ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (108)
  • Crystallography, X-Ray  (108)
  • 2015-2019
  • 2010-2014  (108)
  • 2010  (108)
Collection
  • Articles  (108)
Years
  • 2015-2019
  • 2010-2014  (108)
Year
  • 1
    Publication Date: 2010-10-15
    Description: The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alphabeta T-cell lineage differentiation. Whereas alphabetaTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant alpha-chain (pre-Talpha) that pairs with any TCR beta-chain (TCRbeta) following successful TCR beta-gene rearrangement. Here we provide the basis of pre-Talpha-TCRbeta assembly and pre-TCR dimerization. The pre-Talpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain; nevertheless, the mode of association between pre-Talpha and TCRbeta mirrored that mediated by the Calpha-Cbeta domains of the alphabetaTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Talpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the Vbeta and joining (J) beta gene families, thus mimicking the interactions at the core of the alphabetaTCR's Valpha-Vbeta interface. Disruption of this pre-Talpha-Vbeta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Talpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Talpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pang, Siew Siew -- Berry, Richard -- Chen, Zhenjun -- Kjer-Nielsen, Lars -- Perugini, Matthew A -- King, Glenn F -- Wang, Christina -- Chew, Sock Hui -- La Gruta, Nicole L -- Williams, Neal K -- Beddoe, Travis -- Tiganis, Tony -- Cowieson, Nathan P -- Godfrey, Dale I -- Purcell, Anthony W -- Wilce, Matthew C J -- McCluskey, James -- Rossjohn, Jamie -- England -- Nature. 2010 Oct 14;467(7317):844-8. doi: 10.1038/nature09448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944746" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; Models, Molecular ; Mutation ; Protein Folding ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/*chemistry/genetics/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/metabolism ; Signal Transduction ; Solutions ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-02-19
    Description: E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Shaun K -- Capili, Allan D -- Lu, Xuequan -- Tan, Derek S -- Lima, Christopher D -- F32 GM075695/GM/NIGMS NIH HHS/ -- F32 GM075695-03/GM/NIGMS NIH HHS/ -- R01 AI068038/AI/NIAID NIH HHS/ -- R01 AI068038-02/AI/NIAID NIH HHS/ -- R01 AI068038-03/AI/NIAID NIH HHS/ -- R01 GM065872/GM/NIGMS NIH HHS/ -- R01 GM065872-09/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):906-12. doi: 10.1038/nature08765.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology, Sloan-Kettering Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164921" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; *Biocatalysis ; Catalytic Domain/*physiology ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/chemistry/metabolism ; Humans ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; SUMO-1 Protein/*chemistry/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Sulfides/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Activating Enzymes/*chemistry/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-21
    Description: Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or 'gates'. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a 'two-metal mechanism', a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5A resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular 'trapdoor' to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882514/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882514/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Bryan H -- Burgin, Alex B -- Deweese, Joseph E -- Osheroff, Neil -- Berger, James M -- CA077373/CA/NCI NIH HHS/ -- GM033944/GM/NIGMS NIH HHS/ -- GM053960/GM/NIGMS NIH HHS/ -- GM08295/GM/NIGMS NIH HHS/ -- R01 CA077373/CA/NCI NIH HHS/ -- R01 CA077373-11S1/CA/NCI NIH HHS/ -- R01 CA077373-12/CA/NCI NIH HHS/ -- R01 GM033944/GM/NIGMS NIH HHS/ -- T32 CA009592/CA/NCI NIH HHS/ -- T32CA09592/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jun 3;465(7298):641-4. doi: 10.1038/nature08974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485342" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; DNA Topoisomerases, Type II/*chemistry/*metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Saccharomyces cerevisiae/*enzymology ; Tyrosine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-14
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883250/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883250/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karpowich, Nathan K -- Wang, Da-Neng -- F32 HL091618-03/HL/NHLBI NIH HHS/ -- R01 DK053973/DK/NIDDK NIH HHS/ -- R01 DK053973-12/DK/NIDDK NIH HHS/ -- R01 GM093825/GM/NIGMS NIH HHS/ -- R01 GM093825-01/GM/NIGMS NIH HHS/ -- R01 MH083840/MH/NIMH NIH HHS/ -- R01 MH083840-03/MH/NIMH NIH HHS/ -- R21 GM075936/GM/NIGMS NIH HHS/ -- R21 GM075936-02/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM075026-050010/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):171-2. doi: 10.1038/465171a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463728" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Molecular Dynamics Simulation ; Plasma Membrane Neurotransmitter Transport Proteins/*chemistry/*metabolism ; Protein Conformation ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-06-26
    Description: DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silverstein, Timothy D -- Johnson, Robert E -- Jain, Rinku -- Prakash, Louise -- Prakash, Satya -- Aggarwal, Aneel K -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA107650/CA/NCI NIH HHS/ -- R01 CA107650-39/CA/NCI NIH HHS/ -- R01 ES017767/ES/NIEHS NIH HHS/ -- R01 ES017767-01/ES/NIEHS NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1039-43. doi: 10.1038/nature09104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577207" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Damage ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Mutation, Missense ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Pyrimidine Dimers/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Skin Neoplasms/*enzymology/genetics ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-10-12
    Description: Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 A resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 A structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024006/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024006/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Aiwu -- Carrell, Robin W -- Murphy, Michael P -- Wei, Zhenquan -- Yan, Yahui -- Stanley, Peter L D -- Stein, Penelope E -- Broughton Pipkin, Fiona -- Read, Randy J -- 082961/Wellcome Trust/United Kingdom -- BS/05/002/18361/British Heart Foundation/United Kingdom -- MC_U105663142/Medical Research Council/United Kingdom -- PG/08/041/24818/British Heart Foundation/United Kingdom -- PG/09/072/27945/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Nov 4;468(7320):108-11. doi: 10.1038/nature09505. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK. awz20@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927107" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiotensinogen/blood/*chemistry/*metabolism ; Angiotensins/chemistry/*metabolism/secretion ; Blood Pressure ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Female ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidative Stress ; Pre-Eclampsia/blood/metabolism ; Pregnancy ; Protein Conformation ; *Protein Processing, Post-Translational ; Renin/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-09-30
    Description: Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed beta-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Bert J C -- Robinson, Ross A -- Perez-Branguli, Francesc -- Bell, Christian H -- Mitchell, Kevin J -- Siebold, Christian -- Jones, E Yvonne -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- A10976/Cancer Research UK/United Kingdom -- A3964/Cancer Research UK/United Kingdom -- A5261/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- G0700232(82098)/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- G9900061(69203)/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/genetics/metabolism ; Binding Sites ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Cell Communication ; Crystallography, X-Ray ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; NIH 3T3 Cells ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-16
    Description: Tumour metastasis is the primary cause of death of cancer patients. Development of new therapeutics preventing tumour metastasis is urgently needed. Migrastatin is a natural product secreted by Streptomyces, and synthesized migrastatin analogues such as macroketone are potent inhibitors of metastatic tumour cell migration, invasion and metastasis. Here we show that these migrastatin analogues target the actin-bundling protein fascin to inhibit its activity. X-ray crystal structural studies reveal that migrastatin analogues bind to one of the actin-binding sites on fascin. Our data demonstrate that actin cytoskeletal proteins such as fascin can be explored as new molecular targets for cancer treatment, in a similar manner to the microtubule protein tubulin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lin -- Yang, Shengyu -- Jakoncic, Jean -- Zhang, J Jillian -- Huang, Xin-Yun -- CA136837/CA/NCI NIH HHS/ -- R01 CA136837/CA/NCI NIH HHS/ -- R01 CA136837-01A1/CA/NCI NIH HHS/ -- England -- Nature. 2010 Apr 15;464(7291):1062-6. doi: 10.1038/nature08978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Cornell University Weill Medical College, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393565" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Antineoplastic Agents/chemistry/metabolism/pharmacology/therapeutic use ; Binding Sites/drug effects ; Breast Neoplasms/drug therapy/pathology ; Carrier Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Cell Line, Tumor ; Cell Movement/drug effects ; Crystallography, X-Ray ; Drug Resistance, Neoplasm/genetics ; Female ; Humans ; Lung Neoplasms/prevention & control/secondary ; Macrolides/*chemistry/metabolism/*pharmacology/therapeutic use ; Mice ; Mice, Inbred BALB C ; Mice, Inbred NOD ; Mice, SCID ; Microfilament Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Models, Molecular ; Mutation/genetics ; Neoplasm Invasiveness/pathology/prevention & control ; Neoplasm Metastasis/drug therapy/pathology/*prevention & control ; Piperidones/*chemistry/metabolism/*pharmacology/therapeutic use ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-07-09
    Description: Interconversion between conductive and non-conductive forms of the K(+) channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K(+) channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 A in closed KcsA (Calpha-Calpha distances at Thr 112) to 32 A when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K(+) channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuello, Luis G -- Jogini, Vishwanath -- Cortes, D Marien -- Perozo, Eduardo -- R01 GM057846/GM/NIGMS NIH HHS/ -- R01 GM057846-15/GM/NIGMS NIH HHS/ -- R01-GM57846/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 8;466(7303):203-8. doi: 10.1038/nature09153.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613835" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Electrons ; *Ion Channel Gating ; Kinetics ; Models, Biological ; Models, Molecular ; Potassium/metabolism ; Potassium Channels/*chemistry/metabolism ; Protein Conformation ; Streptomyces lividans/*chemistry ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-10-01
    Description: In most bacteria and all archaea, glutamyl-tRNA synthetase (GluRS) glutamylates both tRNA(Glu) and tRNA(Gln), and then Glu-tRNA(Gln) is selectively converted to Gln-tRNA(Gln) by a tRNA-dependent amidotransferase. The mechanisms by which the two enzymes recognize their substrate tRNA(s), and how they cooperate with each other in Gln-tRNA(Gln) synthesis, remain to be determined. Here we report the formation of the 'glutamine transamidosome' from the bacterium Thermotoga maritima, consisting of tRNA(Gln), GluRS and the heterotrimeric amidotransferase GatCAB, and its crystal structure at 3.35 A resolution. The anticodon-binding body of GluRS recognizes the common features of tRNA(Gln) and tRNA(Glu), whereas the tail body of GatCAB recognizes the outer corner of the L-shaped tRNA(Gln) in a tRNA(Gln)-specific manner. GluRS is in the productive form, as its catalytic body binds to the amino-acid-acceptor arm of tRNA(Gln). In contrast, GatCAB is in the non-productive form: the catalytic body of GatCAB contacts that of GluRS and is located near the acceptor stem of tRNA(Gln), in an appropriate site to wait for the completion of Glu-tRNA(Gln) formation by GluRS. We identified the hinges between the catalytic and anticodon-binding bodies of GluRS and between the catalytic and tail bodies of GatCAB, which allow both GluRS and GatCAB to adopt the productive and non-productive forms. The catalytic bodies of the two enzymes compete for the acceptor arm of tRNA(Gln) and therefore cannot assume their productive forms simultaneously. The transition from the present glutamylation state, with the productive GluRS and the non-productive GatCAB, to the putative amidation state, with the non-productive GluRS and the productive GatCAB, requires an intermediate state with the two enzymes in their non-productive forms, for steric reasons. The proposed mechanism explains how the transamidosome efficiently performs the two consecutive steps of Gln-tRNA(Gln) formation, with a low risk of releasing the unstable intermediate Glu-tRNA(Gln).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Takuhiro -- Yokoyama, Shigeyuki -- England -- Nature. 2010 Sep 30;467(7315):612-6. doi: 10.1038/nature09411.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20882017" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/genetics ; Biocatalysis ; Crystallography, X-Ray ; Electrophoretic Mobility Shift Assay ; Glutamate-tRNA Ligase/*chemistry/*metabolism ; Models, Molecular ; Molecular Conformation ; Nitrogenous Group Transferases/*chemistry/*metabolism ; Protein Binding ; RNA, Transfer, Gln/biosynthesis/*chemistry/*metabolism ; RNA, Transfer, Glu/chemistry/metabolism ; Staphylococcus aureus/enzymology ; Substrate Specificity ; Thermotoga maritima/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-04-30
    Description: The interferon-inducible dynamin-like myxovirus resistance protein 1 (MxA; also called MX1) GTPase is a key mediator of cell-autonomous innate immunity against pathogens such as influenza viruses. MxA partially localizes to COPI-positive membranes of the smooth endoplasmic reticulum-Golgi intermediate compartment. At the point of infection, it redistributes to sites of viral replication and promotes missorting of essential viral constituents. It has been proposed that the middle domain and the GTPase effector domain of dynamin-like GTPases constitute a stalk that mediates oligomerization and transmits conformational changes from the G domain to the target structure; however, the molecular architecture of this stalk has remained elusive. Here we report the crystal structure of the stalk of human MxA, which folds into a four-helical bundle. This structure tightly oligomerizes in the crystal in a criss-cross pattern involving three distinct interfaces and one loop. Mutations in each of these interaction sites interfere with native assembly, oligomerization, membrane binding and antiviral activity of MxA. On the basis of these results, we propose a structural model for dynamin oligomerization and stimulated GTP hydrolysis that is consistent with previous structural predictions and has functional implications for all members of the dynamin family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Song -- von der Malsburg, Alexander -- Paeschke, Susann -- Behlke, Joachim -- Haller, Otto -- Kochs, Georg -- Daumke, Oliver -- England -- Nature. 2010 May 27;465(7297):502-6. doi: 10.1038/nature08972. Epub 2010 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Delbruck-Centrum for Molecular Medicine, Crystallography, Robert-Rossle-Strasse 10, 13125 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428112" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents/chemistry/metabolism/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Dynamins/*chemistry/metabolism ; GTP Phosphohydrolases/metabolism ; GTP-Binding Proteins/*chemistry/genetics/*metabolism/pharmacology ; Guanosine Triphosphate/metabolism ; Humans ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Influenza A Virus, H5N1 Subtype/drug effects/physiology ; Models, Molecular ; Myxovirus Resistance Proteins ; Protein Conformation ; *Protein Multimerization ; Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-01-22
    Description: In extremely acidic environments, enteric bacteria such as Escherichia coli rely on the amino acid antiporter AdiC to expel protons by exchanging intracellular agmatine (Agm(2+)) for extracellular arginine (Arg(+)). AdiC is a representative member of the amino acid-polyamine-organocation (APC) superfamily of membrane transporters. The structure of substrate-free AdiC revealed a homodimeric assembly, with each protomer containing 12 transmembrane segments and existing in an outward-open conformation. The overall folding of AdiC is similar to that of the Na(+)-coupled symporters. Despite these advances, it remains unclear how the substrate (arginine or agmatine) is recognized and transported by AdiC. Here we report the crystal structure of an E. coli AdiC variant bound to Arg at 3.0 A resolution. The positively charged Arg is enclosed in an acidic binding chamber, with the head groups of Arg hydrogen-bonded to main chain atoms of AdiC and the aliphatic portion of Arg stacked by hydrophobic side chains of highly conserved residues. Arg binding induces pronounced structural rearrangement in transmembrane helix 6 (TM6) and, to a lesser extent, TM2 and TM10, resulting in an occluded conformation. Structural analysis identified three potential gates, involving four aromatic residues and Glu 208, which may work in concert to differentially regulate the upload and release of Arg and Agm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Xiang -- Zhou, Lijun -- Jiao, Xuyao -- Lu, Feiran -- Yan, Chuangye -- Zeng, Xin -- Wang, Jiawei -- Shi, Yigong -- England -- Nature. 2010 Feb 11;463(7282):828-32. doi: 10.1038/nature08741. Epub 2010 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Protein Science Laboratory, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20090677" target="_blank"〉PubMed〈/a〉
    Keywords: Agmatine/metabolism ; Amino Acid Transport Systems/*chemistry/*metabolism ; Antiporters/*chemistry/*metabolism ; Arginine/chemistry/*metabolism ; Biological Transport ; Conserved Sequence ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protons ; Static Electricity ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-08-20
