Villems, Richard -- Renfrew, Colin -- Gronenborn, Detlef -- Alt, Kurt Werner -- Burger, Joachim -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1016-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Anthropologie, Johannes Gutenberg Universitat Mainz, Saarstrasse 21, D-55099 Mainz, Germany. haakw@uni-mainz.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284177" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*history ; Austria ; Base Sequence ; Computer Simulation ; Cultural Evolution ; DNA, Mitochondrial/chemistry/classification/*genetics/history ; Emigration and Immigration ; Europe ; European Continental Ancestry Group/*genetics/history ; Female ; Gene Frequency ; Genetic Drift ; Genetics, Population ; Germany ; Haplotypes ; History, Ancient ; Humans ; Hungary ; Male ; Molecular Sequence Data ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2005-02-26
    Description: Apical membrane antigen 1 from Plasmodium is a leading malaria vaccine candidate. The protein is essential for host-cell invasion, but its molecular function is unknown. The crystal structure of the three domains comprising the ectoplasmic region of the antigen from P. vivax, solved at 1.8 angstrom resolution, shows that domains I and II belong to the PAN motif, which defines a superfamily of protein folds implicated in receptor binding. We also mapped the epitope of an invasion-inhibitory monoclonal antibody specific for the P. falciparum ortholog and modeled this to the structure. The location of the epitope and current knowledge on structure-function correlations for PAN domains together suggest a receptor-binding role during invasion in which domain II plays a critical part. These results are likely to aid vaccine and drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pizarro, Juan Carlos -- Vulliez-Le Normand, Brigitte -- Chesne-Seck, Marie-Laure -- Collins, Christine R -- Withers-Martinez, Chrislaine -- Hackett, Fiona -- Blackman, Michael J -- Faber, Bart W -- Remarque, Edmond J -- Kocken, Clemens H M -- Thomas, Alan W -- Bentley, Graham A -- MC_U117532063/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Apr 15;308(5720):408-11. Epub 2005 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite d'Immunologie Structurale, Centre National de la Recherche Scientifique, URA 2185, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731407" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, Protozoan/*chemistry/immunology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Epitope Mapping ; Epitopes ; Heparin/metabolism ; Malaria Vaccines ; Membrane Proteins/*chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Plasmodium falciparum/chemistry/immunology ; Plasmodium vivax/chemistry/*immunology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protozoan Proteins/*chemistry/immunology ; Recombinant Proteins/chemistry ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-11-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, Peter B -- New York, N.Y. -- Science. 2005 Nov 4;310(5749):793-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA. peter.moore@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16272105" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/*ultrastructure ; Escherichia coli Proteins/chemistry ; Models, Molecular ; RNA, Bacterial/chemistry ; RNA, Ribosomal/*chemistry ; Ribosomal Proteins/*chemistry ; Ribosomes/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2005-06-18
    Description: Rhizobial bacteria enter a symbiotic interaction with legumes, activating diverse responses in roots through the lipochito oligosaccharide signaling molecule Nod factor. Here, we show that NSP2 from Medicago truncatula encodes a GRAS protein essential for Nod-factor signaling. NSP2 functions downstream of Nod-factor-induced calcium spiking and a calcium/calmodulin-dependent protein kinase. We show that NSP2-GFP expressed from a constitutive promoter is localized to the endoplasmic reticulum/nuclear envelope and relocalizes to the nucleus after Nod-factor elicitation. This work provides evidence that a GRAS protein transduces calcium signals in plants and provides a possible regulator of Nod-factor-inducible gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalo, Peter -- Gleason, Cynthia -- Edwards, Anne -- Marsh, John -- Mitra, Raka M -- Hirsch, Sibylle -- Jakab, Julia -- Sims, Sarah -- Long, Sharon R -- Rogers, Jane -- Kiss, Gyorgy B -- Downie, J Allan -- Oldroyd, Giles E D -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Disease and Stress Biology and Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961668" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cell Nucleus/metabolism ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/*metabolism ; Medicago/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation ; Oligonucleotide Array Sequence Analysis ; Peas/genetics/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Sinorhizobium meliloti/*physiology ; Symbiosis ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2005-07-30
    Description: To study adaptation, it is essential to identify multiple adaptive mutations and to characterize their molecular, phenotypic, selective, and ecological consequences. Here we describe a genomic screen for adaptive insertions of transposable elements in Drosophila. Using a pilot application of this screen, we have identified an adaptive transposable element insertion, which truncates a gene and apparently generates a functional protein in the process. The insertion of this transposable element confers increased resistance to an organophosphate pesticide and has spread in D. melanogaster recently.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aminetzach, Yael T -- Macpherson, J Michael -- Petrov, Dmitri A -- New York, N.Y. -- Science. 2005 Jul 29;309(5735):764-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051794" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Alleles ; Amino Acid Substitution ; Animals ; Azinphosmethyl/pharmacology ; Base Sequence ; Choline/metabolism ; Crosses, Genetic ; *DNA Transposable Elements ; Drosophila/drug effects/genetics/physiology ; Drosophila Proteins/chemistry/*genetics/physiology ; Drosophila melanogaster/drug effects/*genetics/physiology ; *Evolution, Molecular ; Exons ; Female ; Gene Expression ; *Genes, Insect ; Haplotypes ; Insecticide Resistance/*genetics ; Insecticides/pharmacology ; Introns ; Long Interspersed Nucleotide Elements ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Recombination, Genetic ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2005-10-01
    Description: Chlorinated natural products include vancomycin and cryptophycin A. Their biosynthesis involves regioselective chlorination by flavin-dependent halogenases. We report the structural characterization of tryptophan 7-halogenase (PrnA), which regioselectively chlorinates tryptophan. Tryptophan and flavin adenine dinucleotide (FAD) are separated by a 10 angstrom-long tunnel and bound by distinct enzyme modules. The FAD module is conserved in halogenases and is related to flavin-dependent monooxygenases. On the basis of biochemical studies, crystal structures, and by analogy with monooxygenases, we predict that FADH2 reacts with O2 to make peroxyflavin, which is decomposed by Cl-. The resulting HOCl is guided through the tunnel to tryptophan, where it is activated to participate in electrophilic aromatic substitution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315827/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315827/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Changjiang -- Flecks, Silvana -- Unversucht, Susanne -- Haupt, Caroline -- van Pee, Karl-Heinz -- Naismith, James H -- BB/C000080/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/14426/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2216-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Biomolecular Sciences, EaStchem, University of St. Andrews, St. Andrews KY16 9ST, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195462" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chlorides/*metabolism ; Crystallography, X-Ray ; Dimerization ; Flavin-Adenine Dinucleotide/analogs & derivatives/metabolism ; Hydrogen Bonding ; Hypochlorous Acid/metabolism ; Indoles/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases/*chemistry/isolation & purification/metabolism ; Oxygen/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pseudomonas fluorescens/*enzymology ; Tryptophan/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2005-12-03
    Description: Protein synthesis in mammalian cells requires initiation factor eIF3, a approximately 750-kilodalton complex that controls assembly of 40S ribosomal subunits on messenger RNAs (mRNAs) bearing either a 5'-cap or an internal ribosome entry site (IRES). Cryo-electron microscopy reconstructions show that eIF3, a five-lobed particle, interacts with the hepatitis C virus (HCV) IRES RNA and the 5'-cap binding complex eIF4F via the same domain. Detailed modeling of eIF3 and eIF4F onto the 40S ribosomal subunit reveals that eIF3 uses eIF4F or the HCV IRES in structurally similar ways to position the mRNA strand near the exit site of 40S, promoting initiation complex assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siridechadilok, Bunpote -- Fraser, Christopher S -- Hall, Richard J -- Doudna, Jennifer A -- Nogales, Eva -- New York, N.Y. -- Science. 2005 Dec 2;310(5753):1513-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16322461" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Eukaryotic Initiation Factor-3/chemistry/*physiology/ultrastructure ; Eukaryotic Initiation Factor-4F/metabolism ; HeLa Cells ; Hepacivirus/genetics ; Humans ; Models, Molecular ; Protein Binding ; Protein Biosynthesis/*physiology ; Protein Conformation ; RNA, Messenger/metabolism ; RNA, Viral/metabolism ; Ribosomes/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2005-06-11
    Description: Repetitive microsatellites mutate at relatively high rates and may contribute to the rapid evolution of species-typical traits. We show that individual alleles of a repetitive polymorphic microsatellite in the 5' region of the prairie vole vasopressin 1a receptor (avpr1a) gene modify gene expression in vitro. In vivo, we observe that this regulatory polymorphism predicts both individual differences in receptor distribution patterns and socio-behavioral traits. These data suggest that individual differences in gene expression patterns may be conferred via polymorphic microsatellites in the cis-regulatory regions of genes and may contribute to normal variation in behavioral traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammock, Elizabeth A D -- Young, Larry J -- MH56897/MH/NIMH NIH HHS/ -- MH64692/MH/NIMH NIH HHS/ -- MH67397/MH/NIMH NIH HHS/ -- RR00165/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1630-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947188" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Anxiety ; Arvicolinae/*genetics/physiology/psychology ; Base Sequence ; *Behavior, Animal ; Brain/metabolism ; *Gene Expression Regulation ; Genes, Reporter ; Genetic Variation ; Genotype ; Grooming ; Male ; *Microsatellite Repeats ; Molecular Sequence Data ; Odors ; Pair Bond ; Paternal Behavior ; Receptors, Vasopressin/*genetics/metabolism ; *Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2005-08-20
    Description: Bacteria have developed mechanisms to communicate and compete with each other for limited environmental resources. We found that certain Escherichia coli, including uropathogenic strains, contained a bacterial growth-inhibition system that uses direct cell-to-cell contact. Inhibition was conditional, dependent upon the growth state of the inhibitory cell and the pili expression state of the target cell. Both a large cell-surface protein designated Contact-dependent inhibitor A (CdiA) and two-partner secretion family member CdiB were required for growth inhibition. The CdiAB system may function to regulate the growth of specific cells within a differentiated bacterial population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aoki, Stephanie K -- Pamma, Rupinderjit -- Hernday, Aaron D -- Bickham, Jessica E -- Braaten, Bruce A -- Low, David A -- AI23348/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 19;309(5738):1245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara (UCSB), Santa Barbara, CA 93106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16109881" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Computational Biology ; Contact Inhibition ; Culture Media, Conditioned ; Escherichia coli/genetics/*growth & development/pathogenicity/physiology ; Escherichia coli K12/genetics/*growth & development/physiology ; Escherichia coli Proteins/chemistry/genetics/*physiology ; Fimbriae, Bacterial/metabolism ; Genes, Bacterial ; Genetic Complementation Test ; Genomic Islands ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2005-09-17
    Description: The spike protein (S) of SARS coronavirus (SARS-CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The crystal structure at 2.9 angstrom resolution of the RBD bound with the peptidase domain of human ACE2 shows that the RBD presents a gently concave surface, which cradles the N-terminal lobe of the peptidase. The atomic details at the interface between the two proteins clarify the importance of residue changes that facilitate efficient cross-species infection and human-to-human transmission. The structure of the RBD suggests ways to make truncated disulfide-stabilized RBD variants for use in the design of coronavirus vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fang -- Li, Wenhui -- Farzan, Michael -- Harrison, Stephen C -- AI061601/AI/NIAID NIH HHS/ -- CA13202/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1864-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Laboratory of Molecular Medicine, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166518" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Viral/immunology ; Binding Sites ; Carboxypeptidases/*chemistry/metabolism ; Cell Line ; Crystallography, X-Ray ; Disease Outbreaks ; Epitopes ; Glycosylation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Membrane Glycoproteins/*chemistry/genetics/immunology/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptidyl-Dipeptidase A ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Virus/*chemistry/metabolism ; SARS Virus/*chemistry/genetics/physiology ; Severe Acute Respiratory Syndrome/transmission/*virology ; Species Specificity ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/*chemistry/genetics/immunology/*metabolism ; Viral Vaccines ; Viverridae/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2005-03-26
    Description: Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rappas, Mathieu -- Schumacher, Jorg -- Beuron, Fabienne -- Niwa, Hajime -- Bordes, Patricia -- Wigneshweraraj, Sivaramesh -- Keetch, Catherine A -- Robinson, Carol V -- Buck, Martin -- Zhang, Xiaodong -- B17129/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1972-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790859" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; PII Nitrogen Regulatory Proteins ; *Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase Sigma 54 ; Sigma Factor/chemistry/metabolism ; Trans-Activators/*chemistry/*metabolism ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2005-06-04
    Description: Fluoroquinolones are gaining increasing importance in the treatment of tuberculosis. The expression of MfpA, a member of the pentapeptide repeat family of proteins from Mycobacterium tuberculosis, causes resistance to ciprofloxacin and sparfloxacin. This protein binds to DNA gyrase and inhibits its activity. Its three-dimensional structure reveals a fold, which we have named the right-handed quadrilateral beta helix, that exhibits size, shape, and electrostatic similarity to B-form DNA. This represents a form of DNA mimicry and explains both its inhibitory effect on DNA gyrase and fluoroquinolone resistance resulting from the protein's expression in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hegde, Subray S -- Vetting, Matthew W -- Roderick, Steven L -- Mitchenall, Lesley A -- Maxwell, Anthony -- Takiff, Howard E -- Blanchard, John S -- AI33696/AI/NIAID NIH HHS/ -- AI60899/AI/NIAID NIH HHS/ -- T32 AI007501/AI/NIAID NIH HHS/ -- T32 AI07501/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 3;308(5727):1480-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15933203" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antitubercular Agents/chemistry/*pharmacology ; Bacterial Proteins/chemistry/*physiology ; Ciprofloxacin/pharmacology ; Crystallography, X-Ray ; DNA Gyrase/metabolism ; DNA, Bacterial/*chemistry ; DNA, Superhelical/chemistry ; *Drug Resistance, Bacterial ; Drug Resistance, Microbial/*physiology ; Enzyme Inhibitors/chemistry ; Escherichia coli/enzymology ; Fluoroquinolones/antagonists & inhibitors/chemistry/*pharmacology ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Monomeric GTP-Binding Proteins ; Mycobacterium tuberculosis/drug effects/*physiology ; Protein Conformation ; Protein Folding ; Structure-Activity Relationship ; Topoisomerase II Inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2005-09-06
