ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (497)
  • American Association for the Advancement of Science (AAAS)  (497)
  • EMBO Press
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2010-2014  (156)
  • 2005-2009  (341)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (497)
  • EMBO Press
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Nature Publishing Group (NPG)  (475)
Years
Year
  • 101
    Publication Date: 2011-10-25
    Description: Inhibitor of apoptosis (IAP) proteins are negative regulators of cell death. IAP family members contain RING domains that impart E3 ubiquitin ligase activity. Binding of endogenous or small-molecule antagonists to select baculovirus IAP repeat (BIR) domains within cellular IAP (cIAP) proteins promotes autoubiquitination and proteasomal degradation and so releases inhibition of apoptosis mediated by cIAP. Although the molecular details of antagonist-BIR domain interactions are well understood, it is not clear how this binding event influences the activity of the RING domain. Here biochemical and structural studies reveal that the unliganded, multidomain cIAP1 sequesters the RING domain within a compact, monomeric structure that prevents RING dimerization. Antagonist binding induces conformational rearrangements that enable RING dimerization and formation of the active E3 ligase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dueber, Erin C -- Schoeffler, Allyn J -- Lingel, Andreas -- Elliott, J Michael -- Fedorova, Anna V -- Giannetti, Anthony M -- Zobel, Kerry -- Maurer, Brigitte -- Varfolomeev, Eugene -- Wu, Ping -- Wallweber, Heidi J A -- Hymowitz, Sarah G -- Deshayes, Kurt -- Vucic, Domagoj -- Fairbrother, Wayne J -- P41RR001209/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):376-80. doi: 10.1126/science.1207862.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021857" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Line, Tumor ; Cloning, Molecular ; Humans ; Hydrophobic and Hydrophilic Interactions ; Inhibitor of Apoptosis Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Proteasome Endopeptidase Complex/metabolism ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Scattering, Small Angle ; Ubiquitin-Protein Ligases/chemistry/metabolism ; Ubiquitinated Proteins/chemistry/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2011-08-20
    Description: Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, David A -- Kim, Taeyeon -- Diaz-Martinez, Laura A -- Fair, Joshlean -- Elkahloun, Abdel G -- Harris, Brent T -- Toretsky, Jeffrey A -- Rosenberg, Steven A -- Shukla, Neerav -- Ladanyi, Marc -- Samuels, Yardena -- James, C David -- Yu, Hongtao -- Kim, Jung-Sik -- Waldman, Todd -- CA097257/CA/NCI NIH HHS/ -- R01 CA133662/CA/NCI NIH HHS/ -- R01 CA138212/CA/NCI NIH HHS/ -- R01 CA169345/CA/NCI NIH HHS/ -- R01CA115699/CA/NCI NIH HHS/ -- R21CA143282/CA/NCI NIH HHS/ -- Z01 HG200337-01/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):1039-43. doi: 10.1126/science.1203619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852505" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Antigens, Nuclear/*genetics/*physiology ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; Chromatids/physiology ; *Chromosomal Instability ; Chromosomes, Human, X/genetics ; Female ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Gene Targeting ; Glioblastoma/*genetics ; Humans ; Karyotyping ; Male ; Melanoma/genetics ; Mutation ; Neoplasms/*genetics ; Polymorphism, Single Nucleotide ; Sarcoma, Ewing/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2011-08-06
    Description: The prevalent DNA modification in higher organisms is the methylation of cytosine to 5-methylcytosine (5mC), which is partially converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) family of dioxygenases. Despite their importance in epigenetic regulation, it is unclear how these cytosine modifications are reversed. Here, we demonstrate that 5mC and 5hmC in DNA are oxidized to 5-carboxylcytosine (5caC) by Tet dioxygenases in vitro and in cultured cells. 5caC is specifically recognized and excised by thymine-DNA glycosylase (TDG). Depletion of TDG in mouse embyronic stem cells leads to accumulation of 5caC to a readily detectable level. These data suggest that oxidation of 5mC by Tet proteins followed by TDG-mediated base excision of 5caC constitutes a pathway for active DNA demethylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462231/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462231/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yu-Fei -- Li, Bin-Zhong -- Li, Zheng -- Liu, Peng -- Wang, Yang -- Tang, Qingyu -- Ding, Jianping -- Jia, Yingying -- Chen, Zhangcheng -- Li, Lin -- Sun, Yan -- Li, Xiuxue -- Dai, Qing -- Song, Chun-Xiao -- Zhang, Kangling -- He, Chuan -- Xu, Guo-Liang -- 1S10RR027643-01/RR/NCRR NIH HHS/ -- GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- S10 RR027643/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1303-7. doi: 10.1126/science.1210944. Epub 2011 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Group of DNA Metabolism, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817016" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; RNA, Small Interfering ; Thymine DNA Glycosylase/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2010-09-18
    Description: The mammalian cytoskeletal proteins beta- and gamma-actin are highly homologous, but only beta-actin is amino-terminally arginylated in vivo, which regulates its function. We examined the metabolic fate of exogenously expressed arginylated and nonarginylated actin isoforms. Arginylated gamma-actin, unlike beta-, was highly unstable and was selectively ubiquitinated and degraded in vivo. This instability was regulated by the differences in the nucleotide coding sequence between the two actin isoforms, which conferred different translation rates. gamma-actin was translated more slowly than beta-actin, and this slower processing resulted in the exposure of a normally hidden lysine residue for ubiquitination, leading to the preferential degradation of gamma-actin upon arginylation. This degradation mechanism, coupled to nucleotide coding sequence, may regulate protein arginylation in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941909/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941909/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Fangliang -- Saha, Sougata -- Shabalina, Svetlana A -- Kashina, Anna -- 5R01HL084419/HL/NHLBI NIH HHS/ -- R01 HL084419/HL/NHLBI NIH HHS/ -- R01 HL084419-03/HL/NHLBI NIH HHS/ -- R01 HL084419-03S1/HL/NHLBI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1534-7. doi: 10.1126/science.1191701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847274" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/genetics/*metabolism ; Amino Acid Sequence ; Animals ; Arginine/*metabolism ; Cell Line ; Cell Line, Tumor ; *Codon ; Humans ; Lysine/metabolism ; Mice ; Nucleic Acid Conformation ; Proteasome Endopeptidase Complex/metabolism ; Protein Biosynthesis ; Protein Folding ; Protein Isoforms/chemistry/genetics/metabolism ; *Protein Modification, Translational ; Protein Stability ; RNA, Messenger/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2010-04-10
    Description: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xiao-Wei -- Yan, Xiao-Jing -- Zhou, Zi-Ren -- Yang, Fei-Fei -- Wu, Zi-Yu -- Sun, Hong-Bin -- Liang, Wen-Xue -- Song, Ai-Xin -- Lallemand-Breitenbach, Valerie -- Jeanne, Marion -- Zhang, Qun-Ye -- Yang, Huai-Yu -- Huang, Qiu-Hua -- Zhou, Guang-Biao -- Tong, Jian-Hua -- Zhang, Yan -- Wu, Ji-Hui -- Hu, Hong-Yu -- de The, Hugues -- Chen, Sai-Juan -- Chen, Zhu -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):240-3. doi: 10.1126/science.1183424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378816" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism ; Arsenicals/*metabolism/*pharmacology ; Cell Line ; Humans ; Leukemia, Promyelocytic, Acute/drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Oxazines/metabolism ; Oxides/*metabolism/*pharmacology ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2010-05-22
    Description: Cell surface receptors convert extracellular cues into receptor activation, thereby triggering intracellular signaling networks and controlling cellular decisions. A major unresolved issue is the identification of receptor properties that critically determine processing of ligand-encoded information. We show by mathematical modeling of quantitative data and experimental validation that rapid ligand depletion and replenishment of the cell surface receptor are characteristic features of the erythropoietin (Epo) receptor (EpoR). The amount of Epo-EpoR complexes and EpoR activation integrated over time corresponds linearly to ligand input; this process is carried out over a broad range of ligand concentrations. This relation depends solely on EpoR turnover independent of ligand binding, which suggests an essential role of large intracellular receptor pools. These receptor properties enable the system to cope with basal and acute demand in the hematopoietic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Verena -- Schilling, Marcel -- Bachmann, Julie -- Baumann, Ute -- Raue, Andreas -- Maiwald, Thomas -- Timmer, Jens -- Klingmuller, Ursula -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1404-8. doi: 10.1126/science.1184913. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*metabolism ; Computer Simulation ; Endocytosis ; Epoetin Alfa ; Erythropoietin/metabolism/pharmacology ; Kinetics ; Ligands ; Mice ; Models, Biological ; Protein Binding ; Receptors, Erythropoietin/*metabolism ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2010-02-20
    Description: Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue. The concentration of metabolic fuels, such as glucose, amino acids, and fatty acids, influenced the acetylation status of metabolic enzymes. Acetylation activated enoyl-coenzyme A hydratase/3-hydroxyacyl-coenzyme A dehydrogenase in fatty acid oxidation and malate dehydrogenase in the TCA cycle, inhibited argininosuccinate lyase in the urea cycle, and destabilized phosphoenolpyruvate carboxykinase in gluconeogenesis. Our study reveals that acetylation plays a major role in metabolic regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232675/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232675/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Shimin -- Xu, Wei -- Jiang, Wenqing -- Yu, Wei -- Lin, Yan -- Zhang, Tengfei -- Yao, Jun -- Zhou, Li -- Zeng, Yaxue -- Li, Hong -- Li, Yixue -- Shi, Jiong -- An, Wenlin -- Hancock, Susan M -- He, Fuchu -- Qin, Lunxiu -- Chin, Jason -- Yang, Pengyuan -- Chen, Xian -- Lei, Qunying -- Xiong, Yue -- Guan, Kun-Liang -- MC_U105181009/Medical Research Council/United Kingdom -- MC_UP_A024_1008/Medical Research Council/United Kingdom -- R01 CA065572/CA/NCI NIH HHS/ -- R01 CA065572-13/CA/NCI NIH HHS/ -- R01 CA065572-14/CA/NCI NIH HHS/ -- R01 CA065572-15/CA/NCI NIH HHS/ -- R01CA108941/CA/NCI NIH HHS/ -- R01CA65572/CA/NCI NIH HHS/ -- R01GM51586/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):1000-4. doi: 10.1126/science.1179689.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Fudan University, Shanghai 20032, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20167786" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Hydroxyacyl CoA Dehydrogenases/metabolism ; Acetylation ; Argininosuccinate Lyase/genetics/metabolism ; Cell Line ; Citric Acid Cycle ; Enoyl-CoA Hydratase/metabolism ; Enzymes/*metabolism ; Fatty Acids/metabolism ; Gluconeogenesis ; Glycogen/metabolism ; Glycolysis ; Hepatocytes/enzymology/*metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Isomerases/metabolism ; Liver/enzymology/*metabolism ; Lysine/*metabolism ; Malate Dehydrogenase/metabolism ; Multienzyme Complexes/metabolism ; Oxidation-Reduction ; Peroxisomal Bifunctional Enzyme ; Phosphoenolpyruvate Carboxykinase (GTP)/metabolism ; *Protein Processing, Post-Translational ; Proteins/*metabolism ; Proteome ; Urea/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2010-07-31
    Description: Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ting -- Ghosal, Gargi -- Yuan, Jingsong -- Chen, Junjie -- Huang, Jun -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):693-6. doi: 10.1126/science.1192656. Epub 2010 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA/*metabolism ; DNA Damage ; *DNA Repair ; Exodeoxyribonucleases/chemistry/genetics/*metabolism ; Fanconi Anemia Complementation Group D2 Protein/*metabolism ; Fanconi Anemia Complementation Group Proteins/*metabolism ; Gene Knockdown Techniques ; HeLa Cells ; Humans ; Mitomycin/pharmacology ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Protein Binding ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2010-01-02
    Description: Prions are infectious proteins consisting mainly of PrP(Sc), a beta sheet-rich conformer of the normal host protein PrP(C), and occur in different strains. Strain identity is thought to be encoded by PrP(Sc) conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating "mutants," and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, "cell-adapted" prions outcompeted their "brain-adapted" counterparts, and the opposite occurred when prions were returned from cells to brain. Similarly, the inhibitor swainsonine selected for a resistant substrain, whereas, in its absence, the susceptible substrain outgrew its resistant counterpart. Prions, albeit devoid of a nucleic acid genome, are thus subject to mutation and selective amplification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Jiali -- Browning, Shawn -- Mahal, Sukhvir P -- Oelschlegel, Anja M -- Weissmann, Charles -- NS059543/NS/NINDS NIH HHS/ -- R01 NS059543/NS/NINDS NIH HHS/ -- R01 NS059543-01/NS/NINDS NIH HHS/ -- R01 NS059543-02/NS/NINDS NIH HHS/ -- R01 NS067214/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):869-72. doi: 10.1126/science.1183218. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Conditioned ; *Evolution, Molecular ; Mice ; Mice, Inbred C57BL ; Mutation ; *PrPSc Proteins/chemistry/classification/pathogenicity ; Prion Diseases ; Prions/chemistry/classification/*pathogenicity/*physiology ; Protein Conformation ; Swainsonine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2010-06-12
    Description: A conserved DNA repair response is defective in the human genetic illness Fanconi anemia (FA). Mutation of some FA genes impairs homologous recombination and error-prone DNA repair, rendering FA cells sensitive to DNA cross-linking agents. We found a genetic interaction between the FA gene FANCC and the nonhomologous end joining (NHEJ) factor Ku70. Disruption of both FANCC and Ku70 suppresses sensitivity to cross-linking agents, diminishes chromosome breaks, and reverses defective homologous recombination. Ku70 binds directly to free DNA ends, committing them to NHEJ repair. We show that purified FANCD2, a downstream effector of the FA pathway, might antagonize Ku70 activity by modifying such DNA substrates. These results reveal a function for the FA pathway in processing DNA ends, thereby diverting double-strand break repair away from abortive NHEJ and toward homologous recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pace, Paul -- Mosedale, Georgina -- Hodskinson, Michael R -- Rosado, Ivan V -- Sivasubramaniam, Meera -- Patel, Ketan J -- MC_U105178811/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):219-23. doi: 10.1126/science.1192277. Epub 2010 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20538911" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Nuclear/*genetics/metabolism ; Cell Line ; Chickens ; Chromosome Breakage ; Cross-Linking Reagents/pharmacology ; *DNA Breaks, Double-Stranded ; *DNA Repair ; DNA-Binding Proteins/*genetics/metabolism ; Fanconi Anemia Complementation Group C Protein/*genetics/metabolism ; Fanconi Anemia Complementation Group D2 Protein/chemistry/genetics/*metabolism ; Gene Conversion ; Genes, Immunoglobulin ; Humans ; Immunoglobulin M/genetics ; Point Mutation ; Recombinant Proteins/metabolism ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2010-03-20
    Description: Differences in gene expression may play a major role in speciation and phenotypic diversity. We examined genome-wide differences in transcription factor (TF) binding in several humans and a single chimpanzee by using chromatin immunoprecipitation followed by sequencing. The binding sites of RNA polymerase II (PolII) and a key regulator of immune responses, nuclear factor kappaB (p65), were mapped in 10 lymphoblastoid cell lines, and 25 and 7.5% of the respective binding regions were found to differ between individuals. Binding differences were frequently associated with single-nucleotide polymorphisms and genomic structural variants, and these differences were often correlated with differences in gene expression, suggesting functional consequences of binding variation. Furthermore, comparing PolII binding between humans and chimpanzee suggests extensive divergence in TF binding. Our results indicate that many differences in individuals and species occur at the level of TF binding, and they provide insight into the genetic events responsible for these differences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938768/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938768/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasowski, Maya -- Grubert, Fabian -- Heffelfinger, Christopher -- Hariharan, Manoj -- Asabere, Akwasi -- Waszak, Sebastian M -- Habegger, Lukas -- Rozowsky, Joel -- Shi, Minyi -- Urban, Alexander E -- Hong, Mi-Young -- Karczewski, Konrad J -- Huber, Wolfgang -- Weissman, Sherman M -- Gerstein, Mark B -- Korbel, Jan O -- Snyder, Michael -- R01 CA077808/CA/NCI NIH HHS/ -- R01 CA077808-09/CA/NCI NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- T32 GM007205-34/GM/NIGMS NIH HHS/ -- T32GM07205/GM/NIGMS NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- U54 HG004558-04/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):232-5. doi: 10.1126/science.1183621. Epub 2010 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Chromatin Immunoprecipitation ; DNA Copy Number Variations ; DNA, Intergenic ; Female ; *Gene Expression Regulation ; Humans ; Male ; Pan troglodytes/genetics ; *Polymorphism, Single Nucleotide ; Protein Binding ; RNA Polymerase II/genetics/*metabolism ; Sequence Analysis, DNA ; Species Specificity ; Transcription Factor RelA/genetics/*metabolism ; Transcription Initiation Site
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2010-09-18
    Description: Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Locasale, Jason W -- Swanson, Kenneth D -- Sharfi, Hadar -- Heffron, Greg J -- Amador-Noguez, Daniel -- Christofk, Heather R -- Wagner, Gerhard -- Rabinowitz, Joshua D -- Asara, John M -- Cantley, Lewis C -- 1K08CA136983/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5 T32 CA009361-28/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- K08 CA136983/CA/NCI NIH HHS/ -- K08 CA136983-02/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-10/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-01A1/CA/NCI NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-20/GM/NIGMS NIH HHS/ -- P01CA089021/CA/NCI NIH HHS/ -- P01GM047467/GM/NIGMS NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43S1/CA/NCI NIH HHS/ -- R01 AI078063/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM56302/GM/NIGMS NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- R21/R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299-03/DK/NIDDK NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009361/CA/NCI NIH HHS/ -- T32 CA009361-28/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Female ; Glucose/*metabolism ; Glyceric Acids/metabolism ; *Glycolysis ; Histidine/metabolism ; Humans ; Isoenzymes/metabolism ; Kinetics ; Male ; Mammary Neoplasms, Animal/metabolism ; Mice ; Neoplasms/*metabolism/pathology ; Phosphoenolpyruvate/metabolism ; Phosphoglycerate Mutase/*metabolism ; Phosphopyruvate Hydratase/metabolism ; Phosphorylation ; Prostatic Neoplasms/metabolism ; Pyruvate Kinase/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2010-07-31
    Description: During embryonic development, many organs form by extensive branching of epithelia through the formation of clefts and buds. In cleft formation, buds are delineated by the conversion of epithelial cell-cell adhesions to cell-matrix adhesions, but the mechanisms of cleft formation are not clear. We have identified Btbd7 as a dynamic regulator of branching morphogenesis. Btbd7 provides a mechanistic link between the extracellular matrix and cleft propagation through its highly focal expression leading to local regulation of Snail2 (Slug), E-cadherin, and epithelial cell motility. Inhibition experiments show that Btbd7 is required for branching of embryonic mammalian salivary glands and lungs. Hence, Btbd7 is a regulatory gene that promotes epithelial tissue remodeling and formation of branched organs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Onodera, Tomohiro -- Sakai, Takayoshi -- Hsu, Jeff Chi-feng -- Matsumoto, Kazue -- Chiorini, John A -- Yamada, Kenneth M -- ZIA DE000525-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):562-5. doi: 10.1126/science.1191880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cadherins/metabolism ; Cell Adhesion ; Cell Line ; Cell Movement ; Dogs ; Epithelial Cells/*physiology ; Fibronectins/genetics/metabolism ; Genes, Regulator ; Lung/*embryology/metabolism ; Mice ; Mice, Inbred ICR ; Models, Biological ; Molecular Sequence Data ; *Morphogenesis ; Nuclear Proteins ; Organ Culture Techniques ; Proteins/chemistry/*genetics/*physiology ; RNA, Small Interfering ; Salivary Glands/*embryology/metabolism ; Submandibular Gland/embryology ; Transcription Factors/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-11-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1172-3. doi: 10.1126/science.330.6008.1172.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109645" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Drug Discovery/*methods ; Drug Evaluation, Preclinical/methods ; *Genetic Diseases, Inborn/drug therapy/genetics/pathology/physiopathology ; *Heredodegenerative Disorders, Nervous System/drug ; therapy/genetics/pathology/physiopathology ; Humans ; *Induced Pluripotent Stem Cells/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2010-01-23