    Description: The Na(+)/K(+)-ATPase pumps three sodium ions out of and two potassium ions into the cell for each ATP molecule that is split, thereby generating the chemical and electrical gradients across the plasma membrane that are essential in, for example, signalling, secondary transport and volume regulation in animal cells. Crystal structures of the potassium-bound form of the pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain. Here we show that this element is a key regulator of a previously unrecognized ion pathway. Current models of P-type ATPases operate with a single ion conduit through the pump, but our data suggest an additional pathway in the Na(+)/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when potassium is released the proton will also return to the cytoplasm, thus allowing an overall asymmetric stoichiometry of the transported ions. The C terminus controls the gate to the pathway. Its structure is crucial for pump function, as demonstrated by at least eight mutations in the region that cause severe neurological diseases. This novel model for ion transport by the Na(+)/K(+)-ATPase is established by electrophysiological studies of C-terminal mutations in familial hemiplegic migraine 2 (FHM2) and is further substantiated by molecular dynamics simulations. A similar ion regulation is likely to apply to the H(+)/K(+)-ATPase and the Ca(2+)-ATPase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulsen, Hanne -- Khandelia, Himanshu -- Morth, J Preben -- Bublitz, Maike -- Mouritsen, Ole G -- Egebjerg, Jan -- Nissen, Poul -- England -- Nature. 2010 Sep 2;467(7311):99-102. doi: 10.1038/nature09309. Epub 2010 Aug 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PUMPKIN - Centre for Membrane Pumps in Cells and Disease, Danish National Research Foundation, Department of Molecular Biology, Aarhus University, DK-8000 Aarhus C, Denmark. hp@mb.au.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20720542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; Humans ; *Ion Transport ; Migraine with Aura/genetics/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Oocytes/metabolism ; Potassium/metabolism ; Protons ; Sodium-Potassium-Exchanging ATPase/*chemistry/*metabolism ; Squalus acanthias/metabolism ; Sus scrofa/metabolism ; Xenopus
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-02-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharya, Ananyo -- England -- Nature. 2010 Feb 4;463(7281):605-6. doi: 10.1038/463605a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Child ; Crystallization ; Crystallography, X-Ray ; Diacylglycerol Kinase/chemistry ; Humans ; Magnetic Resonance Spectroscopy/*instrumentation/*methods ; Metabolomics/instrumentation/methods ; Models, Molecular ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-12-18
    Description: Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Wen-Wei -- Wang, Zhanxin -- Yiu, Teresa T -- Akdemir, Kadir C -- Xia, Weiya -- Winter, Stefan -- Tsai, Cheng-Yu -- Shi, Xiaobing -- Schwarzer, Dirk -- Plunkett, William -- Aronow, Bruce -- Gozani, Or -- Fischle, Wolfgang -- Hung, Mien-Chie -- Patel, Dinshaw J -- Barton, Michelle Craig -- GM079641/GM/NIGMS NIH HHS/ -- GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627-010003/GM/NIGMS NIH HHS/ -- P01 GM081627-020003/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30DK078392-01/DK/NIDDK NIH HHS/ -- T32 HD07325/HD/NICHD NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):927-32. doi: 10.1038/nature09542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164480" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Breast Neoplasms/*genetics/*metabolism/pathology ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line, Tumor ; Chromatin/metabolism ; Chromatin Assembly and Disassembly ; Crystallography, X-Ray ; Estrogen Receptor alpha/metabolism ; Estrogens/metabolism ; *Gene Expression Regulation, Neoplastic/genetics ; HEK293 Cells ; Histones/chemistry/*metabolism ; Humans ; Methylation ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Substrate Specificity ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-01-08
    Description: G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, Michael P -- Zou, Yaozhong -- Rasmussen, Soren G F -- Liu, Corey W -- Nygaard, Rie -- Rosenbaum, Daniel M -- Fung, Juan Jose -- Choi, Hee-Jung -- Thian, Foon Sun -- Kobilka, Tong Sun -- Puglisi, Joseph D -- Weis, William I -- Pardo, Leonardo -- Prosser, R Scott -- Mueller, Luciano -- Kobilka, Brian K -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM056169-13/GM/NIGMS NIH HHS/ -- R21 MH082313/MH/NIMH NIH HHS/ -- R21 MH082313-01A1/MH/NIMH NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-19/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):108-12. doi: 10.1038/nature08650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054398" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Adrenergic beta-2 Receptor Antagonists ; Allosteric Regulation/drug effects ; Binding Sites ; Crystallography, X-Ray ; Drug Inverse Agonism ; Ethanolamines/pharmacology ; Formoterol Fumarate ; Humans ; Ligands ; Lysine/analogs & derivatives/metabolism ; Methylation ; Models, Molecular ; Mutant Proteins ; Nuclear Magnetic Resonance, Biomolecular ; Propanolamines/metabolism/pharmacology ; Protein Structure, Tertiary/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-12-03
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088109/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088109/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kielian, Margaret -- R01 AI075647/AI/NIAID NIH HHS/ -- R01 AI075647-17/AI/NIAID NIH HHS/ -- R01 GM057454/GM/NIGMS NIH HHS/ -- R01 GM057454-11/GM/NIGMS NIH HHS/ -- R21 AI067931/AI/NIAID NIH HHS/ -- R21 AI067931-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):645-6. doi: 10.1038/468645a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124448" target="_blank"〉PubMed〈/a〉
    Keywords: Chikungunya virus/*chemistry/physiology ; Crystallography, X-Ray ; Membrane Fusion ; Membrane Glycoproteins/*chemistry/metabolism ; Models, Biological ; Protein Multimerization ; Protein Structure, Quaternary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*physiology ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-04-20
    Description: Photosynthetic organisms adopt two different strategies for the reduction of the C17 = C18 double bond of protochlorophyllide (Pchlide) to form chlorophyllide a, the direct precursor of chlorophyll a (refs 1-4). The first involves the activity of the light-dependent Pchlide oxidoreductase, and the second involves the light-independent (dark-operative) Pchlide oxidoreductase (DPOR). DPOR is a nitrogenase-like enzyme consisting of two components, L-protein (a BchL dimer) and NB-protein (a BchN-BchB heterotetramer), which are structurally related to nitrogenase Fe protein and MoFe protein, respectively. Here we report the crystal structure of the NB-protein of DPOR from Rhodobacter capsulatus at a resolution of 2.3A. As expected, the overall structure is similar to that of nitrogenase MoFe protein: each catalytic BchN-BchB unit contains one Pchlide and one iron-sulphur cluster (NB-cluster) coordinated uniquely by one aspartate and three cysteines. Unique aspartate ligation is not necessarily needed for the cluster assembly but is essential for the catalytic activity. Specific Pchlide-binding accompanies the partial unwinding of an alpha-helix that belongs to the next catalytic BchN-BchB unit. We propose a unique trans-specific reduction mechanism in which the distorted C17-propionate of Pchlide and an aspartate from BchB serve as proton donors for C18 and C17 of Pchlide, respectively. Intriguingly, the spatial arrangement of the NB-cluster and Pchlide is almost identical to that of the P-cluster and FeMo-cofactor in nitrogenase MoFe-protein, illustrating that a common architecture exists to reduce chemically stable multibonds of porphyrin and dinitrogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muraki, Norifumi -- Nomata, Jiro -- Ebata, Kozue -- Mizoguchi, Tadashi -- Shiba, Tomoo -- Tamiaki, Hitoshi -- Kurisu, Genji -- Fujita, Yuichi -- England -- Nature. 2010 May 6;465(7294):110-4. doi: 10.1038/nature08950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20400946" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; *Models, Molecular ; Oxidoreductases Acting on CH-CH Group Donors/*chemistry/metabolism ; Protein Structure, Tertiary ; Rhodobacter capsulatus/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-09-24
    Description: Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3'-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs); it also participates in transcription initiation and termination by RNA polymerase II (Pol II). Symplekin mediates interactions between many different proteins in this machinery, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 A resolution of the amino-terminal domain (residues 30-340) of human symplekin in a ternary complex with the Pol II carboxy-terminal domain (CTD) Ser 5 phosphatase Ssu72 (refs 7, 10-17) and a CTD Ser 5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of antiparallel alpha-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-mass phosphotyrosine protein phosphatase, although Ssu72 has a unique active-site landscape as well as extra structural features at the C terminus that are important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, with the pSer 5-Pro 6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations. Although the active site of Ssu72 is about 25 A from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but only when coupled to transcription. Because catalytically active Ssu72 overcomes this inhibition, our results show a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3'-end processing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiang, Kehui -- Nagaike, Takashi -- Xiang, Song -- Kilic, Turgay -- Beh, Maia M -- Manley, James L -- Tong, Liang -- GM028983/GM/NIGMS NIH HHS/ -- GM077175/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM028983/GM/NIGMS NIH HHS/ -- R01 GM028983-31/GM/NIGMS NIH HHS/ -- R01 GM077175/GM/NIGMS NIH HHS/ -- R01 GM077175-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 7;467(7316):729-33. doi: 10.1038/nature09391. Epub 2010 Sep 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20861839" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carrier Proteins/*chemistry/genetics/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/chemistry ; Humans ; Models, Molecular ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Phosphopeptides/chemistry/*metabolism ; Phosphoprotein Phosphatases/chemistry/genetics/metabolism ; Polyadenylation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry ; Substrate Specificity ; mRNA Cleavage and Polyadenylation Factors/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-11-03
    Description: Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton multidomain protein, oligomerizes to form pores that deliver the pro-apoptopic granzymes into the cytosol of the target cell. The importance of perforin is highlighted by the fatal consequences of congenital perforin deficiency, with more than 50 different perforin mutations linked to familial haemophagocytic lymphohistiocytosis (type 2 FHL). Here we elucidate the mechanism of perforin pore formation by determining the X-ray crystal structure of monomeric murine perforin, together with a cryo-electron microscopy reconstruction of the entire perforin pore. Perforin is a thin 'key-shaped' molecule, comprising an amino-terminal membrane attack complex perforin-like (MACPF)/cholesterol dependent cytolysin (CDC) domain followed by an epidermal growth factor (EGF) domain that, together with the extreme carboxy-terminal sequence, forms a central shelf-like structure. A C-terminal C2 domain mediates initial, Ca(2+)-dependent membrane binding. Most unexpectedly, however, electron microscopy reveals that the orientation of the perforin MACPF domain in the pore is inside-out relative to the subunit arrangement in CDCs. These data reveal remarkable flexibility in the mechanism of action of the conserved MACPF/CDC fold and provide new insights into how related immune defence molecules such as complement proteins assemble into pores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, Ruby H P -- Lukoyanova, Natalya -- Voskoboinik, Ilia -- Caradoc-Davies, Tom T -- Baran, Katherine -- Dunstone, Michelle A -- D'Angelo, Michael E -- Orlova, Elena V -- Coulibaly, Fasseli -- Verschoor, Sandra -- Browne, Kylie A -- Ciccone, Annette -- Kuiper, Michael J -- Bird, Phillip I -- Trapani, Joseph A -- Saibil, Helen R -- Whisstock, James C -- 079605/Wellcome Trust/United Kingdom -- BB/D008573/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Nov 18;468(7322):447-51. doi: 10.1038/nature09518. Epub 2010 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21037563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*metabolism ; Cholesterol/metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Epidermal Growth Factor/chemistry ; Granzymes/metabolism ; Humans ; Lymphocytes/*metabolism ; Mice ; Models, Molecular ; Pore Forming Cytotoxic Proteins/*chemistry/genetics/*metabolism/ultrastructure ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-09-24
    Description: Transporter proteins from the MATE (multidrug and toxic compound extrusion) family are vital in metabolite transport in plants, directly affecting crop yields worldwide. MATE transporters also mediate multiple-drug resistance (MDR) in bacteria and mammals, modulating the efficacy of many pharmaceutical drugs used in the treatment of a variety of diseases. MATE transporters couple substrate transport to electrochemical gradients and are the only remaining class of MDR transporters whose structure has not been determined. Here we report the X-ray structure of the MATE transporter NorM from Vibrio cholerae determined to 3.65 A, revealing an outward-facing conformation with two portals open to the outer leaflet of the membrane and a unique topology of the predicted 12 transmembrane helices distinct from any other known MDR transporter. We also report a cation-binding site in close proximity to residues previously deemed critical for transport. This conformation probably represents a stage of the transport cycle with high affinity for monovalent cations and low affinity for substrates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152480/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152480/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Xiao -- Szewczyk, Paul -- Karyakin, Andrey -- Evin, Mariah -- Hong, Wen-Xu -- Zhang, Qinghai -- Chang, Geoffrey -- GM70480/GM/NIGMS NIH HHS/ -- GM73197/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 GM070480/GM/NIGMS NIH HHS/ -- R01 GM070480-01A1/GM/NIGMS NIH HHS/ -- R01 GM070480-02/GM/NIGMS NIH HHS/ -- R01 GM070480-03/GM/NIGMS NIH HHS/ -- R01 GM070480-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):991-4. doi: 10.1038/nature09408. Epub 2010 Sep 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB105, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20861838" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/*metabolism ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Cations/chemistry/metabolism ; Crystallography, X-Ray ; Cysteine/genetics/metabolism ; Ion Transport ; Models, Molecular ; Protein Conformation ; Reproducibility of Results ; Static Electricity ; Substrate Specificity ; Vibrio cholerae/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-10-12
    Description: DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160814/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160814/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubinson, Emily H -- Gowda, A S Prakasha -- Spratt, Thomas E -- Gold, Barry -- Eichman, Brandt F -- P30 CA068485/CA/NCI NIH HHS/ -- P30 ES000267/ES/NIEHS NIH HHS/ -- R01 CA029088/CA/NCI NIH HHS/ -- R01 CA29088/CA/NCI NIH HHS/ -- T32 ES007028/ES/NIEHS NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):406-11. doi: 10.1038/nature09428. Epub 2010 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927102" target="_blank"〉PubMed〈/a〉
    Keywords: Alkylation ; Bacillus cereus/*enzymology ; Base Sequence ; Biocatalysis ; Crystallography, X-Ray ; DNA/chemistry/genetics/*metabolism ; *DNA Damage ; DNA Glycosylases/*metabolism ; DNA Repair/*physiology ; Hydrolysis ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Solvents/chemistry ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-02-05
    Description: The M2 protein of influenza A virus is a membrane-spanning tetrameric proton channel targeted by the antiviral drugs amantadine and rimantadine. Resistance to these drugs has compromised their effectiveness against many influenza strains, including pandemic H1N1. A recent crystal structure of M2(22-46) showed electron densities attributed to a single amantadine in the amino-terminal half of the pore, indicating a physical occlusion mechanism for inhibition. However, a solution NMR structure of M2(18-60) showed four rimantadines bound to the carboxy-terminal lipid-facing surface of the helices, suggesting an allosteric mechanism. Here we show by solid-state NMR spectroscopy that two amantadine-binding sites exist in M2 in phospholipid bilayers. The high-affinity site, occupied by a single amantadine, is located in the N-terminal channel lumen, surrounded by residues mutated in amantadine-resistant viruses. Quantification of the protein-amantadine distances resulted in a 0.3 A-resolution structure of the high-affinity binding site. The second, low-affinity, site was observed on the C-terminal protein surface, but only when the drug reaches high concentrations in the bilayer. The orientation and dynamics of the drug are distinct in the two sites, as shown by (2)H NMR. These results indicate that amantadine physically occludes the M2 channel, thus paving the way for developing new antiviral drugs against influenza viruses. The study demonstrates the ability of solid-state NMR to elucidate small-molecule interactions with membrane proteins and determine high-resolution structures of their complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cady, Sarah D -- Schmidt-Rohr, Klaus -- Wang, Jun -- Soto, Cinque S -- Degrado, William F -- Hong, Mei -- AI74571/AI/NIAID NIH HHS/ -- GM088204/GM/NIGMS NIH HHS/ -- GM56423/GM/NIGMS NIH HHS/ -- R01 GM056423/GM/NIGMS NIH HHS/ -- R01 GM056423-12/GM/NIGMS NIH HHS/ -- R01 GM088204/GM/NIGMS NIH HHS/ -- R01 GM088204-01/GM/NIGMS NIH HHS/ -- U01 AI074571/AI/NIAID NIH HHS/ -- U01 AI074571-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Feb 4;463(7281):689-92. doi: 10.1038/nature08722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Iowa State University, Ames, Iowa 50011 2, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130653" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/*metabolism/pharmacology ; Amino Acid Sequence ; Antiviral Agents/chemistry/*metabolism/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Dimyristoylphosphatidylcholine/chemistry/metabolism ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/drug effects ; Lipid Bilayers/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Structure-Activity Relationship ; Temperature ; Viral Matrix Proteins/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-05-28
