ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (385)
  • Cells, Cultured  (220)
  • Cell Line  (172)
  • 2015-2019  (30)
  • 1980-1984  (355)
  • 1925-1929
  • Science. 207(4427): 189-91.  (1)
  • Science. 207(4427): 195-7.  (1)
  • Science. 207(4427): 199-201.  (1)
  • Science. 207(4430): 525-6.  (1)
  • Science. 207(4430): 527-8.  (1)
  • Science. 207(4430): 528-30.  (1)
  • Science. 207(4430): 540-1.  (1)
  • Science. 207(4431): 647-9.  (1)
  • Science. 207(4431): 653-5.  (1)
  • Science. 207(4432): 771-3.  (1)
  • Science. 207(4433): 889-91.  (1)
  • Science. 207(4434): 1007-8.  (1)
  • Science. 207(4436): 1209-11.  (1)
  • Science. 208(4440): 179-81.  (1)
  • Science. 208(4440): 194-6.  (1)
  • Science. 208(4441): 299-300.  (1)
  • Science. 208(4442): 402-4.  (1)
  • Science. 208(4444): 575-6.  (1)
  • Science. 208(4445): 748-9.  (1)
  • Science. 208(4447): 1054-6.  (1)
  • 25
Collection
  • Articles  (385)
Keywords
Years
Year
Journal
  • 1
    Publication Date: 2015-04-11
    Description: Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo. Sephin1 selectively bound and inhibited the stress-induced PPP1R15A, but not the related and constitutive PPP1R15B, to prolong the benefit of an adaptive phospho-signaling pathway, protecting cells from otherwise lethal protein misfolding stress. In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis. Thus, regulatory subunits of phosphatases are drug targets, a property exploited here to safely prevent two protein misfolding diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Indrajit -- Krzyzosiak, Agnieszka -- Schneider, Kim -- Wrabetz, Lawrence -- D'Antonio, Maurizio -- Barry, Nicholas -- Sigurdardottir, Anna -- Bertolotti, Anne -- 309516/European Research Council/International -- MC_U105185860/Medical Research Council/United Kingdom -- R01-NS55256/NS/NINDS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):239-42. doi: 10.1126/science.aaa4484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. ; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. aberto@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859045" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/drug therapy/metabolism/pathology ; Animals ; Cells, Cultured ; Charcot-Marie-Tooth Disease/drug therapy/metabolism/pathology ; Disease Models, Animal ; Endoplasmic Reticulum Stress/drug effects ; Enzyme Inhibitors/metabolism/pharmacokinetics/*pharmacology/toxicity ; Guanabenz/*analogs & derivatives/chemical ; synthesis/metabolism/pharmacology/toxicity ; HeLa Cells ; Humans ; Mice ; Mice, Transgenic ; Molecular Targeted Therapy ; Phosphorylation ; Protein Folding ; Protein Phosphatase 1/*antagonists & inhibitors ; Proteostasis Deficiencies/*drug therapy/*prevention & control ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-20
    Description: The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minajigi, Anand -- Froberg, John E -- Wei, Chunyao -- Sunwoo, Hongjae -- Kesner, Barry -- Colognori, David -- Lessing, Derek -- Payer, Bernhard -- Boukhali, Myriam -- Haas, Wilhelm -- Lee, Jeannie T -- R01-DA-38695/DA/NIDA NIH HHS/ -- R03-MH97478/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245). pii: aab2276. doi: 10.1126/science.aab2276. Epub 2015 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Massachusetts General Hospital Cancer Center, Charlestown, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA, USA. ; Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. lee@molbio.mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089354" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Animals ; Cell Cycle Proteins/*metabolism ; Cells, Cultured ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA-Binding Proteins/metabolism ; Embryonic Stem Cells/metabolism ; Fibroblasts/metabolism ; Gene Knockdown Techniques ; Gene Silencing ; Mice ; Multiprotein Complexes/metabolism ; Nucleic Acid Conformation ; Proteomics ; RNA Helicases/metabolism ; RNA, Long Noncoding/*metabolism ; X Chromosome/chemistry/genetics/*metabolism ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-24
    Description: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uhlen, Mathias -- Fagerberg, Linn -- Hallstrom, Bjorn M -- Lindskog, Cecilia -- Oksvold, Per -- Mardinoglu, Adil -- Sivertsson, Asa -- Kampf, Caroline -- Sjostedt, Evelina -- Asplund, Anna -- Olsson, IngMarie -- Edlund, Karolina -- Lundberg, Emma -- Navani, Sanjay -- Szigyarto, Cristina Al-Khalili -- Odeberg, Jacob -- Djureinovic, Dijana -- Takanen, Jenny Ottosson -- Hober, Sophia -- Alm, Tove -- Edqvist, Per-Henrik -- Berling, Holger -- Tegel, Hanna -- Mulder, Jan -- Rockberg, Johan -- Nilsson, Peter -- Schwenk, Jochen M -- Hamsten, Marica -- von Feilitzen, Kalle -- Forsberg, Mattias -- Persson, Lukas -- Johansson, Fredric -- Zwahlen, Martin -- von Heijne, Gunnar -- Nielsen, Jens -- Ponten, Fredrik -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Horsholm, Denmark. mathias.uhlen@scilifelab.se. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. ; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden. ; Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden. ; Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund TU, D-44139 Dortmund, Germany. ; Lab Surgpath, Mumbai, India. ; Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. ; Science for Life Laboratory, Department of Neuroscience, Karolinska Institute, SE-171 77 Stockholm, Sweden. ; Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. ; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Horsholm, Denmark. Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613900" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Cell Line ; *Databases, Protein ; Female ; Genes ; Genetic Code ; Humans ; Internet ; Male ; Membrane Proteins/genetics/metabolism ; Mitochondrial Proteins/genetics/metabolism ; Neoplasms/genetics/metabolism ; Protein Array Analysis ; Protein Isoforms/genetics/metabolism ; Proteome/genetics/*metabolism ; Tissue Distribution ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-01
    Description: The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heisler, David B -- Kudryashova, Elena -- Grinevich, Dmitry O -- Suarez, Cristian -- Winkelman, Jonathan D -- Birukov, Konstantin G -- Kotha, Sainath R -- Parinandi, Narasimham L -- Vavylonis, Dimitrios -- Kovar, David R -- Kudryashov, Dmitri S -- R01 GM079265/GM/NIGMS NIH HHS/ -- R01 GM098430/GM/NIGMS NIH HHS/ -- R01 GM114666/GM/NIGMS NIH HHS/ -- R01 HL076259/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):535-9. doi: 10.1126/science.aab4090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. ; Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. ; Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA. ; Department of Physics, Lehigh University, Bethlehem, PA 18015, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228148" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Antigens, Bacterial/*chemistry/genetics/*toxicity ; Bacterial Toxins/*chemistry/genetics/*toxicity ; Cell Line ; Fetal Proteins/*antagonists & inhibitors ; Intestinal Mucosa/drug effects/metabolism ; Microfilament Proteins/*antagonists & inhibitors ; Nuclear Proteins/*antagonists & inhibitors ; Polymerization/drug effects ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-09
    Description: Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, which precludes genetic manipulation in the cell in which the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Elizabeth S -- Jiang, Rays H Y -- Moechtar, Mischka A -- Barteneva, Natasha S -- Weekes, Michael P -- Nobre, Luis V -- Gygi, Steven P -- Paulo, Joao A -- Frantzreb, Charles -- Tani, Yoshihiko -- Takahashi, Junko -- Watanabe, Seishi -- Goldberg, Jonathan -- Paul, Aditya S -- Brugnara, Carlo -- Root, David E -- Wiegand, Roger C -- Doench, John G -- Duraisingh, Manoj T -- 100140/Wellcome Trust/United Kingdom -- 1K08AI103034-01A1/AI/NIAID NIH HHS/ -- K01 DK098285/DK/NIDDK NIH HHS/ -- K01DK098285/DK/NIDDK NIH HHS/ -- K08 AI103034/AI/NIAID NIH HHS/ -- K12-HD000850/HD/NICHD NIH HHS/ -- R01AI091787/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 May 8;348(6235):711-4. doi: 10.1126/science.aaa3526.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Department of Global Health and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. ; Department of Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. ; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. ; Department of Cell Biology, Harvard Medical School, Boston, MA, USA. ; Japanese Red Cross Kinki Block Blood Center, Osaka, Japan. ; Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan. ; Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. ; The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. mduraisi@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD44/genetics ; Antigens, CD55/*genetics ; Cell Differentiation/genetics ; Cells, Cultured ; Erythrocytes/cytology/metabolism/*parasitology ; Genetic Testing ; Hematopoietic Stem Cells/cytology ; Host-Parasite Interactions/*genetics ; Humans ; Malaria, Falciparum/*genetics/*parasitology ; Plasmodium falciparum/*pathogenicity ; RNA, Small Interfering/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-01