    Description: Twin-ribozyme introns are formed by two ribozymes belonging to the group I family and occur in some ribosomal RNA transcripts. The group I-like ribozyme, GIR1, liberates the 5' end of a homing endonuclease messenger RNA in the slime mold Didymium iridis. We demonstrate that this cleavage occurs by a transesterification reaction with the joining of the first and the third nucleotide of the messenger by a 2',5'-phosphodiester linkage. Thus, a group I-like ribozyme catalyzes an RNA branching reaction similar to the first step of splicing in group II introns and spliceosomal introns. The resulting short lariat, by forming a protective 5' cap, might have been useful in a primitive RNA world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Henrik -- Westhof, Eric -- Johansen, Steinar -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1584-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, DK-2200N Copenhagen, Denmark. hamra@imbg.ku.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141078" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; Endonucleases/biosynthesis/*genetics ; Esterification ; *Introns ; Molecular Sequence Data ; RNA Caps/*chemistry ; *RNA Splicing ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2005-02-05
    Description: Plants encode subunits for a fourth RNA polymerase (Pol IV) in addition to the well-known DNA-dependent RNA polymerases I, II, and III. By mutation of the two largest subunits (NRPD1a and NRPD2), we show that Pol IV silences certain transposons and repetitive DNA in a short interfering RNA pathway involving RNA-dependent RNA polymerase 2 and Dicer-like 3. The existence of this distinct silencing polymerase may explain the paradoxical involvement of an RNA silencing pathway in maintenance of transcriptional silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herr, A J -- Jensen, M B -- Dalmay, T -- Baulcombe, D C -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):118-20. Epub 2005 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692015" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/genetics ; Arabidopsis Proteins/chemistry/genetics/metabolism ; Base Sequence ; Chromatin/metabolism ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/*genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Gene Silencing ; Genes, Plant ; Genetic Complementation Test ; Green Fluorescent Proteins/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Oryza/enzymology/genetics ; Plants, Genetically Modified ; Protein Subunits/chemistry/genetics/metabolism ; RNA Interference ; RNA Polymerase II/metabolism ; RNA, Plant/metabolism ; RNA, Small Interfering/metabolism ; Repetitive Sequences, Nucleic Acid ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2005-01-08
    Description: The P1 lysozyme Lyz is secreted to the periplasm of Escherichia coli and accumulates in an inactive membrane-tethered form. Genetic and biochemical experiments show that, when released from the bilayer, Lyz is activated by an intramolecular thiol-disulfide isomerization, which requires a cysteine in its N-terminal SAR (signal-arrest-release) domain. Crystal structures confirm the alternative disulfide linkages in the two forms of Lyz and reveal dramatic conformational differences in the catalytic domain. Thus, the exported P1 endolysin is kept inactive by three levels of control-topological, conformational, and covalent-until its release from the membrane is triggered by the P1 holin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Min -- Arulandu, Arockiasamy -- Struck, Douglas K -- Swanson, Stephanie -- Sacchettini, James C -- Young, Ry -- GM27099/GM/NIGMS NIH HHS/ -- GM62410/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):113-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637279" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage P1/*enzymology ; Binding Sites ; Catalytic Domain ; Cell Membrane/enzymology ; Chemistry, Physical ; Crystallography, X-Ray ; Cysteine/chemistry ; Enzyme Activation ; Escherichia coli/enzymology/virology ; Isomerism ; Lipid Bilayers ; Models, Molecular ; Molecular Sequence Data ; Muramidase/*chemistry/genetics/*metabolism ; Mutation ; Physicochemical Phenomena ; Protein Conformation ; Protein Sorting Signals ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2005-06-04
    Description: Interleukin-2 (IL-2) is an immunoregulatory cytokine that binds sequentially to the alpha (IL-2Ralpha), beta (IL-2Rbeta), and common gamma chain (gammac) receptor subunits. Here we present the 2.8 angstrom crystal structure of a complex between human IL-2 and IL-2Ralpha, which interact in a docking mode distinct from that of other cytokine receptor complexes. IL-2Ralpha is composed of strand-swapped "sushi-like" domains, unlike the classical cytokine receptor fold. As a result of this domain swap, IL-2Ralpha uses a composite surface to dock into a groove on IL-2 that also serves as a binding site for antagonist drugs. With this complex, we now have representative structures for each class of hematopoietic cytokine receptor-docking modules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rickert, Mathias -- Wang, Xinquan -- Boulanger, Martin J -- Goriatcheva, Natalia -- Garcia, K Christopher -- AI51321/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 3;308(5727):1477-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Microbiology and Immunology, and Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Fairchild D319, Stanford, CA 94305-5124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15933202" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Humans ; Interleukin-2/*chemistry/metabolism ; Interleukin-2 Receptor alpha Subunit ; Models, Molecular ; Protein Binding ; Protein Conformation ; Receptors, Interleukin/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2005-04-30
    Description: Mammalian Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs). Although TLRs are clearly involved in the detection of bacteria and viruses, relatively little is known about their function in the innate response to eukaryotic microorganisms. Here we identify a profilin-like molecule from the protozoan parasite Toxoplasma gondii that generates a potent interleukin-12 (IL-12) response in murine DCs that is dependent on myeloid differentiation factor 88. T. gondii profilin activates DCs through TLR11 and is the first chemically defined ligand for this TLR. Moreover, TLR11 is required in vivo for parasite-induced IL-12 production and optimal resistance to infection, thereby establishing a role for the receptor in host recognition of protozoan pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarovinsky, Felix -- Zhang, Dekai -- Andersen, John F -- Bannenberg, Gerard L -- Serhan, Charles N -- Hayden, Matthew S -- Hieny, Sara -- Sutterwala, Fayyaz S -- Flavell, Richard A -- Ghosh, Sankar -- Sher, Alan -- 1R01AI045806-01A1/AI/NIAID NIH HHS/ -- AI05093/AI/NIAID NIH HHS/ -- R01-AI59440/AI/NIAID NIH HHS/ -- R01-GM38765/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1626-9. Epub 2005 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Section, Laboratory of Parasitic Diseases; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. fyarovinsky@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15860593" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antigens, Differentiation/genetics/metabolism ; Contractile Proteins/chemistry/*immunology/isolation & purification/metabolism ; Dendritic Cells/*immunology ; Genes, Protozoan ; Immunity, Innate ; Interleukin-12/biosynthesis/blood ; Ligands ; Membrane Glycoproteins/metabolism ; Mice ; Mice, Inbred C57BL ; Microfilament Proteins/chemistry/*immunology/isolation & purification/metabolism ; Molecular Sequence Data ; Myeloid Differentiation Factor 88 ; NF-kappa B/metabolism ; Profilins ; Protozoan Proteins/chemistry/*immunology/isolation & purification/metabolism ; Receptors, Cell Surface/*metabolism ; Receptors, Immunologic/genetics/metabolism ; Recombinant Proteins/immunology ; Signal Transduction ; Toll-Like Receptors ; Toxoplasma/genetics/*immunology ; Toxoplasmosis, Animal/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2005-08-16
    Description: Microorganisms living in anoxic rice soils contribute 10 to 25% of global methane emissions. The most important carbon source for CH4 production is plant-derived carbon that enters soil as root exudates and debris. Pulse labeling of rice plants with 13CO2 resulted in incorporation of 13C into the ribosomal RNA of Rice Cluster I Archaea in the soil, indicating that this archaeal group plays a key role in CH4 production from plant-derived carbon. This group of microorganisms has not yet been isolated but appears to be of global environmental importance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Yahai -- Conrad, Ralf -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1088-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099988" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/classification/genetics/growth & development/*metabolism ; Carbon Dioxide/metabolism ; Carbon Isotopes/*metabolism ; Cloning, Molecular ; *Ecosystem ; Hydrogen/metabolism ; Methane/*metabolism ; Molecular Sequence Data ; Oryza/metabolism/*microbiology ; Photosynthesis ; Phylogeny ; Plant Roots/metabolism/microbiology ; Polymorphism, Restriction Fragment Length ; RNA, Archaeal/metabolism ; RNA, Ribosomal, 16S/genetics/metabolism ; *Soil Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2005-06-04
    Description: Despite the greater information content of genomic DNA, ancient DNA studies have largely been limited to the amplification of mitochondrial sequences. Here we describe metagenomic libraries constructed with unamplified DNA extracted from skeletal remains of two 40,000-year-old extinct cave bears. Analysis of approximately 1 megabase of sequence from each library showed that despite significant microbial contamination, 5.8 and 1.1% of clones contained cave bear inserts, yielding 26,861 base pairs of cave bear genome sequence. Comparison of cave bear and modern bear sequences revealed the evolutionary relationship of these lineages. The metagenomic approach used here establishes the feasibility of ancient DNA genome sequencing programs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noonan, James P -- Hofreiter, Michael -- Smith, Doug -- Priest, James R -- Rohland, Nadin -- Rabeder, Gernot -- Krause, Johannes -- Detter, J Chris -- Paabo, Svante -- Rubin, Edward M -- T32 HL07279/HL/NHLBI NIH HHS/ -- U1 HL66681B/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):597-9. Epub 2005 Jun 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15933159" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cloning, Molecular ; Computational Biology ; DNA/genetics/history ; Dogs/genetics ; *Genome ; Genomic Library ; History, Ancient ; Molecular Sequence Data ; Phylogeny ; Sequence Alignment ; *Sequence Analysis, DNA ; Ursidae/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2005-06-18
    Description: Toll-like receptors (TLRs) play key roles in activating immune responses during infection. The human TLR3 ectodomain structure at 2.1 angstroms reveals a large horseshoe-shaped solenoid assembled from 23 leucine-rich repeats (LRRs). Asparagines conserved in the 24-residue LRR motif contribute extensive hydrogen-bonding networks for solenoid stabilization. TLR3 is largely masked by carbohydrate, but one face is glycosylation-free, which suggests its potential role in ligand binding and oligomerization. Highly conserved surface residues and a TLR3-specific LRR insertion form a homodimer interface in the crystal, whereas two patches of positively charged residues and a second insertion would provide an appropriate binding site for double-stranded RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choe, Jungwoo -- Kelker, Matthew S -- Wilson, Ian A -- AI-42266/AI/NIAID NIH HHS/ -- CA-58896/CA/NCI NIH HHS/ -- T32 AI077606/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):581-5. Epub 2005 Jun 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961631" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; Glycosylation ; Humans ; Hydrogen Bonding ; Leucine/chemistry ; Ligands ; Membrane Glycoproteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Double-Stranded/metabolism ; Receptors, Cell Surface/*chemistry/metabolism ; Repetitive Sequences, Amino Acid ; Signal Transduction ; Static Electricity ; Surface Properties ; Toll-Like Receptor 3 ; Toll-Like Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2005-02-01
    Description: The positive buoyancy of marine fish eggs in sea water, allowed by hydration of the oocyte, is critical for their survival and dispersion in the ocean. We isolated an aquaporin, SaAQP1o, that belongs to a unique subfamily of aquaporin-1-like channels specifically evolved in teleosts and mainly expressed in the ovary. We further show that hormone-induced fish oocyte hydration is a highly controlled process based on the interplay between protein hydrolysis and the translocation of SaAQP1o to the plasma membrane, indicating a specialized physiological role for this aquaporin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fabra, Mercedes -- Raldua, Demetrio -- Power, Deborah M -- Deen, Peter M T -- Cerda, Joan -- New York, N.Y. -- Science. 2005 Jan 28;307(5709):545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center of Aquaculture-Institut de Recerca i Tecnologia Agroalimentaries, Tarragona, Spain, and Reference Center in Aquaculture, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aquaporin 1 ; Aquaporins/chemistry/classification/genetics/*physiology ; Biological Evolution ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; DNA, Complementary ; Female ; Fishes/genetics/physiology ; Mercuric Chloride/pharmacology ; Microvilli/metabolism ; Molecular Sequence Data ; Oocytes/*physiology ; Ovary ; Permeability ; Phylogeny ; Recombinant Proteins/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Sea Bream/genetics/*physiology ; Water/*metabolism ; Xenopus laevis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2005-03-26
    Description: Major phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago. Members of this clade of low-plated alleles are present at low frequencies in marine fish, which suggests that standing genetic variation can provide a molecular basis for rapid, parallel evolution of dramatic phenotypic change in nature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colosimo, Pamela F -- Hosemann, Kim E -- Balabhadra, Sarita -- Villarreal, Guadalupe Jr -- Dickson, Mark -- Grimwood, Jane -- Schmutz, Jeremy -- Myers, Richard M -- Schluter, Dolph -- Kingsley, David M -- 1P50HG02568/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1928-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790847" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; *Biological Evolution ; Body Patterning ; Chromosome Walking ; Cloning, Molecular ; Ectodysplasins ; Fresh Water ; Gene Frequency ; Genetic Variation ; Haplotypes ; Linkage Disequilibrium ; Membrane Proteins/*genetics/physiology ; Molecular Sequence Data ; Mutation ; Phenotype ; Phylogeny ; Polymorphism, Single Nucleotide ; Seawater ; Selection, Genetic ; Sequence Analysis, DNA ; Signal Transduction ; Smegmamorpha/*anatomy & histology/classification/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2005-04-23
    Description: The species complexity of microbial communities and challenges in culturing representative isolates make it difficult to obtain assembled genomes. Here we characterize and compare the metabolic capabilities of terrestrial and marine microbial communities using largely unassembled sequence data obtained by shotgun sequencing DNA isolated from the various environments. Quantitative gene content analysis reveals habitat-specific fingerprints that reflect known characteristics of the sampled environments. The identification of environment-specific genes through a gene-centric comparative analysis presents new opportunities for interpreting and diagnosing environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tringe, Susannah Green -- von Mering, Christian -- Kobayashi, Arthur -- Salamov, Asaf A -- Chen, Kevin -- Chang, Hwai W -- Podar, Mircea -- Short, Jay M -- Mathur, Eric J -- Detter, John C -- Bork, Peer -- Hugenholtz, Philip -- Rubin, Edward M -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):554-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15845853" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaea/classification/genetics/metabolism ; Bacteria/classification/*genetics/metabolism ; Bacterial Proteins/genetics/metabolism ; Biodiversity ; Biofilms ; Bone and Bones/microbiology ; Computational Biology ; *Ecosystem ; Energy Metabolism ; Eukaryotic Cells/metabolism ; Gene Library ; Genes ; Genes, Bacterial ; *Genome ; Genome, Bacterial ; *Genomics ; Molecular Sequence Data ; Operon ; Phylogeny ; Polymerase Chain Reaction ; Proteins/genetics/metabolism ; Proteome ; Seawater/*microbiology ; Sequence Analysis, DNA ; *Soil Microbiology ; Whales/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2005-11-15