    Description: Complex I is the first enzyme of the respiratory chain and has a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation by an unknown mechanism. Dysfunction of complex I has been implicated in many human neurodegenerative diseases. We have determined the structure of its hydrophilic domain previously. Here, we report the alpha-helical structure of the membrane domain of complex I from Escherichia coli at 3.9 A resolution. The antiporter-like subunits NuoL/M/N each contain 14 conserved transmembrane (TM) helices. Two of them are discontinuous, as in some transporters. Unexpectedly, subunit NuoL also contains a 110-A long amphipathic alpha-helix, spanning almost the entire length of the domain. Furthermore, we have determined the structure of the entire complex I from Thermus thermophilus at 4.5 A resolution. The L-shaped assembly consists of the alpha-helical model for the membrane domain, with 63 TM helices, and the known structure of the hydrophilic domain. The architecture of the complex provides strong clues about the coupling mechanism: the conformational changes at the interface of the two main domains may drive the long amphipathic alpha-helix of NuoL in a piston-like motion, tilting nearby discontinuous TM helices, resulting in proton translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Efremov, Rouslan G -- Baradaran, Rozbeh -- Sazanov, Leonid A -- MC_U105674180/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):441-5. doi: 10.1038/nature09066.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505720" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoquinones/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Escherichia coli/*enzymology ; Models, Molecular ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/*metabolism ; Structure-Activity Relationship ; Thermus thermophilus/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-04-09
    Description: Gut microbes supply the human body with energy from dietary polysaccharides through carbohydrate active enzymes, or CAZymes, which are absent in the human genome. These enzymes target polysaccharides from terrestrial plants that dominated diet throughout human evolution. The array of CAZymes in gut microbes is highly diverse, exemplified by the human gut symbiont Bacteroides thetaiotaomicron, which contains 261 glycoside hydrolases and polysaccharide lyases, as well as 208 homologues of susC and susD-genes coding for two outer membrane proteins involved in starch utilization. A fundamental question that, to our knowledge, has yet to be addressed is how this diversity evolved by acquiring new genes from microbes living outside the gut. Here we characterize the first porphyranases from a member of the marine Bacteroidetes, Zobellia galactanivorans, active on the sulphated polysaccharide porphyran from marine red algae of the genus Porphyra. Furthermore, we show that genes coding for these porphyranases, agarases and associated proteins have been transferred to the gut bacterium Bacteroides plebeius isolated from Japanese individuals. Our comparative gut metagenome analyses show that porphyranases and agarases are frequent in the Japanese population and that they are absent in metagenome data from North American individuals. Seaweeds make an important contribution to the daily diet in Japan (14.2 g per person per day), and Porphyra spp. (nori) is the most important nutritional seaweed, traditionally used to prepare sushi. This indicates that seaweeds with associated marine bacteria may have been the route by which these novel CAZymes were acquired in human gut bacteria, and that contact with non-sterile food may be a general factor in CAZyme diversity in human gut microbes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hehemann, Jan-Hendrik -- Correc, Gaelle -- Barbeyron, Tristan -- Helbert, William -- Czjzek, Mirjam -- Michel, Gurvan -- England -- Nature. 2010 Apr 8;464(7290):908-12. doi: 10.1038/nature08937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite Pierre et Marie Curie, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20376150" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/physiology ; Bacteroides/*enzymology/genetics ; Biological Evolution ; Crystallography, X-Ray ; Cultural Diversity ; Diet ; Eukaryota/chemistry/metabolism ; Feces/enzymology/microbiology ; *Food Microbiology ; Gene Transfer, Horizontal ; Genome, Bacterial/genetics ; Glycoside Hydrolases/chemistry/isolation & purification/*metabolism ; Humans ; Intestines/*microbiology ; Japan ; *Marine Biology ; *Metagenome ; Models, Molecular ; North America ; Phylogeny ; Porphyra/chemistry/metabolism/microbiology ; Protein Conformation ; Sepharose/*analogs & derivatives/chemistry/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-11-12
    Description: Mononuclear iron-containing oxygenases conduct a diverse variety of oxidation functions in biology, including the oxidative demethylation of methylated nucleic acids and histones. Escherichia coli AlkB is the first such enzyme that was discovered to repair methylated nucleic acids, which are otherwise cytotoxic and/or mutagenic. AlkB human homologues are known to play pivotal roles in various processes. Here we present structural characterization of oxidation intermediates for these demethylases. Using a chemical cross-linking strategy, complexes of AlkB-double stranded DNA (dsDNA) containing 1,N(6)-etheno adenine (epsilonA), N(3)-methyl thymine (3-meT) and N(3)-methyl cytosine (3-meC) are stabilized and crystallized, respectively. Exposing these crystals, grown under anaerobic conditions containing iron(II) and alpha-ketoglutarate (alphaKG), to dioxygen initiates oxidation in crystallo. Glycol (from epsilonA) and hemiaminal (from 3-meT) intermediates are captured; a zwitterionic intermediate (from 3-meC) is also proposed, based on crystallographic observations and computational analysis. The observation of these unprecedented intermediates provides direct support for the oxidative demethylation mechanism for these demethylases. This study also depicts a general mechanistic view of how a methyl group is oxidatively removed from different biological substrates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058853/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058853/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yi, Chengqi -- Jia, Guifang -- Hou, Guanhua -- Dai, Qing -- Zhang, Wen -- Zheng, Guanqun -- Jian, Xing -- Yang, Cai-Guang -- Cui, Qiang -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- GM084028/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Nov 11;468(7321):330-3. doi: 10.1038/nature09497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068844" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Cross-Linking Reagents/chemistry ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Repair ; DNA Repair Enzymes/metabolism ; Dioxygenases/chemistry/*metabolism ; Escherichia coli/*enzymology ; Escherichia coli Proteins/chemistry/*metabolism ; Humans ; Iron/*metabolism ; Ketoglutaric Acids/metabolism ; Methylation ; Mixed Function Oxygenases/chemistry/*metabolism ; Models, Molecular ; Oxidation-Reduction ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ledford, Heidi -- England -- Nature. 2010 Jul 29;466(7306):544. doi: 10.1038/466544a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671686" target="_blank"〉PubMed〈/a〉
    Keywords: Computational Biology ; Crystallography, X-Ray ; Drug Design ; Humans ; International Cooperation ; *Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Folding ; Receptors, G-Protein-Coupled/*chemistry/genetics/metabolism ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-12-03
    Description: The multi-subunit DNA-dependent RNA polymerase (RNAP) is the principal enzyme of transcription for gene expression. Transcription is regulated by various transcription factors. Gre factor homologue 1 (Gfh1), found in the Thermus genus, is a close homologue of the well-conserved bacterial transcription factor GreA, and inhibits transcription initiation and elongation by binding directly to RNAP. The structural basis of transcription inhibition by Gfh1 has remained elusive, although the crystal structures of RNAP and Gfh1 have been determined separately. Here we report the crystal structure of Thermus thermophilus RNAP complexed with Gfh1. The amino-terminal coiled-coil domain of Gfh1 fully occludes the channel formed between the two central modules of RNAP; this channel would normally be used for nucleotide triphosphate (NTP) entry into the catalytic site. Furthermore, the tip of the coiled-coil domain occupies the NTP beta-gamma phosphate-binding site. The NTP-entry channel is expanded, because the central modules are 'ratcheted' relative to each other by approximately 7 degrees , as compared with the previously reported elongation complexes. This 'ratcheted state' is an alternative structural state, defined by a newly acquired contact between the central modules. Therefore, the shape of Gfh1 is appropriate to maintain RNAP in the ratcheted state. Simultaneously, the ratcheting expands the nucleic-acid-binding channel, and kinks the bridge helix, which connects the central modules. Taken together, the present results reveal that Gfh1 inhibits transcription by preventing NTP binding and freezing RNAP in the alternative structural state. The ratcheted state might also be associated with other aspects of transcription, such as RNAP translocation and transcription termination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tagami, Shunsuke -- Sekine, Shun-Ichi -- Kumarevel, Thirumananseri -- Hino, Nobumasa -- Murayama, Yuko -- Kamegamori, Syunsuke -- Yamamoto, Masaki -- Sakamoto, Kensaku -- Yokoyama, Shigeyuki -- England -- Nature. 2010 Dec 16;468(7326):978-82. doi: 10.1038/nature09573. Epub 2010 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124318" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/*metabolism ; Models, Molecular ; Protein Conformation ; Thermus thermophilus/chemistry/*enzymology ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-03-20
    Description: Cobalamin (Cbl, vitamin B(12)) is a bacterial organic compound and an essential coenzyme in mammals, which take it up from the diet. This occurs by the combined action of the gastric intrinsic factor (IF) and the ileal endocytic cubam receptor formed by the 460-kilodalton (kDa) protein cubilin and the 45-kDa transmembrane protein amnionless. Loss of function of any of these proteins ultimately leads to Cbl deficiency in man. Here we present the crystal structure of the complex between IF-Cbl and the cubilin IF-Cbl-binding-region (CUB(5-8)) determined at 3.3 A resolution. The structure provides insight into how several CUB (for 'complement C1r/C1s, Uegf, Bmp1') domains collectively function as modular ligand-binding regions, and how two distant CUB domains embrace the Cbl molecule by binding the two IF domains in a Ca(2+)-dependent manner. This dual-point model provides a probable explanation of how Cbl indirectly induces ligand-receptor coupling. Finally, the comparison of Ca(2+)-binding CUB domains and the low-density lipoprotein (LDL) receptor-type A modules suggests that the electrostatic pairing of a basic ligand arginine/lysine residue with Ca(2+)-coordinating acidic aspartates/glutamates is a common theme of Ca(2+)-dependent ligand-receptor interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersen, Christian Brix Folsted -- Madsen, Mette -- Storm, Tina -- Moestrup, Soren K -- Andersen, Gregers R -- England -- Nature. 2010 Mar 18;464(7287):445-8. doi: 10.1038/nature08874.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry, Aarhus University, 8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237569" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/metabolism ; Binding Sites ; Calcium/metabolism ; Crystallography, X-Ray ; Glutamic Acid/metabolism ; Humans ; Intrinsic Factor/*chemistry/*metabolism ; Ligands ; Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/*metabolism ; Static Electricity ; Vitamin B 12/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-06-11
    Description: Regulation of the expression of the human immunodeficiency virus (HIV) genome is accomplished in large part by controlling transcription elongation. The viral protein Tat hijacks the host cell's RNA polymerase II elongation control machinery through interaction with the positive transcription elongation factor, P-TEFb, and directs the factor to promote productive elongation of HIV mRNA. Here we describe the crystal structure of the Tat.P-TEFb complex containing HIV-1 Tat, human Cdk9 (also known as CDK9), and human cyclin T1 (also known as CCNT1). Tat adopts a structure complementary to the surface of P-TEFb and makes extensive contacts, mainly with the cyclin T1 subunit of P-TEFb, but also with the T-loop of the Cdk9 subunit. The structure provides a plausible explanation for the tolerance of Tat to sequence variations at certain sites. Importantly, Tat induces significant conformational changes in P-TEFb. This finding lays a foundation for the design of compounds that would specifically inhibit the Tat.P-TEFb complex and block HIV replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tahirov, Tahir H -- Babayeva, Nigar D -- Varzavand, Katayoun -- Cooper, Jeffrey J -- Sedore, Stanley C -- Price, David H -- AI074392/AI/NIAID NIH HHS/ -- GM082923/GM/NIGMS NIH HHS/ -- GM35500/GM/NIGMS NIH HHS/ -- P30CA036727/CA/NCI NIH HHS/ -- P41 RR015301/RR/NCRR NIH HHS/ -- P41 RR015301-075443/RR/NCRR NIH HHS/ -- R01 GM035500/GM/NIGMS NIH HHS/ -- R01 GM035500-20/GM/NIGMS NIH HHS/ -- R01 GM035500-21/GM/NIGMS NIH HHS/ -- R01 GM035500-22/GM/NIGMS NIH HHS/ -- R01 GM035500-23/GM/NIGMS NIH HHS/ -- R01 GM035500-24/GM/NIGMS NIH HHS/ -- R01 GM082923/GM/NIGMS NIH HHS/ -- R01 GM082923-01A2/GM/NIGMS NIH HHS/ -- R01 GM082923-02/GM/NIGMS NIH HHS/ -- R01 GM082923-02S1/GM/NIGMS NIH HHS/ -- R21 AI074392/AI/NIAID NIH HHS/ -- R21 AI074392-01A1/AI/NIAID NIH HHS/ -- R21 AI074392-02/AI/NIAID NIH HHS/ -- R33 AI074392/AI/NIAID NIH HHS/ -- R33 AI074392-03/AI/NIAID NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):747-51. doi: 10.1038/nature09131.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA. ttahirov@unmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535204" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cyclin T/chemistry/metabolism ; Cyclin-Dependent Kinase 9/chemistry/metabolism ; Enzyme Activation ; HIV-1/*chemistry ; Humans ; Models, Molecular ; Molecular Sequence Data ; Positive Transcriptional Elongation Factor B/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; tat Gene Products, Human Immunodeficiency Virus/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-05-14
    Description: Nature's high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity. How spiders manage to avoid premature spidroin aggregation before self-assembly is not yet established. A pH drop to 6.3 along the spider's spinning apparatus, altered salt composition and shear forces are believed to trigger the conversion to solid silk, but no molecular details are known. Miniature spidroins consisting of a few repetitive spidroin segments capped by the carboxy-terminal domain form metre-long silk-like fibres irrespective of pH. We discovered that incorporation of the amino-terminal domain of major ampullate spidroin 1 from the dragline of the nursery web spider Euprosthenops australis (NT) into mini-spidroins enables immediate, charge-dependent self-assembly at pH values around 6.3, but delays aggregation above pH 7. The X-ray structure of NT, determined to 1.7 A resolution, shows a homodimer of dipolar, antiparallel five-helix bundle subunits that lack homologues. The overall dimeric structure and observed charge distribution of NT is expected to be conserved through spider evolution and in all types of spidroins. Our results indicate a relay-like mechanism through which the N-terminal domain regulates spidroin assembly by inhibiting precocious aggregation during storage, and accelerating and directing self-assembly as the pH is lowered along the spider's silk extrusion duct.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Askarieh, Glareh -- Hedhammar, My -- Nordling, Kerstin -- Saenz, Alejandra -- Casals, Cristina -- Rising, Anna -- Johansson, Jan -- Knight, Stefan D -- England -- Nature. 2010 May 13;465(7295):236-8. doi: 10.1038/nature08962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Oslo University, 1033 Blindern, 0315 Oslo, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463740" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Circular Dichroism ; Conserved Sequence ; Crystallography, X-Ray ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Sequence Alignment ; Silk/*chemistry/*metabolism/ultrastructure ; Spiders/*chemistry ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-08-13
    Description: The eubacterial SOS system is a paradigm of cellular DNA damage and repair, and its activation can contribute to antibiotic resistance. Under normal conditions, LexA represses the transcription of many DNA repair proteins by binding to SOS 'boxes' in their operators. Under genotoxic stress, accumulating complexes of RecA, ATP and single-stranded DNA (ssDNA) activate LexA for autocleavage. To address how LexA recognizes its binding sites, we determined three crystal structures of Escherichia coli LexA in complex with SOS boxes. Here we report the structure of these LexA-DNA complexes. The DNA-binding domains of the LexA dimer interact with the DNA in the classical fashion of a winged helix-turn-helix motif. However, the wings of these two DNA-binding domains bind to the same minor groove of the DNA. These wing-wing contacts may explain why the spacing between the two half-sites of E. coli SOS boxes is invariant.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921665/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921665/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Adrianna P P -- Pigli, Ying Z -- Rice, Phoebe A -- GM058827/GM/NIGMS NIH HHS/ -- R01 GM058827/GM/NIGMS NIH HHS/ -- R01 GM058827-09/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 12;466(7308):883-6. doi: 10.1038/nature09200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/*chemistry/*metabolism ; Base Sequence ; Crystallography, X-Ray ; DNA Damage ; DNA Repair/genetics ; DNA, Bacterial/chemistry/*genetics/*metabolism ; Electrophoretic Mobility Shift Assay ; *Escherichia coli/chemistry/genetics ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Models, Molecular ; Protein Binding ; *Protein Multimerization ; Protein Structure, Tertiary ; Rec A Recombinases/metabolism ; Repressor Proteins/chemistry/metabolism ; SOS Response (Genetics)/*genetics ; Serine Endopeptidases/*chemistry/*metabolism ; Winged-Helix Transcription Factors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-10-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomine, Sebastien -- Barbier-Brygoo, Helene -- England -- Nature. 2010 Oct 28;467(7319):1058-9. doi: 10.1038/4671058a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981091" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/cytology/genetics/metabolism ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Haemophilus influenzae/*chemistry/genetics ; Ion Channel Gating ; Membrane Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Phenylalanine/genetics/metabolism ; Plant Stomata/*metabolism ; Protein Folding ; *Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-10-26