    Description: Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell-derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and beta-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinson, John T -- Chopra, Anant -- Nafissi, Navid -- Polacheck, William J -- Benson, Craig C -- Swist, Sandra -- Gorham, Joshua -- Yang, Luhan -- Schafer, Sebastian -- Sheng, Calvin C -- Haghighi, Alireza -- Homsy, Jason -- Hubner, Norbert -- Church, George -- Cook, Stuart A -- Linke, Wolfgang A -- Chen, Christopher S -- Seidman, J G -- Seidman, Christine E -- EB017103/EB/NIBIB NIH HHS/ -- HG005550/HG/NHGRI NIH HHS/ -- HL007374/HL/NHLBI NIH HHS/ -- HL115553/HL/NHLBI NIH HHS/ -- HL125807/HL/NHLBI NIH HHS/ -- K08 HL125807/HL/NHLBI NIH HHS/ -- T32 HL007208/HL/NHLBI NIH HHS/ -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):982-6. doi: 10.1126/science.aaa5458.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu. ; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. ; Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56 D-44780, Bochum, Germany. ; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. ; National Institute for Health Research (NIHR) Biomedical Research Unit in Cardiovascular Disease at Royal Brompton and Harefield National Health Service (NHS) Foundation Trust, Imperial College London, London, UK. National Heart Centre and Duke-National University, Singapore, Singapore. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315439" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/pharmacology ; Cardiomyopathy, Dilated/*genetics/pathology/*physiopathology ; Cells, Cultured ; Connectin/chemistry/*genetics/*physiology ; Heart Rate ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Isoproterenol/pharmacology ; Mutant Proteins/chemistry/physiology ; *Mutation, Missense ; Myocardial Contraction ; Myocytes, Cardiac/*physiology ; RNA/genetics/metabolism ; Sarcomeres/*physiology/ultrastructure ; Sequence Analysis, RNA ; Signal Transduction ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-06
    Description: Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the meiotic divisions of an oocyte, the egg's progenitor cell. The basis for particularly error-prone chromosome segregation in human oocytes is not known. We analyzed meiosis in more than 100 live human oocytes and identified an error-prone chromosome-mediated spindle assembly mechanism as a major contributor to chromosome segregation defects. Human oocytes assembled a meiotic spindle independently of either centrosomes or other microtubule organizing centers. Instead, spindle assembly was mediated by chromosomes and the small guanosine triphosphatase Ran in a process requiring ~16 hours. This unusually long spindle assembly period was marked by intrinsic spindle instability and abnormal kinetochore-microtubule attachments, which favor chromosome segregation errors and provide a possible explanation for high rates of aneuploidy in human eggs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477045/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477045/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holubcova, Zuzana -- Blayney, Martyn -- Elder, Kay -- Schuh, Melina -- MC_U105192711/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1143-7. doi: 10.1126/science.aaa9529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK. ; Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. mschuh@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26045437" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; *Aneuploidy ; Animals ; Cells, Cultured ; *Chromosome Segregation ; Female ; Green Fluorescent Proteins/genetics/metabolism ; Humans ; Kinetochores/metabolism ; *Meiosis ; Mice ; Microtubule-Associated Proteins/genetics/metabolism ; Microtubule-Organizing Center/metabolism ; Oocytes/*pathology ; Spindle Apparatus/*metabolism ; ran GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-05
    Description: Growing up on a dairy farm protects children from allergy, hay fever, and asthma. A mechanism linking exposure to this endotoxin (bacterial lipopolysaccharide)-rich environment with protection has remained elusive. Here we show that chronic exposure to low-dose endotoxin or farm dust protects mice from developing house dust mite (HDM)-induced asthma. Endotoxin reduced epithelial cell cytokines that activate dendritic cells (DCs), thus suppressing type 2 immunity to HDMs. Loss of the ubiquitin-modifying enzyme A20 in lung epithelium abolished the protective effect. A single-nucleotide polymorphism in the gene encoding A20 was associated with allergy and asthma risk in children growing up on farms. Thus, the farming environment protects from allergy by modifying the communication between barrier epithelial cells and DCs through A20 induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuijs, Martijn J -- Willart, Monique A -- Vergote, Karl -- Gras, Delphine -- Deswarte, Kim -- Ege, Markus J -- Madeira, Filipe Branco -- Beyaert, Rudi -- van Loo, Geert -- Bracher, Franz -- von Mutius, Erika -- Chanez, Pascal -- Lambrecht, Bart N -- Hammad, Hamida -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):1106-10. doi: 10.1126/science.aac6623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. ; Department of Respiratory Medicine, Assistance Publique Hopitaux de Marseille, UMR INSERM U1067 CNRS 7333, Aix Marseille University, Marseille, France. ; Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universitat, Munich, Germany. ; Unit of Molecular Signal Transduction, VIB Inflammation Research Center, Ghent, Belgium. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. ; Center for Drug Research, Department of Pharmacy, Ludwig Maximilians University, Butenandtstrasse 5-13, D-81377 Munich, Germany. ; Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands. hamida.hammad@ugent.be bart.lambrecht@ugent.be. ; Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. hamida.hammad@ugent.be bart.lambrecht@ugent.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26339029" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/immunology/prevention & control ; Cells, Cultured ; Child ; DNA-Binding Proteins/*biosynthesis ; Dairying ; Dendritic Cells/immunology ; Dust/*immunology ; Female ; Humans ; Hygiene Hypothesis ; Hypersensitivity/enzymology/immunology/*prevention & control ; Inhalation Exposure ; Intracellular Signaling Peptides and Proteins/*biosynthesis ; Lipopolysaccharides/*immunology ; Lung/*enzymology/immunology ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/*biosynthesis ; Pyroglyphidae/*immunology ; Respiratory Mucosa/*enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-01
    Description: Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and alpha-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659358/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659358/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Dong -- Shao, Lin -- Chen, Bi-Chang -- Zhang, Xi -- Zhang, Mingshu -- Moses, Brian -- Milkie, Daniel E -- Beach, Jordan R -- Hammer, John A 3rd -- Pasham, Mithun -- Kirchhausen, Tomas -- Baird, Michelle A -- Davidson, Michael W -- Xu, Pingyong -- Betzig, Eric -- GM-075252/GM/NIGMS NIH HHS/ -- R01 GM075252/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):aab3500. doi: 10.1126/science.aab3500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. ; Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China. ; Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; Coleman Technologies, 5131 West Chester Pike, Newtown Square, PA 19073, USA. ; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. ; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. betzige@janelia.hhmi.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315442" target="_blank"〉PubMed〈/a〉