    Description: Plants commonly use photoperiod (day length) to control the timing of flowering during the year, and variation in photoperiod response has been selected in many crops to provide adaptation to different environments and farming practices. Positional cloning identified Ppd-H1, the major determinant of barley photoperiod response, as a pseudo-response regulator, a class of genes involved in circadian clock function. Reduced photoperiod responsiveness of the ppd-H1 mutant, which is highly advantageous in spring-sown varieties, is explained by altered circadian expression of the photoperiod pathway gene CONSTANS and reduced expression of its downstream target, FT, a key regulator of flowering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, Adrian -- Beales, James -- Faure, Sebastien -- Dunford, Roy P -- Laurie, David A -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1031-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284181" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Circadian Rhythm ; Cloning, Molecular ; Crosses, Genetic ; Flowers/physiology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; *Genes, Plant ; Hordeum/genetics/*physiology ; Molecular Sequence Data ; Mutation ; *Photoperiod ; Plant Proteins/chemistry/genetics/*physiology ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2005-07-05
    Description: Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T. annulata and compared it with that of T. parva to understand the mechanisms underlying transformation and tropism. Despite high conservation of gene sequences and synteny, the analysis reveals unequally expanded gene families and species-specific genes. We also identify divergent families of putative secreted polypeptides that may reduce immune recognition, candidate regulators of host-cell transformation, and a Theileria-specific protein domain [frequently associated in Theileria (FAINT)] present in a large number of secreted proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pain, Arnab -- Renauld, Hubert -- Berriman, Matthew -- Murphy, Lee -- Yeats, Corin A -- Weir, William -- Kerhornou, Arnaud -- Aslett, Martin -- Bishop, Richard -- Bouchier, Christiane -- Cochet, Madeleine -- Coulson, Richard M R -- Cronin, Ann -- de Villiers, Etienne P -- Fraser, Audrey -- Fosker, Nigel -- Gardner, Malcolm -- Goble, Arlette -- Griffiths-Jones, Sam -- Harris, David E -- Katzer, Frank -- Larke, Natasha -- Lord, Angela -- Maser, Pascal -- McKellar, Sue -- Mooney, Paul -- Morton, Fraser -- Nene, Vishvanath -- O'Neil, Susan -- Price, Claire -- Quail, Michael A -- Rabbinowitsch, Ester -- Rawlings, Neil D -- Rutter, Simon -- Saunders, David -- Seeger, Kathy -- Shah, Trushar -- Squares, Robert -- Squares, Steven -- Tivey, Adrian -- Walker, Alan R -- Woodward, John -- Dobbelaere, Dirk A E -- Langsley, Gordon -- Rajandream, Marie-Adele -- McKeever, Declan -- Shiels, Brian -- Tait, Andrew -- Barrell, Bart -- Hall, Neil -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):131-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ap2@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994557" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cattle ; Cell Proliferation ; Chromosome Mapping ; Chromosomes/genetics ; Conserved Sequence ; Genes, Protozoan ; *Genome, Protozoan ; Life Cycle Stages ; Lipid Metabolism ; Lymphocytes/cytology/parasitology ; Molecular Sequence Data ; Multigene Family ; Phylogeny ; Protein Sorting Signals/genetics ; Protein Structure, Tertiary ; Proteome ; Protozoan Proteins/chemistry/*genetics/physiology ; Sequence Analysis, DNA ; Species Specificity ; Synteny ; Telomere/genetics ; Theileria annulata/*genetics/growth & development/immunology/pathogenicity ; Theileria parva/*genetics/growth & development/immunology/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2005-11-08
    Description: We describe two structures of the intact bacterial ribosome from Escherichia coli determined to a resolution of 3.5 angstroms by x-ray crystallography. These structures provide a detailed view of the interface between the small and large ribosomal subunits and the conformation of the peptidyl transferase center in the context of the intact ribosome. Differences between the two ribosomes reveal a high degree of flexibility between the head and the rest of the small subunit. Swiveling of the head of the small subunit observed in the present structures, coupled to the ratchet-like motion of the two subunits observed previously, suggests a mechanism for the final movements of messenger RNA (mRNA) and transfer RNAs (tRNAs) during translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuwirth, Barbara S -- Borovinskaya, Maria A -- Hau, Cathy W -- Zhang, Wen -- Vila-Sanjurjo, Anton -- Holton, James M -- Cate, Jamie H Doudna -- CA92584/CA/NCI NIH HHS/ -- GM65050/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 4;310(5749):827-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16272117" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/*ultrastructure ; Escherichia coli Proteins/biosynthesis/chemistry ; Hydrogen Bonding ; Magnesium/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Peptidyl Transferases/chemistry ; Protein Biosynthesis ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Ribosomal/*chemistry ; RNA, Transfer/chemistry/metabolism ; Ribosomal Proteins/*chemistry ; Ribosomes/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2005-05-10
    Description: Thermostabilizing an enzyme while maintaining its activity for industrial or biomedical applications can be difficult with traditional selection methods. We describe a rapid computational approach that identified three mutations within a model enzyme that produced a 10 degrees C increase in apparent melting temperature T(m) and a 30-fold increase in half-life at 50 degrees C, with no reduction in catalytic efficiency. The effects of the mutations were synergistic, giving an increase in excess of the sum of their individual effects. The redesigned enzyme induced an increased, temperature-dependent bacterial growth rate under conditions that required its activity, thereby coupling molecular and metabolic engineering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korkegian, Aaron -- Black, Margaret E -- Baker, David -- Stoddard, Barry L -- CA85939/CA/NCI NIH HHS/ -- CA97328/CA/NCI NIH HHS/ -- GM49857/GM/NIGMS NIH HHS/ -- GM59224/GM/NIGMS NIH HHS/ -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- T32-GM08268/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 May 6;308(5723):857-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center (FHCRC), 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15879217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Circular Dichroism ; *Computer Simulation ; Crystallography, X-Ray ; Cytosine Deaminase/*chemistry/*metabolism ; Enzyme Stability ; Escherichia coli/genetics/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Mutagenesis, Site-Directed ; Point Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Software ; Temperature ; Thermodynamics ; Transformation, Genetic ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2005-03-19
    Description: The mammalian intestine harbors a beneficial microbiota numbering approximately 10(12) organisms per gram of colonic content. The host tolerates this tremendous bacterial load while maintaining the ability to efficiently respond to pathogenic organisms. In this study, we show that the Bacteroides use a mammalian-like pathway to decorate numerous surface capsular polysaccharides and glycoproteins with l-fucose, an abundant surface molecule of intestinal epithelial cells, resulting in the coordinated expression of this surface molecule by host and symbiont. A Bacteroides mutant deficient in the ability to cover its surface with L-fucose is defective in colonizing the mammalian intestine under competitive conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coyne, Michael J -- Reinap, Barbara -- Lee, Martin M -- Comstock, Laurie E -- AI44193/AI/NIAID NIH HHS/ -- AI53694/AI/NIAID NIH HHS/ -- R01 AI044193/AI/NIAID NIH HHS/ -- R01 AI044193-07/AI/NIAID NIH HHS/ -- R01 AI053694/AI/NIAID NIH HHS/ -- R01 AI053694-03/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1778-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774760" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Bacterial Capsules/biosynthesis/chemistry/*metabolism ; Bacterial Proteins/biosynthesis/metabolism ; Bacteroides fragilis/enzymology/genetics/growth & development/*metabolism ; Culture Media ; Feces/microbiology ; Fucose/*metabolism ; Gene Deletion ; Genes, Bacterial ; Glycoproteins/biosynthesis/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Hydro-Lyases/genetics/metabolism ; Intestinal Mucosa/metabolism ; Intestines/*microbiology ; Mice ; Molecular Mimicry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2005-11-15
    Description: The primary event that initiates vision is the light-induced 11-cis to all-trans isomerization of retinal in the visual pigment rhodopsin. Despite decades of study with the traditional tools of chemical reaction dynamics, both the timing and nature of the atomic motions that lead to photoproduct production remain unknown. We used femtosecond-stimulated Raman spectroscopy to obtain time-resolved vibrational spectra of the molecular structures formed along the reaction coordinate. The spectral evolution of the vibrational features from 200 femtoseconds to 1 picosecond after photon absorption reveals the temporal sequencing of the geometric changes in the retinal backbone that activate this receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kukura, Philipp -- McCamant, David W -- Yoon, Sangwoon -- Wandschneider, Daniel B -- Mathies, Richard A -- EY-02051/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1006-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284176" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Chemistry, Physical ; Energy Transfer ; Hydrogen/chemistry ; Isomerism ; *Light ; Models, Chemical ; Models, Molecular ; Photochemistry ; Photons ; Physicochemical Phenomena ; Protein Conformation ; Retinaldehyde/*chemistry ; Rhodopsin/*chemistry ; Spectrum Analysis, Raman ; Time Factors ; *Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2005-07-16
    Description: Apolipoprotein L-I is the trypanolytic factor of human serum. Here we show that this protein contains a membrane pore-forming domain functionally similar to that of bacterial colicins, flanked by a membrane-addressing domain. In lipid bilayer membranes, apolipoprotein L-I formed anion channels. In Trypanosoma brucei, apolipoprotein L-I was targeted to the lysosomal membrane and triggered depolarization of this membrane, continuous influx of chloride, and subsequent osmotic swelling of the lysosome until the trypanosome lysed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perez-Morga, David -- Vanhollebeke, Benoit -- Paturiaux-Hanocq, Francoise -- Nolan, Derek P -- Lins, Laurence -- Homble, Fabrice -- Vanhamme, Luc -- Tebabi, Patricia -- Pays, Annette -- Poelvoorde, Philippe -- Jacquet, Alain -- Brasseur, Robert -- Pays, Etienne -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):469-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Parasitology, IBMM, Universite Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041 Gosselies, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020735" target="_blank"〉PubMed〈/a〉
    Keywords: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology ; Amino Acid Sequence ; Animals ; Anions/metabolism ; Apolipoproteins/*chemistry/genetics/*metabolism/pharmacology ; Cells, Immobilized ; Chlorides/metabolism ; Colicins/chemistry/pharmacology ; Escherichia coli/drug effects/growth & development ; Humans ; Intracellular Membranes/drug effects/*metabolism/ultrastructure ; Ion Channels/metabolism ; Lipid Bilayers/chemistry ; Lipoproteins, HDL/*chemistry/genetics/*metabolism/pharmacology ; Lysosomes/drug effects/*metabolism/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Permeability ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Trypanosoma brucei brucei/drug effects/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2005-12-24
    Description: Instead of the immunoglobulin-type antigen receptors of jawed vertebrates, jawless fish have variable lymphocyte receptors (VLRs), which consist of leucine-rich repeat (LRR) modules. Somatic diversification of the VLR gene is shown here to occur through a multistep assembly of LRR modules randomly selected from a large bank of flanking cassettes. The predicted concave surface of the VLR is lined with hypervariable positively selected residues, and computational analysis suggests a repertoire of about 10(14) unique receptors. Lamprey immunized with anthrax spores responded with the production of soluble antigen-specific VLRs. These findings reveal that two strikingly different modes of antigen recognition through rearranged lymphocyte receptors have evolved in the jawless and jawed vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alder, Matthew N -- Rogozin, Igor B -- Iyer, Lakshminarayan M -- Glazko, Galina V -- Cooper, Max D -- Pancer, Zeev -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 23;310(5756):1970-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16373579" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Bacillus anthracis/immunology ; Bacillus subtilis/immunology ; Evolution, Molecular ; Gene Rearrangement ; Genetic Variation ; Immunity/*genetics/physiology ; Lampreys/genetics/*immunology ; Molecular Sequence Data ; Receptors, Immunologic/*genetics/immunology ; Selection, Genetic ; Spores, Bacterial/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2005-06-11
    Description: In Schizosaccharomyces pombe, the RNA interference (RNAi) machinery converts pericentromeric transcripts into small interfering RNAs (siRNAs) and is required for the assembly of pericentromeric heterochromatin. Here we describe a mutation in the second largest subunit of RNA polymerase II (RNAPII). Both wild-type and mutant RNAPII localized to the pericentromere. However, the mutation resulted in the loss of heterochromatic histone modifications and in the accumulation of pericentromeric transcripts, accompanied by the loss of siRNAs. This phenotype resembles mutants in RNAi and suggests that RNAPII couples pericentromeric transcription with siRNA processing and heterochromatin assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, Hiroaki -- Goto, Derek B -- Martienssen, Robert A -- Urano, Takeshi -- Furukawa, Koichi -- Murakami, Yota -- R01-GM067014/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):467-9. Epub 2005 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947136" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Centromere/metabolism ; Chromosome Segregation ; Gene Expression Regulation, Fungal ; Heterochromatin/*metabolism ; Histones/metabolism ; Methylation ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Point Mutation ; *RNA Interference ; RNA Polymerase II/chemistry/genetics/*metabolism ; RNA, Fungal/metabolism ; RNA, Messenger/metabolism ; RNA, Small Interfering/*metabolism ; Schizosaccharomyces/enzymology/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2005-06-18
    Description: Rhizobial Nod factors induce in their legume hosts the expression of many genes and set in motion developmental processes leading to root nodule formation. Here we report the identification of the Medicago GRAS-type protein Nodulation signaling pathway 1 (NSP1), which is essential for all known Nod factor-induced changes in gene expression. NSP1 is constitutively expressed, and so it acts as a primary transcriptional regulator mediating all known Nod factor-induced transcriptional responses, and therefore, we named it a Nod factor response factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smit, Patrick -- Raedts, John -- Portyanko, Vladimir -- Debelle, Frederic -- Gough, Clare -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1789-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Wageningen 6703 HA, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961669" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cell Nucleus/metabolism ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/*metabolism ; Medicago/*genetics/metabolism/*microbiology ; Molecular Sequence Data ; Mutation ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Roots/metabolism/microbiology ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; Signal Transduction ; Sinorhizobium meliloti/*physiology ; Symbiosis ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-04-23
    Description: The transmission of extracellular signals to the interior of the cell is a function of plasma membrane receptors, of which the seven transmembrane receptor family is by far the largest and most versatile. Classically, these receptors stimulate heterotrimeric G proteins, which control rates of generation of diffusible second messengers and entry of ions at the plasma membrane. Recent evidence, however, indicates another previously unappreciated strategy used by the receptors to regulate intracellular signaling pathways. They direct the recruitment, activation, and scaffolding of cytoplasmic signaling complexes via two multifunctional adaptor and transducer molecules, beta-arrestins 1 and 2. This mechanism regulates aspects of cell motility, chemotaxis, apoptosis, and likely other cellular functions through a rapidly expanding list of signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lefkowitz, Robert J -- Shenoy, Sudha K -- HL 16037/HL/NHLBI NIH HHS/ -- HL 70631/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):512-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Durham, NC 27710, USA. lefko001@receptor-biol.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15845844" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Arrestins/chemistry/genetics/*metabolism ; Cell Movement ; Chemotaxis ; Endocytosis ; Heterotrimeric GTP-Binding Proteins/metabolism ; Humans ; Mitogen-Activated Protein Kinases/metabolism ; Models, Biological ; Models, Molecular ; Protein Conformation ; Protein-Tyrosine Kinases/metabolism ; Receptors, G-Protein-Coupled/*metabolism ; Second Messenger Systems/physiology ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2005-04-02