    Description: Wnt/beta-catenin signaling is important in stem cell biology, embryonic development, and disease, including cancer. However, the mechanism of Wnt signal transmission, notably how the receptors are activated, remains incompletely understood. We found that the prorenin receptor (PRR) is a component of the Wnt receptor complex. PRR functions in a renin-independent manner as an adaptor between Wnt receptors and the vacuolar H+-adenosine triphosphatase (V-ATPase) complex. Moreover, PRR and V-ATPase were required to mediate Wnt signaling during antero-posterior patterning of Xenopus early central nervous system development. The results reveal an unsuspected role for the prorenin receptor, V-ATPase activity, and acidification during Wnt/beta-catenin signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruciat, Cristina-Maria -- Ohkawara, Bisei -- Acebron, Sergio P -- Karaulanov, Emil -- Reinhard, Carmen -- Ingelfinger, Dierk -- Boutros, Michael -- Niehrs, Christof -- New York, N.Y. -- Science. 2010 Jan 22;327(5964):459-63. doi: 10.1126/science.1179802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20093472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Cell Line ; Cell Line, Tumor ; Central Nervous System/cytology/embryology ; Embryo, Nonmammalian/metabolism ; Frizzled Receptors/metabolism ; Gene Expression Regulation, Developmental ; Homeodomain Proteins/genetics/metabolism ; Humans ; Hydrogen-Ion Concentration ; LDL-Receptor Related Proteins/metabolism ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mice ; Nerve Tissue Proteins/genetics/metabolism ; Phosphorylation ; RNA, Small Interfering ; Receptors, Cell Surface/genetics/*metabolism ; *Signal Transduction ; Vacuolar Proton-Translocating ATPases/antagonists & inhibitors/*metabolism ; Wnt Proteins/*metabolism ; Wnt3 Protein ; Xenopus/embryology/metabolism ; Xenopus Proteins/genetics/*metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2010 Mar 5;327(5970):1191. doi: 10.1126/science.327.5970.1191.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Line ; *Cellular Reprogramming ; Embryonic Stem Cells/cytology/*physiology ; Humans ; Induced Pluripotent Stem Cells/cytology/*physiology ; Mice ; Neurogenesis ; Neuroglia/cytology ; Neurons/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2010-08-07
    Description: A family of bacterial effectors including Cif homolog from Burkholderia pseudomallei (CHBP) and Cif from Enteropathogenic Escherichia coli (EPEC) adopt a functionally important papain-like hydrolytic fold. We show here that CHBP was a potent inhibitor of the eukaryotic ubiquitination pathway. CHBP acted as a deamidase that specifically and efficiently deamidated Gln40 in ubiquitin and ubiquitin-like protein NEDD8 both in vitro and during Burkholderia infection. Deamidated ubiquitin was impaired in supporting ubiquitin-chain synthesis. Cif selectively deamidated NEDD8, which abolished the activity of neddylated Cullin-RING ubiquitin ligases (CRLs). Ubiquitination and ubiquitin-dependent degradation of multiple CRL substrates were impaired by Cif in EPEC-infected cells. Mutations of substrate-contacting residues in Cif abolished or attenuated EPEC-induced cytopathic phenotypes of cell cycle arrest and actin stress fiber formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031172/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031172/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cui, Jixin -- Yao, Qing -- Li, Shan -- Ding, Xiaojun -- Lu, Qiuhe -- Mao, Haibin -- Liu, Liping -- Zheng, Ning -- Chen, She -- Shao, Feng -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-08/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1215-8. doi: 10.1126/science.1193844. Epub 2010 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Beijing Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20688984" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/*metabolism ; Bacterial Proteins/*metabolism ; Burkholderia/pathogenicity ; Burkholderia pseudomallei/*metabolism/pathogenicity ; Cell Cycle ; Cell Line ; Cullin Proteins/metabolism ; Enteropathogenic Escherichia coli/*metabolism/pathogenicity ; Escherichia coli Proteins/genetics/*metabolism ; Glutamine/*metabolism ; HeLa Cells ; Humans ; Point Mutation ; Stress Fibers/metabolism ; Transfection ; Ubiquitin/*metabolism ; Ubiquitin C/metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2010-06-05
    Description: The His274--〉Tyr274 (H274Y) mutation confers oseltamivir resistance on N1 influenza neuraminidase but had long been thought to compromise viral fitness. However, beginning in 2007-2008, viruses containing H274Y rapidly became predominant among human seasonal H1N1 isolates. We show that H274Y decreases the amount of neuraminidase that reaches the cell surface and that this defect can be counteracted by secondary mutations that also restore viral fitness. Two such mutations occurred in seasonal H1N1 shortly before the widespread appearance of H274Y. The evolution of oseltamivir resistance was therefore enabled by "permissive" mutations that allowed the virus to tolerate subsequent occurrences of H274Y. An understanding of this process may provide a basis for predicting the evolution of oseltamivir resistance in other influenza strains.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloom, Jesse D -- Gong, Lizhi Ian -- Baltimore, David -- P01 CA132681/CA/NCI NIH HHS/ -- P01 CA132681-01A27259/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1272-5. doi: 10.1126/science.1187816.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522774" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antiviral Agents/*pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Drug Resistance, Viral/*genetics ; *Evolution, Molecular ; Genes, Viral ; Genetic Fitness ; Humans ; Influenza A Virus, H1N1 Subtype/*drug effects/*genetics/growth & development ; Influenza, Human/drug therapy/*virology ; Mutation ; Neuraminidase/antagonists & inhibitors/chemistry/genetics/metabolism ; Oseltamivir/*pharmacology ; Phylogeny ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2010-08-28
    Description: Presynaptic nerve terminals release neurotransmitters repeatedly, often at high frequency, and in relative isolation from neuronal cell bodies. Repeated release requires cycles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-complex assembly and disassembly, with continuous generation of reactive SNARE-protein intermediates. Although many forms of neurodegeneration initiate presynaptically, only few pathogenic mechanisms are known, and the functions of presynaptic proteins linked to neurodegeneration, such as alpha-synuclein, remain unclear. Here, we show that maintenance of continuous presynaptic SNARE-complex assembly required a nonclassical chaperone activity mediated by synucleins. Specifically, alpha-synuclein directly bound to the SNARE-protein synaptobrevin-2/vesicle-associated membrane protein 2 (VAMP2) and promoted SNARE-complex assembly. Moreover, triple-knockout mice lacking synucleins developed age-dependent neurological impairments, exhibited decreased SNARE-complex assembly, and died prematurely. Thus, synucleins may function to sustain normal SNARE-complex assembly in a presynaptic terminal during aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235365/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235365/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burre, Jacqueline -- Sharma, Manu -- Tsetsenis, Theodoros -- Buchman, Vladimir -- Etherton, Mark R -- Sudhof, Thomas C -- 075615/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 24;329(5999):1663-7. doi: 10.1126/science.1195227. Epub 2010 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, 1050 Arastradero Road, Palo Alto, CA 94304-5543, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798282" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Line ; Cells, Cultured ; HSP40 Heat-Shock Proteins/metabolism ; Humans ; Membrane Fusion ; Membrane Proteins/metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Nerve Degeneration/*metabolism ; Neurons/*metabolism ; Presynaptic Terminals/*metabolism ; Protein Binding ; Rats ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins/*metabolism ; Vesicle-Associated Membrane Protein 2/metabolism ; alpha-Synuclein/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2010-05-08
    Description: Clathrin-mediated endocytosis, the major pathway for ligand internalization into eukaryotic cells, is thought to be initiated by the clustering of clathrin and adaptors around receptors destined for internalization. However, here we report that the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2) were required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. Changes in FCHo1/2 expression levels correlated directly with numbers of CCV budding events, ligand endocytosis, and synaptic vesicle marker recycling. FCHo1/2 proteins bound specifically to the plasma membrane and recruited the scaffold proteins eps15 and intersectin, which in turn engaged the adaptor complex AP2. The FCHo F-BAR membrane-bending activity was required, leading to the proposal that FCHo1/2 sculpt the initial bud site and recruit the clathrin machinery for CCV formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henne, William Mike -- Boucrot, Emmanuel -- Meinecke, Michael -- Evergren, Emma -- Vallis, Yvonne -- Mittal, Rohit -- McMahon, Harvey T -- MC_U105178795/Medical Research Council/United Kingdom -- U.1051.02.007(78795)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1281-4. doi: 10.1126/science.1188462. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448150" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex 2/metabolism ; Adaptor Proteins, Signal Transducing ; Adaptor Proteins, Vesicular Transport/metabolism ; Animals ; Calcium-Binding Proteins/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Clathrin/*metabolism ; Clathrin-Coated Vesicles/*metabolism ; *Endocytosis ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins ; Mice ; Models, Molecular ; Neurons/cytology/metabolism ; Phosphoproteins/metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/metabolism ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2010-06-05
    Description: In the classical form of alpha1-antitrypsin (AT) deficiency, a point mutation in AT alters the folding of a liver-derived secretory glycoprotein and renders it aggregation-prone. In addition to decreased serum concentrations of AT, the disorder is characterized by accumulation of the mutant alpha1-antitrypsin Z (ATZ) variant inside cells, causing hepatic fibrosis and/or carcinogenesis by a gain-of-toxic function mechanism. The proteasomal and autophagic pathways are known to mediate degradation of ATZ. Here we show that the autophagy-enhancing drug carbamazepine (CBZ) decreased the hepatic load of ATZ and hepatic fibrosis in a mouse model of AT deficiency-associated liver disease. These results provide a basis for testing CBZ, which has an extensive clinical safety profile, in patients with AT deficiency and also provide a proof of principle for therapeutic use of autophagy enhancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hidvegi, Tunda -- Ewing, Michael -- Hale, Pamela -- Dippold, Christine -- Beckett, Caroline -- Kemp, Carolyn -- Maurice, Nicholas -- Mukherjee, Amitava -- Goldbach, Christina -- Watkins, Simon -- Michalopoulos, George -- Perlmutter, David H -- DK076918/DK/NIDDK NIH HHS/ -- HL037784/HL/NHLBI NIH HHS/ -- R01 DK076918/DK/NIDDK NIH HHS/ -- R01 DK084512/DK/NIDDK NIH HHS/ -- RR022241/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):229-32. doi: 10.1126/science.1190354. Epub 2010 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/*drug effects ; Carbamazepine/administration & dosage/*pharmacology/therapeutic use ; Cell Line ; Disease Models, Animal ; Endoplasmic Reticulum/metabolism ; HeLa Cells ; Humans ; Liver/drug effects/*metabolism/pathology ; Liver Cirrhosis/*drug therapy/etiology/metabolism/pathology ; Mice ; Mice, Transgenic ; Mutant Proteins/chemistry/metabolism ; Phagosomes/drug effects/ultrastructure ; Phenotype ; Proteasome Endopeptidase Complex/metabolism ; Protein Folding ; Solubility ; alpha 1-Antitrypsin/chemistry/genetics/*metabolism ; alpha 1-Antitrypsin Deficiency/complications/*metabolism/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2010-05-29
    Description: The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogen and nutrient signals to control cell proliferation and cell size. Hence, mTORC1 is implicated in a large number of human diseases--including diabetes, obesity, heart disease, and cancer--that are characterized by aberrant cell growth and proliferation. Although eukaryotic translation initiation factor 4E-binding proteins (4E-BPs) are critical mediators of mTORC1 function, their precise contribution to mTORC1 signaling and the mechanisms by which they mediate mTORC1 function have remained unclear. We inhibited the mTORC1 pathway in cells lacking 4E-BPs and analyzed the effects on cell size, cell proliferation, and cell cycle progression. Although the 4E-BPs had no effect on cell size, they inhibited cell proliferation by selectively inhibiting the translation of messenger RNAs that encode proliferation-promoting proteins and proteins involved in cell cycle progression. Thus, control of cell size and cell cycle progression appear to be independent in mammalian cells, whereas in lower eukaryotes, 4E-BPs influence both cell growth and proliferation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dowling, Ryan J O -- Topisirovic, Ivan -- Alain, Tommy -- Bidinosti, Michael -- Fonseca, Bruno D -- Petroulakis, Emmanuel -- Wang, Xiaoshan -- Larsson, Ola -- Selvaraj, Anand -- Liu, Yi -- Kozma, Sara C -- Thomas, George -- Sonenberg, Nahum -- P50 NS057531/NS/NINDS NIH HHS/ -- P50 NS057531-01A2/NS/NINDS NIH HHS/ -- R01 DK078019/DK/NIDDK NIH HHS/ -- R01 DK73802/DK/NIDDK NIH HHS/ -- U01 CA84292-06/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 28;328(5982):1172-6. doi: 10.1126/science.1187532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508131" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/genetics/*metabolism ; Cell Cycle ; *Cell Enlargement ; Cell Line ; *Cell Proliferation ; Cell Size ; Cell Survival ; Eukaryotic Initiation Factors/genetics/*metabolism ; Humans ; Mice ; Mice, Knockout ; Multiprotein Complexes ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Protein Biosynthesis ; Proteins ; RNA, Messenger/genetics/metabolism ; Ribosomal Protein S6 Kinases/metabolism ; Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2010-01-30
    Description: The prion hypothesis posits that a misfolded form of prion protein (PrP) is responsible for the infectivity of prion disease. Using recombinant murine PrP purified from Escherichia coli, we created a recombinant prion with the attributes of the pathogenic PrP isoform: aggregated, protease-resistant, and self-perpetuating. After intracerebral injection of the recombinant prion, wild-type mice developed neurological signs in approximately 130 days and reached the terminal stage of disease in approximately 150 days. Characterization of diseased mice revealed classic neuropathology of prion disease, the presence of protease-resistant PrP, and the capability of serially transmitting the disease; these findings confirmed that the mice succumbed to prion disease. Thus, as postulated by the prion hypothesis, the infectivity in mammalian prion disease results from an altered conformation of PrP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893558/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893558/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fei -- Wang, Xinhe -- Yuan, Chong-Gang -- Ma, Jiyan -- R01 NS060729/NS/NINDS NIH HHS/ -- R01 NS060729-01A1/NS/NINDS NIH HHS/ -- R01NS060729/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1132-5. doi: 10.1126/science.1183748. Epub 2010 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110469" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/pathology ; Brain Chemistry ; Cell Line ; Endopeptidase K/metabolism ; Escherichia coli/genetics ; Female ; Glycosylation ; Liver/chemistry ; Mice ; Neurons/chemistry ; Phosphatidylglycerols/*chemistry ; PrPC Proteins/chemistry/pathogenicity ; PrPSc Proteins/analysis/*chemistry/*pathogenicity ; Prion Diseases/*etiology/pathology ; Prions/*chemistry/*pathogenicity ; Protein Folding ; RNA/*chemistry ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2010-07-22
    Description: The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bungard, David -- Fuerth, Benjamin J -- Zeng, Ping-Yao -- Faubert, Brandon -- Maas, Nancy L -- Viollet, Benoit -- Carling, David -- Thompson, Craig B -- Jones, Russell G -- Berger, Shelley L -- CA078831/CA/NCI NIH HHS/ -- CA09171/CA/NCI NIH HHS/ -- CA105463/CA/NCI NIH HHS/ -- MC_U120027537/Medical Research Council/United Kingdom -- MOP-93799/Canadian Institutes of Health Research/Canada -- P01 AG031862/AG/NIA NIH HHS/ -- P01 CA104838/CA/NCI NIH HHS/ -- R01 CA078831/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1201-5. doi: 10.1126/science.1191241. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647423" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adaptation, Physiological ; Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; Enzyme Activation ; Gene Expression Regulation ; Histones/chemistry/*metabolism ; Humans ; Mice ; Phosphorylation ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Serine/metabolism ; Signal Transduction ; *Stress, Physiological ; *Transcription, Genetic ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2010-02-27
    Description: The bacterium Photorhabdus luminescens is mutualistically associated with entomopathogenetic nematodes. These nematodes invade insect larvae and release the bacteria from their intestine, which kills the insects through the action of toxin complexes. We elucidated the mode of action of two of these insecticidal toxins from P. luminescens. We identified the biologically active components TccC3 and TccC5 as adenosine diphosphate (ADP)-ribosyltransferases, which modify unusual amino acids. TccC3 ADP-ribosylated threonine-148 of actin, resulting in actin polymerization. TccC5 ADP-ribosylated Rho guanosine triphosphatase proteins at glutamine-61 and glutamine-63, inducing their activation. The concerted action of both toxins inhibited phagocytosis of target insect cells and induced extensive intracellular polymerization and clustering of actin. Several human pathogenic bacteria produce related toxins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, Alexander E -- Schmidt, Gudula -- Schlosser, Andreas -- Hey, Timothy D -- Larrinua, Ignacio M -- Sheets, Joel J -- Mannherz, Hans G -- Aktories, Klaus -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1139-42. doi: 10.1126/science.1184557.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185726" target="_blank"〉PubMed〈/a〉
    Keywords: ADP Ribose Transferases/chemistry/*metabolism ; Actins/chemistry/*metabolism ; Adenosine Diphosphate Ribose/*metabolism ; Animals ; Bacterial Toxins/chemistry/*metabolism/pharmacology ; Cell Line ; Glutamine/metabolism ; HeLa Cells ; Hemocytes/immunology ; Humans ; Moths ; Phagocytosis/drug effects ; *Photorhabdus ; Signal Transduction ; Stress Fibers/metabolism ; Threonine/metabolism ; Thymosin/metabolism/pharmacology ; rhoA GTP-Binding Protein/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2010-06-19
    Description: In Drosophila, microRNAs (miRNAs) typically guide Argonaute1 to repress messenger RNA (mRNA), whereas small interfering RNAs (siRNAs) guide Argonaute2 to destroy viral and transposon RNA. Unlike siRNAs, miRNAs rarely form extensive numbers of base pairs to the mRNAs they regulate. We find that extensive complementarity between a target RNA and an Argonaute1-bound miRNA triggers miRNA tailing and 3'-to-5' trimming. In flies, Argonaute2-bound small RNAs--but not those bound to Argonaute1--bear a 2'-O-methyl group at their 3' ends. This modification blocks target-directed small RNA remodeling: In flies lacking Hen1, the enzyme that adds the 2'-O-methyl group, Argonaute2-associated siRNAs are tailed and trimmed. Target complementarity also affects small RNA stability in human cells. These results provide an explanation for the partial complementarity between animal miRNAs and their targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902985/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902985/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ameres, Stefan L -- Horwich, Michael D -- Hung, Jui-Hung -- Xu, Jia -- Ghildiyal, Megha -- Weng, Zhiping -- Zamore, Phillip D -- F30AG030283/AG/NIA NIH HHS/ -- GM62862/GM/NIGMS NIH HHS/ -- GM65236/GM/NIGMS NIH HHS/ -- J 2832/Austrian Science Fund FWF/Austria -- R01 GM065236/GM/NIGMS NIH HHS/ -- R01 GM065236-08/GM/NIGMS NIH HHS/ -- R37 GM062862/GM/NIGMS NIH HHS/ -- R37 GM062862-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jun 18;328(5985):1534-9. doi: 10.1126/science.1187058.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20558712" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; *Base Pairing ; Cell Line ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/genetics ; Eukaryotic Initiation Factors/metabolism ; Green Fluorescent Proteins/genetics ; Humans ; Methylation ; Methyltransferases/genetics/metabolism ; MicroRNAs/chemistry/genetics/*metabolism ; Models, Biological ; RNA Caps ; *RNA Stability ; RNA, Complementary ; RNA, Messenger/chemistry/genetics/*metabolism ; RNA, Small Interfering/chemistry/genetics/*metabolism ; RNA-Induced Silencing Complex/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2010-10-12