    Keywords: Actinin/analysis ; Actins/analysis ; Animals ; Cell Line ; Clathrin/analysis ; Clathrin-Coated Vesicles/chemistry/ultrastructure ; Coated Pits, Cell-Membrane/chemistry/ultrastructure ; Cytoskeleton/chemistry/metabolism/*ultrastructure ; *Endocytosis ; Endosomes/chemistry/ultrastructure ; Golgi Apparatus/ultrastructure ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional/instrumentation/*methods ; Microscopy, Fluorescence/instrumentation/*methods ; Mitochondria/chemistry/ultrastructure ; Organelles/chemistry/metabolism/*ultrastructure ; rab5 GTP-Binding Proteins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-08
    Description: Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Jonathan P -- Pletnikova, Olga -- Troncoso, Juan C -- Wong, Philip C -- P50AG05146/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):650-5. doi: 10.1126/science.aab0983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. wong@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26250685" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/*genetics ; Animals ; Base Sequence ; Cells, Cultured ; Cysteine Endopeptidases/genetics ; DNA-Binding Proteins/genetics/*physiology ; Embryonic Stem Cells ; Exons/*genetics ; Frontotemporal Dementia/*genetics ; Gene Knockout Techniques ; HeLa Cells ; Humans ; Mice ; Molecular Sequence Data ; Protein Isoforms/genetics ; *RNA Splicing ; RNA Stability ; RNA, Messenger/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-07-18
    Description: Secretion of the cytokine interleukin-1beta (IL-1beta) by macrophages, a major driver of pathogenesis in atherosclerosis, requires two steps: Priming signals promote transcription of immature IL-1beta, and then endogenous "danger" signals activate innate immune signaling complexes called inflammasomes to process IL-1beta for secretion. Although cholesterol crystals are known to act as danger signals in atherosclerosis, what primes IL-1beta transcription remains elusive. Using a murine model of atherosclerosis, we found that cholesterol crystals acted both as priming and danger signals for IL-1beta production. Cholesterol crystals triggered neutrophils to release neutrophil extracellular traps (NETs). NETs primed macrophages for cytokine release, activating T helper 17 (TH17) cells that amplify immune cell recruitment in atherosclerotic plaques. Therefore, danger signals may drive sterile inflammation, such as that seen in atherosclerosis, through their interactions with neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warnatsch, Annika -- Ioannou, Marianna -- Wang, Qian -- Papayannopoulos, Venizelos -- MC_UP_1202/13/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):316-20. doi: 10.1126/science.aaa8064. Epub 2015 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. ; Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. veni.p@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26185250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins E/genetics ; Atherosclerosis/*immunology ; Cells, Cultured ; Cholesterol/chemistry/immunology ; Disease Models, Animal ; Extracellular Traps/*immunology ; Humans ; Inflammasomes/immunology ; Inflammation/immunology ; Interleukin-1beta/*biosynthesis/genetics ; Macrophages/*immunology ; Mice ; Mice, Mutant Strains ; Neutrophils/*immunology ; Signal Transduction ; Th17 Cells/immunology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-10-31
    Description: Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sigova, Alla A -- Abraham, Brian J -- Ji, Xiong -- Molinie, Benoit -- Hannett, Nancy M -- Guo, Yang Eric -- Jangi, Mohini -- Giallourakis, Cosmas C -- Sharp, Phillip A -- Young, Richard A -- HG002668/HG/NHGRI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):978-81. doi: 10.1126/science.aad3346. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02140, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; Consensus Sequence ; DNA/metabolism ; Embryonic Stem Cells/metabolism ; *Enhancer Elements, Genetic ; *Gene Expression Regulation ; Mice ; *Promoter Regions, Genetic ; RNA, Messenger/*metabolism ; *Transcription, Genetic ; YY1 Transcription Factor/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-01-09
    Description: Naive and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N(6)-methyladenosine (m(6)A) transferase, as a regulator for terminating murine naive pluripotency. Mettl3 knockout preimplantation epiblasts and naive embryonic stem cells are depleted for m(6)A in mRNAs, yet are viable. However, they fail to adequately terminate their naive state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m(6)A predominantly and directly reduces mRNA stability, including that of key naive pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naive and primed pluripotency in an opposing manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geula, Shay -- Moshitch-Moshkovitz, Sharon -- Dominissini, Dan -- Mansour, Abed AlFatah -- Kol, Nitzan -- Salmon-Divon, Mali -- Hershkovitz, Vera -- Peer, Eyal -- Mor, Nofar -- Manor, Yair S -- Ben-Haim, Moshe Shay -- Eyal, Eran -- Yunger, Sharon -- Pinto, Yishay -- Jaitin, Diego Adhemar -- Viukov, Sergey -- Rais, Yoach -- Krupalnik, Vladislav -- Chomsky, Elad -- Zerbib, Mirie -- Maza, Itay -- Rechavi, Yoav -- Massarwa, Rada -- Hanna, Suhair -- Amit, Ido -- Levanon, Erez Y -- Amariglio, Ninette -- Stern-Ginossar, Noam -- Novershtern, Noa -- Rechavi, Gideon -- Hanna, Jacob H -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1002-6. doi: 10.1126/science.1261417. Epub 2015 Jan 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. ; Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA. ; Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; The Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. ; The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. The Department of Pediatrics and the Pediatric Immunology Unit, Rambam Medical Center, and the B. Rappaport Faculty of Medicine, Technion, Haifa, Israel. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. jacob.hanna@weizmann.ac.il noa.novershtern@weizmann.ac.il gidi.rechavi@sheba.health.gov.il. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. jacob.hanna@weizmann.ac.il noa.novershtern@weizmann.ac.il gidi.rechavi@sheba.health.gov.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25569111" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Animals ; Blastocyst/enzymology ; Cell Differentiation/genetics/*physiology ; Cell Line ; Embryo Loss/genetics ; Epigenesis, Genetic ; Female ; Gene Knockout Techniques ; Male ; Methylation ; Methyltransferases/genetics/*physiology ; Mice ; Mice, Knockout ; Pluripotent Stem Cells/*cytology/enzymology ; RNA, Messenger/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-02-24
    Description: Notch receptors guide mammalian cell fate decisions by engaging the proteins Jagged and Delta-like (DLL). The 2.3 angstrom resolution crystal structure of the interacting regions of the Notch1-DLL4 complex reveals a two-site, antiparallel binding orientation assisted by Notch1 O-linked glycosylation. Notch1 epidermal growth factor-like repeats 11 and 12 interact with the DLL4 Delta/Serrate/Lag-2 (DSL) domain and module at the N-terminus of Notch ligands (MNNL) domains, respectively. Threonine and serine residues on Notch1 are functionalized with O-fucose and O-glucose, which act as surrogate amino acids by making specific, and essential, contacts to residues on DLL4. The elucidation of a direct chemical role for O-glycans in Notch1 ligand engagement demonstrates how, by relying on posttranslational modifications of their ligand binding sites, Notch proteins have linked their functional capacity to developmentally regulated biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luca, Vincent C -- Jude, Kevin M -- Pierce, Nathan W -- Nachury, Maxence V -- Fischer, Suzanne -- Garcia, K Christopher -- 1R01-GM097015/GM/NIGMS NIH HHS/ -- R01 GM097015/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):847-53. doi: 10.1126/science.1261093.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. kcgarcia@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700513" target="_blank"〉PubMed〈/a〉