    Description: The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-A resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Peng -- Wang, Jiawei -- Shi, Yigong -- R01 GM084964/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):717-20. doi: 10.1038/nature09488. Epub 2010 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20972419" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; Ligands ; Membrane Transport Proteins/*chemistry/classification/*metabolism ; Models, Molecular ; Movement ; Periplasm/metabolism ; Protein Folding ; Protein Structure, Tertiary ; Riboflavin/chemistry/*metabolism ; Sequence Alignment ; Staphylococcus aureus/*chemistry ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-06-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- England -- Nature. 2010 Jun 10;465(7299):823-6. doi: 10.1038/465823a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535212" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Computational Biology ; Computer Simulation ; Cryoelectron Microscopy ; Crystallization ; Crystallography, X-Ray ; Drug Design ; Humans ; Lipid Bilayers/chemistry/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Membrane Proteins/*chemistry/isolation & purification/*metabolism ; Membranes, Artificial ; *Models, Molecular ; Movement ; Protein Conformation ; Receptors, G-Protein-Coupled/chemistry/isolation & purification/metabolism ; Solubility ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-10-01
    Description: Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nogi, Terukazu -- Yasui, Norihisa -- Mihara, Emiko -- Matsunaga, Yukiko -- Noda, Masanori -- Yamashita, Naoya -- Toyofuku, Toshihiko -- Uchiyama, Susumu -- Goshima, Yoshio -- Kumanogoh, Atsushi -- Takagi, Junichi -- England -- Nature. 2010 Oct 28;467(7319):1123-7. doi: 10.1038/nature09473. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-08-21
    Description: Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925307/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925307/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Christine S -- Sadre-Bazzaz, Kianoush -- Shen, Yang -- Deng, Binbin -- Zhou, Z Hong -- Tong, Liang -- AI069015/AI/NIAID NIH HHS/ -- DK067238/DK/NIDDK NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- GM08281/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 AI069015-04/AI/NIAID NIH HHS/ -- R01 DK067238/DK/NIDDK NIH HHS/ -- R01 DK067238-07/DK/NIDDK NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- R01 GM071940-05/GM/NIGMS NIH HHS/ -- T32 GM008281/GM/NIGMS NIH HHS/ -- T32 GM008281-23/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):1001-5. doi: 10.1038/nature09302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725044" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/chemistry/metabolism/ultrastructure ; Biocatalysis ; Biotin/metabolism ; Carbon-Nitrogen Ligases/chemistry/metabolism/ultrastructure ; Carrier Proteins/chemistry/metabolism/ultrastructure ; Catalytic Domain ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Fatty Acid Synthase, Type II ; Holoenzymes/*chemistry/genetics/metabolism/*ultrastructure ; Humans ; Methylmalonyl-CoA Decarboxylase/*chemistry/genetics/metabolism/*ultrastructure ; Models, Molecular ; Mutation/genetics ; Propionic Acidemia/enzymology/genetics ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rhodobacteraceae/enzymology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-05-14
    Description: Neurotransmitter:Na(+) symporters (NSS) remove neurotransmitters from the synapse in a reuptake process that is driven by the Na(+) gradient. Drugs that interfere with this reuptake mechanism, such as cocaine and antidepressants, profoundly influence behaviour and mood. To probe the nature of the conformational changes that are associated with substrate binding and transport, we have developed a single-molecule fluorescence imaging assay and combined it with functional and computational studies of the prokaryotic NSS homologue LeuT. Here we show molecular details of the modulation of intracellular gating of LeuT by substrates and inhibitors, as well as by mutations that alter binding, transport or both. Our direct observations of single-molecule transitions, reflecting structural dynamics of the intracellular region of the transporter that might be masked by ensemble averaging or suppressed under crystallographic conditions, are interpreted in the context of an allosteric mechanism that couples ion and substrate binding to transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940119/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940119/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yongfang -- Terry, Daniel -- Shi, Lei -- Weinstein, Harel -- Blanchard, Scott C -- Javitch, Jonathan A -- DA022413/DA/NIDA NIH HHS/ -- DA023694/DA/NIDA NIH HHS/ -- DA12408/DA/NIDA NIH HHS/ -- DA17293/DA/NIDA NIH HHS/ -- K05 DA022413/DA/NIDA NIH HHS/ -- K99 DA023694/DA/NIDA NIH HHS/ -- K99 DA023694-02/DA/NIDA NIH HHS/ -- R01 DA017293/DA/NIDA NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):188-93. doi: 10.1038/nature09057.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, 630 W. 168th, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463731" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/metabolism ; Allosteric Regulation ; Aquifoliaceae/*chemistry ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Cysteine/chemistry/metabolism ; Escherichia coli ; Fluorescence Resonance Energy Transfer ; Leucine/metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Plasma Membrane Neurotransmitter Transport ; Proteins/*chemistry/genetics/*metabolism ; Protein Conformation ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-04-30
    Description: Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin's basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 A resolution crystal structure of a human dynamin 1-derived minimal GTPase-GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF(4)(-).The structure reveals dynamin's catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase-GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879890/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879890/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chappie, Joshua S -- Acharya, Sharmistha -- Leonard, Marilyn -- Schmid, Sandra L -- Dyda, Fred -- F31 MH081419/MH/NIMH NIH HHS/ -- F31 MH081419-02/MH/NIMH NIH HHS/ -- GM42455/GM/NIGMS NIH HHS/ -- MH081419/MH/NIMH NIH HHS/ -- MH61345/MH/NIMH NIH HHS/ -- R01 GM042455/GM/NIGMS NIH HHS/ -- R01 GM042455-20/GM/NIGMS NIH HHS/ -- R37 MH061345/MH/NIMH NIH HHS/ -- R37 MH061345-10/MH/NIMH NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 May 27;465(7297):435-40. doi: 10.1038/nature09032. Epub 2010 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428113" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Compounds/metabolism ; Amino Acid Sequence ; Biocatalysis ; Catalytic Domain/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Dynamin I/*chemistry/genetics/*metabolism ; Enzyme Activation ; Fluorides/metabolism ; GTP Phosphohydrolases/*chemistry/genetics/*metabolism ; Guanosine Diphosphate/analogs & derivatives/metabolism ; Humans ; Hydrolysis ; Models, Molecular ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-12-03
    Description: Alphaviruses are enveloped RNA viruses that have a diameter of about 700 A and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Jose, Joyce -- Xiang, Ye -- Kuhn, Richard J -- Rossmann, Michael G -- P01 AI055672/AI/NIAID NIH HHS/ -- P01 AI055672-07/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):705-8. doi: 10.1038/nature09546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124457" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drosophila melanogaster ; Endosomes/metabolism ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Membrane Fusion ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*metabolism ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-04-07
    Description: Targeting of proteins to appropriate subcellular compartments is a crucial process in all living cells. Secretory and membrane proteins usually contain an amino-terminal signal peptide, which is recognized by the signal recognition particle (SRP) when nascent polypeptide chains emerge from the ribosome. The SRP-ribosome nascent chain complex is then targeted through its GTP-dependent interaction with SRP receptor to the protein-conducting channel on endoplasmic reticulum membrane in eukaryotes or plasma membrane in bacteria. A universally conserved component of SRP (refs 1, 2), SRP54 or its bacterial homologue, fifty-four homologue (Ffh), binds the signal peptides, which have a highly divergent sequence divisible into a positively charged n-region, an h-region commonly containing 8-20 hydrophobic residues and a polar c-region. No structure has been reported that exemplifies SRP54 binding of any signal sequence. Here we have produced a fusion protein between Sulfolobus solfataricus SRP54 (Ffh) and a signal peptide connected via a flexible linker. This fusion protein oligomerizes in solution through interaction between the SRP54 and signal peptide moieties belonging to different chains, and it is functional, as demonstrated by its ability to bind SRP RNA and SRP receptor FtsY. We present the crystal structure at 3.5 A resolution of an SRP54-signal peptide complex in the dimer, which reveals how a signal sequence is recognized by SRP54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, Claudia Y -- Li, Jade -- Oubridge, Chris -- Hernandez, Helena -- Robinson, Carol V -- Nagai, Kiyoshi -- MC_U105184330/Medical Research Council/United Kingdom -- U.1051.04.016(78933)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):507-10. doi: 10.1038/nature08870. Epub 2010 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20364120" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/metabolism ; Crystallography, X-Ray ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Multimerization ; Protein Sorting Signals/*physiology ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Virus/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Recognition Particle/*chemistry/*metabolism ; Structure-Activity Relationship ; Sulfolobus solfataricus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohnishi, Tomoko -- England -- Nature. 2010 May 27;465(7297):428-9. doi: 10.1038/465428a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505714" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzoquinones/metabolism ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Escherichia coli/*enzymology ; Humans ; Protein Structure, Secondary ; Protein Subunits/*chemistry/*metabolism ; Thermus thermophilus/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-09-17
    Description: F-actin is a helical assembly of actin, which is a component of muscle fibres essential for contraction and has a crucial role in numerous cellular processes, such as the formation of lamellipodia and filopodia, as the most abundant component and regulator of cytoskeletons by dynamic assembly and disassembly (from G-actin to F-actin and vice versa). Actin is a ubiquitous protein and is involved in important biological functions, but the definitive high-resolution structure of F-actin remains unknown. Although a recent atomic model well reproduced X-ray fibre diffraction intensity data from a highly oriented liquid-crystalline sol specimen, its refinement without experimental phase information has certain limitations. Direct visualization of the structure by electron cryomicroscopy, however, has been difficult because it is relatively thin and flexible. Here we report the F-actin structure at 6.6 A resolution, made obtainable by recent advances in electron cryomicroscopy. The density map clearly resolves all the secondary structures of G-actin, such as alpha-helices, beta-structures and loops, and makes unambiguous modelling and refinement possible. Complex domain motions that open the nucleotide-binding pocket on F-actin formation, specific D-loop and terminal conformations, and relatively tight axial but markedly loose interprotofilament interactions hydrophilic in nature are revealed in the F-actin model, and all seem to be important for dynamic functions of actin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujii, Takashi -- Iwane, Atsuko H -- Yanagida, Toshio -- Namba, Keiichi -- England -- Nature. 2010 Oct 7;467(7316):724-8. doi: 10.1038/nature09372. Epub 2010 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20844487" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/*ultrastructure ; Animals ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Protein Structure, Secondary ; Protein Subunits ; Rabbits ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-10-29
    Description: The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 A resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yu-Hang -- Hu, Lei -- Punta, Marco -- Bruni, Renato -- Hillerich, Brandan -- Kloss, Brian -- Rost, Burkhard -- Love, James -- Siegelbaum, Steven A -- Hendrickson, Wayne A -- R01 GM034102/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 28;467(7319):1074-80. doi: 10.1038/nature09487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981093" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/genetics/metabolism ; Arabidopsis Proteins/*chemistry ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Electric Conductivity ; Haemophilus influenzae/*chemistry/genetics ; Ion Channel Gating ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Oocytes/metabolism ; Phenylalanine/chemistry/metabolism ; Plant Stomata/*metabolism ; Static Electricity ; *Structural Homology, Protein ; Substrate Specificity ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-08-06
    Description: Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 A crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor 'bridges' the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bax, Benjamin D -- Chan, Pan F -- Eggleston, Drake S -- Fosberry, Andrew -- Gentry, Daniel R -- Gorrec, Fabrice -- Giordano, Ilaria -- Hann, Michael M -- Hennessy, Alan -- Hibbs, Martin -- Huang, Jianzhong -- Jones, Emma -- Jones, Jo -- Brown, Kristin Koretke -- Lewis, Ceri J -- May, Earl W -- Saunders, Martin R -- Singh, Onkar -- Spitzfaden, Claus E -- Shen, Carol -- Shillings, Anthony -- Theobald, Andrew J -- Wohlkonig, Alexandre -- Pearson, Neil D -- Gwynn, Michael N -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Aug 19;466(7309):935-40. doi: 10.1038/nature09197. Epub 2010 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Discovery Research, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK. benjamin.d.bax@gsk.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20686482" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*chemistry/metabolism/*pharmacology ; Apoenzymes/chemistry/metabolism ; Arginine/metabolism ; Aspartic Acid/metabolism ; Binding Sites ; Catalytic Domain ; Ciprofloxacin/chemistry/metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Cleavage ; DNA Gyrase/*chemistry/metabolism ; DNA, Superhelical/chemistry/metabolism ; Drug Design ; Drug Resistance ; Escherichia coli/enzymology ; Manganese/metabolism ; Models, Molecular ; Protein Conformation ; Quinolines/*chemistry/metabolism/*pharmacology ; Quinolones/chemistry/metabolism ; Staphylococcus aureus/*enzymology ; Structure-Activity Relationship ; *Topoisomerase II Inhibitors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-05-28
    Description: MicroRNAs (miRNAs) mediate post-transcriptional gene regulation through association with Argonaute proteins (AGOs). Crystal structures of archaeal and bacterial homologues of AGOs have shown that the MID (middle) domain mediates the interaction with the phosphorylated 5' end of the miRNA guide strand and this interaction is thought to be independent of the identity of the 5' nucleotide in these systems. However, analysis of the known sequences of eukaryotic miRNAs and co-immunoprecipitation experiments indicate that there is a clear bias for U or A at the 5' position. Here we report the crystal structure of a MID domain from a eukaryotic AGO protein, human AGO2. The structure, in complex with nucleoside monophosphates (AMP, CMP, GMP, and UMP) mimicking the 5' end of miRNAs, shows that there are specific contacts made between the base of UMP or AMP and a rigid loop in the MID domain. Notably, the structure of the loop discriminates against CMP and GMP and dissociation constants calculated from NMR titration experiments confirm these results, showing that AMP (0.26 mM) and UMP (0.12 mM) bind with up to 30-fold higher affinity than either CMP (3.6 mM) or GMP (3.3 mM). This study provides structural evidence for nucleotide-specific interactions in the MID domain of eukaryotic AGO proteins and explains the observed preference for U or A at the 5' end of miRNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, Filipp -- Sonenberg, Nahum -- Nagar, Bhushan -- MOP-82929/Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Jun 10;465(7299):818-22. doi: 10.1038/nature09039. Epub 2010 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505670" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Argonaute Proteins ; Base Sequence ; Crystallography, X-Ray ; Cytidine Monophosphate/metabolism ; Eukaryotic Initiation Factor-2/*chemistry/*metabolism ; Guanosine Monophosphate/metabolism ; Humans ; Kinetics ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Protein Structure, Tertiary ; RNA, Guide/chemistry/*genetics/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thermodynamics ; Uridine Monophosphate/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-09-30
    Description: The major facilitator superfamily (MFS) transporters are an ancient and widespread family of secondary active transporters. In Escherichia coli, the uptake of l-fucose, a source of carbon for microorganisms, is mediated by an MFS proton symporter, FucP. Despite intensive study of the MFS transporters, atomic structure information is only available on three proteins and the outward-open conformation has yet to be captured. Here we report the crystal structure of FucP at 3.1 A resolution, which shows that it contains an outward-open, amphipathic cavity. The similarly folded amino and carboxyl domains of FucP have contrasting surface features along the transport path, with negative electrostatic potential on the N domain and hydrophobic surface on the C domain. FucP only contains two acidic residues along the transport path, Asp 46 and Glu 135, which can undergo cycles of protonation and deprotonation. Their essential role in active transport is supported by both in vivo and in vitro experiments. Structure-based biochemical analyses provide insights into energy coupling, substrate recognition and the transport mechanism of FucP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Shangyu -- Sun, Linfeng -- Huang, Yongjian -- Lu, Feiran -- Liu, Yufeng -- Gong, Haipeng -- Wang, Jiawei -- Yan, Nieng -- England -- Nature. 2010 Oct 7;467(7316):734-8. doi: 10.1038/nature09406. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877283" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Fucose/metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/*chemistry/metabolism ; Protein Conformation ; Protons ; Rotation ; Static Electricity ; Symporters/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Broyde, Suse -- Patel, Dinshaw J -- R01 CA028038/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1023-4. doi: 10.1038/4651023a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577203" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Damage ; *DNA Repair ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Models, Molecular ; Mutation, Missense/genetics ; Pyrimidine Dimers/chemistry/*metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Skin Neoplasms/enzymology/genetics ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-12-07