    Description: Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Beili -- Chien, Ellen Y T -- Mol, Clifford D -- Fenalti, Gustavo -- Liu, Wei -- Katritch, Vsevolod -- Abagyan, Ruben -- Brooun, Alexei -- Wells, Peter -- Bi, F Christopher -- Hamel, Damon J -- Kuhn, Peter -- Handel, Tracy M -- Cherezov, Vadim -- Stevens, Raymond C -- F32 GM083463/GM/NIGMS NIH HHS/ -- F32 GM083463-03/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 AI037113/AI/NIAID NIH HHS/ -- R01 AI037113-13/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM081763/GM/NIGMS NIH HHS/ -- R01 GM081763-03/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 AI087189/AI/NIAID NIH HHS/ -- R21 AI087189-02/AI/NIAID NIH HHS/ -- R21 RR025336/RR/NCRR NIH HHS/ -- R21 RR025336-01A1/RR/NCRR NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-050001/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chemokine CXCL12 ; Crystallography, X-Ray ; HIV Envelope Protein gp120/metabolism ; Humans ; Membrane Proteins ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Receptors, CXCR4/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Spodoptera ; Thiourea/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2010-11-27
    Description: The brain's circuitry is established by directed migration and synaptogenesis of neurons during development. Although neurons mature and migrate in specific patterns, little is known about how neurons exit their germinal zone niche. We found that cerebellar granule neuron germinal zone exit is regulated by proteasomal degradation of Pard3A by the Seven in Absentia homolog (Siah) E3 ubiquitin ligase. Pard3A gain of function and Siah loss of function induce precocious radial migration. Time-lapse imaging using a probe to measure neuronal cell contact reveals that Pard3A promotes adhesive interactions needed for germinal zone exit by recruiting the epithelial tight junction adhesion molecule C to the neuronal cell surface. Our findings define a Siah-Pard3A signaling pathway that controls adhesion-dependent exit of neuronal progenitors or immature neurons from a germinal zone niche.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065828/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065828/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Famulski, Jakub K -- Trivedi, Niraj -- Howell, Danielle -- Yang, Yuan -- Tong, Yiai -- Gilbertson, Richard -- Solecki, David J -- P01 CA096832/CA/NCI NIH HHS/ -- P01 CA096832-07/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01 CA129541-04/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1834-8. doi: 10.1126/science.1198480. Epub 2010 Nov 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Adhesion ; Cell Adhesion Molecules/chemistry/*metabolism ; Cell Line ; *Cell Movement ; Cell Polarity ; Cerebellum/*cytology/embryology/*metabolism ; Dogs ; Humans ; Immunoglobulins/chemistry/metabolism ; Mice ; Morphogenesis ; Neurons/cytology/*physiology ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Stem Cells/physiology ; Transfection ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2010-01-02
    Description: Alpha-dystroglycan (alpha-DG) is a cell-surface glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin-G domains and certain arenaviruses. Receptor binding is thought to be mediated by a posttranslational modification, and defective binding with laminin underlies a subclass of congenital muscular dystrophy. Using mass spectrometry- and nuclear magnetic resonance (NMR)-based structural analyses, we identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant alpha-DG, which was required for laminin binding. We demonstrated that patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly have defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification is mediated by the like-acetylglucosaminyltransferase (LARGE) protein. These findings expand our understanding of the mechanisms that underlie congenital muscular dystrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida-Moriguchi, Takako -- Yu, Liping -- Stalnaker, Stephanie H -- Davis, Sarah -- Kunz, Stefan -- Madson, Michael -- Oldstone, Michael B A -- Schachter, Harry -- Wells, Lance -- Campbell, Kevin P -- 1U54NS053672/NS/NINDS NIH HHS/ -- AI55540/AI/NIAID NIH HHS/ -- P30 DK 54759/DK/NIDDK NIH HHS/ -- P30 DK054759/DK/NIDDK NIH HHS/ -- P41 RR018502/RR/NCRR NIH HHS/ -- R01 AI009484/AI/NIAID NIH HHS/ -- R01 AI009484-40/AI/NIAID NIH HHS/ -- R01 AI009484-41/AI/NIAID NIH HHS/ -- R01 AI045927/AI/NIAID NIH HHS/ -- R01 AI045927-08/AI/NIAID NIH HHS/ -- R01 AI045927-09/AI/NIAID NIH HHS/ -- R01 AI045927-10/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):88-92. doi: 10.1126/science.1180512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbohydrate Conformation ; Cell Line ; Dystroglycans/chemistry/*metabolism ; Glycosylation ; Humans ; Laminin/*metabolism ; Magnetic Resonance Spectroscopy ; Mannose/*metabolism ; Mass Spectrometry ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Muscle, Skeletal/metabolism ; Muscular Dystrophies/metabolism ; Muscular Dystrophy, Animal/metabolism ; N-Acetylglucosaminyltransferases/genetics/metabolism ; Phosphorylation ; Protein Binding ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2010-10-12
    Description: CLC proteins transport chloride (Cl(-)) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl(-) ion channels, whereas others are secondary active transporters that exchange Cl(-) ions and protons (H(+)) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl(-)/H(+) exchange and a simple mechanistic connection between CLC channels and transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Liang -- Campbell, Ernest B -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- R01 GM043949-21/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):635-41. doi: 10.1126/science.1195230. Epub 2010 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929736" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/metabolism ; Animals ; Antiporters/*chemistry/metabolism ; Binding Sites ; Cell Line ; Cell Membrane/chemistry ; Chloride Channels/*chemistry/metabolism ; Chlorides/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cystathionine beta-Synthase/chemistry ; Cytoplasm/chemistry ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Models, Biological ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Protons ; Rhodophyta/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2010-09-11
    Description: SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner and showed that SIRT6-dependent CtIP deacetylation promotes resection. A nonacetylatable CtIP mutant alleviated the effect of SIRT6 depletion on resection, thus identifying CtIP as a key substrate by which SIRT6 facilitates DSB processing and homologous recombination. These findings further clarify how SIRT6 promotes genome stability.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276839/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276839/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaidi, Abderrahmane -- Weinert, Brian T -- Choudhary, Chunaram -- Jackson, Stephen P -- 11224/Cancer Research UK/United Kingdom -- A5290/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1348-53. doi: 10.1126/science.1192049.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829486" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Camptothecin/pharmacology ; Carrier Proteins/genetics/*metabolism ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; *DNA Repair ; DNA, Single-Stranded/metabolism ; Genomic Instability ; Humans ; Mice ; Mutant Proteins/metabolism ; Niacinamide/pharmacology ; Nuclear Proteins/genetics/*metabolism ; Protein Binding ; Recombination, Genetic/drug effects ; Sirtuins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2010 Dec 17;330(6011):1609. doi: 10.1126/science.330.6011.1609.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21163983" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Embryonic Stem Cells ; Financing, Government/legislation & jurisprudence ; Humans ; Research Support as Topic/legislation & jurisprudence ; Stem Cell Research/economics/*legislation & jurisprudence ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2010-09-04
    Description: Recent reports of increased tolerance to artemisinin derivatives--the most recently adopted class of antimalarials--have prompted a need for new treatments. The spirotetrahydro-beta-carbolines, or spiroindolones, are potent drugs that kill the blood stages of Plasmodium falciparum and Plasmodium vivax clinical isolates at low nanomolar concentration. Spiroindolones rapidly inhibit protein synthesis in P. falciparum, an effect that is ablated in parasites bearing nonsynonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows pharmacokinetic properties compatible with once-daily oral dosing and has single-dose efficacy in a rodent malaria model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050001/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050001/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rottmann, Matthias -- McNamara, Case -- Yeung, Bryan K S -- Lee, Marcus C S -- Zou, Bin -- Russell, Bruce -- Seitz, Patrick -- Plouffe, David M -- Dharia, Neekesh V -- Tan, Jocelyn -- Cohen, Steven B -- Spencer, Kathryn R -- Gonzalez-Paez, Gonzalo E -- Lakshminarayana, Suresh B -- Goh, Anne -- Suwanarusk, Rossarin -- Jegla, Timothy -- Schmitt, Esther K -- Beck, Hans-Peter -- Brun, Reto -- Nosten, Francois -- Renia, Laurent -- Dartois, Veronique -- Keller, Thomas H -- Fidock, David A -- Winzeler, Elizabeth A -- Diagana, Thierry T -- R01 AI059472/AI/NIAID NIH HHS/ -- R01 AI059472-04/AI/NIAID NIH HHS/ -- R01 AI059472-05/AI/NIAID NIH HHS/ -- R01AI059472/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1175-80. doi: 10.1126/science.1193225.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Tropical and Public Health Institute, Parasite Chemotherapy, CH-4002 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813948" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/antagonists & inhibitors/chemistry/genetics/metabolism ; Animals ; Antimalarials/administration & dosage/chemistry/pharmacokinetics/*pharmacology ; Cell Line ; Drug Discovery ; Drug Resistance ; Erythrocytes/parasitology ; Female ; Genes, Protozoan ; Humans ; Indoles/administration & dosage/chemistry/pharmacokinetics/*pharmacology ; Malaria/*drug therapy/parasitology ; Male ; Mice ; Models, Molecular ; Mutant Proteins/antagonists & inhibitors/chemistry/metabolism ; Mutation ; Parasitic Sensitivity Tests ; Plasmodium berghei/*drug effects ; Plasmodium falciparum/*drug effects/genetics/growth & development ; Plasmodium vivax/*drug effects/growth & development ; Protein Synthesis Inhibitors/administration & ; dosage/chemistry/pharmacokinetics/pharmacology ; Protozoan Proteins/biosynthesis/chemistry/genetics/metabolism ; Rats ; Rats, Wistar ; Spiro Compounds/administration & dosage/chemistry/pharmacokinetics/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2010-09-18
    Description: The serotonin transporter (SERT) ensures the recapture of serotonin and is the pharmacological target of selective serotonin reuptake inhibitor (SSRI) antidepressants. We show that SERT is a target of microRNA-16 (miR-16). miR-16 is expressed at higher levels in noradrenergic than in serotonergic cells; its reduction in noradrenergic neurons causes de novo SERT expression. In mice, chronic treatment with the SSRI fluoxetine (Prozac) increases miR-16 levels in serotonergic raphe nuclei, which reduces SERT expression. Further, raphe exposed to fluoxetine release the neurotrophic factor S100beta, which acts on noradrenergic cells of the locus coeruleus. By decreasing miR-16, S100beta turns on the expression of serotonergic functions in noradrenergic neurons. Based on pharmacological and behavioral data, we propose that miR-16 contributes to the therapeutic action of SSRI antidepressants in monoaminergic neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baudry, Anne -- Mouillet-Richard, Sophie -- Schneider, Benoit -- Launay, Jean-Marie -- Kellermann, Odile -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1537-41. doi: 10.1126/science.1193692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellules Souches, Signalisation et Prions, INSERM U747, Universite Paris Descartes, 75006 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847275" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Antidepressive Agents, Second-Generation/administration & ; dosage/metabolism/*pharmacology ; Cell Line ; Depression ; Fluoxetine/administration & dosage/metabolism/*pharmacology ; HeLa Cells ; Humans ; Locus Coeruleus/metabolism ; Mice ; MicroRNAs/administration & dosage/genetics/*metabolism ; Nerve Growth Factors/metabolism ; Neurons/drug effects/*metabolism ; Norepinephrine/metabolism ; Protein Biosynthesis ; Raphe Nuclei/drug effects/*metabolism ; S100 Calcium Binding Protein beta Subunit ; S100 Proteins/metabolism ; Serotonin/metabolism ; Serotonin Plasma Membrane Transport Proteins/*genetics/metabolism ; Serotonin Uptake Inhibitors/administration & dosage/metabolism/*pharmacology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2010-05-15
    Description: Proper coordination of cholesterol biosynthesis and trafficking is essential to human health. The sterol regulatory element-binding proteins (SREBPs) are key transcription regulators of genes involved in cholesterol biosynthesis and uptake. We show here that microRNAs (miR-33a/b) embedded within introns of the SREBP genes target the adenosine triphosphate-binding cassette transporter A1 (ABCA1), an important regulator of high-density lipoprotein (HDL) synthesis and reverse cholesterol transport, for posttranscriptional repression. Antisense inhibition of miR-33 in mouse and human cell lines causes up-regulation of ABCA1 expression and increased cholesterol efflux, and injection of mice on a western-type diet with locked nucleic acid-antisense oligonucleotides results in elevated plasma HDL. Our findings indicate that miR-33 acts in concert with the SREBP host genes to control cholesterol homeostasis and suggest that miR-33 may represent a therapeutic target for ameliorating cardiometabolic diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840500/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840500/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Najafi-Shoushtari, S Hani -- Kristo, Fjoralba -- Li, Yingxia -- Shioda, Toshi -- Cohen, David E -- Gerszten, Robert E -- Naar, Anders M -- P30 DK034854/DK/NIDDK NIH HHS/ -- P30 DK34854/DK/NIDDK NIH HHS/ -- R01 DK048873/DK/NIDDK NIH HHS/ -- R01 DK056626/DK/NIDDK NIH HHS/ -- R01 GM071449/GM/NIGMS NIH HHS/ -- R01DK48873/DK/NIDDK NIH HHS/ -- R01DK56626/DK/NIDDK NIH HHS/ -- R01GM071449/GM/NIGMS NIH HHS/ -- R21 DK084459/DK/NIDDK NIH HHS/ -- R21DK084459/DK/NIDDK NIH HHS/ -- R37 DK048873/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 18;328(5985):1566-9. doi: 10.1126/science.1189123. Epub 2010 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466882" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters/genetics/*metabolism ; Animals ; Cell Line ; Cholesterol/*metabolism ; Cholesterol, HDL/*blood ; Diet ; Gene Expression Regulation ; Homeostasis ; Humans ; Introns ; Liver/metabolism ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/*metabolism ; Oligonucleotides, Antisense/pharmacology ; RNA Interference ; Sterol Regulatory Element Binding Protein 1/genetics/metabolism ; Sterol Regulatory Element Binding Protein 2/genetics/metabolism ; Sterol Regulatory Element Binding Proteins/*genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2010-09-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- Vogel, Gretchen -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1132-3. doi: 10.1126/science.329.5996.1132.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813924" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Embryo Research/economics/*legislation & jurisprudence ; *Embryonic Stem Cells ; Financing, Government/legislation & jurisprudence ; Humans ; *National Institutes of Health (U.S.)/economics/legislation & jurisprudence ; Research Support as Topic/*legislation & jurisprudence ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2010-02-20
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892655/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892655/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lo, Bernard -- Parham, Lindsay -- Cedars, Marcelle -- Fisher, Susan -- Gates, Elena -- Giudice, Linda -- Halme, Dina Gould -- Hershon, William -- Kriegstein, Arnold -- Rao, Radhika -- Roberts, Clifford -- Wagner, Richard -- UL1 RR024131/RR/NCRR NIH HHS/ -- UL1 RR024131-04/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):962-3. doi: 10.1126/science.1180725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Medical Ethics, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA. bernie@medicine.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20167773" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Disclosure ; Embryo Disposition/*ethics/standards ; Embryo Research/*ethics ; *Embryonic Stem Cells ; Female ; Fertilization in Vitro ; *Guidelines as Topic ; Humans ; Informed Consent ; *National Institutes of Health (U.S.) ; *Oocyte Donation ; *Tissue Donors ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2010-08-14
    Description: Nanoelectronic devices offer substantial potential for interrogating biological systems, although nearly all work has focused on planar device designs. We have overcome this limitation through synthetic integration of a nanoscale field-effect transistor (nanoFET) device at the tip of an acute-angle kinked silicon nanowire, where nanoscale connections are made by the arms of the kinked nanostructure, and remote multilayer interconnects allow three-dimensional (3D) probe presentation. The acute-angle probe geometry was designed and synthesized by controlling cis versus trans crystal conformations between adjacent kinks, and the nanoFET was localized through modulation doping. 3D nanoFET probes exhibited conductance and sensitivity in aqueous solution, independent of large mechanical deflections, and demonstrated high pH sensitivity. Additionally, 3D nanoprobes modified with phospholipid bilayers can enter single cells to allow robust recording of intracellular potentials.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149824/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149824/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tian, Bozhi -- Cohen-Karni, Tzahi -- Qing, Quan -- Duan, Xiaojie -- Xie, Ping -- Lieber, Charles M -- 5DP1OD003900/OD/NIH HHS/ -- DP1 OD003900/OD/NIH HHS/ -- DP1 OD003900-04/OD/NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):830-4. doi: 10.1126/science.1192033.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705858" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biosensing Techniques/instrumentation/methods ; Cell Line ; Cells, Cultured ; Chick Embryo ; Electric Conductivity ; Electrophysiological Phenomena ; Equipment Design ; Hydrogen-Ion Concentration ; Lipid Bilayers ; Membrane Potentials ; Mice ; Microfluidics ; Myocytes, Cardiac/*physiology ; *Nanowires ; Sensitivity and Specificity ; Sodium Chloride ; *Transistors, Electronic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2010-02-06
    Description: Alternative splicing of pre-mRNA is a prominent mechanism to generate protein diversity, yet its regulation is poorly understood. We demonstrated a direct role for histone modifications in alternative splicing. We found distinctive histone modification signatures that correlate with the splicing outcome in a set of human genes, and modulation of histone modifications causes splice site switching. Histone marks affect splicing outcome by influencing the recruitment of splicing regulators via a chromatin-binding protein. These results outline an adaptor system for the reading of histone marks by the pre-mRNA splicing machinery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913848/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913848/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luco, Reini F -- Pan, Qun -- Tominaga, Kaoru -- Blencowe, Benjamin J -- Pereira-Smith, Olivia M -- Misteli, Tom -- MOP-67011/Canadian Institutes of Health Research/Canada -- R01 AG032134/AG/NIA NIH HHS/ -- R01 AG032134-01/AG/NIA NIH HHS/ -- R01 AG032134-02/AG/NIA NIH HHS/ -- R01 AG032134-03/AG/NIA NIH HHS/ -- R01 AG032134-04/AG/NIA NIH HHS/ -- ZIA BC010309-11/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):996-1000. doi: 10.1126/science.1184208. Epub 2010 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133523" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Cell Line ; Chromatin/metabolism ; Epithelial Cells/metabolism ; Exons ; Histone-Lysine N-Methyltransferase/genetics/metabolism ; Histones/*metabolism ; Humans ; Male ; Mesenchymal Stromal Cells/metabolism ; Polypyrimidine Tract-Binding Protein/metabolism ; Prostate/cytology ; Protein Binding ; RNA Precursors/*metabolism ; Receptor, Fibroblast Growth Factor, Type 2/genetics ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2010-10-12