    Keywords: Alagille Syndrome/genetics ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Fucose/chemistry ; Glucose/chemistry ; Glycosylation ; Intracellular Signaling Peptides and Proteins/*chemistry/genetics ; Ligands ; Membrane Proteins/*chemistry/genetics/ultrastructure ; Molecular Sequence Data ; Molecular Targeted Therapy ; Polysaccharides/chemistry ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/genetics ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptor, Notch1/*chemistry/genetics/ultrastructure ; Serine/chemistry/genetics ; Threonine/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-01-24
    Description: The 26S proteasome is a key player in eukaryotic protein quality control and in the regulation of numerous cellular processes. Here, we describe quantitative in situ structural studies of this highly dynamic molecular machine in intact hippocampal neurons. We used electron cryotomography with the Volta phase plate, which allowed high fidelity and nanometer precision localization of 26S proteasomes. We undertook a molecular census of single- and double-capped proteasomes and assessed the conformational states of individual complexes. Under the conditions of the experiment-that is, in the absence of proteotoxic stress-only 20% of the 26S proteasomes were engaged in substrate processing. The remainder was in the substrate-accepting ground state. These findings suggest that in the absence of stress, the capacity of the proteasome system is not fully used.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asano, Shoh -- Fukuda, Yoshiyuki -- Beck, Florian -- Aufderheide, Antje -- Forster, Friedrich -- Danev, Radostin -- Baumeister, Wolfgang -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):439-42. doi: 10.1126/science.1261197.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. ; Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. baumeist@biochem.mpg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613890" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Hippocampus/*cytology/enzymology ; Neurons/*enzymology/*ultrastructure ; Proteasome Endopeptidase Complex/*chemistry ; Protein Conformation ; Rats ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-09-26
    Description: Cellular senescence is a terminal stress-activated program controlled by the p53 and p16(INK4a) tumor suppressor proteins. A striking feature of senescence is the senescence-associated secretory phenotype (SASP), a pro-inflammatory response linked to tumor promotion and aging. We have identified the transcription factor GATA4 as a senescence and SASP regulator. GATA4 is stabilized in cells undergoing senescence and is required for the SASP. Normally, GATA4 is degraded by p62-mediated selective autophagy, but this regulation is suppressed during senescence, thereby stabilizing GATA4. GATA4 in turn activates the transcription factor NF-kappaB to initiate the SASP and facilitate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). GATA4 accumulates in multiple tissues, including the aging brain, and could contribute to aging and its associated inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Chanhee -- Xu, Qikai -- Martin, Timothy D -- Li, Mamie Z -- Demaria, Marco -- Aron, Liviu -- Lu, Tao -- Yankner, Bruce A -- Campisi, Judith -- Elledge, Stephen J -- AG009909/AG/NIA NIH HHS/ -- AG017242/AG/NIA NIH HHS/ -- AG046174/AG/NIA NIH HHS/ -- DP1 OD006849/OD/NIH HHS/ -- DP1OD006849/OD/NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):aaa5612. doi: 10.1126/science.aaa5612.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Buck Institute for Research on Aging, Novato, CA 94945, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. selledge@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404840" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics/metabolism ; Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; Autophagy/*genetics ; Brain/metabolism ; Cell Aging/*genetics ; Cell Cycle/genetics ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; *DNA Damage ; Fibroblasts ; GATA4 Transcription Factor/genetics/*metabolism ; Gene Expression Profiling ; Humans ; Inflammation/*genetics ; Interleukin-1alpha/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/metabolism ; NF-kappa B/metabolism ; Phenotype ; Promoter Regions, Genetic ; Tumor Necrosis Factor Receptor-Associated Peptides and ; Proteins/genetics/metabolism ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-02-24
    Description: Pancreatic beta cells lower insulin release in response to nutrient depletion. The question of whether starved beta cells induce macroautophagy, a predominant mechanism maintaining energy homeostasis, remains poorly explored. We found that, in contrast to many mammalian cells, macroautophagy in pancreatic beta cells was suppressed upon starvation. Instead, starved beta cells induced lysosomal degradation of nascent secretory insulin granules, which was controlled by protein kinase D (PKD), a key player in secretory granule biogenesis. Starvation-induced nascent granule degradation triggered lysosomal recruitment and activation of mechanistic target of rapamycin that suppressed macroautophagy. Switching from macroautophagy to insulin granule degradation was important to keep insulin secretion low upon fasting. Thus, beta cells use a PKD-dependent mechanism to adapt to nutrient availability and couple autophagy flux to secretory function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goginashvili, Alexander -- Zhang, Zhirong -- Erbs, Eric -- Spiegelhalter, Coralie -- Kessler, Pascal -- Mihlan, Michael -- Pasquier, Adrien -- Krupina, Ksenia -- Schieber, Nicole -- Cinque, Laura -- Morvan, Joelle -- Sumara, Izabela -- Schwab, Yannick -- Settembre, Carmine -- Ricci, Romeo -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):878-82. doi: 10.1126/science.aaa2628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM, CNRS, Universite de Strasbourg, 67404 Illkirch, France. ; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany. ; Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy. ; Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy. Medical Genetics, Department of Medical and Translational Science Unit, Federico II University, Via Pansini 5, 80131 Naples, Italy. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM, CNRS, Universite de Strasbourg, 67404 Illkirch, France. Nouvel Hopital Civil, Laboratoire de Biochimie et de Biologie Moleculaire, Universite de Strasbourg, 67091 Strasbourg, France. romeo.ricci@igbmc.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cells, Cultured ; Fasting ; Humans ; Insulin/*secretion ; Insulin-Secreting Cells/*physiology/secretion/ultrastructure ; Mice ; Mice, Mutant Strains ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 13/genetics ; Protein Kinase C/physiology ; Secretory Vesicles/*physiology/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-06-20
    Description: During clathrin-mediated endocytosis (CME), plasma membrane regions are internalized to retrieve extracellular molecules and cell surface components. Whether endocytosis occurs by direct clathrin assembly into curved lattices on the budding vesicle or by initial recruitment to flat membranes and subsequent reshaping has been controversial. To distinguish between these models, we combined fluorescence microscopy and electron tomography to locate endocytic sites and to determine their coat and membrane shapes during invagination. The curvature of the clathrin coat increased, whereas the coated surface area remained nearly constant. Furthermore, clathrin rapidly exchanged at all stages of CME. Thus, coated vesicle budding appears to involve bending of a dynamic preassembled clathrin coat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Avinoam, Ori -- Schorb, Martin -- Beese, Carsten J -- Briggs, John A G -- Kaksonen, Marko -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1369-72. doi: 10.1126/science.aaa9555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Electron Microscopy Core Facility, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. marko.kaksonen@unige.ch john.briggs@embl.de. ; Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. marko.kaksonen@unige.ch john.briggs@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089517" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Clathrin/*chemistry ; Coated Pits, Cell-Membrane/*chemistry ; Electron Microscope Tomography ; *Endocytosis ; Fluorescence Recovery After Photobleaching ; Humans ; Microscopy, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-04-04
