ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-04
    Description: Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cock, J Mark -- Sterck, Lieven -- Rouze, Pierre -- Scornet, Delphine -- Allen, Andrew E -- Amoutzias, Grigoris -- Anthouard, Veronique -- Artiguenave, Francois -- Aury, Jean-Marc -- Badger, Jonathan H -- Beszteri, Bank -- Billiau, Kenny -- Bonnet, Eric -- Bothwell, John H -- Bowler, Chris -- Boyen, Catherine -- Brownlee, Colin -- Carrano, Carl J -- Charrier, Benedicte -- Cho, Ga Youn -- Coelho, Susana M -- Collen, Jonas -- Corre, Erwan -- Da Silva, Corinne -- Delage, Ludovic -- Delaroque, Nicolas -- Dittami, Simon M -- Doulbeau, Sylvie -- Elias, Marek -- Farnham, Garry -- Gachon, Claire M M -- Gschloessl, Bernhard -- Heesch, Svenja -- Jabbari, Kamel -- Jubin, Claire -- Kawai, Hiroshi -- Kimura, Kei -- Kloareg, Bernard -- Kupper, Frithjof C -- Lang, Daniel -- Le Bail, Aude -- Leblanc, Catherine -- Lerouge, Patrice -- Lohr, Martin -- Lopez, Pascal J -- Martens, Cindy -- Maumus, Florian -- Michel, Gurvan -- Miranda-Saavedra, Diego -- Morales, Julia -- Moreau, Herve -- Motomura, Taizo -- Nagasato, Chikako -- Napoli, Carolyn A -- Nelson, David R -- Nyvall-Collen, Pi -- Peters, Akira F -- Pommier, Cyril -- Potin, Philippe -- Poulain, Julie -- Quesneville, Hadi -- Read, Betsy -- Rensing, Stefan A -- Ritter, Andres -- Rousvoal, Sylvie -- Samanta, Manoj -- Samson, Gaelle -- Schroeder, Declan C -- Segurens, Beatrice -- Strittmatter, Martina -- Tonon, Thierry -- Tregear, James W -- Valentin, Klaus -- von Dassow, Peter -- Yamagishi, Takahiro -- Van de Peer, Yves -- Wincker, Patrick -- England -- Nature. 2010 Jun 3;465(7298):617-21. doi: 10.1038/nature09016.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPMC Universite Paris 6, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, 29682 Roscoff Cedex, France. cock@sb-roscoff.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520714" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics ; Animals ; *Biological Evolution ; Eukaryota ; Evolution, Molecular ; Genome/*genetics ; Molecular Sequence Data ; Phaeophyta/*cytology/*genetics/metabolism ; Phylogeny ; Pigments, Biological/biosynthesis ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-26
    Description: Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760481/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760481/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denoeud, France -- Henriet, Simon -- Mungpakdee, Sutada -- Aury, Jean-Marc -- Da Silva, Corinne -- Brinkmann, Henner -- Mikhaleva, Jana -- Olsen, Lisbeth Charlotte -- Jubin, Claire -- Canestro, Cristian -- Bouquet, Jean-Marie -- Danks, Gemma -- Poulain, Julie -- Campsteijn, Coen -- Adamski, Marcin -- Cross, Ismael -- Yadetie, Fekadu -- Muffato, Matthieu -- Louis, Alexandra -- Butcher, Stephen -- Tsagkogeorga, Georgia -- Konrad, Anke -- Singh, Sarabdeep -- Jensen, Marit Flo -- Huynh Cong, Evelyne -- Eikeseth-Otteraa, Helen -- Noel, Benjamin -- Anthouard, Veronique -- Porcel, Betina M -- Kachouri-Lafond, Rym -- Nishino, Atsuo -- Ugolini, Matteo -- Chourrout, Pascal -- Nishida, Hiroki -- Aasland, Rein -- Huzurbazar, Snehalata -- Westhof, Eric -- Delsuc, Frederic -- Lehrach, Hans -- Reinhardt, Richard -- Weissenbach, Jean -- Roy, Scott W -- Artiguenave, Francois -- Postlethwait, John H -- Manak, J Robert -- Thompson, Eric M -- Jaillon, Olivier -- Du Pasquier, Louis -- Boudinot, Pierre -- Liberles, David A -- Volff, Jean-Nicolas -- Philippe, Herve -- Lenhard, Boris -- Roest Crollius, Hugues -- Wincker, Patrick -- Chourrout, Daniel -- Z01 LM000073-12/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1381-5. doi: 10.1126/science.1194167. Epub 2010 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commissariat a l'Energie Atomique, Institut de Genomique, Genoscope, Evry, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21097902" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; DNA Transposable Elements ; DNA, Intergenic ; Exons ; Gene Order ; Genes, Duplicate ; Genes, Homeobox ; *Genome ; Introns ; Invertebrates/classification/genetics ; Molecular Sequence Data ; Recombination, Genetic ; Spliceosomes/metabolism ; Synteny ; Urochordata/anatomy & histology/classification/*genetics/immunology ; Vertebrates/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-11-29