    Description: Voltage- and store-operated calcium (Ca(2+)) channels are the major routes of Ca(2+) entry in mammalian cells, but little is known about how cells coordinate the activity of these channels to generate coherent calcium signals. We found that STIM1 (stromal interaction molecule 1), the main activator of store-operated Ca(2+) channels, directly suppresses depolarization-induced opening of the voltage-gated Ca(2+) channel Ca(V)1.2. STIM1 binds to the C terminus of Ca(V)1.2 through its Ca(2+) release-activated Ca(2+) activation domain, acutely inhibits gating, and causes long-term internalization of the channel from the membrane. This establishes a previously unknown function for STIM1 and provides a molecular mechanism to explain the reciprocal regulation of these two channels in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Chan Young -- Shcheglovitov, Aleksandr -- Dolmetsch, Ricardo -- DP1 OD003889/OD/NIH HHS/ -- DP1OD003889/OD/NIH HHS/ -- R01 NS048564/NS/NINDS NIH HHS/ -- R21MH087898/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):101-5. doi: 10.1126/science.1191027.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929812" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels, L-Type/chemistry/genetics/*metabolism ; Calcium Signaling ; Cell Line ; Cell Membrane/*metabolism ; Humans ; Ion Channel Gating ; Jurkat Cells ; Membrane Proteins/chemistry/genetics/*metabolism ; Models, Biological ; Neoplasm Proteins/chemistry/genetics/*metabolism ; Neurons/*metabolism ; Patch-Clamp Techniques ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Rats, Sprague-Dawley ; T-Lymphocytes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2010-07-10
    Description: Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967777/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967777/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Miao-Chih -- Manor, Ohad -- Wan, Yue -- Mosammaparast, Nima -- Wang, Jordon K -- Lan, Fei -- Shi, Yang -- Segal, Eran -- Chang, Howard Y -- R01 CA118750/CA/NCI NIH HHS/ -- R01 CA119176/CA/NCI NIH HHS/ -- R01 CA119176-05/CA/NCI NIH HHS/ -- R01-CA118487/CA/NCI NIH HHS/ -- R01-HG004361/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):689-93. doi: 10.1126/science.1192002. Epub 2010 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616235" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/metabolism ; Cell Line ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; Co-Repressor Proteins ; DNA-Binding Proteins/*metabolism ; HeLa Cells ; Histone Demethylases/*metabolism ; Histones/*metabolism ; Humans ; Methylation ; Mutation ; Nerve Tissue Proteins/metabolism ; Nuclear Proteins/metabolism ; Nucleic Acid Conformation ; Polycomb Repressive Complex 2 ; Polycomb-Group Proteins ; Promoter Regions, Genetic ; Protein Binding ; RNA Interference ; RNA, Untranslated/chemistry/*metabolism ; Repressor Proteins/*metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2010 Dec 17;330(6011):1618. doi: 10.1126/science.330.6011.1618.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21163990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Dedifferentiation ; Cell Line ; *Cellular Reprogramming ; Gene Expression ; Humans ; *Induced Pluripotent Stem Cells/cytology/physiology ; Mice
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2010-04-17
    Description: Cbln1, secreted from cerebellar granule cells, and the orphan glutamate receptor delta2 (GluD2), expressed by Purkinje cells, are essential for synapse integrity between these neurons in adult mice. Nevertheless, no endogenous binding partners for these molecules have been identified. We found that Cbln1 binds directly to the N-terminal domain of GluD2. GluD2 expression by postsynaptic cells, combined with exogenously applied Cbln1, was necessary and sufficient to induce new synapses in vitro and in the adult cerebellum in vivo. Further, beads coated with recombinant Cbln1 directly induced presynaptic differentiation and indirectly caused clustering of postsynaptic molecules via GluD2. These results indicate that the Cbln1-GluD2 complex is a unique synapse organizer that acts bidirectionally on both pre- and postsynaptic components.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuda, Keiko -- Miura, Eriko -- Miyazaki, Taisuke -- Kakegawa, Wataru -- Emi, Kyoichi -- Narumi, Sakae -- Fukazawa, Yugo -- Ito-Ishida, Aya -- Kondo, Tetsuro -- Shigemoto, Ryuichi -- Watanabe, Masahiko -- Yuzaki, Michisuke -- New York, N.Y. -- Science. 2010 Apr 16;328(5976):363-8. doi: 10.1126/science.1185152.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20395510" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Cells, Cultured ; Cerebellum/cytology/*physiology ; Coculture Techniques ; Excitatory Postsynaptic Potentials ; Humans ; Ligands ; Mice ; Nerve Tissue Proteins/*metabolism ; Presynaptic Terminals/physiology ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Precursors/*metabolism ; Purkinje Cells/metabolism/*physiology ; Rats ; Receptors, Glutamate/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Synapses/*physiology ; Synaptic Membranes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2010-10-30
    Description: The promyelocytic leukemia (PML) tumor suppressor is a pleiotropic modulator of apoptosis. However, the molecular basis for such a diverse proapoptotic role is currently unknown. We show that extranuclear Pml was specifically enriched at the endoplasmic reticulum (ER) and at the mitochondria-associated membranes, signaling domains involved in ER-to-mitochondria calcium ion (Ca(2+)) transport and in induction of apoptosis. We found Pml in complexes of large molecular size with the inositol 1,4,5-trisphosphate receptor (IP(3)R), protein kinase Akt, and protein phosphatase 2a (PP2a). Pml was essential for Akt- and PP2a-dependent modulation of IP(3)R phosphorylation and in turn for IP(3)R-mediated Ca(2+) release from ER. Our findings provide a mechanistic explanation for the pleiotropic role of Pml in apoptosis and identify a pharmacological target for the modulation of Ca(2+) signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017677/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017677/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giorgi, Carlotta -- Ito, Keisuke -- Lin, Hui-Kuan -- Santangelo, Clara -- Wieckowski, Mariusz R -- Lebiedzinska, Magdalena -- Bononi, Angela -- Bonora, Massimo -- Duszynski, Jerzy -- Bernardi, Rosa -- Rizzuto, Rosario -- Tacchetti, Carlo -- Pinton, Paolo -- Pandolfi, Pier Paolo -- GGP05284/Telethon/Italy -- K99 CA139009/CA/NCI NIH HHS/ -- K99 CA139009-01A1/CA/NCI NIH HHS/ -- K99 CA139009-02/CA/NCI NIH HHS/ -- R01 CA071692/CA/NCI NIH HHS/ -- R01 CA071692-04S1/CA/NCI NIH HHS/ -- R01 CA102142/CA/NCI NIH HHS/ -- R01 CA102142-07/CA/NCI NIH HHS/ -- R01 CA142874/CA/NCI NIH HHS/ -- R01 CA142874-01/CA/NCI NIH HHS/ -- R01 CA142874-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1247-51. doi: 10.1126/science.1189157. Epub 2010 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Emilia Romagna Laboratory BioPharmaNet, and Laboratory for Technologies of Advanced Therapies (LTTA) University of Ferrara, Ferrara, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030605" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; *Apoptosis ; Calcium/*metabolism ; *Calcium Signaling ; Cell Line ; Cell Nucleus/metabolism ; Cells, Cultured ; Cytosol/metabolism ; Endoplasmic Reticulum/*metabolism ; Homeostasis ; Humans ; Inositol 1,4,5-Trisphosphate/metabolism ; Inositol 1,4,5-Trisphosphate Receptors/metabolism ; Intracellular Membranes/metabolism ; Mice ; Mitochondria/metabolism ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Recombinant Fusion Proteins/metabolism ; Stress, Physiological ; Transcription Factors/genetics/*metabolism ; Tumor Suppressor Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2010-11-27
    Description: Synthetic genetic devices that interface with native cellular pathways can be used to change natural networks to implement new forms of control and behavior. The engineering of gene networks has been limited by an inability to interface with native components. We describe a class of RNA control devices that overcome these limitations by coupling increased abundance of particular proteins to targeted gene expression events through the regulation of alternative RNA splicing. We engineered RNA devices that detect signaling through the nuclear factor kappaB and Wnt signaling pathways in human cells and rewire these pathways to produce new behaviors, thereby linking disease markers to noninvasive sensing and reprogrammed cellular fates. Our work provides a genetic platform that can build programmable sensing-actuation devices enabling autonomous control over cellular behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culler, Stephanie J -- Hoff, Kevin G -- Smolke, Christina D -- RC1 GM091298/GM/NIGMS NIH HHS/ -- RC1 GM091298-01/GM/NIGMS NIH HHS/ -- RC1 GM091298-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1251-5. doi: 10.1126/science.1192128.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, MC 210-41, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109673" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Apoptosis ; Aptamers, Nucleotide/chemistry/genetics/*metabolism ; Capsid Proteins/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Exons ; Ganciclovir/pharmacology ; *Gene Expression Regulation ; Gene Regulatory Networks ; *Genetic Engineering ; Green Fluorescent Proteins/genetics ; Humans ; Introns ; Ligands ; Mutation ; NF-kappa B p50 Subunit/genetics/metabolism ; Protein Binding ; Signal Transduction ; Survival of Motor Neuron 1 Protein/genetics ; Transcription Factor RelA/genetics/metabolism ; Transfection ; Wnt Proteins/metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2010-01-30
    Description: Cytosolic cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) often mediate antagonistic cellular actions of extracellular factors, from the regulation of ion channels to cell volume control and axon guidance. We found that localized cAMP and cGMP activities in undifferentiated neurites of cultured hippocampal neurons promote and suppress axon formation, respectively, and exert opposite effects on dendrite formation. Fluorescence resonance energy transfer imaging showed that alterations of the amount of cAMP resulted in opposite changes in the amount of cGMP, and vice versa, through the activation of specific phosphodiesterases and protein kinases. Local elevation of cAMP in one neurite resulted in cAMP reduction in all other neurites of the same neuron. Thus, local and long-range reciprocal regulation of cAMP and cGMP together ensures coordinated development of one axon and multiple dendrites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shelly, Maya -- Lim, Byung Kook -- Cancedda, Laura -- Heilshorn, Sarah C -- Gao, Hongfeng -- Poo, Mu-ming -- NS-22764/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 29;327(5965):547-52. doi: 10.1126/science.1179735.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110498" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/metabolism ; Animals ; Axons/metabolism/*physiology ; Cell Differentiation ; Cell Line ; Cell Polarity ; Cells, Cultured ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Cyclic GMP/*metabolism ; Dendrites/metabolism/*physiology ; Enzyme Inhibitors/pharmacology ; Fluorescence Resonance Energy Transfer ; Guanylate Cyclase/antagonists & inhibitors/metabolism ; Hippocampus/*cytology ; Humans ; Neurites/metabolism/physiology ; Neurons/cytology/*physiology ; Phosphodiesterase Inhibitors/pharmacology ; Phosphoric Diester Hydrolases/metabolism ; Phosphorylation ; Rats ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2010-03-20
    Description: The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929018/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929018/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDaniell, Ryan -- Lee, Bum-Kyu -- Song, Lingyun -- Liu, Zheng -- Boyle, Alan P -- Erdos, Michael R -- Scott, Laura J -- Morken, Mario A -- Kucera, Katerina S -- Battenhouse, Anna -- Keefe, Damian -- Collins, Francis S -- Willard, Huntington F -- Lieb, Jason D -- Furey, Terrence S -- Crawford, Gregory E -- Iyer, Vishwanath R -- Birney, Ewan -- U54 HG004563/HG/NHGRI NIH HHS/ -- U54 HG004563-03/HG/NHGRI NIH HHS/ -- Z01 HG000024/HG/NHGRI NIH HHS/ -- Z01 HG000024-13/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):235-9. doi: 10.1126/science.1184655. Epub 2010 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299549" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group ; *Alleles ; Binding Sites ; Cell Line ; Chromatin/chemistry/*genetics/*metabolism ; Chromatin Immunoprecipitation ; Chromosomes, Human/genetics/metabolism ; Chromosomes, Human, X/genetics/metabolism ; Deoxyribonuclease I/metabolism ; European Continental Ancestry Group ; Female ; *Gene Expression Regulation ; *Genetic Variation ; Humans ; Male ; Nuclear Family ; Polymorphism, Single Nucleotide ; Protein Binding ; Regulatory Elements, Transcriptional ; Repressor Proteins/*metabolism ; Sequence Analysis, DNA ; Transcription Factors/*metabolism ; X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2010-05-29
    Description: Nucleosome disruption and replacement are crucial activities that maintain epigenomes, but these highly dynamic processes have been difficult to study. Here, we describe a direct method for measuring nucleosome turnover dynamics genome-wide. We found that nucleosome turnover is most rapid over active gene bodies, epigenetic regulatory elements, and replication origins in Drosophila cells. Nucleosomes turn over faster at sites for trithorax-group than polycomb-group protein binding, suggesting that nucleosome turnover differences underlie their opposing activities and challenging models for epigenetic inheritance that rely on stability of histone marks. Our results establish a general strategy for studying nucleosome dynamics and uncover nucleosome turnover differences across the genome that are likely to have functional importance for epigenome maintenance, gene regulation, and control of DNA replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deal, Roger B -- Henikoff, Jorja G -- Henikoff, Steven -- 1F32GM083449/GM/NIGMS NIH HHS/ -- 1R21DA025758/DA/NIDA NIH HHS/ -- F32 GM083449-03/GM/NIGMS NIH HHS/ -- R21 DA025758/DA/NIDA NIH HHS/ -- R21 DA025758-02/DA/NIDA NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 28;328(5982):1161-4. doi: 10.1126/science.1186777.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508129" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/analogs & derivatives/metabolism ; Animals ; Cell Line ; Drosophila Proteins/*metabolism ; Drosophila melanogaster ; *Genome, Insect ; Histones/*metabolism ; Kinetics ; Methionine/metabolism ; *Molecular Probe Techniques ; Nucleosomes/*metabolism ; Oligonucleotide Array Sequence Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2010-05-08
    Description: Dengue virus co-circulates as four serotypes, and sequential infections with more than one serotype are common. One hypothesis for the increased severity seen in secondary infections is antibody-dependent enhancement (ADE) leading to increased replication in Fc receptor-bearing cells. In this study, we have generated a panel of human monoclonal antibodies to dengue virus. Antibodies to the structural precursor-membrane protein (prM) form a major component of the response. These antibodies are highly cross-reactive among the dengue virus serotypes and, even at high concentrations, do not neutralize infection but potently promote ADE. We propose that the partial cleavage of prM from the viral surface reduces the density of antigen available for viral neutralization, leaving dengue viruses susceptible to ADE by antibody to prM, a finding that has implications for future vaccine design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837288/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837288/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dejnirattisai, Wanwisa -- Jumnainsong, Amonrat -- Onsirisakul, Naruthai -- Fitton, Patricia -- Vasanawathana, Sirijitt -- Limpitikul, Wannee -- Puttikhunt, Chunya -- Edwards, Carolyn -- Duangchinda, Thaneeya -- Supasa, Sunpetchuda -- Chawansuntati, Kriangkrai -- Malasit, Prida -- Mongkolsapaya, Juthathip -- Screaton, Gavin -- 078121/Wellcome Trust/United Kingdom -- G0400720/Medical Research Council/United Kingdom -- G0600000/Medical Research Council/United Kingdom -- G0600000(77433)/Medical Research Council/United Kingdom -- G0801508/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 May 7;328(5979):745-8. doi: 10.1126/science.1185181.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Imperial College London, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448183" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes ; Animals ; Antibodies, Monoclonal/immunology ; Antibodies, Neutralizing/immunology ; Antibodies, Viral/*immunology ; *Antibody-Dependent Enhancement ; Antigens, Viral/*immunology ; Cell Line ; Cross Reactions ; Dengue/*immunology ; Dengue Vaccines/immunology ; Dengue Virus/classification/*immunology/physiology ; Encephalitis Virus, Japanese/immunology ; Humans ; Immune Evasion ; Monocytes/immunology/virology ; Receptors, Fc/immunology ; Serotyping ; U937 Cells ; Viral Envelope Proteins/immunology ; Viral Matrix Proteins/*immunology/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2010-08-14
    Description: Aurora B is a component of the chromosomal passenger complex (CPC) required for correct spindle-kinetochore attachments during chromosome segregation and for cytokinesis. The chromatin factors that recruit the CPC to centromeres are unknown, however. Here we show that phosphorylation of histone H3 threonine 3 (H3T3ph) by Haspin is necessary for CPC accumulation at centromeres and that the CPC subunit Survivin binds directly to H3T3ph. A nonbinding Survivin-D70A/D71A mutant does not support centromeric CPC concentration, and both Haspin depletion and Survivin-D70A/D71A mutation diminish centromere localization of the kinesin MCAK and the mitotic checkpoint response to taxol. Survivin-D70A/D71A mutation and microinjection of H3T3ph-specific antibody both compromise centromeric Aurora B functions but do not prevent cytokinesis. Therefore, H3T3ph generated by Haspin positions the CPC at centromeres to regulate selected targets of Aurora B during mitosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fangwei -- Dai, Jun -- Daum, John R -- Niedzialkowska, Ewa -- Banerjee, Budhaditya -- Stukenberg, P Todd -- Gorbsky, Gary J -- Higgins, Jonathan M G -- R01 GM050412/GM/NIGMS NIH HHS/ -- R01 GM050412-16/GM/NIGMS NIH HHS/ -- R01 GM063045/GM/NIGMS NIH HHS/ -- R01 GM063045-10/GM/NIGMS NIH HHS/ -- R01 GM074210/GM/NIGMS NIH HHS/ -- R01 GM074210-04/GM/NIGMS NIH HHS/ -- R01-GM050412/GM/NIGMS NIH HHS/ -- R01-GM063045/GM/NIGMS NIH HHS/ -- R01-GM074210/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):231-5. doi: 10.1126/science.1189435. Epub 2010 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Smith Building, 1 Jimmy Fund Way, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705812" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aurora Kinase B ; Aurora Kinases ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Centromere/*metabolism ; Chromatin/*metabolism ; HeLa Cells ; Histones/*metabolism ; Humans ; Inhibitor of Apoptosis Proteins ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Kinesin/metabolism ; Kinetochores/metabolism ; Microtubule-Associated Proteins/chemistry/genetics/*metabolism ; *Mitosis ; Mutation ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; RNA Interference ; Recombinant Proteins/metabolism ; Spindle Apparatus/metabolism ; Swine ; Threonine/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2010-10-12
    Description: Calcium signals, pivotal in controlling cell function, can be generated by calcium entry channels activated by plasma membrane depolarization or depletion of internal calcium stores. We reveal a regulatory link between these two channel subtypes mediated by the ubiquitous calcium-sensing STIM proteins. STIM1 activation by store depletion or mutational modification strongly suppresses voltage-operated calcium (Ca(V)1.2) channels while activating store-operated Orai channels. Both actions are mediated by the short STIM-Orai activating region (SOAR) of STIM1. STIM1 interacts with Ca(V)1.2 channels and localizes within discrete endoplasmic reticulum/plasma membrane junctions containing both Ca(V)1.2 and Orai1 channels. Hence, STIM1 interacts with and reciprocally controls two major calcium channels hitherto thought to operate independently. Such coordinated control of the widely expressed Ca(V)1.2 and Orai channels has major implications for Ca(2+) signal generation in excitable and nonexcitable cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Youjun -- Deng, Xiaoxiang -- Mancarella, Salvatore -- Hendron, Eunan -- Eguchi, Satoru -- Soboloff, Jonathan -- Tang, Xiang D -- Gill, Donald L -- AI058173/AI/NIAID NIH HHS/ -- HL55426/HL/NHLBI NIH HHS/ -- R01 AI058173/AI/NIAID NIH HHS/ -- R01 HL055426/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):105-9. doi: 10.1126/science.1191086.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Cardiovascular Research Center, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929813" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels/genetics/*metabolism ; Calcium Channels, L-Type/*metabolism ; Calcium Signaling ; Cell Line ; Cell Membrane/metabolism ; Endoplasmic Reticulum/metabolism ; Humans ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Muscle, Smooth, Vascular/cytology ; Mutant Proteins/metabolism ; Myocytes, Smooth Muscle/*metabolism ; Patch-Clamp Techniques ; RNA Interference ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2010-09-04