    Description: By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katajisto, Pekka -- Dohla, Julia -- Chaffer, Christine L -- Pentinmikko, Nalle -- Marjanovic, Nemanja -- Iqbal, Sharif -- Zoncu, Roberto -- Chen, Walter -- Weinberg, Robert A -- Sabatini, David M -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):340-3. doi: 10.1126/science.1260384. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu. ; Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Broad Institute, Cambridge, MA 02142, USA. The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837514" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aging/genetics/*physiology ; Cell Division/genetics/*physiology ; Cell Line ; Humans ; Mitochondria/*physiology/ultrastructure ; Stem Cells/*physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-10-13
    Description: The shortage of organs for transplantation is a major barrier to the treatment of organ failure. Although porcine organs are considered promising, their use has been checked by concerns about the transmission of porcine endogenous retroviruses (PERVs) to humans. Here we describe the eradication of all PERVs in a porcine kidney epithelial cell line (PK15). We first determined the PK15 PERV copy number to be 62. Using CRISPR-Cas9, we disrupted all copies of the PERV pol gene and demonstrated a 〉1000-fold reduction in PERV transmission to human cells, using our engineered cells. Our study shows that CRISPR-Cas9 multiplexability can be as high as 62 and demonstrates the possibility that PERVs can be inactivated for clinical application of porcine-to-human xenotransplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Luhan -- Guell, Marc -- Niu, Dong -- George, Haydy -- Lesha, Emal -- Grishin, Dennis -- Aach, John -- Shrock, Ellen -- Xu, Weihong -- Poci, Jurgen -- Cortazio, Rebeca -- Wilkinson, Robert A -- Fishman, Jay A -- Church, George -- P50 HG005550/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1101-4. doi: 10.1126/science.aad1191. Epub 2015 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. eGenesis Biosciences, Boston, MA 02115, USA. gchurch@genetics.med.harvard.edu luhan.yang@egenesisbio.com. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. eGenesis Biosciences, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. ; Transplant Infectious Disease and Compromised Host Program, Massachusetts General Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26456528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CRISPR-Cas Systems ; Cell Line ; Endogenous Retroviruses/*genetics ; Epithelial Cells/virology ; Gene Dosage ; Gene Targeting/*methods ; Genes, pol ; HEK293 Cells ; Humans ; Kidney/virology ; Molecular Sequence Data ; Retroviridae Infections/*prevention & control/transmission/virology ; Swine/*virology ; Transplantation, Heterologous/*methods ; *Virus Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-02-24
    Description: Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. We found that in melanocytes, CPDs are generated for 〉3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These "dark CPDs" constitute the majority of CPDs and include the cytosine-containing CPDs that initiate UV-signature C--〉T mutations. Dark CPDs arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but induces CPDs by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically generated excited electronic states are relevant to mammalian biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Premi, Sanjay -- Wallisch, Silvia -- Mano, Camila M -- Weiner, Adam B -- Bacchiocchi, Antonella -- Wakamatsu, Kazumasa -- Bechara, Etelvino J H -- Halaban, Ruth -- Douki, Thierry -- Brash, Douglas E -- 2 P50 CA121974/CA/NCI NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- P30 DK34989/DK/NIDDK NIH HHS/ -- P50 CA121974/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):842-7. doi: 10.1126/science.1256022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. ; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo 05513-970 SP, Brazil. ; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. ; Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan. ; Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo 05513-970 SP, Brazil. Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo 09972-270 SP, Brazil. ; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA. ; INAC/LCIB UMR-E3 CEA-UJF/Commissariat a l'Energie Atomique (CEA), 38054 Grenoble Cedex 9, France. ; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA. douglas.brash@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700512" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cytosine/metabolism ; DNA/chemistry/genetics/*radiation effects ; DNA Damage/*genetics ; Energy Transfer ; Humans ; Melanins/chemistry/*metabolism ; Melanocytes/metabolism/*radiation effects ; Melanoma/*genetics ; Mice ; Mice, Inbred C57BL ; Mutagenesis ; Mutation ; Neoplasms, Radiation-Induced/*genetics ; Photons ; Pyrimidine Dimers/*metabolism ; Receptor, Melanocortin, Type 1/genetics ; Skin Neoplasms/*genetics ; Sunlight/adverse effects ; Thymine/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-02-07
    Description: The phenotypic consequences of expression quantitative trait loci (eQTLs) are presumably due to their effects on protein expression levels. Yet the impact of genetic variation, including eQTLs, on protein levels remains poorly understood. To address this, we mapped genetic variants that are associated with eQTLs, ribosome occupancy (rQTLs), or protein abundance (pQTLs). We found that most QTLs are associated with transcript expression levels, with consequent effects on ribosome and protein levels. However, eQTLs tend to have significantly reduced effect sizes on protein levels, which suggests that their potential impact on downstream phenotypes is often attenuated or buffered. Additionally, we identified a class of cis QTLs that affect protein abundance with little or no effect on messenger RNA or ribosome levels, which suggests that they may arise from differences in posttranslational regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507520/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507520/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Battle, Alexis -- Khan, Zia -- Wang, Sidney H -- Mitrano, Amy -- Ford, Michael J -- Pritchard, Jonathan K -- Gilad, Yoav -- F32 HG006972/HG/NHGRI NIH HHS/ -- F32HG006972/HG/NHGRI NIH HHS/ -- GM077959/GM/NIGMS NIH HHS/ -- HG007036/HG/NHGRI NIH HHS/ -- MH084703/MH/NIMH NIH HHS/ -- R01 GM077959/GM/NIGMS NIH HHS/ -- R01 MH084703/MH/NIMH NIH HHS/ -- U01 HG007036/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):664-7. doi: 10.1126/science.1260793. Epub 2014 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. ; MS Bioworks, LLC, 3950 Varsity Drive, Ann Arbor, MI 48108, USA. ; Department of Genetics, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Department of Biology, Stanford University, Stanford, CA 94305, USA. pritch@stanford.edu gilad@uchicago.edu. ; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. pritch@stanford.edu gilad@uchicago.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657249" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Flanking Region ; 5' Flanking Region ; Cell Line ; Exons ; *Gene Expression Regulation ; *Genetic Variation ; Humans ; Phenotype ; Protein Biosynthesis/*genetics ; *Quantitative Trait Loci ; RNA, Messenger/*genetics ; Ribosomes/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-02-26