    Description: The membrane rotor ring from the vacuolar-type (V-type) sodium ion-pumping adenosine triphosphatase (Na+-ATPase) from Enterococcus hirae consists of 10 NtpK subunits, which are homologs of the 16-kilodalton and 8-kilodalton proteolipids found in other V-ATPases and in F1Fo- or F-ATPases, respectively. Each NtpK subunit has four transmembrane alpha helices, with a sodium ion bound between helices 2 and 4 at a site buried deeply in the membrane that includes the essential residue glutamate-139. This site is probably connected to the membrane surface by two half-channels in subunit NtpI, against which the ring rotates. Symmetry mismatch between the rotor and catalytic domains appears to be an intrinsic feature of both V- and F-ATPases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murata, Takeshi -- Yamato, Ichiro -- Kakinuma, Yoshimi -- Leslie, Andrew G W -- Walker, John E -- New York, N.Y. -- Science. 2005 Apr 29;308(5722):654-9. Epub 2005 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802565" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Detergents/metabolism ; Enterococcus/*enzymology ; Ion Transport ; Models, Biological ; Models, Molecular ; Molecular Motor Proteins/*chemistry/metabolism ; Molecular Sequence Data ; Phospholipids/chemistry/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sodium/metabolism ; Static Electricity ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2005-10-15
    Description: Enhancer of Zeste homolog 2 (EZH2) is a methyltransferase that plays an important role in many biological processes through its ability to trimethylate lysine 27 in histone H3. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZH2 binding to histone H3, which results in a decrease of lysine 27 trimethylation and derepression of silenced genes. Our results imply that Akt regulates the methylation activity, through phosphorylation of EZH2, which may contribute to oncogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cha, Tai-Lung -- Zhou, Binhua P -- Xia, Weiya -- Wu, Yadi -- Yang, Cheng-Chieh -- Chen, Chun-Te -- Ping, Bo -- Otte, Arie P -- Hung, Mien-Chie -- P01 099031/PHS HHS/ -- R01 109311/PHS HHS/ -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):306-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224021" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; COS Cells ; Cell Line ; Cell Transformation, Neoplastic ; Cercopithecus aethiops ; Chromones/pharmacology ; DNA-Binding Proteins ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation ; HeLa Cells ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/*metabolism ; Homeodomain Proteins/genetics ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Morpholines/pharmacology ; Phosphorylation ; Polycomb Repressive Complex 2 ; Protein Binding ; Protein Methyltransferases ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*metabolism ; Proteins/*metabolism ; Proto-Oncogene Proteins/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-akt ; Serine/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2005-07-05
    Description: The structure of a synaptic intermediate of the site-specific recombinase gammadelta resolvase covalently linked through Ser10 to two cleaved duplex DNAs has been determined at 3.4 angstrom resolution. This resolvase, activated for recombination by mutations, forms a tetramer whose structure is substantially changed from that of a presynaptic complex between dimeric resolvase and the cleavage site DNA. Because the two cleaved DNA duplexes that are to be recombined lie on opposite sides of the core tetramer, large movements of both protein and DNA are required to achieve strand exchange. The two dimers linked to the DNAs that are to be recombined are held together by a flat interface. This may allow a 180 degrees rotation of one dimer relative to the other in order to reposition the DNA duplexes for strand exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Weikai -- Kamtekar, Satwik -- Xiong, Yong -- Sarkis, Gary J -- Grindley, Nigel D F -- Steitz, Thomas A -- GM28470/GM/NIGMS NIH HHS/ -- GM57510/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 19;309(5738):1210-5. Epub 2005 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994378" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Catalytic Domain ; Computer Simulation ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; Dimerization ; Models, Molecular ; Mutation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombination, Genetic ; Transposon Resolvases/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2005-11-15
    Description: We have identified a small-molecule inhibitor of tumor necrosis factor alpha (TNF-alpha) that promotes subunit disassembly of this trimeric cytokine family member. The compound inhibits TNF-alpha activity in biochemical and cell-based assays with median inhibitory concentrations of 22 and 4.6 micromolar, respectively. Formation of an intermediate complex between the compound and the intact trimer results in a 600-fold accelerated subunit dissociation rate that leads to trimer dissociation. A structure solved by x-ray crystallography reveals that a single compound molecule displaces a subunit of the trimer to form a complex with a dimer of TNF-alpha subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Molly M -- Smith, Annemarie Stroustrup -- Oslob, Johan D -- Flanagan, William M -- Braisted, Andrew C -- Whitty, Adrian -- Cancilla, Mark T -- Wang, Jun -- Lugovskoy, Alexey A -- Yoburn, Josh C -- Fung, Amy D -- Farrington, Graham -- Eldredge, John K -- Day, Eric S -- Cruz, Leslie A -- Cachero, Teresa G -- Miller, Stephan K -- Friedman, Jessica E -- Choong, Ingrid C -- Cunningham, Brian C -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1022-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284179" target="_blank"〉PubMed〈/a〉
    Keywords: Biotinylation ; Chemistry, Physical ; Crystallography, X-Ray ; Dimerization ; Fluorescence ; Hydrogen/chemistry ; Hydrophobic and Hydrophilic Interactions ; Indoles/chemical synthesis/*chemistry/*pharmacology ; Kinetics ; Mass Spectrometry ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Physicochemical Phenomena ; Protein Conformation ; Protein Subunits/chemistry ; Receptors, Tumor Necrosis Factor, Type I/metabolism ; Tumor Necrosis Factor-alpha/*antagonists & inhibitors/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2005-11-29
    Description: We have identified two genes, smedwi-1 and smedwi-2, expressed in the dividing adult stem cells (neoblasts) of the planarian Schmidtea mediterranea. Both genes encode proteins that belong to the Argonaute/PIWI protein family and that share highest homology with those proteins defined by Drosophila PIWI. RNA interference (RNAi) of smedwi-2 blocks regeneration, even though neoblasts are present, irradiation-sensitive, and capable of proliferating in response to wounding; smedwi-2(RNAi) neoblast progeny migrate to sites of cell turnover but, unlike normal cells, fail at replacing aged tissue. We suggest that SMEDWI-2 functions within dividing neoblasts to support the generation of cells that promote regeneration and homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddien, Peter W -- Oviedo, Nestor J -- Jennings, Joya R -- Jenkin, James C -- Sanchez Alvarado, Alejandro -- R0-1 GM57260/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1327-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16311336" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Count ; Cell Differentiation ; Cell Division ; Cell Movement ; Cell Separation ; Cell Shape ; Cyclin B/genetics ; Flow Cytometry ; Gene Expression ; *Genes, Helminth ; Helminth Proteins/genetics/*physiology ; Homeostasis ; Mitosis ; Molecular Sequence Data ; Phenotype ; Planarians/chemistry/*cytology/genetics/*physiology ; RNA Interference ; Regeneration ; Stem Cells/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2005-05-14
    Description: Select members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family couple ATP binding and hydrolysis to substrate efflux and confer multidrug resistance. We have determined the x-ray structure of MsbA in complex with magnesium, adenosine diphosphate, and inorganic vanadate (Mg.ADP.Vi) and the rough-chemotype lipopolysaccharide, Ra LPS. The structure supports a model involving a rigid-body torque of the two transmembrane domains during ATP hydrolysis and suggests a mechanism by which the nucleotide-binding domain communicates with the transmembrane domain. We propose a lipid "flip-flop" mechanism in which the sugar groups are sequestered in the chamber while the hydrophobic tails are dragged through the lipid bilayer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, Christopher L -- Chang, Geoffrey -- GM61905/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 May 13;308(5724):1028-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road CB105, La Jolla, CA 92137, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890884" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/*metabolism ; Adenosine Diphosphate/*metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cell Membrane/*chemistry ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Dimerization ; Fourier Analysis ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers ; Lipopolysaccharides/*metabolism ; Magnesium/metabolism ; Models, Molecular ; Periplasm/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Salmonella typhimurium/*chemistry ; Substrate Specificity ; Vanadates/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2005-07-09
    Description: Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase beta subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and beta subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the beta subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Stephen B -- Campbell, Ernest B -- Mackinnon, Roderick -- GM43949/GM/NIGMS NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 5;309(5736):897-903. Epub 2005 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16002581" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Cloning, Molecular ; Crystallography, X-Ray ; Electrochemistry ; Kv1.2 Potassium Channel ; Models, Molecular ; Pichia ; Potassium/chemistry ; Potassium Channels, Voltage-Gated/*chemistry ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Rats ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-09
    Description: Macromolecular structures calculated from nuclear magnetic resonance data are not fully determined by experimental data but depend on subjective choices in data treatment and parameter settings. This makes it difficult to objectively judge the precision of the structures. We used Bayesian inference to derive a probability distribution that represents the unknown structure and its precision. This probability distribution also determines additional unknowns, such as theory parameters, that previously had to be chosen empirically. We implemented this approach by using Markov chain Monte Carlo techniques. Our method provides an objective figure of merit and improves structural quality.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rieping, Wolfgang -- Habeck, Michael -- Nilges, Michael -- New York, N.Y. -- Science. 2005 Jul 8;309(5732):303-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite de Bioinformatique Structurale, Institut Pasteur, CNRS URA 2185, 25-28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16002620" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Bayes Theorem ; Crystallography, X-Ray ; Macromolecular Substances/*chemistry ; Markov Chains ; Models, Molecular ; *Molecular Conformation ; Monte Carlo Method ; Nuclear Magnetic Resonance, Biomolecular ; Probability ; *Protein Conformation ; Proto-Oncogene Proteins/*chemistry ; Proto-Oncogene Proteins c-fyn ; Thermodynamics ; *src Homology Domains ; src-Family Kinases/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2005-02-12
    Description: We show that the specific subcellular distribution of H- and Nras guanosine triphosphate-binding proteins is generated by a constitutive de/reacylation cycle that operates on palmitoylated proteins, driving their rapid exchange between the plasma membrane (PM) and the Golgi apparatus. Depalmitoylation redistributes farnesylated Ras in all membranes, followed by repalmitoylation and trapping of Ras at the Golgi, from where it is redirected to the PM via the secretory pathway. This continuous cycle prevents Ras from nonspecific residence on endomembranes, thereby maintaining the specific intracellular compartmentalization. The de/reacylation cycle also initiates Ras activation at the Golgi by transport of PM-localized Ras guanosine triphosphate. Different de/repalmitoylation kinetics account for isoform-specific activation responses to growth factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rocks, Oliver -- Peyker, Anna -- Kahms, Martin -- Verveer, Peter J -- Koerner, Carolin -- Lumbierres, Maria -- Kuhlmann, Jurgen -- Waldmann, Herbert -- Wittinghofer, Alfred -- Bastiaens, Philippe I H -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1746-52. Epub 2005 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705808" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acid Sequence ; Animals ; COS Cells ; Cell Line ; Cell Membrane/*metabolism ; Cercopithecus aethiops ; Dogs ; Golgi Apparatus/*metabolism ; Guanosine Triphosphate/metabolism ; Kinetics ; Models, Biological ; Molecular Sequence Data ; Palmitic Acid/*metabolism ; Protein Isoforms/chemistry/metabolism ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; Protein Transport ; Proto-Oncogene Proteins p21(ras)/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2005-11-15
    Description: Ghrelin, a circulating appetite-inducing hormone, is derived from a prohormone by posttranslational processing. On the basis of the bioinformatic prediction that another peptide also derived from proghrelin exists, we isolated a hormone from rat stomach and named it obestatin-a contraction of obese, from the Latin "obedere," meaning to devour, and "statin," denoting suppression. Contrary to the appetite-stimulating effects of ghrelin, treatment of rats with obestatin suppressed food intake, inhibited jejunal contraction, and decreased body-weight gain. Obestatin bound to the orphan G protein-coupled receptor GPR39. Thus, two peptide hormones with opposing action in weight regulation are derived from the same ghrelin gene. After differential modification, these hormones activate distinct receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jian V -- Ren, Pei-Gen -- Avsian-Kretchmer, Orna -- Luo, Ching-Wei -- Rauch, Rami -- Klein, Cynthia -- Hsueh, Aaron J W -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):996-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284174" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Computational Biology ; Conserved Sequence ; Cricetinae ; *Eating/drug effects ; Fasting ; Gastric Emptying/drug effects ; Gastrointestinal Motility/drug effects ; Ghrelin ; Humans ; In Vitro Techniques ; Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Peptide Hormones/blood/chemistry/*genetics/metabolism/pharmacology/*physiology ; Protein Binding ; Protein Precursors/*genetics ; Radioimmunoassay ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled/metabolism ; Receptors, Ghrelin ; Signal Transduction ; Weight Gain/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2005-02-26
    Description: Although structure determination of soluble proteins has become routine, our understanding of membrane proteins has been limited by experimental bottlenecks in obtaining both sufficient yields of protein and ordered crystals. Mistic is an unusual Bacillus subtilis integral membrane protein that folds autonomously into the membrane, bypassing the cellular translocon machinery. Using paramagnetic probes, we determined by nuclear magnetic resonance (NMR) spectroscopy that the protein forms a helical bundle with a surprisingly polar lipid-facing surface. Additional experiments suggest that Mistic can be used for high-level production of other membrane proteins in their native conformations, including many eukaryotic proteins that have previously been intractable to bacterial expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roosild, Tarmo P -- Greenwald, Jason -- Vega, Mark -- Castronovo, Samantha -- Riek, Roland -- Choe, Senyon -- GM056653/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1317-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Laboratory, Salk Institute, San Diego, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731457" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/chemistry ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli ; Hydrogen Bonding ; Lipid Bilayers ; Membrane Proteins/*chemistry/*metabolism ; Micelles ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Transforming Growth Factor beta/chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2005-11-15
