ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-02-14
    Description: Legumes can enter into symbiotic relationships with both nitrogen-fixing bacteria (rhizobia) and mycorrhizal fungi. Nodulation by rhizobia results from a signal transduction pathway induced in legume roots by rhizobial Nod factors. DMI3, a Medicago truncatula gene that acts immediately downstream of calcium spiking in this signaling pathway and is required for both nodulation and mycorrhizal infection, has high sequence similarity to genes encoding calcium and calmodulin-dependent protein kinases (CCaMKs). This indicates that calcium spiking is likely an essential component of the signaling cascade leading to nodule development and mycorrhizal infection, and sheds light on the biological role of plant CCaMKs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, Julien -- Bres, Cecile -- Geurts, Rene -- Chalhoub, Boulos -- Kulikova, Olga -- Duc, Gerard -- Journet, Etienne-Pascal -- Ane, Jean-Michel -- Lauber, Emmanuelle -- Bisseling, Ton -- Denarie, Jean -- Rosenberg, Charles -- Debelle, Frederic -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1361-4. Epub 2004 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire des Interactions Plantes-Microorganismes INRA-CNRS, BP27, 31326 Castanet-Tolosan Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963335" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Calmodulin/metabolism ; Chromosomes, Artificial, Bacterial ; Cloning, Molecular ; EF Hand Motifs ; Expressed Sequence Tags ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/metabolism ; Medicago/*enzymology/genetics/microbiology ; Molecular Sequence Data ; Mutation ; Mycorrhizae/*physiology ; Peas/*enzymology/genetics/microbiology ; Plant Roots/enzymology/microbiology ; Protein Structure, Tertiary ; Rhizobium/genetics ; Sinorhizobium meliloti/*physiology ; *Symbiosis ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-06-18
    Description: Rhizobial Nod factors induce in their legume hosts the expression of many genes and set in motion developmental processes leading to root nodule formation. Here we report the identification of the Medicago GRAS-type protein Nodulation signaling pathway 1 (NSP1), which is essential for all known Nod factor-induced changes in gene expression. NSP1 is constitutively expressed, and so it acts as a primary transcriptional regulator mediating all known Nod factor-induced transcriptional responses, and therefore, we named it a Nod factor response factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smit, Patrick -- Raedts, John -- Portyanko, Vladimir -- Debelle, Frederic -- Gough, Clare -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1789-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Wageningen 6703 HA, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961669" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cell Nucleus/metabolism ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/*metabolism ; Medicago/*genetics/metabolism/*microbiology ; Molecular Sequence Data ; Mutation ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Roots/metabolism/microbiology ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; Signal Transduction ; Sinorhizobium meliloti/*physiology ; Symbiosis ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-02-14
    Description: Legumes form symbiotic associations with both mycorrhizal fungi and nitrogen-fixing soil bacteria called rhizobia. Several of the plant genes required for transduction of rhizobial signals, the Nod factors, are also necessary for mycorrhizal symbiosis. Here, we describe the cloning and characterization of one such gene from the legume Medicago truncatula. The DMI1 (does not make infections) gene encodes a novel protein with low global similarity to a ligand-gated cation channel domain of archaea. The protein is highly conserved in angiosperms and ancestral to land plants. We suggest that DMI1 represents an ancient plant-specific innovation, potentially enabling mycorrhizal associations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ane, Jean-Michel -- Kiss, Gyorgy B -- Riely, Brendan K -- Penmetsa, R Varma -- Oldroyd, Giles E D -- Ayax, Celine -- Levy, Julien -- Debelle, Frederic -- Baek, Jong-Min -- Kalo, Peter -- Rosenberg, Charles -- Roe, Bruce A -- Long, Sharon R -- Denarie, Jean -- Cook, Douglas R -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1364-7. Epub 2004 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963334" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics ; Chromosomes, Artificial, Bacterial ; Cloning, Molecular ; Fabaceae/genetics/metabolism/microbiology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Lipopolysaccharides/metabolism ; Medicago/*genetics/metabolism/*microbiology ; Molecular Sequence Data ; Mycorrhizae/*physiology ; Nitrogen Fixation ; Phylogeny ; Plant Proteins/chemistry/genetics/*physiology ; Plant Roots/metabolism ; Protein Structure, Tertiary ; Recombination, Genetic ; Rhizobiaceae/*physiology ; Sequence Homology, Amino Acid ; Signal Transduction ; *Symbiosis ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-18