    Description: Gammadelta T cells present in epithelial tissues provide a crucial first line of defense against environmental insults, including infection, trauma, and malignancy, yet the molecular events surrounding their activation remain poorly defined. Here we identify an epithelial gammadelta T cell-specific costimulatory molecule, junctional adhesion molecule-like protein (JAML). Binding of JAML to its ligand Coxsackie and adenovirus receptor (CAR) provides costimulation leading to cellular proliferation and cytokine and growth factor production. Inhibition of JAML costimulation leads to diminished gammadelta T cell activation and delayed wound closure akin to that seen in the absence of gammadelta T cells. Our results identify JAML as a crucial component of epithelial gammadelta T cell biology and have broader implications for CAR and JAML in tissue homeostasis and repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Witherden, Deborah A -- Verdino, Petra -- Rieder, Stephanie E -- Garijo, Olivia -- Mills, Robyn E -- Teyton, Luc -- Fischer, Wolfgang H -- Wilson, Ian A -- Havran, Wendy L -- AI064811/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- AI52257/AI/NIAID NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- NS057096/NS/NINDS NIH HHS/ -- R01 AI036964/AI/NIAID NIH HHS/ -- R01 AI052257/AI/NIAID NIH HHS/ -- R01 AI052257-05/AI/NIAID NIH HHS/ -- R01 AI064811/AI/NIAID NIH HHS/ -- R01 AI064811-05/AI/NIAID NIH HHS/ -- R01 GM080301/GM/NIGMS NIH HHS/ -- R37 AI042266/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1205-10. doi: 10.1126/science.1192698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813954" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Adhesion Molecules/*metabolism ; Cell Line ; Cell Proliferation ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Cytokines/metabolism ; Epidermis/cytology/*immunology/injuries ; Epithelial Cells ; Epithelium/immunology/metabolism ; Intercellular Signaling Peptides and Proteins/metabolism ; Keratinocytes/metabolism ; Ligands ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Binding ; Receptors, Antigen, T-Cell, gamma-delta/*immunology/metabolism ; Receptors, Virus/*metabolism ; T-Lymphocyte Subsets/*immunology/*metabolism ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2010-11-26
    Description: Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chien, Ellen Y T -- Liu, Wei -- Zhao, Qiang -- Katritch, Vsevolod -- Han, Gye Won -- Hanson, Michael A -- Shi, Lei -- Newman, Amy Hauck -- Javitch, Jonathan A -- Cherezov, Vadim -- Stevens, Raymond C -- DA022413/DA/NIDA NIH HHS/ -- DA023694/DA/NIDA NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- K05 DA022413/DA/NIDA NIH HHS/ -- K05 DA022413-05/DA/NIDA NIH HHS/ -- MH54137/MH/NIMH NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R00 DA023694/DA/NIDA NIH HHS/ -- R00 DA023694-04/DA/NIDA NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R01 MH054137/MH/NIMH NIH HHS/ -- R01 MH054137-16/MH/NIMH NIH HHS/ -- R21 RR025336/RR/NCRR NIH HHS/ -- R21 RR025336-01A1/RR/NCRR NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-050001/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54 GM094618-01/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1091-5. doi: 10.1126/science.1197410.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21097933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/chemistry ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Dopamine Antagonists/*chemistry ; Dopamine D2 Receptor Antagonists ; Humans ; Models, Molecular ; Protein Conformation ; Receptors, Dopamine D3/antagonists & inhibitors/*chemistry ; Recombinant Proteins/chemistry ; Salicylamides/*chemistry ; Spodoptera
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2010-06-19
    Description: In animal cells, the primary cilium transduces extracellular signals through signaling receptors localized in the ciliary membrane, but how these ciliary membrane proteins are retained in the cilium is unknown. We found that ciliary membrane proteins were highly mobile, but their diffusion was impeded at the base of the cilium by a diffusion barrier. Septin 2 (SEPT2), a member of the septin family of guanosine triphosphatases that form a diffusion barrier in budding yeast, localized at the base of the ciliary membrane. SEPT2 depletion resulted in loss of ciliary membrane protein localization and Sonic hedgehog signal transduction, and inhibited ciliogenesis. Thus, SEPT2 is part of a diffusion barrier at the base of the ciliary membrane and is essential for retaining receptor-signaling pathways in the primary cilium.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092790/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092790/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Qicong -- Milenkovic, Ljiljana -- Jin, Hua -- Scott, Matthew P -- Nachury, Maxence V -- Spiliotis, Elias T -- Nelson, W James -- GM089933/GM/NIGMS NIH HHS/ -- GM35527/GM/NIGMS NIH HHS/ -- R01 GM089933/GM/NIGMS NIH HHS/ -- R37 GM035527/GM/NIGMS NIH HHS/ -- R37 GM035527-27/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):436-9. doi: 10.1126/science.1191054. Epub 2010 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20558667" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axoneme/metabolism ; Cell Line ; Cells, Cultured ; Cilia/*metabolism/ultrastructure ; Cytoskeletal Proteins/*metabolism ; Diffusion ; Fluorescence Recovery After Photobleaching ; GTP-Binding Proteins/*metabolism ; Hedgehog Proteins/metabolism ; Membrane Proteins/*metabolism ; Mice ; RNA, Small Interfering ; Receptors, Cell Surface/metabolism ; Receptors, G-Protein-Coupled/metabolism ; Receptors, Serotonin/metabolism ; Receptors, Somatostatin/metabolism ; Septins ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2010-05-15
    Description: Cholesterol metabolism is tightly regulated at the cellular level. Here we show that miR-33, an intronic microRNA (miRNA) located within the gene encoding sterol-regulatory element-binding factor-2 (SREBF-2), a transcriptional regulator of cholesterol synthesis, modulates the expression of genes involved in cellular cholesterol transport. In mouse and human cells, miR-33 inhibits the expression of the adenosine triphosphate-binding cassette (ABC) transporter, ABCA1, thereby attenuating cholesterol efflux to apolipoprotein A1. In mouse macrophages, miR-33 also targets ABCG1, reducing cholesterol efflux to nascent high-density lipoprotein (HDL). Lentiviral delivery of miR-33 to mice represses ABCA1 expression in the liver, reducing circulating HDL levels. Conversely, silencing of miR-33 in vivo increases hepatic expression of ABCA1 and plasma HDL levels. Thus, miR-33 appears to regulate both HDL biogenesis in the liver and cellular cholesterol efflux.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rayner, Katey J -- Suarez, Yajaira -- Davalos, Alberto -- Parathath, Saj -- Fitzgerald, Michael L -- Tamehiro, Norimasa -- Fisher, Edward A -- Moore, Kathryn J -- Fernandez-Hernando, Carlos -- 1P30HL101270-01/HL/NHLBI NIH HHS/ -- P30 HL101270/HL/NHLBI NIH HHS/ -- R01 AG020255/AG/NIA NIH HHS/ -- R01 AG020255-09/AG/NIA NIH HHS/ -- R01AG02055/AG/NIA NIH HHS/ -- R01HL074136/HL/NHLBI NIH HHS/ -- R01HL084312/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 18;328(5985):1570-3. doi: 10.1126/science.1189862. Epub 2010 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466885" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters/genetics/metabolism ; Animals ; Apolipoprotein A-I/metabolism ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cholesterol/*metabolism ; Cholesterol, Dietary/administration & dosage ; Dietary Fats/administration & dosage ; Gene Expression Regulation ; Homeostasis ; Humans ; Hypercholesterolemia/genetics/metabolism ; Introns ; Lipoproteins/genetics/metabolism ; Lipoproteins, HDL/blood/*metabolism ; Liver/*metabolism ; Macrophages/metabolism ; Macrophages, Peritoneal/metabolism ; Membrane Glycoproteins/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/*metabolism ; Proteins/genetics/metabolism ; Sterol Regulatory Element Binding Protein 2/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2010-06-19
    Description: The control of RNA alternative splicing is critical for generating biological diversity. Despite emerging genome-wide technologies to study RNA complexity, reliable and comprehensive RNA-regulatory networks have not been defined. Here, we used Bayesian networks to probabilistically model diverse data sets and predict the target networks of specific regulators. We applied this strategy to identify approximately 700 alternative splicing events directly regulated by the neuron-specific factor Nova in the mouse brain, integrating RNA-binding data, splicing microarray data, Nova-binding motifs, and evolutionary signatures. The resulting integrative network revealed combinatorial regulation by Nova and the neuronal splicing factor Fox, interplay between phosphorylation and splicing, and potential links to neurologic disease. Thus, we have developed a general approach to understanding mammalian RNA regulation at the systems level.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Chaolin -- Frias, Maria A -- Mele, Aldo -- Ruggiu, Matteo -- Eom, Taesun -- Marney, Christina B -- Wang, Huidong -- Licatalosi, Donny D -- Fak, John J -- Darnell, Robert B -- K99 GM095713/GM/NIGMS NIH HHS/ -- NS34389/NS/NINDS NIH HHS/ -- UL1 RR024143/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):439-43. doi: 10.1126/science.1191150. Epub 2010 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA. czhang@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20558669" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Antigens, Neoplasm/*metabolism ; Artificial Intelligence ; Bayes Theorem ; Binding Sites ; Brain/*metabolism ; Cell Line ; Computational Biology ; Evolution, Molecular ; Exons ; *Gene Regulatory Networks ; Humans ; Introns ; Mice ; Models, Genetic ; Models, Statistical ; Nerve Tissue Proteins/*metabolism ; Nervous System Diseases/genetics ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; Protein Binding ; Proteins/genetics/metabolism ; RNA/metabolism ; RNA-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2009-11-11
    Description: Rapid antigenic evolution in the influenza A virus hemagglutinin precludes effective vaccination with existing vaccines. To understand this phenomenon, we passaged virus in mice immunized with influenza vaccine. Neutralizing antibodies selected mutants with single-amino acid hemagglutinin substitutions that increased virus binding to cell surface glycan receptors. Passaging these high-avidity binding mutants in naive mice, but not immune mice, selected for additional hemagglutinin substitutions that decreased cellular receptor binding avidity. Analyzing a panel of monoclonal antibody hemagglutinin escape mutants revealed a positive correlation between receptor binding avidity and escape from polyclonal antibodies. We propose that in response to variation in neutralizing antibody pressure between individuals, influenza A virus evolves by adjusting receptor binding avidity via amino acid substitutions throughout the hemagglutinin globular domain, many of which simultaneously alter antigenicity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hensley, Scott E -- Das, Suman R -- Bailey, Adam L -- Schmidt, Loren M -- Hickman, Heather D -- Jayaraman, Akila -- Viswanathan, Karthik -- Raman, Rahul -- Sasisekharan, Ram -- Bennink, Jack R -- Yewdell, Jonathan W -- GM 57073/GM/NIGMS NIH HHS/ -- U54 GM62116/GM/NIGMS NIH HHS/ -- Z01 AI001014-01/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 30;326(5953):734-6. doi: 10.1126/science.1178258.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19900932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology ; Antibodies, Viral/immunology ; Antigenic Variation/genetics/*immunology ; Cell Line ; Hemagglutinin Glycoproteins, Influenza Virus/genetics/immunology/*metabolism ; Influenza A Virus, H1N1 Subtype/genetics/*immunology ; Influenza Vaccines/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Models, Immunological ; Mutation ; Receptors, Virus/*metabolism ; Serial Passage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2009 Jul 10;325(5937):131. doi: 10.1126/science.325_131.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19589969" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Embryo Research/economics ; *Embryonic Stem Cells ; Financing, Government ; *Guidelines as Topic ; Humans ; National Institutes of Health (U.S.) ; Registries ; *Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2009-04-11
    Description: The nuclear factor kappaB (NF-kappaB) transcription factor regulates cellular stress responses and the immune response to infection. NF-kappaB activation results in oscillations in nuclear NF-kappaB abundance. To define the function of these oscillations, we treated cells with repeated short pulses of tumor necrosis factor-alpha at various intervals to mimic pulsatile inflammatory signals. At all pulse intervals that were analyzed, we observed synchronous cycles of NF-kappaB nuclear translocation. Lower frequency stimulations gave repeated full-amplitude translocations, whereas higher frequency pulses gave reduced translocation, indicating a failure to reset. Deterministic and stochastic mathematical models predicted how negative feedback loops regulate both the resetting of the system and cellular heterogeneity. Altering the stimulation intervals gave different patterns of NF-kappaB-dependent gene expression, which supports the idea that oscillation frequency has a functional role.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashall, Louise -- Horton, Caroline A -- Nelson, David E -- Paszek, Pawel -- Harper, Claire V -- Sillitoe, Kate -- Ryan, Sheila -- Spiller, David G -- Unitt, John F -- Broomhead, David S -- Kell, Douglas B -- Rand, David A -- See, Violaine -- White, Michael R H -- BB/C007158/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C008219/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C520471/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D010748/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E004210/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E012965/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F005938/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC0071581/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC0082191/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC5204711/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBD0107481/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBF0059381/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0500346/Medical Research Council/United Kingdom -- G0500346(73596)/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):242-6. doi: 10.1126/science.1164860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359585" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Feedback, Physiological ; *Gene Expression ; Humans ; I-kappa B Proteins/metabolism ; Mice ; Models, Biological ; Models, Statistical ; NF-kappa B/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Stochastic Processes ; Transcription Factor RelA/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2009-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1412-3. doi: 10.1126/science.323.5920.1412.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286523" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Embryo Research/economics/*legislation & jurisprudence ; *Embryonic Stem Cells ; Financing, Government/legislation & jurisprudence ; Guidelines as Topic ; Humans ; National Institutes of Health (U.S.) ; Pluripotent Stem Cells ; Research Support as Topic/*legislation & jurisprudence ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2009-07-18
    Description: Genomic expansions of simple tandem repeats can give rise to toxic RNAs that contain expanded repeats. In myotonic dystrophy, the expression of expanded CUG repeats (CUGexp) causes abnormal regulation of alternative splicing and neuromuscular dysfunction. We used a transgenic mouse model to show that derangements of myotonic dystrophy are reversed by a morpholino antisense oligonucleotide, CAG25, that binds to CUGexp RNA and blocks its interaction with muscleblind-like 1 (MBNL1), a CUGexp-binding protein. CAG25 disperses nuclear foci of CUGexp RNA and reduces the overall burden of this toxic RNA. As MBNL1 is released from sequestration, the defect of alternative splicing regulation is corrected, thereby restoring ion channel function. These findings suggest an alternative use of antisense methods, to inhibit deleterious interactions of proteins with pathogenic RNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109973/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109973/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, Thurman M -- Sobczak, Krzysztof -- Lueck, John D -- Osborne, Robert J -- Lin, Xiaoyan -- Dirksen, Robert T -- Thornton, Charles A -- AR/NS48143/AR/NIAMS NIH HHS/ -- AR046806/AR/NIAMS NIH HHS/ -- K08 NS064293/NS/NINDS NIH HHS/ -- K24 AR048143/AR/NIAMS NIH HHS/ -- NIDCR-T32DE07202/DE/NIDCR NIH HHS/ -- R01 AR046806/AR/NIAMS NIH HHS/ -- R01 AR049077/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 17;325(5938):336-9. doi: 10.1126/science.1173110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Neurology, Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19608921" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics/*metabolism ; Actins/genetics ; Alternative Splicing ; Animals ; Cell Line ; Cell Nucleus/metabolism ; Chloride Channels/metabolism ; DNA-Binding Proteins/*metabolism ; Humans ; Mice ; Mice, Knockout ; Mice, Transgenic ; Myotonic Dystrophy/*drug therapy/*genetics/metabolism ; Myotonin-Protein Kinase ; Oligodeoxyribonucleotides, Antisense/*pharmacology/therapeutic use ; Protein-Serine-Threonine Kinases/genetics ; RNA, Messenger/genetics ; RNA-Binding Proteins/*metabolism ; Transcription, Genetic ; *Trinucleotide Repeat Expansion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2009-04-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- Kaiser, Jocelyn -- New York, N.Y. -- Science. 2009 Apr 24;324(5926):446. doi: 10.1126/science.324_446.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19390007" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Embryo Research/economics/*legislation & jurisprudence ; Embryonic Stem Cells ; Financing, Government/*legislation & jurisprudence ; Guidelines as Topic ; Humans ; National Institutes of Health (U.S.) ; Public Policy ; Research Support as Topic/*legislation & jurisprudence ; *Stem Cells ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2009-04-04
    Description: Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide-induced pathological fission remains unclear. We found that nitric oxide produced in response to beta-amyloid protein, thought to be a key mediator of Alzheimer's disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of human Alzheimer's disease patients and may thus contribute to the pathogenesis of neurodegeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823371/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823371/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Dong-Hyung -- Nakamura, Tomohiro -- Fang, Jianguo -- Cieplak, Piotr -- Godzik, Adam -- Gu, Zezong -- Lipton, Stuart A -- P01 ES016738/ES/NIEHS NIH HHS/ -- P01 ES016738-01/ES/NIEHS NIH HHS/ -- P01 ES016738-010003/ES/NIEHS NIH HHS/ -- P01 ES016738-02/ES/NIEHS NIH HHS/ -- P01 ES016738-020003/ES/NIEHS NIH HHS/ -- P01 HD029587/HD/NICHD NIH HHS/ -- P01 HD029587-16/HD/NICHD NIH HHS/ -- P01 HD29587/HD/NICHD NIH HHS/ -- P30 NS057096/NS/NINDS NIH HHS/ -- P30 NS057096-04/NS/NINDS NIH HHS/ -- R01 EY005477/EY/NEI NIH HHS/ -- R01 EY005477-25/EY/NEI NIH HHS/ -- R01 EY05477/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 3;324(5923):102-5. doi: 10.1126/science.1171091.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342591" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism/pathology ; Amino Acid Motifs ; Amyloid beta-Peptides/*metabolism/pharmacology ; Animals ; Cell Line ; Cell Line, Tumor ; Cerebral Cortex/cytology ; Cysteine/analogs & derivatives/genetics/metabolism/pharmacology ; Female ; GTP Phosphohydrolases/chemistry/*metabolism ; Humans ; Male ; Mice ; Mice, Transgenic ; Microtubule-Associated Proteins/chemistry/*metabolism ; Mitochondria/drug effects/physiology/*ultrastructure ; Mitochondrial Proteins/chemistry/*metabolism ; Models, Molecular ; Mutation ; Neurons/drug effects/*ultrastructure ; Nitric Oxide/*metabolism ; Peptide Fragments/metabolism/pharmacology ; Protein Multimerization ; Protein Structure, Tertiary ; S-Nitrosothiols/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2009-01-03
    Description: Chaperone-mediated autophagy controls the degradation of selective cytosolic proteins and may protect neurons against degeneration. In a neuronal cell line, we found that chaperone-mediated autophagy regulated the activity of myocyte enhancer factor 2D (MEF2D), a transcription factor required for neuronal survival. MEF2D was observed to continuously shuttle to the cytoplasm, interact with the chaperone Hsc70, and undergo degradation. Inhibition of chaperone-mediated autophagy caused accumulation of inactive MEF2D in the cytoplasm. MEF2D levels were increased in the brains of alpha-synuclein transgenic mice and patients with Parkinson's disease. Wild-type alpha-synuclein and a Parkinson's disease-associated mutant disrupted the MEF2D-Hsc70 binding and led to neuronal death. Thus, chaperone-mediated autophagy modulates the neuronal survival machinery, and dysregulation of this pathway is associated with Parkinson's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Qian -- She, Hua -- Gearing, Marla -- Colla, Emanuela -- Lee, Michael -- Shacka, John J -- Mao, Zixu -- AG023695/AG/NIA NIH HHS/ -- NS038065/NS/NINDS NIH HHS/ -- NS048254/NS/NINDS NIH HHS/ -- NS055077/NS/NINDS NIH HHS/ -- NS47466/NS/NINDS NIH HHS/ -- NS57098/NS/NINDS NIH HHS/ -- P30 NS055077/NS/NINDS NIH HHS/ -- P30 NS055077-01A2/NS/NINDS NIH HHS/ -- P50 AG025688/AG/NIA NIH HHS/ -- P50 AG025688-03/AG/NIA NIH HHS/ -- R01 AG023695/AG/NIA NIH HHS/ -- R01 AG023695-02/AG/NIA NIH HHS/ -- R01 AG023695-03/AG/NIA NIH HHS/ -- R01 AG023695-04/AG/NIA NIH HHS/ -- R01 AG023695-05/AG/NIA NIH HHS/ -- R01 NS048254/NS/NINDS NIH HHS/ -- R01 NS048254-02/NS/NINDS NIH HHS/ -- R01 NS048254-03/NS/NINDS NIH HHS/ -- R01 NS048254-04/NS/NINDS NIH HHS/ -- R01 NS048254-05/NS/NINDS NIH HHS/ -- R01 NS048254-06/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 2;323(5910):124-7. doi: 10.1126/science.1166088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19119233" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Ammonium Chloride/pharmacology ; Animals ; *Autophagy ; Brain/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cell Survival ; Cytoplasm/metabolism ; DNA/metabolism ; HSC70 Heat-Shock Proteins/metabolism ; Lysosomal-Associated Membrane Protein 2/metabolism ; Lysosomes/metabolism ; MADS Domain Proteins/*metabolism ; MEF2 Transcription Factors ; Mice ; Mice, Transgenic ; Molecular Chaperones/*metabolism ; Myogenic Regulatory Factors/chemistry/*metabolism ; Neurons/cytology/*metabolism ; Parkinson Disease/metabolism ; Protein Binding ; Protein Transport ; Rats ; Rats, Long-Evans ; alpha-Synuclein/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2009-10-03