    Description: The third variable region (V3) of the HIV-1 gp120 envelope glycoprotein is immunodominant and contains features essential for coreceptor binding. We determined the structure of V3 in the context of an HIV-1 gp120 core complexed to the CD4 receptor and to the X5 antibody at 3.5 angstrom resolution. Binding of gp120 to cell-surface CD4 would position V3 so that its coreceptor-binding tip protrudes 30 angstroms from the core toward the target cell membrane. The extended nature and antibody accessibility of V3 explain its immunodominance. Together, the results provide a structural rationale for the role of V3 in HIV entry and neutralization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408531/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408531/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chih-chin -- Tang, Min -- Zhang, Mei-Yun -- Majeed, Shahzad -- Montabana, Elizabeth -- Stanfield, Robyn L -- Dimitrov, Dimiter S -- Korber, Bette -- Sodroski, Joseph -- Wilson, Ian A -- Wyatt, Richard -- Kwong, Peter D -- AI24755/AI/NIAID NIH HHS/ -- AI31783/AI/NIAID NIH HHS/ -- AI39429/AI/NIAID NIH HHS/ -- AI40895/AI/NIAID NIH HHS/ -- GM46192/GM/NIGMS NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1025-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284180" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD4/chemistry/*metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/immunology/metabolism ; HIV-1/*chemistry/immunology/metabolism ; Humans ; Hydrogen Bonding ; Immunodominant Epitopes ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/*chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, CCR5/chemistry/metabolism ; Receptors, CXCR4/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2005-11-26
    Description: Thousands of mammalian messenger RNAs are under selective pressure to maintain 7-nucleotide sites matching microRNAs (miRNAs). We found that these conserved targets are often highly expressed at developmental stages before miRNA expression and that their levels tend to fall as the miRNA that targets them begins to accumulate. Nonconserved sites, which outnumber the conserved sites 10 to 1, also mediate repression. As a consequence, genes preferentially expressed at the same time and place as a miRNA have evolved to selectively avoid sites matching the miRNA. This phenomenon of selective avoidance extends to thousands of genes and enables spatial and temporal specificities of miRNAs to be revealed by finding tissues and developmental stages in which messages with corresponding sites are expressed at lower levels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farh, Kyle Kai-How -- Grimson, Andrew -- Jan, Calvin -- Lewis, Benjamin P -- Johnston, Wendy K -- Lim, Lee P -- Burge, Christopher B -- Bartel, David P -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1817-21. Epub 2005 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16308420" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Differentiation ; Conserved Sequence ; *Evolution, Molecular ; Gene Expression Profiling ; *Gene Expression Regulation ; Humans ; Mammals/*genetics ; Mice ; MicroRNAs/*metabolism ; Molecular Sequence Data ; Muscle Fibers, Skeletal/cytology/metabolism ; Organ Specificity ; RNA Stability ; RNA, Messenger/*genetics/metabolism ; Rats ; Species Specificity ; Untranslated Regions ; Zebrafish/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2005-08-27
    Description: Adenosine triphosphate (ATP) hydrolysis in the nitrogenase complex controls the cycle of association and dissociation between the electron donor adenosine triphosphatase (ATPase) (Fe-protein) and its target catalytic protein (MoFe-protein), driving the reduction of dinitrogen into ammonia. Crystal structures in different nucleotide states have been determined that identify conformational changes in the nitrogenase complex during ATP turnover. These structures reveal distinct and mutually exclusive interaction sites on the MoFe-protein surface that are selectively populated, depending on the Fe-protein nucleotide state. A consequence of these different docking geometries is that the distance between redox cofactors, a critical determinant of the intermolecular electron transfer rate, is coupled to the nucleotide state. More generally, stabilization of distinct docking geometries by different nucleotide states, as seen for nitrogenase, could enable nucleotide hydrolysis to drive the relative motion of protein partners in molecular motors and other systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tezcan, F Akif -- Kaiser, Jens T -- Mustafi, Debarshi -- Walton, Mika Y -- Howard, James B -- Rees, Douglas C -- New York, N.Y. -- Science. 2005 Aug 26;309(5739):1377-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16123301" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry/metabolism ; Adenosine Triphosphate/analogs & derivatives/chemistry/metabolism ; Azotobacter vinelandii/*enzymology ; Binding Sites ; Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Electron Transport ; Hydrogen Bonding ; Hydrolysis ; Models, Molecular ; Molybdoferredoxin/*chemistry/*metabolism ; Nitrogenase/*chemistry/*metabolism ; Oxidation-Reduction ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2005-03-19
    Description: We have reconstructed the events that led to the evolution of a key physiological innovation underpinning the large adaptive radiation of fishes, namely their unique ability to secrete molecular oxygen (O2). We show that O2 secretion into the swimbladder evolved some 100 million years after another O2-secreting system in the eye. We unravel the likely sequence in which the functional components of both systems evolved. These components include ocular and swimbladder countercurrent exchangers, the Bohr and Root effects, the buffering power and surface histidine content of hemoglobins, and red blood cell Na+/H+ exchange activity. Our synthesis reveals the dynamics of gains and losses of these multiple traits over time, accounting for part of the huge diversity of form and function in living fishes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berenbrink, Michael -- Koldkjaer, Pia -- Kepp, Oliver -- Cossins, Andrew R -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1752-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. michaelb@liv.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774753" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Air Sacs/blood supply/*physiology ; Amino Acid Sequence ; Animals ; *Biological Evolution ; Buffers ; Capillaries/physiology ; Choroid/blood supply/physiology ; Diffusion ; Environment ; Erythrocytes/physiology ; Fishes/anatomy & histology/classification/*physiology ; Hemoglobins/chemistry/*metabolism ; Histidine/analysis ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Oxygen/*metabolism ; Oxyhemoglobins/metabolism ; Phylogeny ; Sodium-Hydrogen Antiporter/blood/metabolism ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-12-17
    Description: Aphids are associated with several facultative bacterial endosymbionts that may influence their interactions with other organisms. We show here that one of the three most common facultative symbionts of pea aphid (Acyrthosiphon pisum), the bacterium Regiella insecticola, has a major effect on host resistance to a fungal pathogen. Experimental establishment of the bacterium in uninfected aphid clones led to higher survival after fungal attack. The bacteria also increased the aphid's inclusive fitness, because the presence of the symbiont reduced the probability of fungal sporulation on aphid cadavers, hence lowering the rate of transmission of the disease to nearby related aphids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scarborough, Claire L -- Ferrari, Julia -- Godfray, H C J -- D19263/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1781.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Natural Environment Research Council Centre for Population Biology, Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357252" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aphids/*microbiology/physiology ; Enterobacteriaceae/genetics/*physiology ; Entomophthorales/pathogenicity/*physiology ; Molecular Sequence Data ; Spores, Fungal/physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2005-11-29
    Description: Wingless secretion provides pivotal signals during development by activating transcription of target genes. At Drosophila synapses, Wingless is secreted from presynaptic terminals and is required for synaptic growth and differentiation. Wingless binds the seven-pass transmembrane DFrizzled2 receptor, but the ensuing events at synapses are not known. We show that DFrizzled2 is endocytosed from the postsynaptic membrane and transported to the nucleus. The C terminus of DFrizzled2 is cleaved and translocated into the nucleus; the N-terminal region remains just outside the nucleus. Translocation of DFrizzled2-C into the nucleus, but not its cleavage and transport, depends on Wingless signaling. We conclude that, at synapses, Wingless signal transduction occurs through the nuclear localization of DFrizzled2-C for potential transcriptional regulation of synapse development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535279/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535279/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mathew, Dennis -- Ataman, Bulent -- Chen, Jinyun -- Zhang, Yali -- Cumberledge, Susan -- Budnik, Vivian -- GM R01 HD36000/GM/NIGMS NIH HHS/ -- R01 MH070000/MH/NIMH NIH HHS/ -- R01 MH70000/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1344-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16311339" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Nucleus/*metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Endocytosis ; Frizzled Receptors ; Molecular Sequence Data ; Muscle Cells/metabolism ; Mutagenesis, Site-Directed ; Neuromuscular Junction/*metabolism ; Protein Binding ; Proto-Oncogene Proteins/*metabolism ; Receptors, G-Protein-Coupled ; Receptors, Neurotransmitter/chemistry/genetics/*metabolism ; *Signal Transduction ; Synaptic Membranes/metabolism ; Transfection ; Transgenes ; Wnt1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2005-01-08
    Description: Deep hypersaline anoxic basins in the Mediterranean Sea are a legacy of dissolution of ancient subterranean salt deposits from the Miocene period. Our study revealed that these hypersaline basins are not biogeochemical dead ends, but support in situ sulfate reduction, methanogenesis, and heterotrophic activity. A wide diversity of prokaryotes was observed, including a new, abundant, deeply branching order within the Euryarchaeota. Furthermore, we demonstrated the presence of a unique, metabolically active microbial community in the Discovery basin, which is one of the most extreme terrestrial saline environments known, as it is almost saturated with MgCl2 (5 M).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van der Wielen, Paul W J J -- Bolhuis, Henk -- Borin, Sara -- Daffonchio, Daniele -- Corselli, Cesare -- Giuliano, Laura -- D'Auria, Giuseppe -- de Lange, Gert J -- Huebner, Andreas -- Varnavas, Sotirios P -- Thomson, John -- Tamburini, Christian -- Marty, Danielle -- McGenity, Terry J -- Timmis, Kenneth N -- BioDeep Scientific Party -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):121-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Microbial Ecology, University of Groningen, 9751 NN Haren, Netherlands. paul.van.der.wielen@kiwa.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637281" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Archaea/classification/isolation & purification/*physiology ; Bacteria/classification/isolation & purification ; *Bacterial Physiological Phenomena ; Biodiversity ; Cluster Analysis ; *Ecosystem ; Euryarchaeota/classification/isolation & purification/physiology ; Genes, Archaeal ; Genes, Bacterial ; Genes, rRNA ; Magnesium Chloride/analysis ; Mediterranean Sea ; Methane/metabolism ; Molecular Sequence Data ; Oxidation-Reduction ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Seawater/chemistry/*microbiology ; *Sodium Chloride ; Sulfates/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2005-07-05
    Description: We report the genome sequence of Theileria parva, an apicomplexan pathogen causing economic losses to smallholder farmers in Africa. The parasite chromosomes exhibit limited conservation of gene synteny with Plasmodium falciparum, and its plastid-like genome represents the first example where all apicoplast genes are encoded on one DNA strand. We tentatively identify proteins that facilitate parasite segregation during host cell cytokinesis and contribute to persistent infection of transformed host cells. Several biosynthetic pathways are incomplete or absent, suggesting substantial metabolic dependence on the host cell. One protein family that may generate parasite antigenic diversity is not telomere-associated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, Malcolm J -- Bishop, Richard -- Shah, Trushar -- de Villiers, Etienne P -- Carlton, Jane M -- Hall, Neil -- Ren, Qinghu -- Paulsen, Ian T -- Pain, Arnab -- Berriman, Matthew -- Wilson, Robert J M -- Sato, Shigeharu -- Ralph, Stuart A -- Mann, David J -- Xiong, Zikai -- Shallom, Shamira J -- Weidman, Janice -- Jiang, Lingxia -- Lynn, Jeffery -- Weaver, Bruce -- Shoaibi, Azadeh -- Domingo, Alexander R -- Wasawo, Delia -- Crabtree, Jonathan -- Wortman, Jennifer R -- Haas, Brian -- Angiuoli, Samuel V -- Creasy, Todd H -- Lu, Charles -- Suh, Bernard -- Silva, Joana C -- Utterback, Teresa R -- Feldblyum, Tamara V -- Pertea, Mihaela -- Allen, Jonathan -- Nierman, William C -- Taracha, Evans L N -- Salzberg, Steven L -- White, Owen R -- Fitzhugh, Henry A -- Morzaria, Subhash -- Venter, J Craig -- Fraser, Claire M -- Nene, Vishvanath -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA. gardner@tigr.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994558" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Antigens, Protozoan/genetics ; Cattle ; Cell Proliferation ; Chromosomes/genetics ; Conserved Sequence ; Enzymes/genetics/metabolism ; Genes, Protozoan ; *Genome, Protozoan ; Lymphocytes/cytology/*parasitology ; Mitochondria/metabolism ; Molecular Sequence Data ; Organelles/genetics/physiology ; Plasmodium falciparum/genetics ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/*genetics/metabolism ; Sequence Analysis, DNA ; Synteny ; Telomere/genetics ; Theileria parva/*genetics/growth & development/pathogenicity/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2005-05-14
    Description: Polyglutamylation of tubulin has been implicated in several functions of microtubules, but the identification of the responsible enzyme(s) has been challenging. We found that the neuronal tubulin polyglutamylase is a protein complex containing a tubulin tyrosine ligase-like (TTLL) protein, TTLL1. TTLL1 is a member of a large family of proteins with a TTL homology domain, whose members could catalyze ligations of diverse amino acids to tubulins or other substrates. In the model protist Tetrahymena thermophila, two conserved types of polyglutamylases were characterized that differ in substrate preference and subcellular localization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janke, Carsten -- Rogowski, Krzysztof -- Wloga, Dorota -- Regnard, Catherine -- Kajava, Andrey V -- Strub, Jean-Marc -- Temurak, Nevzat -- van Dijk, Juliette -- Boucher, Dominique -- van Dorsselaer, Alain -- Suryavanshi, Swati -- Gaertig, Jacek -- Edde, Bernard -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1758-62. Epub 2005 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherches de Biochimie Macromoleculaire, CNRS, 34293 Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890843" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; *Catalytic Domain ; Cilia/physiology ; Humans ; Mice ; Microtubules/metabolism ; Models, Molecular ; Molecular Sequence Data ; Movement ; Peptide Synthases/*chemistry/genetics/isolation & purification/*metabolism ; Phylogeny ; Polyglutamic Acid/*chemistry/genetics/isolation & purification/*metabolism ; Protein Conformation ; Protein Subunits/chemistry/isolation & purification/metabolism ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Tetrahymena thermophila/*enzymology/genetics/metabolism ; Tubulin/*chemistry/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2005-04-30