    Description: Voltage-gated CaV1.2 channels (L-type calcium channel alpha1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca(2+)), voltage-dependent conformational change (VDeltaC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca(2+)-permeable channel, enabling independent control of localized Ca(2+) and VDeltaC signals. This revealed an unexpected dual requirement: Ca(2+) must first mobilize actin-bound Ca(2+)/calmodulin-dependent protein kinase II, freeing it for subsequent VDeltaC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca(2+) preceded VDeltaC by 10 to 20 seconds. CaV1.2 VDeltaC synergistically augmented signaling by N-methyl-d-aspartate receptors. Furthermore, VDeltaC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VDeltaC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Boxing -- Tadross, Michael R -- Tsien, Richard W -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):863-7. doi: 10.1126/science.aad3647.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. ; Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. tadrossm@janelia.hhmi.org. ; Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels, L-Type/chemistry/*metabolism ; *Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/*metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; *Gene Expression Regulation ; HEK293 Cells ; Hippocampus/cytology ; Humans ; Long QT Syndrome/genetics/metabolism ; Neuronal Plasticity/*genetics ; Neurons/drug effects/*metabolism ; Nimodipine/pharmacology ; Protein Conformation/drug effects ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synapses/metabolism ; Syndactyly/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-04-30
    Description: Noncoding variants play a central role in the genetics of complex traits, but we still lack a full understanding of the molecular pathways through which they act. We quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65% of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas the remaining eQTLs are enriched in transcribed regions. Using a novel method, we also detected 2893 splicing QTLs, most of which have little or no effect on gene-level expression. These splicing QTLs are major contributors to complex traits, roughly on a par with variants that affect gene expression levels. Our study provides a comprehensive view of the mechanisms linking genetic variation to variation in human gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Yang I -- van de Geijn, Bryce -- Raj, Anil -- Knowles, David A -- Petti, Allegra A -- Golan, David -- Gilad, Yoav -- Pritchard, Jonathan K -- R01MH084703/MH/NIMH NIH HHS/ -- R01MH101825/MH/NIMH NIH HHS/ -- U01HG007036/HG/NHGRI NIH HHS/ -- U54CA149145/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):600-4. doi: 10.1126/science.aad9417. Epub 2016 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, CA, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL, USA. ; Department of Computer Science, Stanford University, Stanford, CA, USA. Department of Radiology, Stanford University, Stanford, CA, USA. ; Genome Institute, Washington University in St. Louis, St. Louis, MO, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL, USA. gilad@uchicago.edu pritch@stanford.edu. ; Department of Genetics, Stanford University, Stanford, CA, USA. Department of Biology, Stanford University, Stanford, CA, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. gilad@uchicago.edu pritch@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27126046" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromatin/metabolism ; *Gene Expression Regulation ; *Genetic Variation ; Genome-Wide Association Study ; Humans ; Immune System Diseases/*genetics ; Lymphocytes/immunology ; Phenotype ; Polymorphism, Single Nucleotide ; *Quantitative Trait Loci ; RNA Splicing/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-01-23
    Description: Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soucie, Erinn L -- Weng, Ziming -- Geirsdottir, Laufey -- Molawi, Kaaweh -- Maurizio, Julien -- Fenouil, Romain -- Mossadegh-Keller, Noushine -- Gimenez, Gregory -- VanHille, Laurent -- Beniazza, Meryam -- Favret, Jeremy -- Berruyer, Carole -- Perrin, Pierre -- Hacohen, Nir -- Andrau, J-C -- Ferrier, Pierre -- Dubreuil, Patrice -- Sidow, Arend -- Sieweke, Michael H -- P01AG036695/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):aad5510. doi: 10.1126/science.aad5510. Epub 2016 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Centre de Recherche en Cancerologie de Marseille, INSERM (U1068), CNRS (U7258), Universite Aix-Marseille (UM105), Marseille, France. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu. ; Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, 10 Robert-Rossle-Strasse, 13125 Berlin, Germany. ; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Institut de Genetique Moleculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende, 34293 Montpellier, France. ; Centre de Recherche en Cancerologie de Marseille, INSERM (U1068), CNRS (U7258), Universite Aix-Marseille (UM105), Marseille, France. ; Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA. Department of Genetics, Stanford University, Stanford, CA 94305, USA. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, 10 Robert-Rossle-Strasse, 13125 Berlin, Germany. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26797145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Cell Lineage/*genetics ; Cell Proliferation ; Cells, Cultured ; Down-Regulation ; Embryonic Stem Cells/*cytology ; Enhancer Elements, Genetic/*physiology ; *Gene Expression Regulation ; Gene Regulatory Networks ; Macrophages/*cytology ; MafB Transcription Factor/metabolism ; Mice ; Proto-Oncogene Proteins c-maf/metabolism ; Single-Cell Analysis ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-01-28
    Description: Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delatte, Benjamin -- Wang, Fei -- Ngoc, Long Vo -- Collignon, Evelyne -- Bonvin, Elise -- Deplus, Rachel -- Calonne, Emilie -- Hassabi, Bouchra -- Putmans, Pascale -- Awe, Stephan -- Wetzel, Collin -- Kreher, Judith -- Soin, Romuald -- Creppe, Catherine -- Limbach, Patrick A -- Gueydan, Cyril -- Kruys, Veronique -- Brehm, Alexander -- Minakhina, Svetlana -- Defrance, Matthieu -- Steward, Ruth -- Fuks, Francois -- R01 GM089992/GM/NIGMS NIH HHS/ -- T32 CA117846/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):282-5. doi: 10.1126/science.aac5253.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ; Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA. ; Laboratory of Molecular Biology of the Gene, Faculty of Sciences, Universite Libre de Bruxelles, Gosselies, Belgium. ; Institut fur Molekularbiologie und Tumorforschung, Philipps-Universitat Marburg, Marburg, Germany. ; Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA. ; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ffuks@ulb.ac.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816380" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*abnormalities/metabolism ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; Dioxygenases/genetics/metabolism ; Drosophila melanogaster/genetics/*growth & development/metabolism ; Methylation ; RNA, Messenger/genetics/*metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-01-28
    Description: Genes encoding human beta-type globin undergo a developmental switch from embryonic to fetal to adult-type expression. Mutations in the adult form cause inherited hemoglobinopathies or globin disorders, including sickle cell disease and thalassemia. Some experimental results have suggested that these diseases could be treated by induction of fetal-type hemoglobin (HbF). However, the mechanisms that repress HbF in adults remain unclear. We found that the LRF/ZBTB7A transcription factor occupies fetal gamma-globin genes and maintains the nucleosome density necessary for gamma-globin gene silencing in adults, and that LRF confers its repressive activity through a NuRD repressor complex independent of the fetal globin repressor BCL11A. Our study may provide additional opportunities for therapeutic targeting in the treatment of hemoglobinopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masuda, Takeshi -- Wang, Xin -- Maeda, Manami -- Canver, Matthew C -- Sher, Falak -- Funnell, Alister P W -- Fisher, Chris -- Suciu, Maria -- Martyn, Gabriella E -- Norton, Laura J -- Zhu, Catherine -- Kurita, Ryo -- Nakamura, Yukio -- Xu, Jian -- Higgs, Douglas R -- Crossley, Merlin -- Bauer, Daniel E -- Orkin, Stuart H -- Kharchenko, Peter V -- Maeda, Takahiro -- R01 AI084905/AI/NIAID NIH HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R56 DK105001/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):285-9. doi: 10.1126/science.aad3312.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. ; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia. ; Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK. ; Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan. ; Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan. Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA. peter.kharchenko@post.harvard.edu tmaeda@partners.org. ; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. peter.kharchenko@post.harvard.edu tmaeda@partners.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816381" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/genetics ; Animals ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Chromatin/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Erythroblasts/cytology ; Erythropoiesis/genetics ; Fetal Hemoglobin/*genetics ; *Gene Silencing ; Humans ; Mice ; Mice, Knockout ; Nuclear Proteins/genetics/*metabolism ; Repressor Proteins/genetics/*metabolism ; Sequence Deletion ; Thalassemia/genetics ; Transcription Factors/genetics/*metabolism ; gamma-Globins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-04-16