    Description: Mitochondria are integral components of cellular calcium (Ca2+) signaling. Calcium stimulates mitochondrial adenosine 5'-triphosphate production, but can also initiate apoptosis. In turn, cytoplasmic Ca2+ concentrations are regulated by mitochondria. Although several transporter and ion-channel mechanisms have been measured in mitochondria, the molecules that govern Ca2+ movement across the inner mitochondrial membrane are unknown. We searched for genes that regulate mitochondrial Ca2+ and H+ concentrations using a genome-wide Drosophila RNA interference (RNAi) screen. The mammalian homolog of one Drosophila gene identified in the screen, Letm1, was found to specifically mediate coupled Ca2+/H+ exchange. RNAi knockdown, overexpression, and liposome reconstitution of the purified Letm1 protein demonstrate that Letm1 is a mitochondrial Ca2+/H+ antiporter.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Dawei -- Zhao, Linlin -- Clapham, David E -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 2;326(5949):144-7. doi: 10.1126/science.1175145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Howard Hughes Medical Institute, Children's Hospital Boston, Manton Center for Orphan Disease, and Department of Neurobiology, Harvard Medical School, Enders Building 1309, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiporters/*genetics/metabolism ; Calcium/*metabolism ; Calcium-Binding Proteins/*genetics/*metabolism ; Cation Transport Proteins/genetics/metabolism ; Cell Line ; Drosophila Proteins/*genetics/metabolism ; Drosophila melanogaster/*genetics/metabolism ; Genome, Human ; Genome, Insect ; HeLa Cells ; Humans ; Hydrogen/metabolism ; Hydrogen-Ion Concentration ; Ion Transport ; Membrane Potential, Mitochondrial ; Membrane Proteins/*genetics/*metabolism ; Mitochondria/*metabolism ; Mitochondrial Membranes/metabolism ; Mitochondrial Proteins/genetics/*metabolism ; Proteolipids/metabolism ; *RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-04-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leite, Marcelo -- New York, N.Y. -- Science. 2009 Apr 3;324(5923):26. doi: 10.1126/science.324.5923.26.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342562" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research/economics ; Bioreactors ; Brazil ; Cell Culture Techniques ; Cell Line ; *Embryo Research/economics ; *Embryonic Stem Cells/cytology ; Financing, Government ; Humans ; *Pluripotent Stem Cells/cytology ; Research Support as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2009-02-14
    Description: The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947205/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947205/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fontanilla, Dominique -- Johannessen, Molly -- Hajipour, Abdol R -- Cozzi, Nicholas V -- Jackson, Meyer B -- Ruoho, Arnold E -- F31 DA022932/DA/NIDA NIH HHS/ -- NS30016/NS/NINDS NIH HHS/ -- R01 MH065503/MH/NIMH NIH HHS/ -- R01 MH065503-01A1/MH/NIMH NIH HHS/ -- R01 NS030016/NS/NINDS NIH HHS/ -- R01 NS030016-08/NS/NINDS NIH HHS/ -- R01 NS030016-09/NS/NINDS NIH HHS/ -- T32 GM08688/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 13;323(5916):934-7. doi: 10.1126/science.1166127.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19213917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Cell Line ; Cells, Cultured ; Cercopithecus aethiops ; Guinea Pigs ; Hallucinogens/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myocardium/metabolism ; N,N-Dimethyltryptamine/*metabolism ; Rats ; Receptors, sigma/agonists/antagonists & inhibitors/*metabolism ; Tryptamines/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2009-01-10
    Description: Expression and signaling of CD30, a tumor necrosis factor receptor family member, is up-regulated in numerous lymphoid-derived neoplasias, most notably anaplastic large-cell lymphoma (ALCL) and Hodgkin's lymphoma. To gain insight into the mechanism of CD30 signaling, we used an affinity purification strategy that led to the identification of the aryl hydrocarbon receptor nuclear translocator (ARNT) as a CD30-interacting protein that modulated the activity of the RelB subunit of the transcription factor nuclear factor kappaB (NF-kappaB). ALCL cells that were deficient in ARNT exhibited defects in RelB recruitment to NF-kappaB-responsive promoters, whereas RelA recruitment to the same sites was potentiated, resulting in the augmented expression of these NF-kappaB-responsive genes. These findings indicate that ARNT functions in concert with RelB in a CD30-induced negative feedback mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682336/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682336/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wright, Casey W -- Duckett, Colin S -- R01 GM067827/GM/NIGMS NIH HHS/ -- R01 GM067827-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 9;323(5911):251-5. doi: 10.1126/science.1162818.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19131627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD30/*metabolism ; Aryl Hydrocarbon Receptor Nuclear Translocator/chemistry/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; DNA/metabolism ; Feedback, Physiological ; Gene Expression Regulation ; Humans ; Lymphoma, Large-Cell, Anaplastic/genetics/metabolism ; Molecular Sequence Data ; NF-kappa B/genetics/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Receptors, Tumor Necrosis Factor, Type II/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription Factor RelB/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2009-08-01
    Description: Epac2, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rap1, is activated by adenosine 3',5'-monophosphate. Fluorescence resonance energy transfer and binding experiments revealed that sulfonylureas, widely used antidiabetic drugs, interact directly with Epac2. Sulfonylureas activated Rap1 specifically through Epac2. Sulfonylurea-stimulated insulin secretion was reduced both in vitro and in vivo in mice lacking Epac2, and the glucose-lowering effect of the sulfonylurea tolbutamide was decreased in these mice. Epac2 thus contributes to the effect of sulfonylureas to promote insulin secretion. Because Epac2 is also required for the action of incretins, gut hormones crucial for potentiating insulin secretion, it may be a promising target for antidiabetic drug development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Chang-Liang -- Katoh, Megumi -- Shibasaki, Tadao -- Minami, Kohtaro -- Sunaga, Yasuhiro -- Takahashi, Harumi -- Yokoi, Norihide -- Iwasaki, Masahiro -- Miki, Takashi -- Seino, Susumu -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):607-10. doi: 10.1126/science.1172256.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644119" target="_blank"〉PubMed〈/a〉
    Keywords: 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Blood Glucose/analysis ; COS Cells ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cercopithecus aethiops ; Cyclic AMP/*metabolism ; Fluorescence Resonance Energy Transfer ; Glucose/administration & dosage ; Glyburide/metabolism/pharmacology ; Guanine Nucleotide Exchange Factors/genetics/*metabolism ; Hypoglycemic Agents/chemistry/*metabolism/pharmacology ; Insulin/blood/secretion ; Islets of Langerhans/secretion ; Mice ; Mice, Inbred C57BL ; Sulfonylurea Compounds/chemistry/*metabolism/pharmacology ; Tolbutamide/metabolism/pharmacology ; rap1 GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2009-06-06
    Description: Necrosis can be induced by stimulating death receptors with tumor necrosis factor (TNF) or other agonists; however, the underlying mechanism differentiating necrosis from apoptosis is largely unknown. We identified the protein kinase receptor-interacting protein 3 (RIP3) as a molecular switch between TNF-induced apoptosis and necrosis in NIH 3T3 cells and found that RIP3 was required for necrosis in other cells. RIP3 did not affect RIP1-mediated apoptosis but was required for RIP1-mediated necrosis and the enhancement of necrosis by the caspase inhibitor zVAD. By activating key enzymes of metabolic pathways, RIP3 regulates TNF-induced reactive oxygen species production, which partially accounts for RIP3's ability to promote necrosis. Our data suggest that modulation of energy metabolism in response to death stimuli has an important role in the choice between apoptosis and necrosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Duan-Wu -- Shao, Jing -- Lin, Juan -- Zhang, Na -- Lu, Bao-Ju -- Lin, Sheng-Cai -- Dong, Meng-Qiu -- Han, Jiahuai -- New York, N.Y. -- Science. 2009 Jul 17;325(5938):332-6. doi: 10.1126/science.1172308. Epub 2009 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19498109" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Chloromethyl Ketones/pharmacology ; Animals ; *Apoptosis ; Cell Line ; Energy Metabolism ; Glutamate Dehydrogenase/metabolism ; Glutamate-Ammonia Ligase/metabolism ; Glycogen Phosphorylase/metabolism ; Mice ; NIH 3T3 Cells ; *Necrosis ; RNA Interference ; Reactive Oxygen Species/metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases/genetics/*metabolism ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2009-09-05
    Description: Actin filaments are key components of the eukaryotic cytoskeleton that provide mechanical structure and generate forces during cell shape changes, growth, and migration. Actin filaments are dynamically assembled into higher-order structures at specified locations to regulate diverse functions. The Rab family of small guanosine triphosphatases is evolutionarily conserved and mediates intracellular vesicle trafficking. We found that Rab35 regulates the assembly of actin filaments during bristle development in Drosophila and filopodia formation in cultured cells. These effects were mediated by the actin-bundling protein fascin, which directly associated with active Rab35. Targeting Rab35 to the outer mitochondrial membrane triggered actin recruitment, demonstrating a role for an intracellular trafficking protein in localized actin assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jun -- Fonovic, Marko -- Suyama, Kaye -- Bogyo, Matthew -- Scott, Matthew P -- U54 RR020843/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1250-4. doi: 10.1126/science.1174921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19729655" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism/ultrastructure ; Actins/*metabolism ; Animals ; Carrier Proteins/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Drosophila/anatomy & histology/growth & development/metabolism ; Drosophila Proteins/genetics/*metabolism ; HeLa Cells ; Humans ; Mice ; Microfilament Proteins/*metabolism ; Mitochondrial Membranes/metabolism ; NIH 3T3 Cells ; Pseudopodia/metabolism/ultrastructure ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; rab GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2009-12-08
    Description: Holometabolous insects undergo complete metamorphosis to become sexually mature adults. Metamorphosis is initiated by brain-derived prothoracicotropic hormone (PTTH), which stimulates the production of the molting hormone ecdysone via an incompletely defined signaling pathway. Here we demonstrate that Torso, a receptor tyrosine kinase that regulates embryonic terminal cell fate in Drosophila, is the PTTH receptor. Trunk, the embryonic Torso ligand, is related to PTTH, and ectopic expression of PTTH in the embryo partially rescues trunk mutants. In larvae, torso is expressed specifically in the prothoracic gland (PG), and its loss phenocopies the removal of PTTH. The activation of Torso by PTTH stimulates extracellular signal-regulated kinase (ERK) phosphorylation, and the loss of ERK in the PG phenocopies the loss of PTTH and Torso. We conclude that PTTH initiates metamorphosis by activation of the Torso/ERK pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rewitz, Kim F -- Yamanaka, Naoki -- Gilbert, Lawrence I -- O'Connor, Michael B -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1403-5. doi: 10.1126/science.1176450.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bombyx/*genetics/metabolism ; Cell Line ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/genetics/*growth & development/metabolism ; Embryo, Nonmammalian/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Insect Hormones/chemistry/*metabolism ; Larva/growth & development ; Ligands ; *Metamorphosis, Biological ; Molecular Sequence Data ; Neurons/metabolism ; Phosphorylation ; Pupa/growth & development ; RNA Interference ; Receptor Protein-Tyrosine Kinases/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2009-04-11
    Description: Heterozygous mutations in the gene encoding isocitrate dehydrogenase-1 (IDH1) occur in certain human brain tumors, but their mechanistic role in tumor development is unknown. We have shown that tumor-derived IDH1 mutations impair the enzyme's affinity for its substrate and dominantly inhibit wild-type IDH1 activity through the formation of catalytically inactive heterodimers. Forced expression of mutant IDH1 in cultured cells reduces formation of the enzyme product, alpha-ketoglutarate (alpha-KG), and increases the levels of hypoxia-inducible factor subunit HIF-1alpha, a transcription factor that facilitates tumor growth when oxygen is low and whose stability is regulated by alpha-KG. The rise in HIF-1alpha levels was reversible by an alpha-KG derivative. HIF-1alpha levels were higher in human gliomas harboring an IDH1 mutation than in tumors without a mutation. Thus, IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Shimin -- Lin, Yan -- Xu, Wei -- Jiang, Wenqing -- Zha, Zhengyu -- Wang, Pu -- Yu, Wei -- Li, Zhiqiang -- Gong, Lingling -- Peng, Yingjie -- Ding, Jianping -- Lei, Qunying -- Guan, Kun-Liang -- Xiong, Yue -- R01 CA068377/CA/NCI NIH HHS/ -- R01 CA068377-14/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):261-5. doi: 10.1126/science.1170944.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory, Institute of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359588" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Astrocytoma/genetics/metabolism ; Biocatalysis ; Brain Neoplasms/*genetics/metabolism ; Cell Line ; Child ; Female ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor ; Glioblastoma/genetics/metabolism ; Glioma/*genetics/metabolism ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & ; inhibitors/genetics/*metabolism ; Isocitrate Dehydrogenase/chemistry/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Male ; Middle Aged ; Mutant Proteins/chemistry/metabolism ; Oligodendroglioma/genetics/metabolism ; Oxalates/pharmacology ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-11-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2009 Nov 6;326(5954):780-1. doi: 10.1126/science.326_780a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892950" target="_blank"〉PubMed〈/a〉
    Keywords: *Academies and Institutes ; Adult Stem Cells ; *Biological Therapy ; California ; Cell Line ; Embryonic Stem Cells ; Genetic Therapy ; Humans ; Induced Pluripotent Stem Cells ; National Institutes of Health (U.S.) ; *Research Support as Topic ; *Stem Cell Transplantation ; *Stem Cells ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2009-04-18
    Description: DNA cytosine methylation is crucial for retrotransposon silencing and mammalian development. In a computational search for enzymes that could modify 5-methylcytosine (5mC), we identified TET proteins as mammalian homologs of the trypanosome proteins JBP1 and JBP2, which have been proposed to oxidize the 5-methyl group of thymine. We show here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro. hmC is present in the genome of mouse embryonic stem cells, and hmC levels decrease upon RNA interference-mediated depletion of TET1. Thus, TET proteins have potential roles in epigenetic regulation through modification of 5mC to hmC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tahiliani, Mamta -- Koh, Kian Peng -- Shen, Yinghua -- Pastor, William A -- Bandukwala, Hozefa -- Brudno, Yevgeny -- Agarwal, Suneet -- Iyer, Lakshminarayan M -- Liu, David R -- Aravind, L -- Rao, Anjana -- AI44432/AI/NIAID NIH HHS/ -- K08 HL089150/HL/NHLBI NIH HHS/ -- R01 GM065865/GM/NIGMS NIH HHS/ -- R01 GM065865-05A1/GM/NIGMS NIH HHS/ -- R01GM065865/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):930-5. doi: 10.1126/science.1170116. Epub 2009 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School and Immune Disease Institute, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372391" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/analysis/metabolism ; DNA/chemistry/*metabolism ; DNA Methylation ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dinucleoside Phosphates/metabolism ; Embryonic Stem Cells/chemistry/metabolism ; Humans ; Hydroxylation ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; RNA Interference ; Sequence Alignment ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2009-01-24
    Description: We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila, the gene encoding SPOP is a target of segmentation transcription factors. Drosophila SPOP mediates degradation of the Jun kinase phosphatase Puckered, thereby inducing tumor necrosis factor (TNF)/Eiger-dependent apoptosis. In humans, we found that SPOP plays a conserved role in TNF-mediated JNK signaling and was highly expressed in 99% of clear cell renal cell carcinomas (RCCs), the most prevalent form of kidney cancer. SPOP expression distinguished histological subtypes of RCC and facilitated identification of clear cell RCC as the primary tumor for metastatic lesions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756524/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756524/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jiang -- Ghanim, Murad -- Xue, Lei -- Brown, Christopher D -- Iossifov, Ivan -- Angeletti, Cesar -- Hua, Sujun -- Negre, Nicolas -- Ludwig, Michael -- Stricker, Thomas -- Al-Ahmadie, Hikmat A -- Tretiakova, Maria -- Camp, Robert L -- Perera-Alberto, Montse -- Rimm, David L -- Xu, Tian -- Rzhetsky, Andrey -- White, Kevin P -- P50 GM081892/GM/NIGMS NIH HHS/ -- P50 GM081892-01A1/GM/NIGMS NIH HHS/ -- R01 HG003012/HG/NHGRI NIH HHS/ -- R01 HG003012-04/HG/NHGRI NIH HHS/ -- UL1 RR024999/RR/NCRR NIH HHS/ -- UL1 RR024999-02/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1218-22. doi: 10.1126/science.1157669. Epub 2009 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164706" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Carcinoma, Renal Cell/*genetics/metabolism ; Cell Line ; Compound Eye, Arthropod/embryology/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Embryo, Nonmammalian/metabolism ; Fushi Tarazu Transcription Factors/genetics/metabolism ; Gene Expression Profiling ; Gene Regulatory Networks ; Homeodomain Proteins/genetics/metabolism ; Humans ; Janus Kinases/*metabolism ; Kidney/metabolism ; Kidney Neoplasms/*genetics/metabolism ; Molecular Sequence Data ; Nervous System/embryology ; Nuclear Proteins/*genetics/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Repressor Proteins/*genetics/metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2009-01-31
    Description: Schwann cells develop from multipotent neural crest cells and form myelin sheaths around axons that allow rapid transmission of action potentials. Neuregulin signaling through the ErbB receptor regulates Schwann cell development; however, the downstream pathways are not fully defined. We find that mice lacking calcineurin B1 in the neural crest have defects in Schwann cell differentiation and myelination. Neuregulin addition to Schwann cell precursors initiates an increase in cytoplasmic Ca2+, which activates calcineurin and the downstream transcription factors NFATc3 and c4. Purification of NFAT protein complexes shows that Sox10 is an NFAT nuclear partner and synergizes with NFATc4 to activate Krox20, which regulates genes necessary for myelination. Our studies demonstrate that calcineurin and NFAT are essential for neuregulin and ErbB signaling, neural crest diversification, and differentiation of Schwann cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790385/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790385/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kao, Shih-Chu -- Wu, Hai -- Xie, Jianming -- Chang, Ching-Pin -- Ranish, Jeffrey A -- Graef, Isabella A -- Crabtree, Gerald R -- AI60037/AI/NIAID NIH HHS/ -- HD55391/HD/NICHD NIH HHS/ -- NS046789/NS/NINDS NIH HHS/ -- R01 AI060037/AI/NIAID NIH HHS/ -- R01 AI060037-01/AI/NIAID NIH HHS/ -- R01 AI060037-02/AI/NIAID NIH HHS/ -- R01 AI060037-03/AI/NIAID NIH HHS/ -- R01 AI060037-04/AI/NIAID NIH HHS/ -- R01 AI060037-05/AI/NIAID NIH HHS/ -- R01 HD055391/HD/NICHD NIH HHS/ -- R01 NS046789/NS/NINDS NIH HHS/ -- R01 NS046789-01/NS/NINDS NIH HHS/ -- R01 NS046789-02/NS/NINDS NIH HHS/ -- R01 NS046789-03/NS/NINDS NIH HHS/ -- R01 NS046789-04/NS/NINDS NIH HHS/ -- R01 NS046789-05/NS/NINDS NIH HHS/ -- R21 NS061702/NS/NINDS NIH HHS/ -- R21 NS061702-01/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jan 30;323(5914):651-4. doi: 10.1126/science.1166562.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19179536" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/*metabolism ; Calcium/metabolism ; Cell Differentiation ; Cell Line ; Coculture Techniques ; Early Growth Response Protein 2/metabolism ; Ganglia, Spinal/cytology ; Mice ; Myelin Sheath/physiology ; NFATC Transcription Factors/*metabolism ; Neural Crest/cytology/metabolism ; Neuregulins/*metabolism ; Phosphorylation ; Receptor, ErbB-2/metabolism ; Receptor, ErbB-3 ; SOXE Transcription Factors/metabolism ; Schwann Cells/*cytology/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2009-03-17