    Description: In the crystal structure of the membrane-embedded rotor ring of the sodium ion-translocating adenosine 5'-triphosphate (ATP) synthase of Ilyobacter tartaricus at 2.4 angstrom resolution, 11 c subunits are assembled into an hourglass-shaped cylinder with 11-fold symmetry. Sodium ions are bound in a locked conformation close to the outer surface of the cylinder near the middle of the membrane. The structure supports an ion-translocation mechanism in the intact ATP synthase in which the binding site converts from the locked conformation into one that opens toward subunit a as the rotor ring moves through the subunit a/c interface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meier, Thomas -- Polzer, Patrick -- Diederichs, Kay -- Welte, Wolfram -- Dimroth, Peter -- New York, N.Y. -- Science. 2005 Apr 29;308(5722):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Mikrobiologie, Eidgenossische Technische Hochschule (ETH), Zurich Honggerberg, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15860619" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/metabolism ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Fusobacteria/*enzymology ; Glutamic Acid/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Ion Transport ; Models, Molecular ; Molecular Motor Proteins/*chemistry/metabolism ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2005-12-13
    Description: Practical components for three-dimensional molecular nanofabrication must be simple to produce, stereopure, rigid, and adaptable. We report a family of DNA tetrahedra, less than 10 nanometers on a side, that can self-assemble in seconds with near-quantitative yield of one diastereomer. They can be connected by programmable DNA linkers. Their triangulated architecture confers structural stability; by compressing a DNA tetrahedron with an atomic force microscope, we have measured the axial compressibility of DNA and observed the buckling of the double helix under high loads.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, R P -- Schaap, I A T -- Tardin, C F -- Erben, C M -- Berry, R M -- Schmidt, C F -- Turberfield, A J -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1661-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16339440" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Chemistry, Physical ; DNA/*chemistry ; Dimerization ; Elasticity ; Microscopy, Atomic Force ; Models, Molecular ; Molecular Structure ; *Nanostructures ; *Nanotechnology ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry ; Physicochemical Phenomena ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-10-22
    Description: We purified antifreeze proteins from winter-active snow fleas, Hypogastrura harveyi. These 6.5- and 15.7-kilodalton thermolabile proteins are glycine-rich (45% of the residues), and the short isoform is composed of the tripeptide repeat Gly-X-X. This makes them very different from other antifreeze proteins, including two from insects, suggesting independent adaptation to freezing environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graham, Laurie A -- Davies, Peter L -- New York, N.Y. -- Science. 2005 Oct 21;310(5747):461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Queen's University, Kingston, ON K7L 3N6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16239469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Animals ; Antifreeze Proteins/*chemistry/isolation & purification ; Arthropods/*chemistry ; Circular Dichroism ; Evolution, Molecular ; Glycine/*analysis ; Ice ; Molecular Sequence Data ; Molecular Weight ; Snow
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-04-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Junge, Wolfgang -- Nelson, Nathan -- New York, N.Y. -- Science. 2005 Apr 29;308(5722):642-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biophysics, University of Osnabruck, 49069 Osnabruck, Germany. junge@uos.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15860615" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphatases/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Electrochemistry ; Enterococcus/*enzymology ; Fusobacteria/*enzymology ; Glutamic Acid/chemistry/metabolism ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Motor Proteins/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sodium/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2005-04-02
    Description: The ribosome of Thermus thermophilus was cocrystallized with initiator transfer RNA (tRNA) and a structured messenger RNA (mRNA) carrying a translational operator. The path of the mRNA was defined at 5.5 angstroms resolution by comparing it with either the crystal structure of the same ribosomal complex lacking mRNA or with an unstructured mRNA. A precise ribosomal environment positions the operator stem-loop structure perpendicular to the surface of the ribosome on the platform of the 30S subunit. The binding of the operator and of the initiator tRNA occurs on the ribosome with an unoccupied tRNA exit site, which is expected for an initiation complex. The positioning of the regulatory domain of the operator relative to the ribosome elucidates the molecular mechanism by which the bound repressor switches off translation. Our data suggest a general way in which mRNA control elements must be placed on the ribosome to perform their regulatory task.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenner, Lasse -- Romby, Pascale -- Rees, Bernard -- Schulze-Briese, Clemens -- Springer, Mathias -- Ehresmann, Chantal -- Ehresmann, Bernard -- Moras, Dino -- Yusupova, Gulnara -- Yusupov, Marat -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):120-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, Illkirch, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802605" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/metabolism ; Base Pairing ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Fourier Analysis ; Models, Molecular ; Nucleic Acid Conformation ; *Protein Biosynthesis ; RNA, Bacterial/*chemistry/metabolism ; RNA, Messenger/*chemistry/metabolism ; RNA, Ribosomal, 16S/chemistry/metabolism ; RNA, Transfer, Met/chemistry/metabolism ; *Regulatory Sequences, Ribonucleic Acid ; Repressor Proteins/*metabolism ; Ribosomal Proteins/metabolism ; Ribosomes/*metabolism ; Thermus thermophilus/genetics/*metabolism ; Threonine-tRNA Ligase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2005-01-08
    Description: Dehalococcoides ethenogenes is the only bacterium known to reductively dechlorinate the groundwater pollutants, tetrachloroethene (PCE) and trichloroethene, to ethene. Its 1,469,720-base pair chromosome contains large dynamic duplicated regions and integrated elements. Genes encoding 17 putative reductive dehalogenases, nearly all of which were adjacent to genes for transcription regulators, and five hydrogenase complexes were identified. These findings, plus a limited repertoire of other metabolic modes, indicate that D. ethenogenes is highly evolved to utilize halogenated organic compounds and H2. Diversification of reductive dehalogenase functions appears to have been mediated by recent genetic exchange and amplification. Genome analysis provides insights into the organism's complex nutrient requirements and suggests that an ancestor was a nitrogen-fixing autotroph.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seshadri, Rekha -- Adrian, Lorenz -- Fouts, Derrick E -- Eisen, Jonathan A -- Phillippy, Adam M -- Methe, Barbara A -- Ward, Naomi L -- Nelson, William C -- Deboy, Robert T -- Khouri, Hoda M -- Kolonay, James F -- Dodson, Robert J -- Daugherty, Sean C -- Brinkac, Lauren M -- Sullivan, Steven A -- Madupu, Ramana -- Nelson, Karen E -- Kang, Katherine H -- Impraim, Marjorie -- Tran, Kevin -- Robinson, Jeffrey M -- Forberger, Heather A -- Fraser, Claire M -- Zinder, Stephen H -- Heidelberg, John F -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):105-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA. rekha@tigr.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637277" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/biosynthesis ; Biodegradation, Environmental ; Chloroflexi/*genetics/*metabolism ; Gene Duplication ; Genes, Bacterial ; *Genome, Bacterial ; Hydrogen/metabolism ; Molecular Sequence Data ; Nitrogenase/genetics/metabolism ; Operon ; Oxidation-Reduction ; Oxidoreductases/genetics/metabolism ; Quinones/metabolism ; Sequence Analysis, DNA ; Tetrachloroethylene/*metabolism ; Transcription Factors/genetics/metabolism ; Water Pollutants, Chemical/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2005-08-20
    Description: The extensive somatic diversification of immune receptors is a hallmark of higher vertebrates. However, whether molecular diversity contributes to immune protection in invertebrates is unknown. We present evidence that Drosophila immune-competent cells have the potential to express more than 18,000 isoforms of the immunoglobulin (Ig)-superfamily receptor Down syndrome cell adhesion molecule (Dscam). Secreted protein isoforms of Dscam were detected in the hemolymph, and hemocyte-specific loss of Dscam impaired the efficiency of phagocytic uptake of bacteria, possibly due to reduced bacterial binding. Importantly, the molecular diversity of Dscam transcripts generated through a mechanism of alternative splicing is highly conserved across major insect orders, suggesting an unsuspected molecular complexity of the innate immune system of insects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watson, Fiona L -- Puttmann-Holgado, Roland -- Thomas, Franziska -- Lamar, David L -- Hughes, Michael -- Kondo, Masahiro -- Rebel, Vivienne I -- Schmucker, Dietmar -- 1RO1-NS46747-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1874-8. Epub 2005 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana Farber Cancer Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16109846" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Brain/metabolism ; Cell Adhesion Molecules ; Cell Line ; Drosophila Proteins/chemistry/*genetics/*immunology/metabolism ; Drosophila melanogaster/*genetics/*immunology/metabolism ; Escherichia coli/immunology/metabolism ; Fat Body/metabolism ; Hemocytes/immunology/*metabolism ; Hemolymph/chemistry ; Immunity, Innate ; Immunoglobulins/chemistry ; Insects/chemistry/genetics ; Molecular Sequence Data ; Neurons/metabolism ; Oligonucleotide Array Sequence Analysis ; Phagocytosis ; Protein Isoforms/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; RNA Interference ; Receptors, Immunologic/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2005-05-14
    Description: We used site-directed spin-labeling and electron paramagnetic resonance spectroscopy to characterize the conformational motion that couples energy expenditure to substrate translocation in the multidrug transporter MsbA. In liposomes, ligand-free MsbA samples conformations that depart from the crystal structures, including looser packing and water penetration along the periplasmic side. Adenosine triphosphate (ATP) binding closes the substrate chamber to the cytoplasm while increasing hydration at the periplasmic side, consistent with an alternating access model. Accentuated by ATP hydrolysis, the changes in the chamber dielectric environment and its geometry provide the likely driving force for flipping amphipathic substrates and a potential exit pathway. These results establish the structural dynamic basis of the power stroke in multidrug-resistant ATP-binding cassette (MDR ABC) transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Jinhui -- Yang, Guangyong -- McHaourab, Hassane S -- New York, N.Y. -- Science. 2005 May 13;308(5724):1023-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890883" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/*metabolism ; Adenosine Triphosphate/*metabolism ; Apoproteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Biological Transport ; Cell Membrane/chemistry/metabolism ; Cytoplasm/chemistry ; Dimerization ; Edetic Acid/*analogs & derivatives ; Electron Spin Resonance Spectroscopy ; *Energy Metabolism ; Escherichia coli Proteins/chemistry/metabolism ; Hydrolysis ; Ligands ; Lipid A/metabolism ; Lipid Bilayers ; Liposomes/*chemistry ; Models, Molecular ; Oxygen/metabolism ; Periplasm/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spin Labels ; Thermodynamics ; Vanadates/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2005-07-05
    Description: Cell signaling that culminates in posttranslational modifications directs protein activity. Here we report how multiple Ca2+-dependent phosphorylation sites within the transcription activator Ets-1 act additively to produce graded DNA binding affinity. Nuclear magnetic resonance spectroscopic analyses show that phosphorylation shifts Ets-1 from a dynamic conformation poised to bind DNA to a well-folded inhibited state. These phosphates lie in an unstructured flexible region that functions as the allosteric effector of autoinhibition. Variable phosphorylation thus serves as a "rheostat" for cell signaling to fine-tune transcription at the level of DNA binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pufall, Miles A -- Lee, Gregory M -- Nelson, Mary L -- Kang, Hyun-Seo -- Velyvis, Algirdas -- Kay, Lewis E -- McIntosh, Lawrence P -- Graves, Barbara J -- GM08537/GM/NIGMS NIH HHS/ -- P01-CA24014/CA/NCI NIH HHS/ -- R01 GM38663/GM/NIGMS NIH HHS/ -- T32-CA93247/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):142-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994560" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; DNA/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proto-Oncogene Protein c-ets-1 ; Proto-Oncogene Proteins/*chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-ets ; Signal Transduction ; Transcription Factors/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2005-04-16
    Description: The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eckburg, Paul B -- Bik, Elisabeth M -- Bernstein, Charles N -- Purdom, Elizabeth -- Dethlefsen, Les -- Sargent, Michael -- Gill, Steven R -- Nelson, Karen E -- Relman, David A -- AI51259/AI/NIAID NIH HHS/ -- R01 AI051259/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1635-8. Epub 2005 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Room S-169, 300 Pasteur Drive, Stanford CA 94305-5107, USA. eckburg1@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15831718" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bacteria/classification/genetics/*isolation & purification ; Bacteroidetes/classification/genetics/isolation & purification ; *Biodiversity ; Colon/*microbiology ; DNA, Ribosomal/genetics ; Ecosystem ; Feces/*microbiology ; Genes, Archaeal ; Genes, Bacterial ; Genes, rRNA ; Genetic Variation ; Humans ; Intestinal Mucosa/*microbiology ; Methanobrevibacter/classification/genetics/isolation & purification ; Middle Aged ; Molecular Sequence Data ; Phylogeny ; Polymerase Chain Reaction ; RNA, Ribosomal, 16S/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2005-11-29
    Description: Previous genome comparisons have suggested that one important trend in vertebrate evolution has been a sharp rise in intron abundance. By using genomic data and expressed sequence tags from the marine annelid Platynereis dumerilii, we provide direct evidence that about two-thirds of human introns predate the bilaterian radiation but were lost from insect and nematode genomes to a large extent. A comparison of coding exon sequences confirms the ancestral nature of Platynereis and human genes. Thus, the urbilaterian ancestor had complex, intron-rich genes that have been retained in Platynereis and human.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raible, Florian -- Tessmar-Raible, Kristin -- Osoegawa, Kazutoyo -- Wincker, Patrick -- Jubin, Claire -- Balavoine, Guillaume -- Ferrier, David -- Benes, Vladimir -- de Jong, Pieter -- Weissenbach, Jean -- Bork, Peer -- Arendt, Detlev -- BBS/B/12067/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1325-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Unit, European Molecular Biological Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany. raible@embl.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16311335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/chemistry/genetics ; Caenorhabditis elegans/chemistry/genetics ; Ciona intestinalis/chemistry/genetics ; Computational Biology ; Evolution, Molecular ; Exons ; *Genes ; Genome ; Humans ; *Introns ; Molecular Sequence Data ; Phylogeny ; Polychaeta/chemistry/*genetics ; Proteins/chemistry/genetics ; Sequence Alignment ; Species Specificity ; Vertebrates/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-06-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nabel, Gary J -- New York, N.Y. -- Science. 2005 Jun 24;308(5730):1878-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. gnabel@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15976295" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/therapeutic use ; Animals ; Antibodies, Monoclonal/immunology/therapeutic use ; Antibody Specificity ; Autoantigens/immunology ; Autoimmune Diseases/immunology ; Cardiolipins/*immunology ; Complementarity Determining Regions ; Epitopes ; Gene Products, env/chemistry/*immunology ; HIV Antibodies/chemistry/genetics/*immunology/therapeutic use ; HIV Envelope Protein gp41/chemistry/*immunology ; HIV Infections/*immunology/prevention & control/therapy ; HIV-1/*immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunization, Passive ; Models, Molecular ; Mutation ; Neutralization Tests ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2005-10-01