    Description: Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing approximately 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Nevin D -- Debelle, Frederic -- Oldroyd, Giles E D -- Geurts, Rene -- Cannon, Steven B -- Udvardi, Michael K -- Benedito, Vagner A -- Mayer, Klaus F X -- Gouzy, Jerome -- Schoof, Heiko -- Van de Peer, Yves -- Proost, Sebastian -- Cook, Douglas R -- Meyers, Blake C -- Spannagl, Manuel -- Cheung, Foo -- De Mita, Stephane -- Krishnakumar, Vivek -- Gundlach, Heidrun -- Zhou, Shiguo -- Mudge, Joann -- Bharti, Arvind K -- Murray, Jeremy D -- Naoumkina, Marina A -- Rosen, Benjamin -- Silverstein, Kevin A T -- Tang, Haibao -- Rombauts, Stephane -- Zhao, Patrick X -- Zhou, Peng -- Barbe, Valerie -- Bardou, Philippe -- Bechner, Michael -- Bellec, Arnaud -- Berger, Anne -- Berges, Helene -- Bidwell, Shelby -- Bisseling, Ton -- Choisne, Nathalie -- Couloux, Arnaud -- Denny, Roxanne -- Deshpande, Shweta -- Dai, Xinbin -- Doyle, Jeff J -- Dudez, Anne-Marie -- Farmer, Andrew D -- Fouteau, Stephanie -- Franken, Carolien -- Gibelin, Chrystel -- Gish, John -- Goldstein, Steven -- Gonzalez, Alvaro J -- Green, Pamela J -- Hallab, Asis -- Hartog, Marijke -- Hua, Axin -- Humphray, Sean J -- Jeong, Dong-Hoon -- Jing, Yi -- Jocker, Anika -- Kenton, Steve M -- Kim, Dong-Jin -- Klee, Kathrin -- Lai, Hongshing -- Lang, Chunting -- Lin, Shaoping -- Macmil, Simone L -- Magdelenat, Ghislaine -- Matthews, Lucy -- McCorrison, Jamison -- Monaghan, Erin L -- Mun, Jeong-Hwan -- Najar, Fares Z -- Nicholson, Christine -- Noirot, Celine -- O'Bleness, Majesta -- Paule, Charles R -- Poulain, Julie -- Prion, Florent -- Qin, Baifang -- Qu, Chunmei -- Retzel, Ernest F -- Riddle, Claire -- Sallet, Erika -- Samain, Sylvie -- Samson, Nicolas -- Sanders, Iryna -- Saurat, Olivier -- Scarpelli, Claude -- Schiex, Thomas -- Segurens, Beatrice -- Severin, Andrew J -- Sherrier, D Janine -- Shi, Ruihua -- Sims, Sarah -- Singer, Susan R -- Sinharoy, Senjuti -- Sterck, Lieven -- Viollet, Agnes -- Wang, Bing-Bing -- Wang, Keqin -- Wang, Mingyi -- Wang, Xiaohong -- Warfsmann, Jens -- Weissenbach, Jean -- White, Doug D -- White, Jim D -- Wiley, Graham B -- Wincker, Patrick -- Xing, Yanbo -- Yang, Limei -- Yao, Ziyun -- Ying, Fu -- Zhai, Jixian -- Zhou, Liping -- Zuber, Antoine -- Denarie, Jean -- Dixon, Richard A -- May, Gregory D -- Schwartz, David C -- Rogers, Jane -- Quetier, Francis -- Town, Christopher D -- Roe, Bruce A -- BB/G023832/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/11524/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2011 Nov 16;480(7378):520-4. doi: 10.1038/nature10625.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of Minnesota, St Paul, Minnesota 55108, USA. neviny@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22089132" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Genome, Plant ; Medicago truncatula/*genetics/*microbiology ; Molecular Sequence Data ; Nitrogen Fixation/genetics ; Rhizobium/*physiology ; Soybeans/genetics ; *Symbiosis ; Synteny ; Vitis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 46 (1992), S. 497-531 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 65 (1996), S. 503-535 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: To analyse the regulation of the nodulation (nod) genes of Rhizobium meliloti RCR2011 we have isolated lacZ gene fusions to a number of common, host-range and regulatory nod genes, using the mini-MU-lac bacteriophage transposon Mud II1734. Common (nodA, nodC, nod region IIa) and host-range (nodE, nodG, nodH) genes were found to be regulated similarly. They were activated (i) by the regulatory nodD1 gene in the presence of flavones such as chrysoeriol, luteolin and 7,3′,4′-trihydroxyflavone, (ii) by nodD2 in the presence of alfalfa root exudate but not with the NodD1-activating flavones, and (iii) by the regulatory genes syrM-nodD3 even in the absence of plant inducers. Thus common and host-range nod genes belong to the same regulon. In contrast to the nodD1 gene, the regulatory nodD3 gene was not expressed constitutively and exhibited a complex regulation. It required syrM for expression, was activated by nodD1 in the presence of luteolin and was positively autoregulated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1996-12-24
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-10-01
    Print ISSN: 0066-4227
    Electronic ISSN: 1545-3251
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...