    Description: Membrane co-transport proteins that use a five-helix inverted repeat motif have recently emerged as one of the largest structural classes of secondary active transporters. However, despite many structural advances there is no clear evidence of how ion and substrate transport are coupled. Here we report a comprehensive study of the sodium/galactose transporter from Vibrio parahaemolyticus (vSGLT), consisting of molecular dynamics simulations, biochemical characterization and a new crystal structure of the inward-open conformation at a resolution of 2.7 A. Our data show that sodium exit causes a reorientation of transmembrane helix 1 that opens an inner gate required for substrate exit, and also triggers minor rigid-body movements in two sets of transmembrane helical bundles. This cascade of events, initiated by sodium release, ensures proper timing of ion and substrate release. Once set in motion, these molecular changes weaken substrate binding to the transporter and allow galactose readily to enter the intracellular space. Additionally, we identify an allosteric pathway between the sodium-binding sites, the unwound portion of transmembrane helix 1 and the substrate-binding site that is essential in the coupling of co-transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736980/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736980/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Akira -- Choe, Seungho -- Chaptal, Vincent -- Rosenberg, John M -- Wright, Ernest M -- Grabe, Michael -- Abramson, Jeff -- DK19567/DK/NIDDK NIH HHS/ -- GM078844/GM/NIGMS NIH HHS/ -- R01 DK019567/DK/NIDDK NIH HHS/ -- R01 GM078844/GM/NIGMS NIH HHS/ -- RGY0069/PHS HHS/ -- England -- Nature. 2010 Dec 16;468(7326):988-91. doi: 10.1038/nature09580. Epub 2010 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, Los Angeles, Los Angeles, California 90095-1759, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21131949" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Binding Sites ; Biological Transport ; Crystallography, X-Ray ; Galactose/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Conformation ; Sodium/*metabolism ; Symporters/*chemistry/*metabolism ; Vibrio parahaemolyticus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Sebyung -- Douglas, Trevor -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):42-3. doi: 10.1126/science.1184318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry and Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044564" target="_blank"〉PubMed〈/a〉
    Keywords: Acetaldehyde/metabolism ; *Cell Compartmentation ; Crystallization ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry/enzymology/*ultrastructure ; Escherichia coli Proteins/*chemistry/metabolism ; Ethanolamine/*metabolism ; Polyproteins/chemistry/metabolism ; Protein Folding ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-11-27
    Description: Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Shem, Adam -- Jenner, Lasse -- Yusupova, Gulnara -- Yusupov, Marat -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1203-9. doi: 10.1126/science.1194294.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IGBMC (Institut de Genetique et de Biologie Moleculaire et Cellulaire), 1 rue Laurent Fries, BP10142, Illkirch F-67400, France. adam@igbmc.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109664" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Nucleic Acid Conformation ; Peptide Chain Initiation, Translational ; Protein Binding ; *Protein Biosynthesis ; Protein Conformation ; RNA, Fungal/analysis/chemistry/metabolism ; RNA, Messenger/analysis/chemistry/metabolism ; RNA, Ribosomal/analysis/*chemistry/metabolism ; RNA, Transfer/chemistry/metabolism ; Ribosomal Proteins/analysis/*chemistry/metabolism ; Ribosome Subunits, Large, Eukaryotic/chemistry/metabolism/ultrastructure ; Ribosome Subunits, Small, Eukaryotic/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/metabolism/*ultrastructure ; Saccharomyces cerevisiae/chemistry/genetics/metabolism/*ultrastructure ; Saccharomyces cerevisiae Proteins/analysis/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-08-07
    Description: The class Ib ribonucleotide reductase of Escherichia coli can initiate reduction of nucleotides to deoxynucleotides with either a Mn(III)2-tyrosyl radical (Y*) or a Fe(III)2-Y* cofactor in the NrdF subunit. Whereas Fe(III)2-Y* can self-assemble from Fe(II)2-NrdF and O2, activation of Mn(II)2-NrdF requires a reduced flavoprotein, NrdI, proposed to form the oxidant for cofactor assembly by reduction of O2. The crystal structures reported here of E. coli Mn(II)2-NrdF and Fe(II)2-NrdF reveal different coordination environments, suggesting distinct initial binding sites for the oxidants during cofactor activation. In the structures of Mn(II)2-NrdF in complex with reduced and oxidized NrdI, a continuous channel connects the NrdI flavin cofactor to the NrdF Mn(II)2 active site. Crystallographic detection of a putative peroxide in this channel supports the proposed mechanism of Mn(III)2-Y* cofactor assembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020666/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020666/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boal, Amie K -- Cotruvo, Joseph A Jr -- Stubbe, JoAnne -- Rosenzweig, Amy C -- GM58518/GM/NIGMS NIH HHS/ -- GM81393/GM/NIGMS NIH HHS/ -- R01 GM058518/GM/NIGMS NIH HHS/ -- R01 GM058518-13/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1526-30. doi: 10.1126/science.1190187. Epub 2010 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20688982" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Coenzymes/chemistry/metabolism ; Crystallography, X-Ray ; Enzyme Activation ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism ; Ferrous Compounds/chemistry/metabolism ; Flavin Mononucleotide/chemistry/metabolism ; Flavodoxin/*chemistry/metabolism ; Hydrogen Bonding ; Ligands ; Manganese/*chemistry/metabolism ; Models, Molecular ; Oxidants/chemistry/metabolism ; Oxidation-Reduction ; Oxygen/chemistry/metabolism ; Peroxides/chemistry/metabolism ; Protein Folding ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Ribonucleotide Reductases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-02-06
    Description: Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo-electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Peng -- Tsao, Jun -- Schein, Stan -- Green, Todd J -- Luo, Ming -- Zhou, Z Hong -- AI050066/AI/NIAID NIH HHS/ -- AI069015/AI/NIAID NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- R01 AI050066/AI/NIAID NIH HHS/ -- R01 AI050066-08/AI/NIAID NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 5;327(5966):689-93. doi: 10.1126/science.1181766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133572" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Lipid Bilayers ; Models, Molecular ; Mutagenesis ; Nucleocapsid Proteins/*chemistry/genetics/ultrastructure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry/ultrastructure ; Vesiculovirus/*chemistry/physiology/*ultrastructure ; Viral Matrix Proteins/*chemistry/ultrastructure ; Virion/chemistry/ultrastructure ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-11-13
    Description: CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the alpha phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Baocheng -- Xiong, Yong -- Steitz, Thomas A -- GM57510/GM/NIGMS NIH HHS/ -- R01 GM057510/GM/NIGMS NIH HHS/ -- R01 GM057510-13/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):937-40. doi: 10.1126/science.1194985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071662" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry/*metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/chemistry/metabolism ; Archaeoglobus fulgidus/*enzymology ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Cytidine Triphosphate/metabolism ; Cytosine/chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; RNA Nucleotidyltransferases/*chemistry/*metabolism ; RNA, Transfer/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-09-11
    Description: Ion binding often mediates electron transfer in biological systems as a cofactor strategy, either as a promoter or as an inhibitor. However, it has rarely, if ever, been exploited for that purpose in synthetic host-guest assemblies. We report here that strong binding of specific anions (chloride, bromide, and methylsulfate but not tetrafluoroborate or hexafluorophosphate) to a tetrathiafulvalene calix[4]pyrrole (TTF-C4P) donor enforces a host conformation that favors electron transfer to a bisimidazolium quinone (BIQ2+) guest acceptor. In contrast, the addition of a tetraethylammonium cation, which binds more effectively than the BIQ2+ guest in the TTF-C4P cavity, leads to back electron transfer, restoring the initial oxidation states of the donor and acceptor pair. The products of these processes were characterized via spectroscopy and x-ray crystallography.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Jung Su -- Karnas, Elizabeth -- Ohkubo, Kei -- Chen, Ping -- Kadish, Karl M -- Fukuzumi, Shunichi -- Bielawski, Christopher W -- Hudnall, Todd W -- Lynch, Vincent M -- Sessler, Jonathan L -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1324-7. doi: 10.1126/science.1192044.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University Station-A5300, University of Texas, Austin, TX 78712-0165, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829481" target="_blank"〉PubMed〈/a〉
    Keywords: Anions/*chemistry ; Bromides/chemistry ; Calixarenes/*chemistry ; Cations/*chemistry ; Chlorides/chemistry ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Electron Transport ; *Electrons ; Imidazoles/*chemistry ; Magnetic Resonance Spectroscopy ; Molecular Conformation ; Oxidation-Reduction ; Quinones/*chemistry ; Sulfuric Acid Esters/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sjoberg, Britt-Marie -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1475-6. doi: 10.1126/science.1196347.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden. britt-marie.sjoberg@molbio.su.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847256" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Corynebacterium/*enzymology ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Enzyme Activation ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/metabolism ; Flavin Mononucleotide/chemistry/metabolism ; Flavodoxin/*chemistry/metabolism ; Manganese/chemistry/*metabolism ; Oxidation-Reduction ; Protein Subunits/chemistry/metabolism ; Ribonucleotide Reductases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2010-06-26
    Description: The heme-copper oxidases (HCOs) accomplish the key event of aerobic respiration; they couple O2 reduction and transmembrane proton pumping. To gain new insights into the still enigmatic process, we structurally characterized a C-family HCO--essential for the pathogenicity of many bacteria--that differs from the two other HCO families, A and B, that have been structurally analyzed. The x-ray structure of the C-family cbb3 oxidase from Pseudomonas stutzeri at 3.2 angstrom resolution shows an electron supply system different from families A and B. Like family-B HCOs, C HCOs have only one pathway, which conducts protons via an alternative tyrosine-histidine cross-link. Structural differences around hemes b and b3 suggest a different redox-driven proton-pumping mechanism and provide clues to explain the higher activity of family-C HCOs at low oxygen concentrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buschmann, Sabine -- Warkentin, Eberhard -- Xie, Hao -- Langer, Julian D -- Ermler, Ulrich -- Michel, Hartmut -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):327-30. doi: 10.1126/science.1187303. Epub 2010 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576851" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Electron Transport ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/chemistry ; Histidine/chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxygen/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proton Pumps/*chemistry/*metabolism ; *Protons ; Pseudomonas stutzeri/*enzymology ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2010-11-06
    Description: Protein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl-transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resolution. EF-Tu is in its active conformation, the switch I loop is ordered, and the catalytic histidine is coordinating the nucleophilic water in position for inline attack on the gamma-phosphate of GTP. This activated conformation is due to a critical and conserved interaction of the histidine with A2662 of the sarcin-ricin loop of the 23S ribosomal RNA. The structure suggests a universal mechanism for GTPase activation and hydrolysis in translational GTPases on the ribosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763471/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763471/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voorhees, Rebecca M -- Schmeing, T Martin -- Kelley, Ann C -- Ramakrishnan, V -- 082086/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):835-8. doi: 10.1126/science.1194460.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051640" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Guanosine Triphosphate/analogs & derivatives/*metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Nucleic Acid Conformation ; Paromomycin/metabolism ; Peptide Elongation Factor Tu/*chemistry/*metabolism ; Phosphates/metabolism ; Protein Structure, Tertiary ; RNA, Bacterial/chemistry/*metabolism ; RNA, Ribosomal, 23S/chemistry/metabolism ; RNA, Transfer, Amino Acyl/chemistry/*metabolism ; Ribosomes/*metabolism ; Thermus thermophilus/chemistry/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2010-02-13
    Description: Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerization on c-di-GMP binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828054/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828054/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krasteva, Petya V -- Fong, Jiunn C N -- Shikuma, Nicholas J -- Beyhan, Sinem -- Navarro, Marcos V A S -- Yildiz, Fitnat H -- Sondermann, Holger -- 1R01GM081373/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI055987/AI/NIAID NIH HHS/ -- R01 AI055987-06A1/AI/NIAID NIH HHS/ -- R01 GM081373/GM/NIGMS NIH HHS/ -- R01 GM081373-03/GM/NIGMS NIH HHS/ -- R01AI055987/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):866-8. doi: 10.1126/science.1181185.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20150502" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Biofilms/*growth & development ; Crystallography, X-Ray ; Cyclic GMP/*analogs & derivatives/metabolism ; DNA, Bacterial/metabolism ; Dimerization ; Extracellular Matrix/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Models, Molecular ; Movement ; Point Mutation ; Polysaccharides, Bacterial/genetics/metabolism ; Protein Folding ; Protein Multimerization ; Protein Structure, Tertiary ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic ; Vibrio cholerae O1/cytology/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2010-04-24
    Description: The structure of the sodium-benzylhydantoin transport protein Mhp1 from Microbacterium liquefaciens comprises a five-helix inverted repeat, which is widespread among secondary transporters. Here, we report the crystal structure of an inward-facing conformation of Mhp1 at 3.8 angstroms resolution, complementing its previously described structures in outward-facing and occluded states. From analyses of the three structures and molecular dynamics simulations, we propose a mechanism for the transport cycle in Mhp1. Switching from the outward- to the inward-facing state, to effect the inward release of sodium and benzylhydantoin, is primarily achieved by a rigid body movement of transmembrane helices 3, 4, 8, and 9 relative to the rest of the protein. This forms the basis of an alternating access mechanism applicable to many transporters of this emerging superfamily.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885435/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885435/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimamura, Tatsuro -- Weyand, Simone -- Beckstein, Oliver -- Rutherford, Nicholas G -- Hadden, Jonathan M -- Sharples, David -- Sansom, Mark S P -- Iwata, So -- Henderson, Peter J F -- Cameron, Alexander D -- 062164/Z/00/Z/Wellcome Trust/United Kingdom -- 079209/Wellcome Trust/United Kingdom -- BB/C51725/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G020043/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/14418/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Apr 23;328(5977):470-3. doi: 10.1126/science.1186303.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413494" target="_blank"〉PubMed〈/a〉
    Keywords: Actinomycetales/*chemistry/metabolism ; Amino Acid Motifs ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Biological Transport ; Crystallography, X-Ray ; Hydantoins/chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Sodium/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2010-07-22
    Description: The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond-forming reactions should be broadly useful in synthetic chemistry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegel, Justin B -- Zanghellini, Alexandre -- Lovick, Helena M -- Kiss, Gert -- Lambert, Abigail R -- St Clair, Jennifer L -- Gallaher, Jasmine L -- Hilvert, Donald -- Gelb, Michael H -- Stoddard, Barry L -- Houk, Kendall N -- Michael, Forrest E -- Baker, David -- R01 GM075962/GM/NIGMS NIH HHS/ -- T32 GM008268/GM/NIGMS NIH HHS/ -- T32 GM008268-24/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):309-13. doi: 10.1126/science.1190239.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647463" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylamides/chemistry ; Algorithms ; Butadienes/chemistry ; Carbon/*chemistry ; Catalysis ; Catalytic Domain ; Computer Simulation ; *Computer-Aided Design ; Crystallography, X-Ray ; Enzymes/*chemistry/genetics ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Mutagenesis ; Physicochemical Processes ; Protein Conformation ; *Protein Engineering ; Proteins/*chemistry/genetics ; Software ; Stereoisomerism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2010-02-13