    Description: Severe acute respiratory syndrome (SARS) emerged in 2002 to 2003 in southern China. The origin of its etiological agent, the SARS coronavirus (SARS-CoV), remains elusive. Here we report that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak. These viruses, termed SARS-like coronaviruses (SL-CoVs), display greater genetic variation than SARS-CoV isolated from humans or from civets. The human and civet isolates of SARS-CoV nestle phylogenetically within the spectrum of SL-CoVs, indicating that the virus responsible for the SARS outbreak was a member of this coronavirus group.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Wendong -- Shi, Zhengli -- Yu, Meng -- Ren, Wuze -- Smith, Craig -- Epstein, Jonathan H -- Wang, Hanzhong -- Crameri, Gary -- Hu, Zhihong -- Zhang, Huajun -- Zhang, Jianhong -- McEachern, Jennifer -- Field, Hume -- Daszak, Peter -- Eaton, Bryan T -- Zhang, Shuyi -- Wang, Lin-Fa -- R01-TW05869/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 2005 Oct 28;310(5748):676-9. Epub 2005 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195424" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cercopithecus aethiops ; China/epidemiology ; Chiroptera/*virology ; Communicable Diseases, Emerging ; *Coronavirus/classification ; Disease Outbreaks ; *Disease Reservoirs ; Genetic Variation ; Genome, Viral ; Henipavirus/classification ; Humans ; Molecular Sequence Data ; Mutation ; Phylogeny ; Polymerase Chain Reaction ; *SARS Virus/classification ; Sequence Analysis, DNA ; Severe Acute Respiratory Syndrome/epidemiology/transmission/virology ; Vero Cells ; Viverridae/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2005-05-10
    Description: Using genomic and mass spectrometry-based proteomic methods, we evaluated gene expression, identified key activities, and examined partitioning of metabolic functions in a natural acid mine drainage (AMD) microbial biofilm community. We detected 2033 proteins from the five most abundant species in the biofilm, including 48% of the predicted proteins from the dominant biofilm organism, Leptospirillum group II. Proteins involved in protein refolding and response to oxidative stress appeared to be highly expressed, which suggests that damage to biomolecules is a key challenge for survival. We validated and estimated the relative abundance and cellular localization of 357 unique and 215 conserved novel proteins and determined that one abundant novel protein is a cytochrome central to iron oxidation and AMD formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ram, Rachna J -- Verberkmoes, Nathan C -- Thelen, Michael P -- Tyson, Gene W -- Baker, Brett J -- Blake, Robert C 2nd -- Shah, Manesh -- Hettich, Robert L -- Banfield, Jillian F -- New York, N.Y. -- Science. 2005 Jun 24;308(5730):1915-20. Epub 2005 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15879173" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Archaeal Proteins/*analysis/chemistry ; Bacteria/chemistry/genetics/*metabolism ; Bacterial Proteins/*analysis/chemistry/genetics/physiology ; *Biofilms/growth & development ; Cytochromes/analysis/chemistry ; *Ecosystem ; Gene Expression ; Genes, Archaeal ; Genes, Bacterial ; Genome, Archaeal ; Genome, Bacterial ; Genomics ; Hydrogen-Ion Concentration ; Iron/metabolism ; Isoelectric Point ; Mass Spectrometry ; *Mining ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Biosynthesis ; Protein Folding ; Proteome ; *Proteomics ; Thermoplasmales/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2005-03-05
    Description: The obligately anaerobic bacterium Bacteroides fragilis, an opportunistic pathogen and inhabitant of the normal human colonic microbiota, exhibits considerable within-strain phase and antigenic variation of surface components. The complete genome sequence has revealed an unusual breadth (in number and in effect) of DNA inversion events that potentially control expression of many different components, including surface and secreted components, regulatory molecules, and restriction-modification proteins. Invertible promoters of two different types (12 group 1 and 11 group 2) were identified. One group has inversion crossover (fix) sites similar to the hix sites of Salmonella typhimurium. There are also four independent intergenic shufflons that potentially alter the expression and function of varied genes. The composition of the 10 different polysaccharide biosynthesis gene clusters identified (7 with associated invertible promoters) suggests a mechanism of synthesis similar to the O-antigen capsules of Escherichia coli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cerdeno-Tarraga, Ana M -- Patrick, Sheila -- Crossman, Lisa C -- Blakely, Garry -- Abratt, Val -- Lennard, Nicola -- Poxton, Ian -- Duerden, Brian -- Harris, Barbara -- Quail, Mike A -- Barron, Andrew -- Clark, Louise -- Corton, Craig -- Doggett, Jonathan -- Holden, Matthew T G -- Larke, Natasha -- Line, Alexandra -- Lord, Angela -- Norbertczak, Halina -- Ormond, Doug -- Price, Claire -- Rabbinowitsch, Ester -- Woodward, John -- Barrell, Bart -- Parkhill, Julian -- New York, N.Y. -- Science. 2005 Mar 4;307(5714):1463-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15746427" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/genetics ; Bacteroides fragilis/*genetics/metabolism/pathogenicity ; Base Sequence ; Chromosome Inversion ; DNA, Bacterial/*genetics ; DNA, Intergenic ; *Gene Expression Regulation, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Polysaccharides, Bacterial/biosynthesis/genetics ; Promoter Regions, Genetic ; Recombinases/genetics ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2005-08-06
    Description: Bacterial microcompartments are primitive organelles composed entirely of protein subunits. Genomic sequence databases reveal the widespread occurrence of microcompartments across diverse microbes. The prototypical bacterial microcompartment is the carboxysome, a protein shell for sequestering carbon fixation reactions. We report three-dimensional crystal structures of multiple carboxysome shell proteins, revealing a hexameric unit as the basic microcompartment building block and showing how these hexamers assemble to form flat facets of the polyhedral shell. The structures suggest how molecular transport across the shell may be controlled and how structural variations might govern the assembly and architecture of these subcellular compartments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kerfeld, Cheryl A -- Sawaya, Michael R -- Tanaka, Shiho -- Nguyen, Chau V -- Phillips, Martin -- Beeby, Morgan -- Yeates, Todd O -- New York, N.Y. -- Science. 2005 Aug 5;309(5736):936-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles (UCLA), Box 951570, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16081736" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Organelles/*chemistry ; Protein Conformation ; Protein Structure, Tertiary ; Sequence Alignment ; Synechocystis/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2005-07-16
    Description: A comparison of gene content and genome architecture of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, revealed a conserved core proteome of about 6200 genes in large syntenic polycistronic gene clusters. Many species-specific genes, especially large surface antigen families, occur at nonsyntenic chromosome-internal and subtelomeric regions. Retroelements, structural RNAs, and gene family expansion are often associated with syntenic discontinuities that-along with gene divergence, acquisition and loss, and rearrangement within the syntenic regions-have shaped the genomes of each parasite. Contrary to recent reports, our analyses reveal no evidence that these species are descended from an ancestor that contained a photosynthetic endosymbiont.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉El-Sayed, Najib M -- Myler, Peter J -- Blandin, Gaelle -- Berriman, Matthew -- Crabtree, Jonathan -- Aggarwal, Gautam -- Caler, Elisabet -- Renauld, Hubert -- Worthey, Elizabeth A -- Hertz-Fowler, Christiane -- Ghedin, Elodie -- Peacock, Christopher -- Bartholomeu, Daniella C -- Haas, Brian J -- Tran, Anh-Nhi -- Wortman, Jennifer R -- Alsmark, U Cecilia M -- Angiuoli, Samuel -- Anupama, Atashi -- Badger, Jonathan -- Bringaud, Frederic -- Cadag, Eithon -- Carlton, Jane M -- Cerqueira, Gustavo C -- Creasy, Todd -- Delcher, Arthur L -- Djikeng, Appolinaire -- Embley, T Martin -- Hauser, Christopher -- Ivens, Alasdair C -- Kummerfeld, Sarah K -- Pereira-Leal, Jose B -- Nilsson, Daniel -- Peterson, Jeremy -- Salzberg, Steven L -- Shallom, Joshua -- Silva, Joana C -- Sundaram, Jaideep -- Westenberger, Scott -- White, Owen -- Melville, Sara E -- Donelson, John E -- Andersson, Bjorn -- Stuart, Kenneth D -- Hall, Neil -- AI045039/AI/NIAID NIH HHS/ -- AI45038/AI/NIAID NIH HHS/ -- AI45061/AI/NIAID NIH HHS/ -- R01 AI043062/AI/NIAID NIH HHS/ -- U01 AI040599/AI/NIAID NIH HHS/ -- U01 AI043062/AI/NIAID NIH HHS/ -- U01 AI045038/AI/NIAID NIH HHS/ -- U01 AI045039/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):404-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA. nelsayed@tigr.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020724" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Chromosomes/genetics ; Evolution, Molecular ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Genomics ; Leishmania major/chemistry/*genetics/metabolism ; Molecular Sequence Data ; Multigene Family ; Mutation ; Phylogeny ; Plastids/genetics ; *Proteome ; Protozoan Proteins/chemistry/*genetics/physiology ; Recombination, Genetic ; Retroelements ; Species Specificity ; Symbiosis ; Synteny ; Telomere/genetics ; Trypanosoma brucei brucei/chemistry/*genetics/metabolism ; Trypanosoma cruzi/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2005-10-01
    Description: The Rev1 DNA polymerase is highly specialized for the incorporation of C opposite template G. We present here the crystal structure of yeast Rev1 bound to template G and incoming 2'-deoxycytidine 5'-triphosphate (dCTP), which reveals that the polymerase itself dictates the identity of the incoming nucleotide, as well as the identity of the templating base. Template G and incoming dCTP do not pair with each other. Instead, the template G is evicted from the DNA helix, and it makes optimal hydrogen bonds with a segment of Rev1. Also, unlike other DNA polymerases, incoming dCTP pairs with an arginine rather than the templating base, which ensures the incorporation of dCTP over other incoming nucleotides. This mechanism provides an elegant means for promoting proficient and error-free synthesis through N2-adducted guanines that obstruct replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nair, Deepak T -- Johnson, Robert E -- Prakash, Louise -- Prakash, Satya -- Aggarwal, Aneel K -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195463" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/metabolism ; Base Pairing ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; *DNA Replication ; DNA, Fungal/*biosynthesis ; Deoxycytosine Nucleotides/chemistry/*metabolism ; Guanine/chemistry/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nucleotidyltransferases/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2005-10-01
    Description: During neural development, coordinate regulation of cell-cycle exit and differentiation is essential for cell-fate specification, cell survival, and proper wiring of neuronal circuits. However, the molecules that direct these events remain poorly defined. In the developing spinal cord, the differentiation of motor neuron progenitors into postmitotic motor neurons is regulated by retinoid signaling. Here, we identify a retinoid-inducible gene, GDE2 (glycerophosphodiester phosphodiesterase 2), encoding a six-transmembrane protein that is necessary and sufficient to drive spinal motor neuron differentiation in vivo. A single amino acid mutation in the extracellular catalytic domain abolishes protein function. This reveals a critical role for glycerophosphodiester metabolism in motor neuron differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rao, Meenakshi -- Sockanathan, Shanthini -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2212-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195461" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Catalytic Domain ; Cell Cycle ; *Cell Differentiation ; Chick Embryo ; Electroporation ; Gene Silencing ; Homeodomain Proteins/metabolism ; Immunohistochemistry ; Mitosis ; Molecular Sequence Data ; Motor Neurons/*cytology/*metabolism ; Nerve Tissue Proteins/metabolism ; Phosphoric Diester Hydrolases/chemistry/genetics/*metabolism ; RNA, Small Interfering ; Signal Transduction ; Spinal Cord/*cytology/embryology/metabolism ; Stem Cells/cytology/metabolism ; Transcription Factors/metabolism ; Transfection ; Tretinoin/metabolism ; Vitamin A/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2005-02-05
    Description: We describe two male-specific olfactory receptors (ORs) in the silk moth, Bombyx mori, that are mutually exclusively expressed in a pair of adjacent pheromone-sensitive neurons of male antennae: One is specifically tuned to bombykol, the sex pheromone, and the other to bombykal, its oxidized form. Both pheromone ORs are coexpressed with an OR from the highly conserved insect OR subfamily. This coexpression promotes the functional expression of pheromone receptors and confers ligand-stimulated nonselective cation channel activity. The same effects were also observed for general ORs. Both odorant and pheromone signaling pathways are mediated by means of a common mechanism in insects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakagawa, Takao -- Sakurai, Takeshi -- Nishioka, Takaaki -- Touhara, Kazushige -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1638-42. Epub 2005 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692016" target="_blank"〉PubMed〈/a〉
    Keywords: Alkadienes/metabolism/*pharmacology ; Animals ; Bombyx/genetics/*physiology ; Cations/metabolism ; Dose-Response Relationship, Drug ; Fatty Alcohols/metabolism/*pharmacology ; Female ; Genes, Insect ; In Situ Hybridization ; Insect Proteins/genetics/*physiology ; Ion Channels/physiology ; Ligands ; Male ; Molecular Sequence Data ; Odors ; Olfactory Receptor Neurons/physiology ; Patch-Clamp Techniques ; Receptors, Odorant/genetics/*physiology ; Sense Organs/physiology ; Sex Attractants/*pharmacology/*physiology ; Signal Transduction ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2005-07-08
    Description: H5N1 avian influenza virus (AIV) has emerged as a pathogenic entity for a variety of species, including humans, in recent years. Here we report an outbreak among migratory birds on Lake Qinghaihu, China, in May and June 2005, in which more than a thousand birds were affected. Pancreatic necrosis and abnormal neurological symptoms were the major clinical features. Sequencing of the complete genomes of four H5N1 AIV strains revealed them to be reassortants related to a peregrine falcon isolate from Hong Kong and to have known highly pathogenic characteristics. Experimental animal infections reproduced typical highly pathogenic AIV infection symptoms and pathology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Xiao, H -- Lei, F -- Zhu, Q -- Qin, K -- Zhang, X-W -- Zhang, X-L -- Zhao, D -- Wang, G -- Feng, Y -- Ma, J -- Liu, W -- Wang, J -- Gao, G F -- New York, N.Y. -- Science. 2005 Aug 19;309(5738):1206. Epub 2005 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Veterinary Medicine, China Agricultural University, Beijing 100094, China. jhl@cau.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16000410" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animal Migration ; Animals ; Birds/virology ; Charadriiformes/*virology ; Chickens ; China/epidemiology ; Disease Outbreaks/*veterinary ; Geese/*virology ; Genome, Viral ; *Influenza A Virus, H5N1 Subtype ; Influenza A virus/classification/genetics/isolation & purification/*pathogenicity ; Influenza in Birds/*epidemiology/pathology/*virology ; Mice ; Molecular Sequence Data ; Phylogeny ; Reassortant Viruses/genetics/pathogenicity ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2005-03-26
    Description: Sites of transcription of polyadenylated and nonpolyadenylated RNAs for 10 human chromosomes were mapped at 5-base pair resolution in eight cell lines. Unannotated, nonpolyadenylated transcripts comprise the major proportion of the transcriptional output of the human genome. Of all transcribed sequences, 19.4, 43.7, and 36.9% were observed to be polyadenylated, nonpolyadenylated, and bimorphic, respectively. Half of all transcribed sequences are found only in the nucleus and for the most part are unannotated. Overall, the transcribed portions of the human genome are predominantly composed of interlaced networks of both poly A+ and poly A- annotated transcripts and unannotated transcripts of unknown function. This organization has important implications for interpreting genotype-phenotype associations, regulation of gene expression, and the definition of a gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Jill -- Kapranov, Philipp -- Drenkow, Jorg -- Dike, Sujit -- Brubaker, Shane -- Patel, Sandeep -- Long, Jeffrey -- Stern, David -- Tammana, Hari -- Helt, Gregg -- Sementchenko, Victor -- Piccolboni, Antonio -- Bekiranov, Stefan -- Bailey, Dione K -- Ganesh, Madhavan -- Ghosh, Srinka -- Bell, Ian -- Gerhard, Daniela S -- Gingeras, Thomas R -- New York, N.Y. -- Science. 2005 May 20;308(5725):1149-54. Epub 2005 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymetrix Inc., Santa Clara, CA 95051, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790807" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Chromosomes, Human/*genetics ; Chromosomes, Human, Pair 13/genetics ; Chromosomes, Human, Pair 14/genetics ; Chromosomes, Human, Pair 19/genetics ; Chromosomes, Human, Pair 20/genetics ; Chromosomes, Human, Pair 21/genetics ; Chromosomes, Human, Pair 22/genetics ; Chromosomes, Human, Pair 6/genetics ; Chromosomes, Human, Pair 7/genetics ; Chromosomes, Human, X/genetics ; Chromosomes, Human, Y/genetics ; Computational Biology ; Cytosol/metabolism ; DNA, Complementary ; DNA, Intergenic ; Exons ; Female ; *Genome, Human ; Humans ; Introns ; Male ; Molecular Sequence Data ; Nucleic Acid Amplification Techniques ; Oligonucleotide Array Sequence Analysis ; Physical Chromosome Mapping ; RNA Splicing ; RNA, Messenger/*analysis ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2005-01-18
