ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-04-18
    Description: DNA cytosine methylation is crucial for retrotransposon silencing and mammalian development. In a computational search for enzymes that could modify 5-methylcytosine (5mC), we identified TET proteins as mammalian homologs of the trypanosome proteins JBP1 and JBP2, which have been proposed to oxidize the 5-methyl group of thymine. We show here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro. hmC is present in the genome of mouse embryonic stem cells, and hmC levels decrease upon RNA interference-mediated depletion of TET1. Thus, TET proteins have potential roles in epigenetic regulation through modification of 5mC to hmC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tahiliani, Mamta -- Koh, Kian Peng -- Shen, Yinghua -- Pastor, William A -- Bandukwala, Hozefa -- Brudno, Yevgeny -- Agarwal, Suneet -- Iyer, Lakshminarayan M -- Liu, David R -- Aravind, L -- Rao, Anjana -- AI44432/AI/NIAID NIH HHS/ -- K08 HL089150/HL/NHLBI NIH HHS/ -- R01 GM065865/GM/NIGMS NIH HHS/ -- R01 GM065865-05A1/GM/NIGMS NIH HHS/ -- R01GM065865/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):930-5. doi: 10.1126/science.1170116. Epub 2009 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School and Immune Disease Institute, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372391" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/analysis/metabolism ; DNA/chemistry/*metabolism ; DNA Methylation ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dinucleoside Phosphates/metabolism ; Embryonic Stem Cells/chemistry/metabolism ; Humans ; Hydroxylation ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; RNA Interference ; Sequence Alignment ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-10
    Description: 5-hydroxymethylcytosine (5hmC) is a modified base present at low levels in diverse cell types in mammals. 5hmC is generated by the TET family of Fe(II) and 2-oxoglutarate-dependent enzymes through oxidation of 5-methylcytosine (5mC). 5hmC and TET proteins have been implicated in stem cell biology and cancer, but information on the genome-wide distribution of 5hmC is limited. Here we describe two novel and specific approaches to profile the genomic localization of 5hmC. The first approach, termed GLIB (glucosylation, periodate oxidation, biotinylation) uses a combination of enzymatic and chemical steps to isolate DNA fragments containing as few as a single 5hmC. The second approach involves conversion of 5hmC to cytosine 5-methylenesulphonate (CMS) by treatment of genomic DNA with sodium bisulphite, followed by immunoprecipitation of CMS-containing DNA with a specific antiserum to CMS. High-throughput sequencing of 5hmC-containing DNA from mouse embryonic stem (ES) cells showed strong enrichment within exons and near transcriptional start sites. 5hmC was especially enriched at the start sites of genes whose promoters bear dual histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 4 trimethylation (H3K4me3) marks. Our results indicate that 5hmC has a probable role in transcriptional regulation, and suggest a model in which 5hmC contributes to the 'poised' chromatin signature found at developmentally-regulated genes in ES cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124347/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124347/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pastor, William A -- Pape, Utz J -- Huang, Yun -- Henderson, Hope R -- Lister, Ryan -- Ko, Myunggon -- McLoughlin, Erin M -- Brudno, Yevgeny -- Mahapatra, Sahasransu -- Kapranov, Philipp -- Tahiliani, Mamta -- Daley, George Q -- Liu, X Shirley -- Ecker, Joseph R -- Milos, Patrice M -- Agarwal, Suneet -- Rao, Anjana -- 1 R01 HD065812-01A1/HD/NICHD NIH HHS/ -- 1 UL1 RR 025758-02/RR/NCRR NIH HHS/ -- K08 HL089150/HL/NHLBI NIH HHS/ -- K08 HL089150-01A1/HL/NHLBI NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 AI044432-10/AI/NIAID NIH HHS/ -- R01 AI44432/AI/NIAID NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HD065812-01A1/HD/NICHD NIH HHS/ -- RC1 DA028422/DA/NIDA NIH HHS/ -- RC1 DA028422-02/DA/NIDA NIH HHS/ -- UL1 RR025758/RR/NCRR NIH HHS/ -- England -- Nature. 2011 May 19;473(7347):394-7. doi: 10.1038/nature10102. Epub 2011 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21552279" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biotinylation ; Cell Line ; Cytosine/*analogs & derivatives/analysis/isolation & purification/metabolism ; DNA Methylation ; Embryonic Stem Cells/*metabolism ; Exons/genetics ; Gene Expression Regulation, Developmental/genetics ; Genome/*genetics ; Glucose/metabolism ; Mice ; Periodic Acid/metabolism ; Promoter Regions, Genetic/genetics ; Sequence Analysis, DNA/*methods ; Transcription Initiation Site ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-11
    Description: Motivation: The development of high-throughput sequencing technologies has enabled novel methods for detecting structural variants (SVs). Current methods are typically based on depth of coverage or pair-end mapping clusters. However, most of these only report an approximate location for each SV, rather than exact breakpoints. Results: We have developed pair-read informed split mapping (PRISM), a method that identifies SVs and their precise breakpoints from whole-genome resequencing data. PRISM uses a split-alignment approach informed by the mapping of paired-end reads, hence enabling breakpoint identification of multiple SV types, including arbitrary-sized inversions, deletions and tandem duplications. Comparisons to previous datasets and simulation experiments illustrate PRISM’s high sensitivity, while PCR validations of PRISM results, including previously uncharacterized variants, indicate an overall precision of ~90%. Availability: PRISM is freely available at http://compbio.cs.toronto.edu/prism . Contact: yue.jiang.hit@gmail.com (YJ); ydwang@hit.edu.cn (YW); brudno@cs.toronto.edu (MB) Supplementary Information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-19
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-03
    Description: Local drug delivery depots have significant clinical utility, but there is currently no noninvasive technique to refill these systems once their payload is exhausted. Inspired by the ability of nanotherapeutics to target specific tissues, we hypothesized that blood-borne drug payloads could be modified to home to and refill hydrogel drug...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...