    Description: We show that metal-organic frameworks (MOFs) can incorporate a large number of different functionalities on linking groups in a way that mixes the linker, rather than forming separate domains. We made complex MOFs from 1,4-benzenedicarboxylate (denoted by "A" in this work) and its derivatives -NH2, -Br, -(Cl)2, -NO2, -(CH3)2, -C4H4, -(OC3H5)2, and -(OC7H7)2 (denoted by "B" to "I," respectively) to synthesize 18 multivariate (MTV) MOF-5 type structures that contain up to eight distinct functionalities in one phase. The backbone (zinc oxide and phenylene units) of these structures is ordered, but the distribution of functional groups is disordered. The complex arrangements of several functional groups within the pores can lead to properties that are not simply linear sums of those of the pure components. For example, a member of this series, MTV-MOF-5-EHI, exhibits up to 400% better selectivity for carbon dioxide over carbon monoxide compared with its best same-link counterparts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Hexiang -- Doonan, Christian J -- Furukawa, Hiroyasu -- Ferreira, Ricardo B -- Towne, John -- Knobler, Carolyn B -- Wang, Bo -- Yaghi, Omar M -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):846-50. doi: 10.1126/science.1181761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Nanosystems Institute, University of California-Los Angeles (UCLA)-Department of Energy (DOE) Institute of Genomics and Proteomics, Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20150497" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/chemistry ; Carbon Monoxide/chemistry ; Chemical Phenomena ; Crystallization ; Crystallography, X-Ray ; Magnetic Resonance Spectroscopy ; Metals/*chemistry ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Phthalic Acids/*chemistry ; Zinc Oxide/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, Stephen C -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1026-7. doi: 10.1126/science.1194922.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Jack and Eileen Connors Laboratory of Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA. harrison@crystal.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798308" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/*chemistry/*ultrastructure ; Capsid Proteins/*chemistry/ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Protein Structure, Tertiary ; Virion/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2010-09-11
    Description: Many bacteria and archaea contain clustered regularly interspaced short palindromic repeats (CRISPRs) that confer resistance to invasive genetic elements. Central to this immune system is the production of CRISPR-derived RNAs (crRNAs) after transcription of the CRISPR locus. Here, we identify the endoribonuclease (Csy4) responsible for CRISPR transcript (pre-crRNA) processing in Pseudomonas aeruginosa. A 1.8 angstrom crystal structure of Csy4 bound to its cognate RNA reveals that Csy4 makes sequence-specific interactions in the major groove of the crRNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these enable Csy4 to bind selectively and cleave pre-crRNAs using phylogenetically conserved serine and histidine residues in the active site. The RNA recognition mechanism identified here explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133607/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133607/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haurwitz, Rachel E -- Jinek, Martin -- Wiedenheft, Blake -- Zhou, Kaihong -- Doudna, Jennifer A -- 5 T32 GM08295/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1355-8. doi: 10.1126/science.1192272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Bacterial Proteins/*chemistry/*metabolism ; Base Pairing ; Base Sequence ; CRISPR-Associated Proteins ; Crystallization ; Crystallography, X-Ray ; Endoribonucleases/*chemistry/*metabolism ; Genes, Bacterial ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; Pseudomonas aeruginosa/*enzymology/*genetics ; *RNA Processing, Post-Transcriptional ; RNA, Bacterial/chemistry/genetics/*metabolism ; *Repetitive Sequences, Nucleic Acid ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2010-11-27
    Description: Kaposi's sarcoma-associated herpesvirus produces a highly abundant, nuclear noncoding RNA, polyadenylated nuclear (PAN) RNA, which contains an element that prevents its decay. The 79-nucleotide expression and nuclear retention element (ENE) was proposed to adopt a secondary structure like that of a box H/ACA small nucleolar RNA (snoRNA), with a U-rich internal loop that hybridizes to and protects the PAN RNA poly(A) tail. The crystal structure of a complex between the 40-nucleotide ENE core and oligo(A)(9) RNA at 2.5 angstrom resolution reveals that unlike snoRNAs, the U-rich loop of the ENE engages its target through formation of a major-groove triple helix. A-minor interactions extend the binding interface. Deadenylation assays confirm the functional importance of the triple helix. Thus, the ENE acts as an intramolecular RNA clamp, sequestering the PAN poly(A) tail and preventing the initiation of RNA decay.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074936/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074936/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitton-Fry, Rachel M -- DeGregorio, Suzanne J -- Wang, Jimin -- Steitz, Thomas A -- Steitz, Joan A -- CA16038/CA/NCI NIH HHS/ -- GM022778/GM/NIGMS NIH HHS/ -- P01 CA016038/CA/NCI NIH HHS/ -- P01 CA016038-38/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM026154/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1244-7. doi: 10.1126/science.1195858.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry (MB&B), Howard Hughes Medical Institute (HHMI), Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536-9812, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109672" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Cell Nucleus/genetics/metabolism ; Crystallography, X-Ray ; Herpesvirus 8, Human/*genetics ; Mutation ; *Nucleic Acid Conformation ; Poly A/chemistry/*metabolism ; *RNA Stability ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Nuclear/*chemistry/metabolism ; RNA, Untranslated/*chemistry/genetics/metabolism ; RNA, Viral/*chemistry/genetics/metabolism ; *Regulatory Sequences, Ribonucleic Acid ; Riboswitch
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2010-07-03
    Description: Proton-pumping respiratory complex I is one of the largest and most complicated membrane protein complexes. Its function is critical for efficient energy supply in aerobic cells, and malfunctions are implicated in many neurodegenerative disorders. Here, we report an x-ray crystallographic analysis of mitochondrial complex I. The positions of all iron-sulfur clusters relative to the membrane arm were determined in the complete enzyme complex. The ubiquinone reduction site resides close to 30 angstroms above the membrane domain. The arrangement of functional modules suggests conformational coupling of redox chemistry with proton pumping and essentially excludes direct mechanisms. We suggest that a approximately 60-angstrom-long helical transmission element is critical for transducing conformational energy to proton-pumping elements in the distal module of the membrane arm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hunte, Carola -- Zickermann, Volker -- Brandt, Ulrich -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):448-51. doi: 10.1126/science.1191046. Epub 2010 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry and Molecular Biology, Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Fungal Proteins/chemistry/metabolism ; Iron/chemistry ; Mitochondria/enzymology ; Mitochondrial Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protons ; Sulfur/chemistry ; Ubiquinone/chemistry/metabolism ; Yarrowia/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2010-08-28
    Description: Rational development of adenovirus vectors for therapeutic gene transfer is hampered by the lack of accurate structural information. Here, we report the x-ray structure at 3.5 angstrom resolution of the 150-megadalton adenovirus capsid containing nearly 1 million amino acids. We describe interactions between the major capsid protein (hexon) and several accessory molecules that stabilize the capsid. The virus structure also reveals an altered association between the penton base and the trimeric fiber protein, perhaps reflecting an early event in cell entry. The high-resolution structure provides a substantial advance toward understanding the assembly and cell entry mechanisms of a large double-stranded DNA virus and provides new opportunities for improving adenovirus-mediated gene transfer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, Vijay S -- Natchiar, S Kundhavai -- Stewart, Phoebe L -- Nemerow, Glen R -- AI042929/AI/NIAID NIH HHS/ -- EY011431/EY/NEI NIH HHS/ -- HL054352/HL/NHLBI NIH HHS/ -- R01 AI070771/AI/NIAID NIH HHS/ -- R01 AI070771-03/AI/NIAID NIH HHS/ -- R01 EY011431/EY/NEI NIH HHS/ -- R01 EY011431-13/EY/NEI NIH HHS/ -- R01 HL054352/HL/NHLBI NIH HHS/ -- R01 HL054352-17/HL/NHLBI NIH HHS/ -- R29 AI042929/AI/NIAID NIH HHS/ -- R29 AI042929-06/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1071-5. doi: 10.1126/science.1187292.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. reddyv@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798318" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/*chemistry/physiology/*ultrastructure ; Capsid/*chemistry/*ultrastructure ; Capsid Proteins/*chemistry/ultrastructure ; Crystallography, X-Ray ; Genetic Vectors ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2010-03-27
    Description: The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897825/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897825/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Rui -- Ekiert, Damian C -- Krause, Jens C -- Hai, Rong -- Crowe, James E Jr -- Wilson, Ian A -- AI057157/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-050002/AI/NIAID NIH HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- T32 GM080209-01A2/GM/NIGMS NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057157-06/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 16;328(5976):357-60. doi: 10.1126/science.1186430. Epub 2010 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339031" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/immunology ; Antibodies, Viral/chemistry/immunology ; Antigenic Variation ; Cross Reactions ; Crystallography, X-Ray ; Disease Outbreaks ; Epitopes ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*immunology ; Hemagglutinins, Viral/*chemistry/*immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Influenza A Virus, H1N1 Subtype/*immunology ; Influenza Vaccines/immunology ; Influenza, Human/epidemiology/*immunology/virology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2010-10-12
    Description: Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Beili -- Chien, Ellen Y T -- Mol, Clifford D -- Fenalti, Gustavo -- Liu, Wei -- Katritch, Vsevolod -- Abagyan, Ruben -- Brooun, Alexei -- Wells, Peter -- Bi, F Christopher -- Hamel, Damon J -- Kuhn, Peter -- Handel, Tracy M -- Cherezov, Vadim -- Stevens, Raymond C -- F32 GM083463/GM/NIGMS NIH HHS/ -- F32 GM083463-03/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 AI037113/AI/NIAID NIH HHS/ -- R01 AI037113-13/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM081763/GM/NIGMS NIH HHS/ -- R01 GM081763-03/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 AI087189/AI/NIAID NIH HHS/ -- R21 AI087189-02/AI/NIAID NIH HHS/ -- R21 RR025336/RR/NCRR NIH HHS/ -- R21 RR025336-01A1/RR/NCRR NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-050001/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chemokine CXCL12 ; Crystallography, X-Ray ; HIV Envelope Protein gp120/metabolism ; Humans ; Membrane Proteins ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Receptors, CXCR4/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Spodoptera ; Thiourea/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2010-03-27
    Description: Phosphoinositide 3-kinases (PI3Ks) are lipid kinases with diverse roles in health and disease. The primordial PI3K, Vps34, is present in all eukaryotes and has essential roles in autophagy, membrane trafficking, and cell signaling. We solved the crystal structure of Vps34 at 2.9 angstrom resolution, which revealed a constricted adenine-binding pocket, suggesting the reason that specific inhibitors of this class of PI3K have proven elusive. Both the phosphoinositide-binding loop and the carboxyl-terminal helix of Vps34 mediate catalysis on membranes and suppress futile adenosine triphosphatase cycles. Vps34 appears to alternate between a closed cytosolic form and an open form on the membrane. Structures of Vps34 complexes with a series of inhibitors reveal the reason that an autophagy inhibitor preferentially inhibits Vps34 and underpin the development of new potent and specific Vps34 inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860105/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860105/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Simon -- Tavshanjian, Brandon -- Oleksy, Arkadiusz -- Perisic, Olga -- Houseman, Benjamin T -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- U.1051.03.014(78824)/Medical Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1638-42. doi: 10.1126/science.1184429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339072" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/metabolism/pharmacology ; Adenosine Triphosphatases/metabolism ; Animals ; Autophagy/*drug effects ; Binding Sites ; Catalysis ; Catalytic Domain ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Drosophila melanogaster ; Enzyme Inhibitors/chemical synthesis/chemistry/*metabolism/pharmacology ; Furans/chemistry/metabolism/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Phosphatidylinositol 3-Kinases/*antagonists & ; inhibitors/*chemistry/genetics/metabolism ; Phosphatidylinositols/metabolism ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridines/chemistry/metabolism/pharmacology ; Pyrimidines/chemistry/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mindell, Joseph A -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):601-2. doi: 10.1126/science.1198306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. mindellj@ninds.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030639" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*chemistry/metabolism ; Antiporters/*chemistry/metabolism ; Binding Sites ; Chloride Channels/*chemistry/metabolism ; Chlorides/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Eukaryota/*chemistry ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Models, Molecular ; Protein Structure, Tertiary ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2010-05-29
    Description: High-conductance voltage- and Ca2+-activated K+ (BK) channels encode negative feedback regulation of membrane voltage and Ca2+ signaling, playing a central role in numerous physiological processes. We determined the x-ray structure of the human BK Ca2+ gating apparatus at a resolution of 3.0 angstroms and deduced its tetrameric assembly by solving a 6 angstrom resolution structure of a Na+-activated homolog. Two tandem C-terminal regulator of K+ conductance (RCK) domains from each of four channel subunits form a 350-kilodalton gating ring at the intracellular membrane surface. A sequence of aspartic amino acids that is known as the Ca2+ bowl, and is located within the second of the tandem RCK domains, creates four Ca2+ binding sites on the outer perimeter of the gating ring at the "assembly interface" between RCK domains. Functionally important mutations cluster near the Ca2+ bowl, near the "flexible interface" between RCK domains, and on the surface of the gating ring that faces the voltage sensors. The structure suggests that the Ca2+ gating ring, in addition to regulating the pore directly, may also modulate the voltage sensor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022345/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022345/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Peng -- Leonetti, Manuel D -- Pico, Alexander R -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):182-6. doi: 10.1126/science.1190414. Epub 2010 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium/*metabolism ; Crystallography, X-Ray ; Humans ; *Ion Channel Gating ; Large-Conductance Calcium-Activated Potassium Channel alpha ; Subunits/*chemistry/genetics/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Patch-Clamp Techniques ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2010-10-12
    Description: CLC proteins transport chloride (Cl(-)) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl(-) ion channels, whereas others are secondary active transporters that exchange Cl(-) ions and protons (H(+)) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl(-)/H(+) exchange and a simple mechanistic connection between CLC channels and transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Liang -- Campbell, Ernest B -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- R01 GM043949-21/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):635-41. doi: 10.1126/science.1195230. Epub 2010 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929736" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/metabolism ; Animals ; Antiporters/*chemistry/metabolism ; Binding Sites ; Cell Line ; Cell Membrane/chemistry ; Chloride Channels/*chemistry/metabolism ; Chlorides/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cystathionine beta-Synthase/chemistry ; Cytoplasm/chemistry ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Models, Biological ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Protons ; Rhodophyta/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2010-04-09
    Description: Recent studies have unequivocally associated the fat mass and obesity-associated (FTO) gene with the risk of obesity. In vitro FTO protein is an AlkB-like DNA/RNA demethylase with a strong preference for 3-methylthymidine (3-meT) in single-stranded DNA or 3-methyluracil (3-meU) in single-stranded RNA. Here we report the crystal structure of FTO in complex with the mononucleotide 3-meT. FTO comprises an amino-terminal AlkB-like domain and a carboxy-terminal domain with a novel fold. Biochemical assays show that these two domains interact with each other, which is required for FTO catalytic activity. In contrast with the structures of other AlkB members, FTO possesses an extra loop covering one side of the conserved jelly-roll motif. Structural comparison shows that this loop selectively competes with the unmethylated strand of the DNA duplex for binding to FTO, suggesting that it has an important role in FTO selection against double-stranded nucleic acids. The ability of FTO to distinguish 3-meT or 3-meU from other nucleotides is conferred by its hydrogen-bonding interaction with the two carbonyl oxygen atoms in 3-meT or 3-meU. Taken together, these results provide a structural basis for understanding FTO substrate-specificity, and serve as a foundation for the rational design of FTO inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Zhifu -- Niu, Tianhui -- Chang, Junbiao -- Lei, Xiaoguang -- Zhao, Mingyan -- Wang, Qiang -- Cheng, Wei -- Wang, Jinjing -- Feng, Yi -- Chai, Jijie -- England -- Nature. 2010 Apr 22;464(7292):1205-9. doi: 10.1038/nature08921. Epub 2010 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, No. 7 Science Park Road, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20376003" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA, Single-Stranded/chemistry/metabolism ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Proteins/*chemistry/genetics/*metabolism ; RNA/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thymidine/analogs & derivatives/chemistry/metabolism ; Uracil/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2010-10-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Veen, Hendrik W -- England -- Nature. 2010 Oct 21;467(7318):926-7. doi: 10.1038/467926a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962836" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/classification/*metabolism ; Bacterial Proteins/*chemistry/classification/*metabolism ; Binding Sites ; Cations/chemistry/metabolism ; Crystallography, X-Ray ; Ion Transport ; Models, Molecular ; Protein Conformation ; Substrate Specificity ; Vibrio cholerae/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2010-08-27