    Description: Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its approximately 20-megabase genome, which contains approximately 6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520129/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520129/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loftus, Brendan J -- Fung, Eula -- Roncaglia, Paola -- Rowley, Don -- Amedeo, Paolo -- Bruno, Dan -- Vamathevan, Jessica -- Miranda, Molly -- Anderson, Iain J -- Fraser, James A -- Allen, Jonathan E -- Bosdet, Ian E -- Brent, Michael R -- Chiu, Readman -- Doering, Tamara L -- Donlin, Maureen J -- D'Souza, Cletus A -- Fox, Deborah S -- Grinberg, Viktoriya -- Fu, Jianmin -- Fukushima, Marilyn -- Haas, Brian J -- Huang, James C -- Janbon, Guilhem -- Jones, Steven J M -- Koo, Hean L -- Krzywinski, Martin I -- Kwon-Chung, June K -- Lengeler, Klaus B -- Maiti, Rama -- Marra, Marco A -- Marra, Robert E -- Mathewson, Carrie A -- Mitchell, Thomas G -- Pertea, Mihaela -- Riggs, Florenta R -- Salzberg, Steven L -- Schein, Jacqueline E -- Shvartsbeyn, Alla -- Shin, Heesun -- Shumway, Martin -- Specht, Charles A -- Suh, Bernard B -- Tenney, Aaron -- Utterback, Terry R -- Wickes, Brian L -- Wortman, Jennifer R -- Wye, Natasja H -- Kronstad, James W -- Lodge, Jennifer K -- Heitman, Joseph -- Davis, Ronald W -- Fraser, Claire M -- Hyman, Richard W -- AI47087/AI/NIAID NIH HHS/ -- AI48594/AI/NIAID NIH HHS/ -- R01 AI050184/AI/NIAID NIH HHS/ -- R01 AI050184-05/AI/NIAID NIH HHS/ -- R01 HL088905/HL/NHLBI NIH HHS/ -- R01 HL088905-04A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1321-4. Epub 2005 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA. bjloftus@tigr.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653466" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Cell Wall/metabolism ; Chromosomes, Fungal/genetics ; Computational Biology ; Cryptococcus neoformans/*genetics/pathogenicity/physiology ; DNA Transposable Elements ; Fungal Proteins/metabolism ; Gene Library ; Genes, Fungal ; *Genome, Fungal ; Humans ; Introns ; Molecular Sequence Data ; Phenotype ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Polysaccharides/metabolism ; RNA, Antisense ; Sequence Analysis, DNA ; Transcription, Genetic ; Virulence ; Virulence Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2005-07-09
    Description: Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1.2 grew three-dimensional crystals, with an internal arrangement that left the voltage sensors in an apparently native conformation, allowing us to reach three important conclusions. First, the voltage sensors are essentially independent domains inside the membrane. Second, they perform mechanical work on the pore through the S4-S5 linker helices, which are positioned to constrict or dilate the S6 inner helices of the pore. Third, in the open conformation, two of the four conserved Arg residues on S4 are on a lipid-facing surface and two are buried in the voltage sensor. The structure offers a simple picture of how membrane voltage influences the open probability of the channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Stephen B -- Campbell, Ernest B -- Mackinnon, Roderick -- GM43949/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 5;309(5736):903-8. Epub 2005 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16002579" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Crystallography, X-Ray ; Electrochemistry ; Ion Channel Gating/physiology ; Membrane Potentials ; Models, Biological ; Models, Molecular ; Potassium Channels/*chemistry/*physiology ; Protein Conformation ; Protein Structure, Tertiary ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-30
    Description: Complex I of respiratory chains plays a central role in bioenergetics and is implicated in many human neurodegenerative diseases. An understanding of its mechanism requires a knowledge of the organization of redox centers. The arrangement of iron-sulfur clusters in the hydrophilic domain of complex I from Thermus thermophilus has been determined with the use of x-ray crystallography. One binuclear and six tetranuclear clusters are arranged, maximally 14 angstroms apart, in an 84-angstrom-long electron transfer chain. The binuclear cluster N1a and the tetranuclear cluster N7 are not in this pathway. Cluster N1a may play a role in the prevention of oxidative damage. The structure provides a framework for the interpretation of the large amounts of data accumulated on complex I.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinchliffe, Philip -- Sazanov, Leonid A -- New York, N.Y. -- Science. 2005 Jul 29;309(5735):771-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051796" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Electron Transport ; Electron Transport Complex I/*chemistry/isolation & purification/metabolism ; Flavin Mononucleotide/metabolism ; Iron/*chemistry ; Models, Molecular ; NAD/metabolism ; Oxidation-Reduction ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/isolation & purification/metabolism ; Sulfur/*chemistry ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2005-09-24
    Description: Energy transfer from light-harvesting carotenoids to chlorophyll is common in photosynthesis, but such antenna pigments have not been observed in retinal-based ion pumps and photoreceptors. Here we describe xanthorhodopsin, a proton-pumping retinal protein/carotenoid complex in the eubacterium Salinibacter ruber. The wavelength dependence of the rate of pumping and difference absorption spectra measured under a variety of conditions indicate that this protein contains two chromophores, retinal and the carotenoid salinixanthin, in a molar ratio of about 1:1. The two chromophores interact strongly, and light energy absorbed by the carotenoid is transferred to the retinal with a quantum efficiency of approximately 40%. The antenna carotenoid extends the wavelength range of the collection of light for uphill transmembrane proton transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065861/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065861/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balashov, Sergei P -- Imasheva, Eleonora S -- Boichenko, Vladimir A -- Anton, Josefa -- Wang, Jennifer M -- Lanyi, Janos K -- GM29498/GM/NIGMS NIH HHS/ -- R37 GM029498/GM/NIGMS NIH HHS/ -- R37 GM029498-24/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 23;309(5743):2061-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, Irvine, CA 92697, USA. balashov@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16179480" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteroidetes/*chemistry/metabolism ; Carotenoids/chemistry/metabolism ; Energy Transfer ; Glycosides/chemistry/metabolism ; Hydrogen-Ion Concentration ; Hydroxylamine/pharmacology ; Light ; Light-Harvesting Protein Complexes/*chemistry/isolation & purification/metabolism ; Mass Spectrometry ; Molecular Sequence Data ; Oxygen Consumption ; Proton Pumps/*chemistry/isolation & purification/metabolism ; Retinaldehyde/chemistry/metabolism ; Rhodopsins, Microbial/*chemistry/isolation & purification/metabolism ; Spectrophotometry, Ultraviolet ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-09-06
    Description: The crystal structures of the ribosome and its subunits have increased the amount of information about RNA structure by about two orders of magnitude. This is leading to an understanding of the principles of RNA folding and of the molecular interactions that underlie the functional capabilities of the ribosome and other RNA systems. Nearly all of the possible types of RNA tertiary interactions have been found in ribosomal RNA. One of these, an abundant tertiary structural motif called the A-minor interaction, has been shown to participate in both aminoacyl-transfer RNA selection and in peptidyl transferase; it may also play an important role in the structural dynamics of the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noller, Harry F -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1508-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141058" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Models, Molecular ; Nucleic Acid Conformation ; RNA/chemistry ; RNA, Ribosomal/*chemistry ; RNA, Transfer/chemistry ; Ribosomes/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2005-09-06
    Description: We report the crystal structure of the catalytic domain of human ADAR2, an RNA editing enzyme, at 1.7 angstrom resolution. The structure reveals a zinc ion in the active site and suggests how the substrate adenosine is recognized. Unexpectedly, inositol hexakisphosphate (IP6) is buried within the enzyme core, contributing to the protein fold. Although there are no reports that adenosine deaminases that act on RNA (ADARs) require a cofactor, we show that IP6 is required for activity. Amino acids that coordinate IP6 in the crystal structure are conserved in some adenosine deaminases that act on transfer RNA (tRNA) (ADATs), related enzymes that edit tRNA. Indeed, IP6 is also essential for in vivo and in vitro deamination of adenosine 37 of tRNAala by ADAT1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850959/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850959/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macbeth, Mark R -- Schubert, Heidi L -- Vandemark, Andrew P -- Lingam, Arunth T -- Hill, Christopher P -- Bass, Brenda L -- GM44073/GM/NIGMS NIH HHS/ -- GM56775/GM/NIGMS NIH HHS/ -- R01 GM044073/GM/NIGMS NIH HHS/ -- R01 GM056775/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1534-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141067" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*chemistry/metabolism ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Catalytic Domain ; Humans ; Models, Molecular ; Molecular Sequence Data ; Phytic Acid/chemistry/*metabolism ; *RNA Editing ; RNA, Transfer/chemistry/metabolism ; RNA-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2005-04-16
    Description: We used wounded Drosophila embryos to define an evolutionarily conserved pathway for repairing the epidermal surface barrier. This pathway includes a wound response enhancer from the Ddc gene that requires grainy head (grh) function and binding sites for the Grh transcription factor. At the signaling level, tyrosine kinase and extracellular signal-regulated kinase (ERK) activities are induced in epidermal cells near wounds, and activated ERK is required for a robust wound response. The conservation of this Grh-dependent pathway suggests that the repair of insect cuticle and mammal skin is controlled by an ancient, shared control system for constructing and healing the animal body surface barrier.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mace, Kimberly A -- Pearson, Joseph C -- McGinnis, William -- R01HD28315/HD/NICHD NIH HHS/ -- T32GM07240/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 15;308(5720):381-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15831751" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cyclic AMP Response Element-Binding Protein/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Dopa Decarboxylase/*genetics/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*embryology/genetics/physiology ; Embryo, Nonmammalian/*physiology ; Enhancer Elements, Genetic ; Epidermis/*embryology/physiology ; Epithelium/physiology ; Extracellular Signal-Regulated MAP Kinases/metabolism ; *Gene Expression Regulation ; Genes, Homeobox ; Genes, Insect ; Homeodomain Proteins/genetics ; MAP Kinase Signaling System ; Molecular Sequence Data ; Mutation ; NF-kappa B/metabolism ; Nuclear Proteins/genetics ; Transcription Factor AP-1/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Tyrosine 3-Monooxygenase/genetics/metabolism ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2005-02-05
    Description: The 2.0-angstrom structure of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) catalytic subunit bound to a deletion mutant of a regulatory subunit (RIalpha) defines a previously unidentified extended interface. The complex provides a molecular mechanism for inhibition of PKA and suggests how cAMP binding leads to activation. The interface defines the large lobe of the catalytic subunit as a stable scaffold where Tyr247 in the G helix and Trp196 in the phosphorylated activation loop serve as anchor points for binding RIalpha. These residues compete with cAMP for the phosphate binding cassette in RIalpha. In contrast to the catalytic subunit, RIalpha undergoes major conformational changes when the complex is compared with cAMP-bound RIalpha. The inhibitor sequence docks to the active site, whereas the linker, also disordered in free RIalpha, folds across the extended interface. The beta barrel of cAMP binding domain A, which is the docking site for cAMP, remains largely intact in the complex, whereas the helical subdomain undergoes major reorganization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Choel -- Xuong, Nguyen-Huu -- Taylor, Susan S -- DK07233/DK/NIDDK NIH HHS/ -- GM19301/GM/NIGMS NIH HHS/ -- GM34921/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 4;307(5710):690-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692043" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinase RIalpha Subunit ; Cyclic AMP-Dependent Protein Kinases/antagonists & ; inhibitors/*chemistry/*metabolism ; Enzyme Activation ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Tryptophan/chemistry ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2005-12-13
    Description: G protein-coupled receptor kinase 2 (GRK2) plays a key role in the desensitization of G protein-coupled receptor signaling by phosphorylating activated heptahelical receptors and by sequestering heterotrimeric G proteins. We report the atomic structure of GRK2 in complex with Galphaq and Gbetagamma, in which the activated Galpha subunit of Gq is fully dissociated from Gbetagamma and dramatically reoriented from its position in the inactive Galphabetagamma heterotrimer. Galphaq forms an effector-like interaction with the GRK2 regulator of G protein signaling (RGS) homology domain that is distinct from and does not overlap with that used to bind RGS proteins such as RGS4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, Valerie M -- Kawano, Takeharu -- Shankaranarayanan, Aruna -- Kozasa, Tohru -- Tesmer, John J G -- AG006093/AG/NIA NIH HHS/ -- GM61454/GM/NIGMS NIH HHS/ -- HL071818/HL/NHLBI NIH HHS/ -- NS41441/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1686-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16339447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cattle ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/metabolism ; GTP-Binding Protein beta Subunits/*chemistry/metabolism ; GTP-Binding Protein gamma Subunits/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RGS Proteins/metabolism ; Signal Transduction ; beta-Adrenergic Receptor Kinases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2005-05-14
    Description: Class III adenylyl cyclases contain catalytic and regulatory domains, yet structural insight into their interactions is missing. We show that the mycobacterial adenylyl cyclase Rv1264 is rendered a pH sensor by its N-terminal domain. In the structure of the inhibited state, catalytic and regulatory domains share a large interface involving catalytic residues. In the structure of the active state, the two catalytic domains rotate by 55 degrees to form two catalytic sites at their interface. Two alpha helices serve as molecular switches. Mutagenesis is consistent with a regulatory role of the structural transition, and we suggest that the transition is regulated by pH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tews, Ivo -- Findeisen, Felix -- Sinning, Irmgard -- Schultz, Anita -- Schultz, Joachim E -- Linder, Jurgen U -- New York, N.Y. -- Science. 2005 May 13;308(5724):1020-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemiezentrum der Universitat Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany. ivo.tews@bzh.uni-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890882" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/*chemistry/genetics/*metabolism ; Amino Acid Sequence ; Bacterial Proteins/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Catalytic Domain ; Chemistry, Physical ; Crystallography, X-Ray ; Dimerization ; Holoenzymes/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mycobacterium tuberculosis/*enzymology ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...