    Description: Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, Christopher D -- Siregar, Josephine E -- Mollard, Vanessa -- Vega-Rodriguez, Joel -- Syafruddin, Din -- Matsuoka, Hiroyuki -- Matsuzaki, Motomichi -- Toyama, Tomoko -- Sturm, Angelika -- Cozijnsen, Anton -- Jacobs-Lorena, Marcelo -- Kita, Kiyoshi -- Marzuki, Sangkot -- McFadden, Geoffrey I -- AI031478/AI/NIAID NIH HHS/ -- RR00052/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):349-53. doi: 10.1126/science.aad9279.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. gim@unimelb.edu.au deang@unimelb.edu.au. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. ; Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Parasitology, Faculty of Medicine, Hasanuddin University, Jalan Perintis Kemerdekaan Km10, Makassar 90245, Indonesia. ; Division of Medical Zoology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/*parasitology ; Antimalarials/*pharmacology/therapeutic use ; Atovaquone/*pharmacology/therapeutic use ; Cell Line ; Cytochromes b/*genetics ; Drug Resistance/*genetics ; Genes, Mitochondrial/genetics ; Humans ; Life Cycle Stages/drug effects/genetics ; Malaria/drug therapy/*parasitology/transmission ; Male ; Mice ; Mitochondria/*genetics ; Mutation ; Plasmodium berghei/*drug effects/genetics/growth & development ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-11-07
    Description: In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Notta, Faiyaz -- Zandi, Sasan -- Takayama, Naoya -- Dobson, Stephanie -- Gan, Olga I -- Wilson, Gavin -- Kaufmann, Kerstin B -- McLeod, Jessica -- Laurenti, Elisa -- Dunant, Cyrille F -- McPherson, John D -- Stein, Lincoln D -- Dror, Yigal -- Dick, John E -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2016 Jan 8;351(6269):aab2116. doi: 10.1126/science.aab2116. Epub 2015 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ; Wellcome Trust, Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK. ; Ecole Polytechnique Federale de Lausanne, LMC, Station 12, Lausanne, CH-1015, Switzerland. ; Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ; The Hospital for Sick Children Research Institute, University of Toronto, Ontario, Canada. ; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. jdick@uhnres.utoronto.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26541609" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Antigens, CD34/analysis ; Cell Lineage/genetics/*physiology ; Cell Separation ; Cells, Cultured ; Erythroid Cells/*cytology ; Fetal Blood/cytology ; Gene Expression Profiling ; Hematopoiesis/genetics/*physiology ; Humans ; Liver/cytology/embryology ; Megakaryocyte Progenitor Cells/*cytology ; Megakaryocytes/*cytology ; Multipotent Stem Cells/cytology ; Myeloid Cells/*cytology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1980-11-07
    Description: An analog of luteinizing hormone-releasing hormone containing a gamma-lactam as a conformational constraint has been prepared with the use of a novel cyclization of a methionine sulfonium salt. The analog is more active as a luteinizing hormone-releasing hormone agonist that the parent hormone, and provides evidence for a bioactive conformation containing a beta-turn.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freidinger, R M -- Veber, D F -- Perlow, D S -- Brooks, J R -- Saperstein, R -- New York, N.Y. -- Science. 1980 Nov 7;210(4470):656-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7001627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Assay ; Cells, Cultured ; Female ; *Gonadotropin-Releasing Hormone/analogs & derivatives ; Hydrogen Bonding ; Lactams ; Protein Conformation ; Rats ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1980-11-21
    Description: A hormonally defined medium was used to isolate a homogeneous epithelioid cell population from canine kidney. Monolayers of these cells form domes, an indication of active ion transport, and this process is inhibited by ouabain. This technique allows the isolation of primary cultures of renal epithelial cells, free of fibroblasts, for the characterization of biochemical and physiological properties related to renal function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jefferson, D M -- Cobb, M H -- Gennaro, J F Jr -- Scott, W N -- New York, N.Y. -- Science. 1980 Nov 21;210(4472):912-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7434005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport, Active ; Cell Adhesion ; Cells, Cultured ; Culture Media ; Dogs ; Epithelium/metabolism ; Female ; Kidney/*cytology ; Male ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-07-11
    Description: The survival of isolated rat islets transplanted into diabetic mice was prolonged markedly by maintaining the rat islets in vitro at 24 degrees C for 7 days before transplantation and administering to the recipients a single injection of antiserum to mouse and rat lymphocytes shortly before transplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lacy, P E -- Davie, J M -- Finke, E H -- New York, N.Y. -- Science. 1980 Jul 11;209(4453):283-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6770465" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/analysis ; Cell Survival ; Cells, Cultured ; Diabetes Mellitus, Experimental/*therapy ; *Immunosuppression ; *Islets of Langerhans Transplantation ; Lymphocytes/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Rats ; Transplantation, Heterologous ; Transplantation, Isogeneic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1980-02-01
    Description: A 200-fold inhibition in the titer of infectious vesicular stomatitis virus (VSV) was produced in cultures of Ly cells treated with 30 reference units of interferon per milliliter. Virus particle production, as measured by VSV particle-associated transcriptase, or nucleocapsid protein was inhibited by a maximum of tenfold. The glycoprotein and membrane protein content was reduced in VSV derived from interferon-treated cells. Thus interferon-treated cells may have produced VSV particles with low infectivity, which may be related to the reduced amount of glycoprotein incorporated into such particles. These findings resemble those reported in interferon-treated cells infected with murine leukemia viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maheshwari, R K -- Jay, F T -- Friedman, R M -- New York, N.Y. -- Science. 1980 Feb 1;207(4430):540-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6243416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Defective Viruses/growth & development ; Glycoproteins/*biosynthesis ; Interferons/*pharmacology ; Membrane Proteins/*biosynthesis ; Mice ; RNA, Viral/metabolism ; Vesicular stomatitis Indiana virus/*growth & development ; Viral Proteins/*biosynthesis ; Virus Replication/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-07-25
    Description: Intracellular recordings from voltage-clamped mouse spinal neurons in tissue culture were used to study the membrane mechanisms underlying inhibitory responses to gamma-aminobutyric acid and the (-) isomer of pentobarbital. Fluctuation analysis suggested that both substances activated ion channels in the membranes. However, the channels activated by pentobarbital remained open five times longer than those activated by gamma-aminobutyric acid.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mathers, D A -- Barker, J L -- New York, N.Y. -- Science. 1980 Jul 25;209(4455):507-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6248961" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/drug effects/physiology ; Cells, Cultured ; Ion Channels/drug effects/*physiology ; Membrane Potentials/drug effects ; Mice ; Neurons/drug effects/*physiology ; Pentobarbital/*pharmacology ; Spinal Cord/*physiology ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-02-22