    Description: Centromeres are specified epigenetically, and the histone H3 variant CENP-A is assembled into the chromatin of all active centromeres. Divergence from H3 raises the possibility that CENP-A generates unique chromatin features to mark physically centromere location. Here we report the crystal structure of a subnucleosomal heterotetramer, human (CENP-A-H4)(2), that reveals three distinguishing properties encoded by the residues that comprise the CENP-A targeting domain (CATD; ref. 2): (1) a CENP-A-CENP-A interface that is substantially rotated relative to the H3-H3 interface; (2) a protruding loop L1 of the opposite charge as that on H3; and (3) strong hydrophobic contacts that rigidify the CENP-A-H4 interface. Residues involved in the CENP-A-CENP-A rotation are required for efficient incorporation into centromeric chromatin, indicating specificity for an unconventional nucleosome shape. DNA topological analysis indicates that CENP-A-containing nucleosomes are octameric with conventional left-handed DNA wrapping, in contrast to other recent proposals. Our results indicate that CENP-A marks centromere location by restructuring the nucleosome from within its folded histone core.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946842/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946842/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sekulic, Nikolina -- Bassett, Emily A -- Rogers, Danielle J -- Black, Ben E -- GM08275/GM/NIGMS NIH HHS/ -- GM82989/GM/NIGMS NIH HHS/ -- R01 GM082989/GM/NIGMS NIH HHS/ -- R01 GM082989-01A1/GM/NIGMS NIH HHS/ -- R01 GM082989-02/GM/NIGMS NIH HHS/ -- R01 GM082989-03/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 16;467(7313):347-51. doi: 10.1038/nature09323. Epub 2010 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Autoantigens/*chemistry/*metabolism ; Binding Sites ; Centromere/*chemistry/*metabolism ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Deuterium Exchange Measurement ; Epistasis, Genetic ; Histones/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Nucleosomes/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rotation ; Scattering, Small Angle ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2010-11-05
    Description: Channels and transporters of the ClC family cause the transmembrane movement of inorganic anions in service of a variety of biological tasks, from the unusual-the generation of the kilowatt pulses with which electric fish stun their prey-to the quotidian-the acidification of endosomes, vacuoles and lysosomes. The homodimeric architecture of ClC proteins, initially inferred from single-molecule studies of an elasmobranch Cl(-) channel and later confirmed by crystal structures of bacterial Cl(-)/H(+) antiporters, is apparently universal. Moreover, the basic machinery that enables ion movement through these proteins-the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl(-) and H(+) antiport in the transporters-are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However, this evidence is only inferential, and because examples are known in which quaternary rearrangements of extramembrane ClC domains that contribute to dimerization modulate transport activity, we cannot declare as definitive a 'parallel-pathways' picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl(-)/H(+) exchanger, ClC-ec1 from Escherichia coli, to design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not required for Cl(-)/H(+) exchange in ClC transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057488/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057488/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robertson, Janice L -- Kolmakova-Partensky, Ludmila -- Miller, Christopher -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 9;468(7325):844-7. doi: 10.1038/nature09556. Epub 2010 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048711" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chloride Channels/*chemistry/genetics/*metabolism ; Chlorides/metabolism ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/genetics ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Hydrogen/metabolism ; Liposomes/chemistry/metabolism ; Models, Molecular ; Mutant Proteins/*chemistry/genetics/*metabolism ; Phospholipids/metabolism ; Protein Conformation ; *Protein Engineering ; Protein Multimerization/genetics ; Protein Subunits/chemistry/metabolism ; Tryptophan/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2010-04-27
    Description: Complex enzymes containing Fe-S clusters are ubiquitous in nature, where they are involved in a number of fundamental processes including carbon dioxide fixation, nitrogen fixation and hydrogen metabolism. Hydrogen metabolism is facilitated by the activity of three evolutionarily and structurally unrelated enzymes: the [NiFe]-hydrogenases, [FeFe]-hydrogenases and [Fe]-hydrogenases (Hmd). The catalytic core of the [FeFe]-hydrogenase (HydA), termed the H-cluster, exists as a [4Fe-4S] subcluster linked by a cysteine thiolate to a modified 2Fe subcluster with unique non-protein ligands. The 2Fe subcluster and non-protein ligands are synthesized by the hydrogenase maturation enzymes HydE, HydF and HydG; however, the mechanism, synthesis and means of insertion of H-cluster components remain unclear. Here we show the structure of HydA(DeltaEFG) (HydA expressed in a genetic background devoid of the active site H-cluster biosynthetic genes hydE, hydF and hydG) revealing the presence of a [4Fe-4S] cluster and an open pocket for the 2Fe subcluster. The structure indicates that H-cluster synthesis occurs in a stepwise manner, first with synthesis and insertion of the [4Fe-4S] subcluster by generalized host-cell machinery and then with synthesis and insertion of the 2Fe subcluster by specialized hydE-, hydF- and hydG-encoded maturation machinery. Insertion of the 2Fe subcluster presumably occurs through a cationically charged channel that collapses following incorporation, as a result of conformational changes in two conserved loop regions. The structure, together with phylogenetic analysis, indicates that HydA emerged within bacteria most likely from a Nar1-like ancestor lacking the 2Fe subcluster, and that this was followed by acquisition in several unicellular eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulder, David W -- Boyd, Eric S -- Sarma, Ranjana -- Lange, Rachel K -- Endrizzi, James A -- Broderick, Joan B -- Peters, John W -- England -- Nature. 2010 May 13;465(7295):248-51. doi: 10.1038/nature08993. Epub 2010 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20418861" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Chlamydomonas reinhardtii/*enzymology ; Clostridium/enzymology ; Crystallography, X-Ray ; Hydrogen/metabolism ; Hydrogenase/*chemistry/genetics/*metabolism ; Iron/*metabolism ; Models, Molecular ; Nitrogenase/metabolism ; Phylogeny ; Protein Conformation ; Sulfur/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2010-12-21
    Description: The fidelity and specificity of information flow within a cell is controlled by scaffolding proteins that assemble and link enzymes into signalling circuits. These circuits can be inhibited by bacterial effector proteins that post-translationally modify individual pathway components. However, there is emerging evidence that pathogens directly organize higher-order signalling networks through enzyme scaffolding, and the identity of the effectors and their mechanisms of action are poorly understood. Here we identify the enterohaemorrhagic Escherichia coli O157:H7 type III effector EspG as a regulator of endomembrane trafficking using a functional screen, and report ADP-ribosylation factor (ARF) GTPases and p21-activated kinases (PAKs) as its relevant host substrates. The 2.5 A crystal structure of EspG in complex with ARF6 shows how EspG blocks GTPase-activating-protein-assisted GTP hydrolysis, revealing a potent mechanism of GTPase signalling inhibition at organelle membranes. In addition, the 2.8 A crystal structure of EspG in complex with the autoinhibitory Ialpha3-helix of PAK2 defines a previously unknown catalytic site in EspG and provides an allosteric mechanism of kinase activation by a bacterial effector. Unexpectedly, ARF and PAKs are organized on adjacent surfaces of EspG, indicating its role as a 'catalytic scaffold' that effectively reprograms cellular events through the functional assembly of GTPase-kinase signalling complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675890/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675890/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selyunin, Andrey S -- Sutton, Sarah E -- Weigele, Bethany A -- Reddick, L Evan -- Orchard, Robert C -- Bresson, Stefan M -- Tomchick, Diana R -- Alto, Neal M -- 1R01AI083359-01/AI/NIAID NIH HHS/ -- 5T32AI007520-12/AI/NIAID NIH HHS/ -- R01 AI083359/AI/NIAID NIH HHS/ -- R01 AI083359-01/AI/NIAID NIH HHS/ -- T32 AI007520/AI/NIAID NIH HHS/ -- T32 AI007520-12/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Jan 6;469(7328):107-11. doi: 10.1038/nature09593. Epub 2010 Dec 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21170023" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/chemistry/*metabolism ; Allosteric Regulation ; Animals ; *Biocatalysis ; Biological Transport ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Endoplasmic Reticulum/metabolism ; Enzyme Activation ; Escherichia coli O157/*chemistry/metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Golgi Apparatus/metabolism ; Guanosine Triphosphate/chemistry/metabolism ; Humans ; Hydrolysis ; Intracellular Membranes/metabolism ; Mice ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping ; Protein Unfolding ; Rats ; *Signal Transduction ; Two-Hybrid System Techniques ; p21-Activated Kinases/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rey, Felix A -- England -- Nature. 2010 Dec 9;468(7325):773-5. doi: 10.1038/468773a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150990" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Exoribonucleases/chemistry/metabolism ; Immune Evasion/immunology ; Interferons/biosynthesis ; Lassa virus/*chemistry/classification/genetics/*immunology ; Nucleoproteins/chemistry/immunology/*metabolism ; Phylogeny ; RNA Caps/*metabolism ; RNA, Viral/biosynthesis/chemistry/*metabolism ; Transcription, Genetic ; Viral Proteins/chemistry/immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2010-11-12
    Description: To establish productive infection, a retrovirus must insert a DNA replica of its genome into host cell chromosomal DNA. This process is operated by the intasome, a nucleoprotein complex composed of an integrase tetramer (IN) assembled on the viral DNA ends. The intasome engages chromosomal DNA within a target capture complex to carry out strand transfer, irreversibly joining the viral and cellular DNA molecules. Although several intasome/transpososome structures from the DDE(D) recombinase superfamily have been reported, the mechanics of target DNA capture and strand transfer by these enzymes remained unclear. Here we report crystal structures of the intasome from prototype foamy virus in complex with target DNA, elucidating the pre-integration target DNA capture and post-catalytic strand transfer intermediates of the retroviral integration process. The cleft between IN dimers within the intasome accommodates chromosomal DNA in a severely bent conformation, allowing widely spaced IN active sites to access the scissile phosphodiester bonds. Our results resolve the structural basis for retroviral DNA integration and provide a framework for the design of INs with altered target sequences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999894/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999894/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maertens, Goedele N -- Hare, Stephen -- Cherepanov, Peter -- G0900116/Medical Research Council/United Kingdom -- G0900116(90753)/Medical Research Council/United Kingdom -- G1000917/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 Nov 11;468(7321):326-9. doi: 10.1038/nature09517.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068843" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/genetics/metabolism ; Integrases/genetics/metabolism ; Models, Molecular ; Molecular Conformation ; Spumavirus/*chemistry/enzymology/*physiology ; *Virus Integration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2010-06-25
    Description: Large-conductance Ca(2+)-gated K(+) (BK) channels are essential for many biological processes such as smooth muscle contraction and neurotransmitter release. This group of channels can be activated synergistically by both voltage and intracellular Ca(2+), with the large carboxy-terminal intracellular portion being responsible for Ca(2+) sensing. Here we present the crystal structure of the entire cytoplasmic region of the human BK channel in a Ca(2+)-free state. The structure reveals four intracellular subunits, each comprising two tandem RCK domains, assembled into a gating ring similar to that seen in the MthK channel and probably representing its physiological assembly. Three Ca(2+) binding sites including the Ca(2+) bowl are mapped onto the structure based on mutagenesis data. The Ca(2+) bowl, located within the second RCK domain, forms an EF-hand-like motif and is strategically positioned close to the assembly interface between two subunits. The other two Ca(2+) (or Mg(2+)) binding sites, Asp 367 and Glu 374/Glu 399, are located on the first RCK domain. The Asp 367 site has high Ca(2+) sensitivity and is positioned in the groove between the amino- and carboxy-terminal subdomains of RCK1, whereas the low-affinity Mg(2+)-binding Glu 374/Glu 399 site is positioned on the upper plateau of the gating ring and close to the membrane. Our structure also contains the linker connecting the transmembrane and intracellular domains, allowing us to dock a voltage-gated K(+) channel pore of known structure onto the gating ring with reasonable accuracy and generate a structural model for the full BK channel.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910425/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910425/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Yunkun -- Yang, Yi -- Ye, Sheng -- Jiang, Youxing -- R01 GM071621/GM/NIGMS NIH HHS/ -- R01 GM071621-05/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 15;466(7304):393-7. doi: 10.1038/nature09252. Epub 2010 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20574420" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Calcium/analysis/metabolism ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Humans ; *Ion Channel Gating/physiology ; Large-Conductance Calcium-Activated Potassium Channel alpha ; Subunits/*chemistry/metabolism ; Magnesium/metabolism ; Models, Molecular ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sigmund, Curt D -- P01 HL014388/HL/NHLBI NIH HHS/ -- R01 HL061446/HL/NHLBI NIH HHS/ -- R37 HL048058/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Nov 4;468(7320):46-7. doi: 10.1038/468046a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048758" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensinogen/blood/*chemistry/*metabolism ; Angiotensins/chemistry/*metabolism/secretion ; Animals ; Blood Pressure/physiology ; Crystallography, X-Ray ; Female ; Humans ; Mice ; Oxidation-Reduction ; Oxidative Stress ; Pregnancy ; Protein Conformation ; Protein Processing, Post-Translational ; Rats ; Reactive Oxygen Species/metabolism ; Renin/chemistry/metabolism ; Substrate Specificity ; Superoxides/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2010-12-03
    Description: Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused widespread outbreaks of debilitating human disease in the past five years. CHIKV invasion of susceptible cells is mediated by two viral glycoproteins, E1 and E2, which carry the main antigenic determinants and form an icosahedral shell at the virion surface. Glycoprotein E2, derived from furin cleavage of the p62 precursor into E3 and E2, is responsible for receptor binding, and E1 for membrane fusion. In the context of a concerted multidisciplinary effort to understand the biology of CHIKV, here we report the crystal structures of the precursor p62-E1 heterodimer and of the mature E3-E2-E1 glycoprotein complexes. The resulting atomic models allow the synthesis of a wealth of genetic, biochemical, immunological and electron microscopy data accumulated over the years on alphaviruses in general. This combination yields a detailed picture of the functional architecture of the 25 MDa alphavirus surface glycoprotein shell. Together with the accompanying report on the structure of the Sindbis virus E2-E1 heterodimer at acidic pH (ref. 3), this work also provides new insight into the acid-triggered conformational change on the virus particle and its inbuilt inhibition mechanism in the immature complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voss, James E -- Vaney, Marie-Christine -- Duquerroy, Stephane -- Vonrhein, Clemens -- Girard-Blanc, Christine -- Crublet, Elodie -- Thompson, Andrew -- Bricogne, Gerard -- Rey, Felix A -- England -- Nature. 2010 Dec 2;468(7324):709-12. doi: 10.1038/nature09555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124458" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chikungunya virus/*chemistry ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drosophila melanogaster ; Hydrogen-Ion Concentration ; Membrane Glycoproteins/*chemistry ; Models, Molecular ; Multiprotein Complexes/chemistry ; Protein Multimerization ; Protein Precursors/chemistry ; Protein Structure, Quaternary ; Viral Envelope Proteins/*chemistry ; Viral Fusion Proteins/chemistry ; Virion/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2010-11-19
    Description: Lassa virus, the causative agent of Lassa fever, causes thousands of deaths annually and is a biological threat agent, for which there is no vaccine and limited therapy. The nucleoprotein (NP) of Lassa virus has essential roles in viral RNA synthesis and immune suppression, the molecular mechanisms of which are poorly understood. Here we report the crystal structure of Lassa virus NP at 1.80 A resolution, which reveals amino (N)- and carboxy (C)-terminal domains with structures unlike any of the reported viral NPs. The N domain folds into a novel structure with a deep cavity for binding the m7GpppN cap structure that is required for viral RNA transcription, whereas the C domain contains 3'-5' exoribonuclease activity involved in suppressing interferon induction. To our knowledge this is the first X-ray crystal structure solved for an arenaviral NP, which reveals its unexpected functions and indicates unique mechanisms in cap binding and immune evasion. These findings provide great potential for vaccine and drug development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qi, Xiaoxuan -- Lan, Shuiyun -- Wang, Wenjian -- Schelde, Lisa McLay -- Dong, Haohao -- Wallat, Gregor D -- Ly, Hinh -- Liang, Yuying -- Dong, Changjiang -- 083501/Z/07/Z/Wellcome Trust/United Kingdom -- 5-U19-AI057266-07/AI/NIAID NIH HHS/ -- 5-U54-AI-057157-06/AI/NIAID NIH HHS/ -- AI067704/AI/NIAID NIH HHS/ -- DK64399/DK/NIDDK NIH HHS/ -- R01 AI083409/AI/NIAID NIH HHS/ -- R01 AI083409-01A1/AI/NIAID NIH HHS/ -- R01 AI083409-02/AI/NIAID NIH HHS/ -- R01 AI093580/AI/NIAID NIH HHS/ -- R01AI083409/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 9;468(7325):779-83. doi: 10.1038/nature09605. Epub 2010 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085117" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Exoribonucleases/chemistry/genetics/metabolism ; Immune Evasion/*immunology ; Interferons/biosynthesis/immunology ; Lassa virus/*chemistry/genetics/*immunology ; Models, Molecular ; Nucleoproteins/*chemistry/genetics/immunology/*metabolism ; Protein Structure, Tertiary ; RNA Cap Analogs/chemistry/metabolism ; RNA Caps/chemistry/*metabolism ; RNA, Viral/biosynthesis/genetics/metabolism ; RNA-Binding Proteins/chemistry/genetics/metabolism ; Transcription, Genetic ; Viral Proteins/*chemistry/genetics/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2010-11-16