    Description: Previous genome comparisons have suggested that one important trend in vertebrate evolution has been a sharp rise in intron abundance. By using genomic data and expressed sequence tags from the marine annelid Platynereis dumerilii, we provide direct evidence that about two-thirds of human introns predate the bilaterian radiation but were lost from insect and nematode genomes to a large extent. A comparison of coding exon sequences confirms the ancestral nature of Platynereis and human genes. Thus, the urbilaterian ancestor had complex, intron-rich genes that have been retained in Platynereis and human.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raible, Florian -- Tessmar-Raible, Kristin -- Osoegawa, Kazutoyo -- Wincker, Patrick -- Jubin, Claire -- Balavoine, Guillaume -- Ferrier, David -- Benes, Vladimir -- de Jong, Pieter -- Weissenbach, Jean -- Bork, Peer -- Arendt, Detlev -- BBS/B/12067/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1325-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Unit, European Molecular Biological Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany. raible@embl.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16311335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/chemistry/genetics ; Caenorhabditis elegans/chemistry/genetics ; Ciona intestinalis/chemistry/genetics ; Computational Biology ; Evolution, Molecular ; Exons ; *Genes ; Genome ; Humans ; *Introns ; Molecular Sequence Data ; Phylogeny ; Polychaeta/chemistry/*genetics ; Proteins/chemistry/genetics ; Sequence Alignment ; Species Specificity ; Vertebrates/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-05
    Description: The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-17
    Description: Advances in high-throughput sequencing (HTS) technologies have accelerated our knowledge of genomes in hundreds of organisms, but the presence of repetitions found in every genome raises challenges to unambiguously map short reads. In particular, short polymorphic reads that are multialigned hinder our capacity to detect mutations. Here, we present two complementary bioinformatics strategies to perform more robust analyses of genome content and sequencing data, validated by use of the Saccharomyces cerevisiae fully sequenced genome. First, we created an annotated HTS profile for the reference genome, based on the production of virtual HTS reads. Using variable read lengths and different numbers of mismatches, we found that 35 nt-reads, with a maximum of 6 mismatches, targets 89.5% of the genome to unique (U) regions. Longer reads consisting of 50–100 nt provided little additional benefits on the U regions extent. Second, to analyze the remaining multialigned (M) regions, we identified the intragenomic single-nucleotide variants and thus defined the unique (M U ) and multialigned (M M ) subregions, as exemplified for the polymorphic copies of the six flocculation genes and the 50 Ty retrotransposons. As a resource, the coordinates of the U and M regions of the yeast genome have been added to the Saccharomyces Genome Database ( www.yeastgenome.org ). The benefit of this advanced method of genome annotation was confirmed by our ability to identify acquired single nucleotide polymorphisms in the U and M regions of an experimentally sequenced variant wild-type yeast strain.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...