    Description: Many metabolic and physiological processes display circadian oscillations. We have shown that the core circadian regulator, CLOCK, is a histone acetyltransferase whose activity is counterbalanced by the nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase SIRT1. Here we show that intracellular NAD+ levels cycle with a 24-hour rhythm, an oscillation driven by the circadian clock. CLOCK:BMAL1 regulates the circadian expression of NAMPT (nicotinamide phosphoribosyltransferase), an enzyme that provides a rate-limiting step in the NAD+ salvage pathway. SIRT1 is recruited to the Nampt promoter and contributes to the circadian synthesis of its own coenzyme. Using the specific inhibitor FK866, we demonstrated that NAMPT is required to modulate circadian gene expression. Our findings in mouse embryo fibroblasts reveal an interlocked transcriptional-enzymatic feedback loop that governs the molecular interplay between cellular metabolism and circadian rhythms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakahata, Yasukazu -- Sahar, Saurabh -- Astarita, Giuseppe -- Kaluzova, Milota -- Sassone-Corsi, Paolo -- R01-GM081634/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 1;324(5927):654-7. doi: 10.1126/science.1170803. Epub 2009 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286518" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Acrylamides/pharmacology ; Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Biological Clocks ; CLOCK Proteins ; Cell Line ; Chromatin Assembly and Disassembly ; *Circadian Rhythm ; Cytokines/antagonists & inhibitors/genetics/*metabolism ; Enzyme Inhibitors/pharmacology ; *Feedback, Physiological ; *Gene Expression Regulation ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Knockout ; NAD/*metabolism ; Niacinamide/metabolism ; Nicotinamide Phosphoribosyltransferase/antagonists & ; inhibitors/genetics/*metabolism ; Piperidines/pharmacology ; Promoter Regions, Genetic ; Sirtuin 1 ; Sirtuins/*metabolism ; Trans-Activators/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2009-05-30
    Description: Intracellular trafficking of the glucose transporter GLUT4 from storage compartments to the plasma membrane is triggered in muscle and fat during the body's response to insulin. Clathrin is involved in intracellular trafficking, and in humans, the clathrin heavy-chain isoform CHC22 is highly expressed in skeletal muscle. We found a role for CHC22 in the formation of insulin-responsive GLUT4 compartments in human muscle and adipocytes. CHC22 also associated with expanded GLUT4 compartments in muscle from type 2 diabetic patients. Tissue-specific introduction of CHC22 in mice, which have only a pseudogene for this protein, caused aberrant localization of GLUT4 transport pathway components in their muscle, as well as features of diabetes. Thus, CHC22-dependent membrane trafficking constitutes a species-restricted pathway in human muscle and fat with potential implications for type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassilopoulos, Stephane -- Esk, Christopher -- Hoshino, Sachiko -- Funke, Birgit H -- Chen, Chih-Ying -- Plocik, Alex M -- Wright, Woodring E -- Kucherlapati, Raju -- Brodsky, Frances M -- GM038093/GM/NIGMS NIH HHS/ -- HD47863/HD/NICHD NIH HHS/ -- R01 GM038093/GM/NIGMS NIH HHS/ -- R01 GM038093-19/GM/NIGMS NIH HHS/ -- R01 GM038093-19S1/GM/NIGMS NIH HHS/ -- R01 GM038093-20A1/GM/NIGMS NIH HHS/ -- R01 HD047863/HD/NICHD NIH HHS/ -- R01 HD047863-01/HD/NICHD NIH HHS/ -- R01 HD047863-02/HD/NICHD NIH HHS/ -- R01 HD047863-03/HD/NICHD NIH HHS/ -- R01 HD047863-04/HD/NICHD NIH HHS/ -- R01 HD047863-05/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2009 May 29;324(5931):1192-6. doi: 10.1126/science.1171529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering and Therapeutic Sciences, University of California, School of Pharmacy, San Francisco (UCSF), San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478182" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/*metabolism/ultrastructure ; Animals ; Blood Glucose/metabolism ; Cell Differentiation ; Cell Line ; Cell Membrane/metabolism ; Clathrin/chemistry/*metabolism ; Clathrin Heavy Chains ; Clathrin-Coated Vesicles/*metabolism ; Diabetes Mellitus, Type 2/*metabolism ; Glucose/*metabolism ; Glucose Transporter Type 4/*metabolism ; Humans ; Insulin/blood/pharmacology ; Mice ; Mice, Transgenic ; Muscle Fibers, Skeletal/metabolism ; Muscle, Skeletal/*metabolism/ultrastructure ; Myoblasts/cytology/metabolism/ultrastructure ; Protein Isoforms/chemistry/metabolism ; Protein Transport ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2009-10-03
    Description: Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Kyuhyung -- Sato, Koji -- Shibuya, Mayumi -- Zeiger, Danna M -- Butcher, Rebecca A -- Ragains, Justin R -- Clardy, Jon -- Touhara, Kazushige -- Sengupta, Piali -- F32 GM077943/GM/NIGMS NIH HHS/ -- P30 NS045713/NS/NINDS NIH HHS/ -- P30 NS45713/NS/NINDS NIH HHS/ -- R01 CA024487/CA/NCI NIH HHS/ -- R01 CA24487/CA/NCI NIH HHS/ -- R01 GM056223/GM/NIGMS NIH HHS/ -- R01 GM56223/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):994-8. doi: 10.1126/science.1176331. Epub 2009 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797623" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/*growth & development/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Calcium/metabolism ; Cell Line ; Chemoreceptor Cells/metabolism ; Cyclic AMP/metabolism ; Cyclic GMP/metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go/physiology ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Guanylate Cyclase/antagonists & inhibitors/metabolism ; Hexoses/chemistry/physiology ; Humans ; Mutation ; Pheromones/*physiology ; Receptors, G-Protein-Coupled ; Reproduction ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2009-12-17
    Description: Emerging evidence indicates that gene expression in higher organisms is regulated by RNA polymerase II stalling during early transcription elongation. To probe the mechanisms responsible for this regulation, we developed methods to isolate and characterize short RNAs derived from stalled RNA polymerase II in Drosophila cells. Significant levels of these short RNAs were generated from more than one-third of all genes, indicating that promoter-proximal stalling is a general feature of early polymerase elongation. Nucleotide composition of the initially transcribed sequence played an important role in promoting transcriptional stalling by rendering polymerase elongation complexes highly susceptible to backtracking and arrest. These results indicate that the intrinsic efficiency of early elongation can greatly affect gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nechaev, Sergei -- Fargo, David C -- dos Santos, Gilberto -- Liu, Liwen -- Gao, Yuan -- Adelman, Karen -- ZIA ES101987-05/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):335-8. doi: 10.1126/science.1181421. Epub 2009 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007866" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Cell Line ; Drosophila melanogaster ; *Gene Expression Regulation ; *Genes, Insect ; Genome, Insect ; Oligonucleotide Array Sequence Analysis ; *Promoter Regions, Genetic ; RNA/genetics/*metabolism ; RNA Caps/genetics/metabolism ; RNA Polymerase II/*metabolism ; RNA, Messenger/genetics/metabolism ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2009-08-01
    Description: Studies correlating genetic variation to gene expression facilitate the interpretation of common human phenotypes and disease. As functional variants may be operating in a tissue-dependent manner, we performed gene expression profiling and association with genetic variants (single-nucleotide polymorphisms) on three cell types of 75 individuals. We detected cell type-specific genetic effects, with 69 to 80% of regulatory variants operating in a cell type-specific manner, and identified multiple expressive quantitative trait loci (eQTLs) per gene, unique or shared among cell types and positively correlated with the number of transcripts per gene. Cell type-specific eQTLs were found at larger distances from genes and at lower effect size, similar to known enhancers. These data suggest that the complete regulatory variant repertoire can only be uncovered in the context of cell-type specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dimas, Antigone S -- Deutsch, Samuel -- Stranger, Barbara E -- Montgomery, Stephen B -- Borel, Christelle -- Attar-Cohen, Homa -- Ingle, Catherine -- Beazley, Claude -- Gutierrez Arcelus, Maria -- Sekowska, Magdalena -- Gagnebin, Marilyne -- Nisbett, James -- Deloukas, Panos -- Dermitzakis, Emmanouil T -- Antonarakis, Stylianos E -- 077011/Wellcome Trust/United Kingdom -- 077046/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1246-50. doi: 10.1126/science.1174148. Epub 2009 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1HH, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644074" target="_blank"〉PubMed〈/a〉
    Keywords: Allelic Imbalance ; B-Lymphocytes ; Cell Line ; Enhancer Elements, Genetic ; Fibroblasts ; Gene Expression Profiling ; *Gene Expression Regulation ; Gene Frequency ; Genotype ; Humans ; *Polymorphism, Single Nucleotide ; *Quantitative Trait Loci ; RNA, Messenger/genetics/metabolism ; *Regulatory Elements, Transcriptional ; Statistics, Nonparametric ; T-Lymphocytes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2009-06-06
    Description: To survive in hostile environments, organisms activate stress-responsive transcriptional regulators that coordinately increase production of protective factors. Hypoxia changes cellular metabolism and thus activates redox-sensitive as well as oxygen-dependent signal transducers. We demonstrate that Sirtuin 1 (Sirt1), a redox-sensing deacetylase, selectively stimulates activity of the transcription factor hypoxia-inducible factor 2 alpha (HIF-2alpha) during hypoxia. The effect of Sirt1 on HIF-2alpha required direct interaction of the proteins and intact deacetylase activity of Sirt1. Select lysine residues in HIF-2alpha that are acetylated during hypoxia confer repression of Sirt1 augmentation by small-molecule inhibitors. In cultured cells and mice, decreasing or increasing Sirt1 activity or levels affected expression of the HIF-2alpha target gene erythropoietin accordingly. Thus, Sirt1 promotes HIF-2 signaling during hypoxia and likely other environmental stresses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dioum, Elhadji M -- Chen, Rui -- Alexander, Matthew S -- Zhang, Quiyang -- Hogg, Richard T -- Gerard, Robert D -- Garcia, Joseph A -- I01 BX000446/BX/BLRD VA/ -- New York, N.Y. -- Science. 2009 Jun 5;324(5932):1289-93. doi: 10.1126/science.1169956.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Veterans Affairs North Texas Health Care System, Department of Medicine, 4500 South Lancaster Road, Dallas, TX 75216, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19498162" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Substitution ; Animals ; Basic Helix-Loop-Helix Transcription Factors/chemistry/genetics/*metabolism ; *Cell Hypoxia ; Cell Line ; Cell Line, Tumor ; Erythropoietin/genetics ; Gene Expression Regulation ; Humans ; Kidney/metabolism ; Liver/embryology/metabolism ; Mice ; Mice, Knockout ; Mutant Proteins/chemistry/metabolism ; Oxidation-Reduction ; *Signal Transduction ; Sirtuin 1 ; Sirtuins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2009-08-08
    Description: Posttranslational modifications play key roles in regulating chromatin plasticity. Although various chromatin-remodeling enzymes have been described that respond to specific histone modifications, little is known about the role of poly[adenosine 5'-diphosphate (ADP)-ribose] in chromatin remodeling. Here, we identify a chromatin-remodeling enzyme, ALC1 (Amplified in Liver Cancer 1, also known as CHD1L), that interacts with poly(ADP-ribose) and catalyzes PARP1-stimulated nucleosome sliding. Our results define ALC1 as a DNA damage-response protein whose role in this process is sustained by its association with known DNA repair factors and its rapid poly(ADP-ribose)-dependent recruitment to DNA damage sites. Furthermore, we show that depletion or overexpression of ALC1 results in sensitivity to DNA-damaging agents. Collectively, these results provide new insights into the mechanisms by which poly(ADP-ribose) regulates DNA repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443743/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443743/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahel, Dragana -- Horejsi, Zuzana -- Wiechens, Nicola -- Polo, Sophie E -- Garcia-Wilson, Elisa -- Ahel, Ivan -- Flynn, Helen -- Skehel, Mark -- West, Stephen C -- Jackson, Stephen P -- Owen-Hughes, Tom -- Boulton, Simon J -- 064414/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- A3549/Cancer Research UK/United Kingdom -- A5290/Cancer Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Department of Health/United Kingdom -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1240-3. doi: 10.1126/science.1177321. Epub 2009 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, Clare Hall, London Research Institute, South Mimms EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661379" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Cell Line ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; DNA Damage ; DNA Helicases/chemistry/genetics/*metabolism ; *DNA Repair ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Humans ; Hydrogen Peroxide/pharmacology ; Immunoprecipitation ; Kinetics ; Mutant Proteins/chemistry/metabolism ; Nucleosomes/metabolism ; Phleomycins/pharmacology ; Poly Adenosine Diphosphate Ribose/*metabolism ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases/metabolism ; Protein Structure, Tertiary ; Radiation, Ionizing ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2009-03-21
    Description: Cyclic nucleotide-gated (CNG) channels localize exclusively to the plasma membrane of photosensitive outer segments of rod photoreceptors where they generate the electrical response to light. Here, we report the finding that targeting of CNG channels to the rod outer segment required their interaction with ankyrin-G. Ankyrin-G localized exclusively to rod outer segments, coimmunoprecipitated with the CNG channel, and bound to the C-terminal domain of the channel beta1 subunit. Ankyrin-G depletion in neonatal mouse retinas markedly reduced CNG channel expression. Transgenic expression of CNG channel beta-subunit mutants in Xenopus rods showed that ankyrin-G binding was necessary and sufficient for targeting of the beta1 subunit to outer segments. Thus, ankyrin-G is required for transport of CNG channels to the plasma membrane of rod outer segments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kizhatil, Krishnakumar -- Baker, Sheila A -- Arshavsky, Vadim Y -- Bennett, Vann -- EY12859/EY/NEI NIH HHS/ -- P30 EY005722/EY/NEI NIH HHS/ -- P30 EY005722-23/EY/NEI NIH HHS/ -- R01 EY012859/EY/NEI NIH HHS/ -- R01 EY012859-10/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1614-7. doi: 10.1126/science.1169789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299621" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Ankyrins/*metabolism ; Cattle ; Cell Line ; Cell Membrane/metabolism ; Cilia/*metabolism ; Cyclic Nucleotide-Gated Cation Channels/*metabolism ; Humans ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Rod Cell Outer Segment/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2009-10-17
    Description: The mammalian heart is formed from distinct sets of first and second heart field (FHF and SHF, respectively) progenitors. Although multipotent progenitors have previously been shown to give rise to cardiomyocytes, smooth muscle, and endothelial cells, the mechanism governing the generation of large numbers of differentiated progeny remains poorly understood. We have employed a two-colored fluorescent reporter system to isolate FHF and SHF progenitors from developing mouse embryos and embryonic stem cells. Genome-wide profiling of coding and noncoding transcripts revealed distinct molecular signatures of these progenitor populations. We further identify a committed ventricular progenitor cell in the Islet 1 lineage that is capable of limited in vitro expansion, differentiation, and assembly into functional ventricular muscle tissue, representing a combination of tissue engineering and stem cell biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Domian, Ibrahim J -- Chiravuri, Murali -- van der Meer, Peter -- Feinberg, Adam W -- Shi, Xi -- Shao, Ying -- Wu, Sean M -- Parker, Kevin Kit -- Chien, Kenneth R -- K08 HL081086/HL/NHLBI NIH HHS/ -- K08 HL081086-01/HL/NHLBI NIH HHS/ -- K08 HL091209/HL/NHLBI NIH HHS/ -- R01 HL079126/HL/NHLBI NIH HHS/ -- R01 HL079126-01A1/HL/NHLBI NIH HHS/ -- T32 HL002807/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 16;326(5951):426-9. doi: 10.1126/science.1177350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza, CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19833966" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Cell Cycle ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cells, Cultured ; Embryonic Stem Cells/*cytology/physiology ; Gene Expression ; Heart/embryology ; Heart Ventricles/*cytology/embryology ; Mice ; Mice, Transgenic ; Muscle Development ; Myocardial Contraction ; Myocytes, Cardiac/*cytology/physiology ; Oligonucleotide Array Sequence Analysis ; *Tissue Engineering ; *Ventricular Function
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-03-17
    Description: As fundamental units of neuronal communication, chemical synapses are composed of presynaptic and postsynaptic specializations that form at specific locations with defined shape and size. Synaptic assembly must be tightly regulated to prevent overgrowth of the synapse size and number, but the molecular mechanisms that inhibit synapse assembly are poorly understood. We identified regulator of synaptogenesis-1 (RSY-1) as an evolutionarily conserved molecule that locally antagonized presynaptic assembly. The loss of RSY-1 in Caenorhabditis elegans led to formation of extra synapses and recruitment of excessive synaptic material to presynaptic sites. RSY-1 directly interacted with and negatively regulated SYD-2/liprin-alpha, a master assembly molecule that recruits numerous synaptic components to presynaptic sites. RSY-1 also bound and regulated SYD-1, a synaptic protein required for proper functioning of SYD-2. Thus, local inhibitory mechanisms govern synapse formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087376/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087376/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patel, Maulik R -- Shen, Kang -- 1R01NS048392/NS/NINDS NIH HHS/ -- R01 NS048392/NS/NINDS NIH HHS/ -- R01 NS048392-05/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1500-3. doi: 10.1126/science.1169025.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurosciences Program, Stanford University, 385 Serra Mall, Herrin Labs, Room 144, Stanford University, Stanford,CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286562" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Humans ; Mutation ; Nerve Tissue Proteins/metabolism ; Nuclear Proteins/chemistry/genetics/*metabolism ; Phosphoproteins/genetics/metabolism ; Protein Binding ; Protein Interaction Mapping ; Protein Isoforms/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Synapses/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2009-05-09
    Description: Visibly fluorescent proteins (FPs) from jellyfish and corals have revolutionized many areas of molecular and cell biology, but the use of FPs in intact animals, such as mice, has been handicapped by poor penetration of excitation light. We now show that a bacteriophytochrome from Deinococcus radiodurans, incorporating biliverdin as the chromophore, can be engineered into monomeric, infrared-fluorescent proteins (IFPs), with excitation and emission maxima of 684 and 708 nm, respectively; extinction coefficient 〉90,000 M(-1) cm(-1); and quantum yield of 0.07. IFPs express well in mammalian cells and mice and spontaneously incorporate biliverdin, which is ubiquitous as the initial intermediate in heme catabolism but has negligible fluorescence by itself. Because their wavelengths penetrate tissue well, IFPs are suitable for whole-body imaging. The IFPs developed here provide a scaffold for further engineering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shu, Xiaokun -- Royant, Antoine -- Lin, Michael Z -- Aguilera, Todd A -- Lev-Ram, Varda -- Steinbach, Paul A -- Tsien, Roger Y -- R01 CA158448/CA/NCI NIH HHS/ -- R01 GM086197/GM/NIGMS NIH HHS/ -- R01 GM086197-01/GM/NIGMS NIH HHS/ -- R01 NS027177/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):804-7. doi: 10.1126/science.1168683.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19423828" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics ; Amino Acid Sequence ; Animals ; *Biliverdine/chemistry/metabolism ; Cell Line ; Deinococcus/*chemistry ; Diagnostic Imaging ; Fluorescence ; Humans ; Liver/anatomy & histology ; *Luminescent Proteins/chemistry/metabolism ; Mice ; Molecular Sequence Data ; *Phytochrome/chemistry/genetics/metabolism ; *Protein Engineering ; Recombinant Fusion Proteins/chemistry/metabolism ; Spectrophotometry, Infrared ; Whole Body Imaging