    Description: Ribonuclease (RNase) P is the universal ribozyme responsible for 5'-end tRNA processing. We report the crystal structure of the Thermotoga maritima RNase P holoenzyme in complex with tRNA(Phe). The 154 kDa complex consists of a large catalytic RNA (P RNA), a small protein cofactor and a mature tRNA. The structure shows that RNA-RNA recognition occurs through shape complementarity, specific intermolecular contacts and base-pairing interactions. Soaks with a pre-tRNA 5' leader sequence with and without metal help to identify the 5' substrate path and potential catalytic metal ions. The protein binds on top of a universally conserved structural module in P RNA and interacts with the leader, but not with the mature tRNA. The active site is composed of phosphate backbone moieties, a universally conserved uridine nucleobase, and at least two catalytically important metal ions. The active site structure and conserved RNase P-tRNA contacts suggest a universal mechanism of catalysis by RNase P.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058908/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058908/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reiter, Nicholas J -- Osterman, Amy -- Torres-Larios, Alfredo -- Swinger, Kerren K -- Pan, Tao -- Mondragon, Alfonso -- F32 GM087055/GM/NIGMS NIH HHS/ -- R01 GM058443/GM/NIGMS NIH HHS/ -- R01 GM058443-12/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Dec 9;468(7325):784-9. doi: 10.1038/nature09516. Epub 2010 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21076397" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Genes, Bacterial/genetics ; Holoenzymes/chemistry/genetics/metabolism ; Metals/metabolism ; Models, Molecular ; Molecular Conformation ; RNA, Transfer, Phe/chemistry/genetics/*metabolism ; Ribonuclease P/*chemistry/genetics/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thermotoga maritima/*enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2010-06-26
    Description: The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Poleta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Poleta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Poleta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Poleta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Poleta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Poleta in replicating through D loop and DNA fragile sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899710/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899710/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biertumpfel, Christian -- Zhao, Ye -- Kondo, Yuji -- Ramon-Maiques, Santiago -- Gregory, Mark -- Lee, Jae Young -- Masutani, Chikahide -- Lehmann, Alan R -- Hanaoka, Fumio -- Yang, Wei -- G0501450/Medical Research Council/United Kingdom -- Z01 DK036146-01/Intramural NIH HHS/ -- ZIA DK036146-03/Intramural NIH HHS/ -- ZIA DK036146-04/Intramural NIH HHS/ -- ZIA DK036146-05/Intramural NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1044-8. doi: 10.1038/nature09196.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, 9000 Rockville Pike, Building 5, Room B103, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577208" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/analogs & derivatives/metabolism ; Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Damage ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Mutation, Missense/genetics ; Pyrimidine Dimers/genetics/metabolism ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2010-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schulman, Brenda A -- Haas, Arthur L -- R01 GM069530/GM/NIGMS NIH HHS/ -- R01 GM077053/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):889-90. doi: 10.1038/463889a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164915" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Protein Conformation ; SUMO-1 Protein/*chemistry/*metabolism ; Ubiquitin-Activating Enzymes/*chemistry/*metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2010-08-27
    Description: The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 A resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makde, Ravindra D -- England, Joseph R -- Yennawar, Hemant P -- Tan, Song -- R01 GM088236/GM/NIGMS NIH HHS/ -- R01 GM088236-01/GM/NIGMS NIH HHS/ -- R01 GM088236-02/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 30;467(7315):562-6. doi: 10.1038/nature09321. Epub 2010 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739938" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/*metabolism ; Drosophila Proteins/*chemistry/*metabolism ; Drosophila melanogaster/*chemistry ; Guanine Nucleotide Exchange Factors/*chemistry/*metabolism ; Histones/chemistry/metabolism ; Nuclear Proteins/*chemistry/*metabolism ; Nucleosomes/*chemistry/*metabolism ; Xenopus ; ran GTP-Binding Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2010-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malissen, Bernard -- Luche, Herve -- England -- Nature. 2010 Oct 14;467(7317):793-4. doi: 10.1038/467793a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944732" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/genetics/immunology/*metabolism ; T-Lymphocytes/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2010-12-17
    Description: With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization and shows remarkable efficacy in cancer chemotherapy. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia) is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene, which is catalysed by taxadiene synthase. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82 A resolution) and 2-fluorogeranylgeranyl diphosphate (2.25 A resolution). The TXS structure reveals a modular assembly of three alpha-helical domains. The carboxy-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third 'insertion' domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059769/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059769/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koksal, Mustafa -- Jin, Yinghua -- Coates, Robert M -- Croteau, Rodney -- Christianson, David W -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM056838/GM/NIGMS NIH HHS/ -- R01 GM056838-12/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Jan 6;469(7328):116-20. doi: 10.1038/nature09628. Epub 2010 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21160477" target="_blank"〉PubMed〈/a〉
    Keywords: Alkenes/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Diterpenes/chemistry/metabolism ; *Evolution, Molecular ; Isomerases/*chemistry/classification/*metabolism ; Models, Molecular ; Organophosphates/chemistry/metabolism ; Paclitaxel/biosynthesis ; Polyisoprenyl Phosphates/chemistry/metabolism ; Protein Folding ; Taxus/*enzymology ; Terpenes/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2010-01-02
    Description: Many bacterial cells contain proteinaceous microcompartments that act as simple organelles by sequestering specific metabolic processes involving volatile or toxic metabolites. Here we report the three-dimensional (3D) crystal structures, with resolutions between 1.65 and 2.5 angstroms, of the four homologous proteins (EutS, EutL, EutK, and EutM) that are thought to be the major shell constituents of a functionally complex ethanolamine utilization (Eut) microcompartment. The Eut microcompartment is used to sequester the metabolism of ethanolamine in bacteria such as Escherichia coli and Salmonella enterica. The four Eut shell proteins share an overall similar 3D fold, but they have distinguishing structural features that help explain the specific roles they play in the microcompartment. For example, EutL undergoes a conformational change that is probably involved in gating molecular transport through shell protein pores, whereas structural evidence suggests that EutK might bind a nucleic acid component. Together these structures give mechanistic insight into bacterial microcompartments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, Shiho -- Sawaya, Michael R -- Yeates, Todd O -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):81-4. doi: 10.1126/science.1179513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044574" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Compartmentation ; Crystallography, X-Ray ; Escherichia coli K12/*chemistry/*metabolism/ultrastructure ; Escherichia coli Proteins/*chemistry/metabolism ; Ethanolamine/*metabolism ; Metabolic Networks and Pathways ; Models, Molecular ; Molecular Sequence Data ; Polyproteins/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2010-04-03
    Description: Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic "cap" and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tao, Xiao -- Lee, Alice -- Limapichat, Walrati -- Dougherty, Dennis A -- MacKinnon, Roderick -- GM43949/GM/NIGMS NIH HHS/ -- NS 34407/NS/NINDS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- R37 NS034407/NS/NINDS NIH HHS/ -- R37 NS034407-15/NS/NINDS NIH HHS/ -- R37 NS034407-15S1/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):67-73. doi: 10.1126/science.1185954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360102" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Arginine/chemistry ; Binding Sites ; Crystallography, X-Ray ; Electric Capacitance ; *Ion Channel Gating ; Kv1.2 Potassium Channel/*chemistry/*metabolism ; Lysine/chemistry ; Models, Molecular ; Molecular Sequence Data ; Patch-Clamp Techniques ; Phenylalanine/chemistry ; Protein Conformation ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Shab Potassium Channels/*chemistry/*metabolism ; Shaker Superfamily of Potassium Channels/chemistry/metabolism ; Tryptophan/chemistry ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2010-07-10
    Description: During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981354/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981354/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Tongqing -- Georgiev, Ivelin -- Wu, Xueling -- Yang, Zhi-Yong -- Dai, Kaifan -- Finzi, Andres -- Kwon, Young Do -- Scheid, Johannes F -- Shi, Wei -- Xu, Ling -- Yang, Yongping -- Zhu, Jiang -- Nussenzweig, Michel C -- Sodroski, Joseph -- Shapiro, Lawrence -- Nabel, Gary J -- Mascola, John R -- Kwong, Peter D -- P30 AI060354/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):811-7. doi: 10.1126/science.1192819. Epub 2010 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616231" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/*immunology ; Antibody Affinity ; Antigenic Variation ; Antigens, CD4/chemistry/immunology/metabolism ; Base Sequence ; Binding Sites, Antibody ; Crystallography, X-Ray ; Epitopes/immunology ; HIV Antibodies/*chemistry/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/*immunology ; HIV-1/*immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Neutralization Tests ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2010-04-17
    Description: SAGA is a transcriptional coactivator complex that is conserved across eukaryotes and performs multiple functions during transcriptional activation and elongation. One role is deubiquitination of histone H2B, and this activity resides in a distinct subcomplex called the deubiquitinating module (DUBm), which contains the ubiquitin-specific protease Ubp8, bound to Sgf11, Sus1, and Sgf73. The deubiquitinating activity depends on the presence of all four DUBm proteins. We report here the 1.90 angstrom resolution crystal structure of the DUBm bound to ubiquitin aldehyde, as well as the 2.45 angstrom resolution structure of the uncomplexed DUBm. The structure reveals an arrangement of protein domains that gives rise to a highly interconnected complex, which is stabilized by eight structural zinc atoms that are critical for enzymatic activity. The structure suggests a model for how interactions with the other DUBm proteins activate Ubp8 and allows us to speculate about how the DUBm binds to monoubiquitinated histone H2B in nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220450/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220450/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Samara, Nadine L -- Datta, Ajit B -- Berndsen, Christopher E -- Zhang, Xiangbin -- Yao, Tingting -- Cohen, Robert E -- Wolberger, Cynthia -- F32GM089037/GM/NIGMS NIH HHS/ -- R01 GM095822/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 21;328(5981):1025-9. doi: 10.1126/science.1190049. Epub 2010 Apr 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20395473" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehydes/chemistry/metabolism ; Crystallography, X-Ray ; Endopeptidases/*chemistry/metabolism ; Histone Acetyltransferases/*chemistry/metabolism ; Histones/metabolism ; Models, Biological ; Models, Molecular ; Nuclear Proteins/*chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA-Binding Proteins/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Trans-Activators/*chemistry/metabolism ; Transcription Factors/*chemistry/metabolism ; Ubiquitin/chemistry/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Ubiquitins/chemistry/metabolism ; Zinc/chemistry/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2010-09-04
    Description: Coxsackie and adenovirus receptor (CAR) is the primary cellular receptor for group B coxsackieviruses and most adenovirus serotypes and plays a crucial role in adenoviral gene therapy. Recent discovery of the interaction between junctional adhesion molecule-like protein (JAML) and CAR uncovered important functional roles in immunity, inflammation, and tissue homeostasis. Crystal structures of JAML ectodomain (2.2 angstroms) and its complex with CAR (2.8 angstroms) reveal an unusual immunoglobulin-domain assembly for JAML and a charged interface that confers high specificity. Biochemical and mutagenesis studies illustrate how CAR-mediated clustering of JAML recruits phosphoinositide 3-kinase (P13K) to a JAML intracellular sequence motif as delineated for the alphabeta T cell costimulatory receptor CD28. Thus, CAR and JAML are cell signaling receptors of the immune system with implications for asthma, cancer, and chronic nonhealing wounds.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951132/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951132/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verdino, Petra -- Witherden, Deborah A -- Havran, Wendy L -- Wilson, Ian A -- AI064811/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- AI52257/AI/NIAID NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- R01 AI036964/AI/NIAID NIH HHS/ -- R01 AI052257/AI/NIAID NIH HHS/ -- R01 AI052257-05/AI/NIAID NIH HHS/ -- R01 AI064811/AI/NIAID NIH HHS/ -- R01 AI064811-01A1/AI/NIAID NIH HHS/ -- R01 CA058896/CA/NCI NIH HHS/ -- R01 CA058896-16A1/CA/NCI NIH HHS/ -- R01 GM080301/GM/NIGMS NIH HHS/ -- R37 AI042266/AI/NIAID NIH HHS/ -- R37 AI042266-13/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1210-4. doi: 10.1126/science.1187996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813955" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD28/metabolism ; Binding Sites ; CHO Cells ; Cell Adhesion Molecules/*chemistry/*metabolism ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Cricetinae ; Cricetulus ; Crystallization ; Crystallography, X-Ray ; Epithelium/immunology ; Glycosylation ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Mice ; Phosphatidylinositol 3-Kinases/*metabolism ; Physicochemical Processes ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell, gamma-delta/immunology/metabolism ; Receptors, Virus/*chemistry/*metabolism ; *Signal Transduction ; T-Lymphocyte Subsets/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burton, Dennis R -- Weiss, Robin A -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):770-3. doi: 10.1126/science.1194693.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. burton@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705840" target="_blank"〉PubMed〈/a〉
    Keywords: *AIDS Vaccines ; Antibodies, Monoclonal/immunology/isolation & purification ; Antibodies, Neutralizing/*chemistry/*immunology/isolation & purification ; B-Lymphocytes/immunology ; Binding Sites, Antibody ; Crystallography, X-Ray ; Drug Design ; Epitopes ; HIV Antibodies/*chemistry/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology ; HIV Infections/immunology ; HIV-1/*immunology ; Humans ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2010-10-23
    Description: Transmembrane signals initiated by a broad range of extracellular stimuli converge on nodes that regulate phospholipase C (PLC)-dependent inositol lipid hydrolysis for signal propagation. We describe how heterotrimeric guanine nucleotide-binding proteins (G proteins) activate PLC-betas and in turn are deactivated by these downstream effectors. The 2.7-angstrom structure of PLC-beta3 bound to activated Galpha(q) reveals a conserved module found within PLC-betas and other effectors optimized for rapid engagement of activated G proteins. The active site of PLC-beta3 in the complex is occluded by an intramolecular plug that is likely removed upon G protein-dependent anchoring and orientation of the lipase at membrane surfaces. A second domain of PLC-beta3 subsequently accelerates guanosine triphosphate hydrolysis by Galpha(q), causing the complex to dissociate and terminate signal propagation. Mutations within this domain dramatically delay signal termination in vitro and in vivo. Consequently, this work suggests a dynamic catch-and-release mechanism used to sharpen spatiotemporal signals mediated by diverse sensory inputs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046049/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046049/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waldo, Gary L -- Ricks, Tiffany K -- Hicks, Stephanie N -- Cheever, Matthew L -- Kawano, Takeharu -- Tsuboi, Kazuhito -- Wang, Xiaoyue -- Montell, Craig -- Kozasa, Tohru -- Sondek, John -- Harden, T Kendall -- EY010852/EY/NEI NIH HHS/ -- GM074001/GM/NIGMS NIH HHS/ -- GM38213/GM/NIGMS NIH HHS/ -- GM57391/GM/NIGMS NIH HHS/ -- GM61454/GM/NIGMS NIH HHS/ -- R01 GM057391/GM/NIGMS NIH HHS/ -- R01 GM057391-13/GM/NIGMS NIH HHS/ -- R01 GM062299/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):974-80. doi: 10.1126/science.1193438. Epub 2010 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966218" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/*metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Hydrogen Bonding ; Hydrolysis ; Isoenzymes/chemistry/metabolism ; Kinetics ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Phospholipase C beta/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...