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2009-04-04
    Description: Apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii (the causative agents of malaria and toxoplasmosis, respectively), are responsible for considerable morbidity and mortality worldwide. These pathogenic protozoa replicate within an intracellular vacuole inside of infected host cells, from which they must escape to initiate a new lytic cycle. By integrating cell biological, pharmacological, and genetic approaches, we provide evidence that both Plasmodium and Toxoplasma hijack host cell calpain proteases to facilitate parasite egress. Immunodepletion or inhibition of calpain-1 in hypotonically lysed and resealed erythrocytes prevented the escape of P. falciparum parasites, which was restored by adding purified calpain-1. Similarly, efficient egress of T. gondii from mammalian fibroblasts was blocked by either small interfering RNA-mediated suppression or genetic deletion of calpain activity and could be restored by genetic complementation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391539/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391539/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chandramohanadas, Rajesh -- Davis, Paul H -- Beiting, Daniel P -- Harbut, Michael B -- Darling, Claire -- Velmourougane, Geetha -- Lee, Ming Yeh -- Greer, Peter A -- Roos, David S -- Greenbaum, Doron C -- F32 AI075846/AI/NIAID NIH HHS/ -- F32 AI075846-02/AI/NIAID NIH HHS/ -- F32 AI077268/AI/NIAID NIH HHS/ -- F32 AI077268-02/AI/NIAID NIH HHS/ -- R37 AI028724/AI/NIAID NIH HHS/ -- R37 AI028724-17/AI/NIAID NIH HHS/ -- T32 GM008076/GM/NIGMS NIH HHS/ -- T32 GM008076-24/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):794-7. doi: 10.1126/science.1171085. Epub 2009 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calpain/blood/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Erythrocytes/*parasitology ; Fibroblasts/parasitology ; Humans ; Leucine/analogs & derivatives/pharmacology ; Life Cycle Stages ; Merozoites/physiology ; Mice ; Mice, Knockout ; Plasmodium falciparum/growth & development/metabolism/*pathogenicity/physiology ; RNA, Small Interfering ; Schizonts/physiology ; Toxoplasma/growth & development/metabolism/*pathogenicity/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2009-07-04
    Description: The finding that the metazoan hypoxic response is regulated by oxygen-dependent posttranslational hydroxylations, which regulate the activity and lifetime of hypoxia-inducible factor (HIF), has raised the question of whether other hydroxylases are involved in the regulation of gene expression. We reveal that the splicing factor U2 small nuclear ribonucleoprotein auxiliary factor 65-kilodalton subunit (U2AF65) undergoes posttranslational lysyl-5-hydroxylation catalyzed by the Fe(II) and 2-oxoglutarate-dependent dioxygenase Jumonji domain-6 protein (Jmjd6). Jmjd6 is a nuclear protein that has an important role in vertebrate development and is a human homolog of the HIF asparaginyl-hydroxylase. Jmjd6 is shown to change alternative RNA splicing of some, but not all, of the endogenous and reporter genes, supporting a specific role for Jmjd6 in the regulation of RNA splicing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webby, Celia J -- Wolf, Alexander -- Gromak, Natalia -- Dreger, Mathias -- Kramer, Holger -- Kessler, Benedikt -- Nielsen, Michael L -- Schmitz, Corinna -- Butler, Danica S -- Yates, John R 3rd -- Delahunty, Claire M -- Hahn, Phillip -- Lengeling, Andreas -- Mann, Matthias -- Proudfoot, Nicholas J -- Schofield, Christopher J -- Bottger, Angelika -- 084655/Wellcome Trust/United Kingdom -- G9826944/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):90-3. doi: 10.1126/science.1175865.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, 12 Mansfield Road, Oxford, Oxon OX1 3TA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19574390" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Biocatalysis ; Cell Line ; Chromatography, Liquid ; HeLa Cells ; Humans ; Hydroxylation ; Jumonji Domain-Containing Histone Demethylases ; Lysine/metabolism ; Molecular Sequence Data ; Nuclear Proteins/chemistry/*metabolism ; Protein Processing, Post-Translational ; RNA, Small Interfering ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Proteins/metabolism ; Ribonucleoproteins/chemistry/*metabolism ; Tandem Mass Spectrometry ; Tropomyosin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2009-04-18
    Description: Despite the importance of epigenetic regulation in neurological disorders, little is known about neuronal chromatin. Cerebellar Purkinje neurons have large and euchromatic nuclei, whereas granule cell nuclei are small and have a more typical heterochromatin distribution. While comparing the abundance of 5-methylcytosine in Purkinje and granule cell nuclei, we detected the presence of an unusual DNA nucleotide. Using thin-layer chromatography, high-pressure liquid chromatography, and mass spectrometry, we identified the nucleotide as 5-hydroxymethyl-2'-deoxycytidine (hmdC). hmdC constitutes 0.6% of total nucleotides in Purkinje cells, 0.2% in granule cells, and is not present in cancer cell lines. hmdC is a constituent of nuclear DNA that is highly abundant in the brain, suggesting a role in epigenetic control of neuronal function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kriaucionis, Skirmantas -- Heintz, Nathaniel -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):929-30. doi: 10.1126/science.1169786. Epub 2009 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cell Line ; Cerebellum/*chemistry/cytology ; Chromatography, High Pressure Liquid ; Chromatography, Thin Layer ; Cytosine/*analogs & derivatives/analysis ; DNA/*chemistry ; DNA Damage ; Deoxycytidine/*analogs & derivatives/analysis ; Humans ; Mass Spectrometry ; Mice ; Purkinje Cells/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2009-12-17
    Description: Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in the mammalian central nervous system (CNS). It is involved in multiple physiological functions and is a target for treatment of various CNS disorders, including schizophrenia. We report that Norbin, a neuron-specific protein, physically interacts with mGluR5 in vivo, increases the cell surface localization of the receptor, and positively regulates mGluR5 signaling. Genetic deletion of Norbin attenuates mGluR5-dependent stable changes in synaptic function measured as long-term depression or long-term potentiation of synaptic transmission in the hippocampus. As with mGluR5 knockout mice or mice treated with mGluR5-selective antagonists, Norbin knockout mice showed a behavioral phenotype associated with a rodent model of schizophrenia, as indexed by alterations both in sensorimotor gating and psychotomimetic-induced locomotor activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796550/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796550/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Hong -- Westin, Linda -- Nong, Yi -- Birnbaum, Shari -- Bendor, Jacob -- Brismar, Hjalmar -- Nestler, Eric -- Aperia, Anita -- Flajolet, Marc -- Greengard, Paul -- DA 10044/DA/NIDA NIH HHS/ -- MH074866/MH/NIMH NIH HHS/ -- MH66172/MH/NIMH NIH HHS/ -- P01 DA010044/DA/NIDA NIH HHS/ -- P01 DA010044-020002/DA/NIDA NIH HHS/ -- P01 DA010044-030002/DA/NIDA NIH HHS/ -- P01 DA010044-04/DA/NIDA NIH HHS/ -- P01 DA010044-040002/DA/NIDA NIH HHS/ -- P01 DA010044-05/DA/NIDA NIH HHS/ -- P01 DA010044-050002/DA/NIDA NIH HHS/ -- P01 DA010044-06/DA/NIDA NIH HHS/ -- P01 DA010044-060002/DA/NIDA NIH HHS/ -- P01 DA010044-07/DA/NIDA NIH HHS/ -- P01 DA010044-070002/DA/NIDA NIH HHS/ -- P01 DA010044-08/DA/NIDA NIH HHS/ -- P01 DA010044-080002/DA/NIDA NIH HHS/ -- P01 DA010044-09/DA/NIDA NIH HHS/ -- P01 DA010044-090002/DA/NIDA NIH HHS/ -- P01 DA010044-10/DA/NIDA NIH HHS/ -- P01 DA010044-100002/DA/NIDA NIH HHS/ -- P01 DA010044-11/DA/NIDA NIH HHS/ -- P01 DA010044-110005/DA/NIDA NIH HHS/ -- P01 DA010044-12/DA/NIDA NIH HHS/ -- P01 DA010044-120005/DA/NIDA NIH HHS/ -- P01 DA010044-129002/DA/NIDA NIH HHS/ -- P01 DA010044-13/DA/NIDA NIH HHS/ -- P01 DA010044-130005/DA/NIDA NIH HHS/ -- P01 DA010044-139002/DA/NIDA NIH HHS/ -- P01 DA010044-14/DA/NIDA NIH HHS/ -- P01 DA010044-140005/DA/NIDA NIH HHS/ -- P01 DA010044-149002/DA/NIDA NIH HHS/ -- P01 DA010044-14S1/DA/NIDA NIH HHS/ -- P01 DA010044-14S10005/DA/NIDA NIH HHS/ -- P01 DA010044-14S19002/DA/NIDA NIH HHS/ -- P50 MH074866/MH/NIMH NIH HHS/ -- P50 MH074866-010001/MH/NIMH NIH HHS/ -- P50 MH074866-020001/MH/NIMH NIH HHS/ -- P50 MH074866-030001/MH/NIMH NIH HHS/ -- P50 MH074866-039001/MH/NIMH NIH HHS/ -- P50 MH074866-040001/MH/NIMH NIH HHS/ -- P50 MH074866-050001/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1554-7. doi: 10.1126/science.1178496.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007903" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Calcium/metabolism ; Calcium Signaling ; Cell Line ; Cell Membrane/metabolism ; Humans ; Mice ; Mice, Knockout ; Motor Activity ; Nerve Tissue Proteins/genetics/*metabolism ; Neuronal Plasticity ; Protein Binding ; Rats ; Receptor, Metabotropic Glutamate 5 ; Receptors, Metabotropic Glutamate/genetics/*metabolism ; Reflex, Startle ; Schizophrenia/physiopathology ; *Signal Transduction ; Synaptic Transmission ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2009-03-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2009 Mar 27;323(5922):1660-1. doi: 10.1126/science.323.5922.1660a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325091" target="_blank"〉PubMed〈/a〉
    Keywords: *Academies and Institutes/economics/organization & administration ; *Biomedical Research/economics ; California ; Cell Line ; Clinical Trials as Topic ; Embryo Research/economics/legislation & jurisprudence ; *Embryonic Stem Cells ; Financing, Government ; Humans ; National Institutes of Health (U.S.) ; Research Support as Topic ; State Government ; *Stem Cells ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2009-05-23
    Description: Histone acetylation in single-cell eukaryotes relies on acetyl coenzyme A (acetyl-CoA) synthetase enzymes that use acetate to produce acetyl-CoA. Metazoans, however, use glucose as their main carbon source and have exposure only to low concentrations of extracellular acetate. We have shown that histone acetylation in mammalian cells is dependent on adenosine triphosphate (ATP)-citrate lyase (ACL), the enzyme that converts glucose-derived citrate into acetyl-CoA. We found that ACL is required for increases in histone acetylation in response to growth factor stimulation and during differentiation, and that glucose availability can affect histone acetylation in an ACL-dependent manner. Together, these findings suggest that ACL activity is required to link growth factor-induced increases in nutrient metabolism to the regulation of histone acetylation and gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746744/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746744/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wellen, Kathryn E -- Hatzivassiliou, Georgia -- Sachdeva, Uma M -- Bui, Thi V -- Cross, Justin R -- Thompson, Craig B -- R01 CA092660/CA/NCI NIH HHS/ -- R01 CA092660-09/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- T32-HL07439-27/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 May 22;324(5930):1076-80. doi: 10.1126/science.1164097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19461003" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; ATP Citrate (pro-S)-Lyase/genetics/*metabolism ; Acetate-CoA Ligase/genetics/metabolism ; Acetyl Coenzyme A/metabolism ; Acetylation ; Adipocytes/cytology/metabolism ; Animals ; Cell Differentiation ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/enzymology ; Cell Proliferation ; Citric Acid/metabolism ; Cytoplasm/enzymology ; Gene Expression Regulation ; Glucose/*metabolism ; Glycolysis ; Histone Deacetylase Inhibitors ; Histone Deacetylases/metabolism ; Histones/*metabolism ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Interleukin-3/metabolism ; Mice ; RNA Interference ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2009-03-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1552-3. doi: 10.1126/science.323.5921.1552a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299595" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cloning, Organism/legislation & jurisprudence ; Embryo Research/ethics/*legislation & jurisprudence ; *Embryonic Stem Cells ; Financing, Government/legislation & jurisprudence ; Government Regulation ; Guidelines as Topic ; Humans ; National Institutes of Health (U.S.) ; Politics ; Research Support as Topic/*legislation & jurisprudence ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2009-08-29
    Description: Akt signaling plays a central role in many biological functions, such as cell proliferation and apoptosis. Because Akt (also known as protein kinase B) resides primarily in the cytosol, it is not known how these signaling molecules are recruited to the plasma membrane and subsequently activated by growth factor stimuli. We found that the protein kinase Akt undergoes lysine-63 chain ubiquitination, which is important for Akt membrane localization and phosphorylation. TRAF6 was found to be a direct E3 ligase for Akt and was essential for Akt ubiquitination, membrane recruitment, and phosphorylation upon growth-factor stimulation. The human cancer-associated Akt mutant displayed an increase in Akt ubiquitination, in turn contributing to the enhancement of Akt membrane localization and phosphorylation. Thus, Akt ubiquitination is an important step for oncogenic Akt activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Wei-Lei -- Wang, Jing -- Chan, Chia-Hsin -- Lee, Szu-Wei -- Campos, Alejandro D -- Lamothe, Betty -- Hur, Lana -- Grabiner, Brian C -- Lin, Xin -- Darnay, Bryant G -- Lin, Hui-Kuan -- R01 CA149321/CA/NCI NIH HHS/ -- R01 CA149321-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Aug 28;325(5944):1134-8. doi: 10.1126/science.1175065.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713527" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Apoptosis ; Cell Line ; Cell Line, Tumor ; Cell Membrane/*metabolism ; Humans ; Insulin-Like Growth Factor I/pharmacology ; Interleukin-1beta/pharmacology ; Lipopolysaccharides/pharmacology ; Mice ; Neoplasm Transplantation ; Neoplasms, Experimental/metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/chemistry/*metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 6/genetics/*metabolism ; Transplantation, Heterologous ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2009-03-21
    Description: The circadian clock is encoded by a transcription-translation feedback loop that synchronizes behavior and metabolism with the light-dark cycle. Here we report that both the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), and levels of NAD+ display circadian oscillations that are regulated by the core clock machinery in mice. Inhibition of NAMPT promotes oscillation of the clock gene Per2 by releasing CLOCK:BMAL1 from suppression by SIRT1. In turn, the circadian transcription factor CLOCK binds to and up-regulates Nampt, thus completing a feedback loop involving NAMPT/NAD+ and SIRT1/CLOCK:BMAL1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738420/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738420/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramsey, Kathryn Moynihan -- Yoshino, Jun -- Brace, Cynthia S -- Abrassart, Dana -- Kobayashi, Yumiko -- Marcheva, Biliana -- Hong, Hee-Kyung -- Chong, Jason L -- Buhr, Ethan D -- Lee, Choogon -- Takahashi, Joseph S -- Imai, Shin-Ichiro -- Bass, Joseph -- AG02150/AG/NIA NIH HHS/ -- P01 AG011412/AG/NIA NIH HHS/ -- P50 MH074924/MH/NIMH NIH HHS/ -- R01 AG024150/AG/NIA NIH HHS/ -- R01 AG024150-05/AG/NIA NIH HHS/ -- T32 DK007169/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 May 1;324(5927):651-4. doi: 10.1126/science.1171641. Epub 2009 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Northwestern University Feinberg School of Medicine, 2200 Campus Drive, Evanston, IL 60208-3500, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299583" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Acrylamides/pharmacology ; Adipose Tissue, White/metabolism ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; *Biological Clocks ; CLOCK Proteins ; Cell Cycle Proteins/genetics ; Cell Line ; Cell Line, Tumor ; *Circadian Rhythm ; Cytokines/antagonists & inhibitors/genetics/*metabolism ; Enzyme Inhibitors/pharmacology ; *Feedback, Physiological ; Gene Expression Regulation ; Hepatocytes/metabolism ; Humans ; Liver/metabolism ; Mice ; NAD/*biosynthesis ; Nicotinamide Phosphoribosyltransferase/antagonists & ; inhibitors/genetics/*metabolism ; Nuclear Proteins/genetics ; Period Circadian Proteins ; Piperidines/pharmacology ; Protein Binding ; Sirtuin 1 ; Sirtuins/metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2009-09-05
    Description: PTEN (phosphatase and tensin homolog on chromosome 10) is a tumor suppressor whose cellular regulation remains incompletely understood. We identified phosphatidylinositol 3,4,5-trisphosphate RAC exchanger 2a (P-REX2a) as a PTEN-interacting protein. P-REX2a mRNA was more abundant in human cancer cells and significantly increased in tumors with wild-type PTEN that expressed an activated mutant of PIK3CA encoding the p110 subunit of phosphoinositide 3-kinase subunit alpha (PI3Kalpha). P-REX2a inhibited PTEN lipid phosphatase activity and stimulated the PI3K pathway only in the presence of PTEN. P-REX2a stimulated cell growth and cooperated with a PIK3CA mutant to promote growth factor-independent proliferation and transformation. Depletion of P-REX2a reduced amounts of phosphorylated AKT and growth in human cell lines with intact PTEN. Thus, P-REX2a is a component of the PI3K pathway that can antagonize PTEN in cancer cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936784/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936784/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fine, Barry -- Hodakoski, Cindy -- Koujak, Susan -- Su, Tao -- Saal, Lao H -- Maurer, Matthew -- Hopkins, Benjamin -- Keniry, Megan -- Sulis, Maria Luisa -- Mense, Sarah -- Hibshoosh, Hanina -- Parsons, Ramon -- CA097403/CA/NCI NIH HHS/ -- P01 CA097403/CA/NCI NIH HHS/ -- P01 CA097403-01A10003/CA/NCI NIH HHS/ -- P01 CA097403-06A1/CA/NCI NIH HHS/ -- R01 CA082783/CA/NCI NIH HHS/ -- R01 CA082783-06/CA/NCI NIH HHS/ -- R01 CA082783-07/CA/NCI NIH HHS/ -- R01 CA082783-08/CA/NCI NIH HHS/ -- R01 CA082783-09/CA/NCI NIH HHS/ -- R01 CA082783-10/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1261-5. doi: 10.1126/science.1173569.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19729658" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/genetics/metabolism/pathology ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Female ; GTPase-Activating Proteins/genetics/*metabolism ; Guanine Nucleotide Exchange Factors ; Humans ; Male ; Mutation ; Neoplasms/genetics/*metabolism/pathology ; PTEN Phosphohydrolase/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-10-17
    Description: Haploid embryonic stem (ES) cells combine haploidy and pluripotency, enabling direct genetic analyses of recessive phenotypes in vertebrate cells. Haploid cells have been elusive for culture, due to their inferior growth and genomic instability. Here, we generated gynogenetic medaka embryos and obtained three haploid ES cell lines that retained pluripotency and competitive growth. Upon nuclear transfer into unfertilized oocytes, the haploid ES cells, even after genetic engineering, generated viable offspring capable of germline transmission. Hence, haploid medaka ES cells stably maintain normal growth, pluripotency, and genomic integrity. Mosaic oocytes created by combining a mitotic nucleus and a meiotic nucleus can generate fertile fish offspring. Haploid ES cells may offer a yeast-like system for analyzing recessive phenotypes in numerous cell lineages of vertebrates in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yi, Meisheng -- Hong, Ni -- Hong, Yunhan -- New York, N.Y. -- Science. 2009 Oct 16;326(5951):430-3. doi: 10.1126/science.1175151.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19833967" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Cell Proliferation ; Cell Shape ; Chromosomal Instability ; Cloning, Organism ; Crosses, Genetic ; Diploidy ; Embryo, Nonmammalian/cytology ; Embryonic Stem Cells/cytology/*physiology ; Female ; *Haploidy ; Male ; Nuclear Transfer Techniques ; Oocytes ; *Oryzias/embryology/genetics/physiology ; Phenotype ; Pluripotent Stem Cells/cytology/*physiology ; Transplantation Chimera
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-01-10
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126799/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126799/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chi, Andrew S -- Bernstein, Bradley E -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG004570-01/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 9;323(5911):220-1. doi: 10.1126/science.1166261.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19131621" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Cell Lineage ; Chromatin/*physiology ; Chromatin Assembly and Disassembly ; Embryonic Stem Cells/*physiology ; Gene Expression Regulation, Developmental ; Nucleosomes/physiology ; Pluripotent Stem Cells/*physiology ; Polycomb-Group Proteins ; Repressor Proteins/metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...