    Description: The life-span in vitro and other proliferative characteristics of a strain of endothelial cells cloned from the aorta of a fetal calf were examined. Cultures of these cells had a replicative life-span of approximately 80 cumulative population doublings. Growth rates in the logarithmic phase and plateau densities decreased as the cumulative population-doubling level increased. After approximately 65 percent of the life-span of a culture was completed, the percentage of cells that incorporated [3H]thymidine during a 24-hour labeling period began to decrease rapidly. The cells expressed factor VIII antigen and their intercellular borders were stainable with silver nitrate throughout the life-span of each culture. Average cellular attachment size increased more than threefold between cumulative population-doubling levels 41 and 80. The facility with which cloned strains of endothelial cells can be isolated should encourage further exploitation of this important cell culture model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mueller, S N -- Rosen, E M -- Levine, E M -- New York, N.Y. -- Science. 1980 Feb 22;207(4433):889-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7355268" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/cytology/embryology ; Cattle ; Cell Division ; *Cell Survival ; Cells, Cultured ; Clone Cells/*physiology ; Endothelium/*cytology ; Karyotyping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-09-19
    Description: Transfection of cultured monkey kidney cells with recombinant DNA constructed with a cloned Escherichia coli gene that codes for xanthine-guanine phosphoribosyltransferase and several different SV40 DNA-based vectors, results in the synthesis of readily measurable quantities of the bacterial enzyme. Moreover, the physiological defect in purine nucleotide synthesis characteristic of human Lesch-Nyhan cells can be overcome by the introduction of the bacterial gene into these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulligan, R C -- Berg, P -- New York, N.Y. -- Science. 1980 Sep 19;209(4463):1422-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6251549" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cloning, Molecular/methods ; DNA, Bacterial/*genetics ; *DNA, Recombinant ; Escherichia coli ; *Genes ; Haplorhini ; Humans ; Hypoxanthine Phosphoribosyltransferase/genetics ; Lesch-Nyhan Syndrome/*genetics ; Pentosyltransferases/*genetics ; Simian virus 40/genetics ; Transduction, Genetic ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-06-06
    Description: Dissociated embryonic rat myocardial cells and chick myocardial cells labeled with radioactive isotope coaggregate and establish intercellular junctions. These bispecific cells reconstruct synchronously beating myocardial tissue within 24 hours of culture.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nag, A C -- Cheng, M -- New York, N.Y. -- Science. 1980 Jun 6;208(4448):1150-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7375923" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; *Cell Aggregation ; Cells, Cultured ; Chickens ; Heart/*embryology ; Intercellular Junctions/ultrastructure ; Mosaicism ; Myocardial Contraction ; Myocardium/*cytology ; Rats ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson-Rees, W A -- Flandermeyer, R R -- Daniels, D W -- New York, N.Y. -- Science. 1980 Aug 8;209(4457):719-20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7394535" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromosome Banding ; HLA Antigens/analysis ; HeLa Cells/*cytology/immunology ; Humans ; Karyotyping ; Kidney/*cytology/immunology ; Metaphase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-09-12
    Description: The simian guartan malaria parasite Plasmodium inui (OS strain) was cultured in a continuous flow system with rhesus monkey erythrocytes and RPMI 1640nmedium supplemented with Hepes buffer and rhesus serum. Over a 10-week period, the growth of the parasite permitted a 61,000-fold cumulative dilution of the original inoculum. After 5 weeks in culture, the parasites were still infective to the monkey Saimiri sciureus and to Anopheles freeborni mosquitoes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen-Dinh, P -- Campbell, C C -- Collins, W E -- New York, N.Y. -- Science. 1980 Sep 12;209(4462):1249-51.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6773146" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Erythrocytes/*parasitology ; Haplorhini/*parasitology ; Larva ; Macaca/*parasitology ; Plasmodium/cytology/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1980-10-31
    Description: Hybrid cells formed between human lymphocytes and mouse myeloma cells produce human immunoglobulin in culture. Stable antibody-producing cell lines can be isolated after multiple cycles of low-density passage, cloning, and continued selection for immunoglobulin production. The origin and characteristics of a hybrid of human and mouse cells is described. This hybrid produces high concentrations (8.3 micrograms per milliliter) of human immunoglobulin M reactive with the terminal disaccharide of the Forssman glycolipid. These findings point to the potential use of human-mouse hybrid cells as a source of human monoclonal antibodies for therapeutic and diagnostic purposes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nowinski, R -- Berglund, C -- Lane, J -- Lostrom, M -- Bernstein, I -- Young, W -- Hakomori, S I -- Hill, L -- Cooney, M -- New York, N.Y. -- Science. 1980 Oct 31;210(4469):537-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7423202" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibodies ; Antibody Formation ; Antibody Specificity ; Cells, Cultured ; Clone Cells/immunology ; *Forssman Antigen ; Humans ; Hybrid Cells/immunology ; Immunoglobulin M/biosynthesis ; Mice
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1980-07-11
    Description: The human genes for growth hormone (GH), chorionic somatomammotropin (CSH), and a third growth hormone-like gene (GHL) have been located on chromosome 17 in humans. DNA fragments of 2.6, 2.8, and 9.5 kilobase pairs containing GH, CSH, and GHL, respectively, were identified in human genomic DNA, and a 7.5-kilobase DNA fragment related to growth hormone DNA sequences was found in mouse cells. In somatic hybrids of human and mouse cells containing reduced numbers of human chromosomes, but a normal complement of mouse chromosomes, the mouse, 7.5-kolobase DNA fragment was always present, whereas the 2.6-, 2.8-, and 9.5-kilobase human fragments were present only when human chromosome 17 was also present.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owerbach, D -- Rutter, W J -- Martial, J A -- Baxter, J D -- Shows, T B -- New York, N.Y. -- Science. 1980 Jul 11;209(4453):289-92.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7384802" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; *Chromosomes, Human, 16-18 ; *DNA/metabolism ; *Genes ; Growth Hormone/*biosynthesis ; Humans ; Hybrid Cells/metabolism ; Mice ; Placental Lactogen/*biosynthesis ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-09-19
    Description: Mutants of animal viruses can be isolated in bacteria by recombinant DNA methods. Since no viral functions are required for propagation of recombinants in bacteria, viral mutants with lethal changes in cis- or trans-acting elements can be isolated, as well as partially or conditionally defective mutants. In the cases of viruses with small DNA genomes, such as the tumorigenic simian virus 40 (SV40), the entire viral DNA can be inserted into the bacterial plasmid pBR322 and cloned in Escherichia coli. Recombinant plasmids with a single copy of SV40 DNA cause morphological transformation of mouse cells in culture with the same efficiency as SV40 DNA isolated from virus-infected monkey cells, but the recombinant DNA is noninfectious and replicates poorly in permissive cells. However, SV40 DNA excised from the plasmid replicates as well as authentic viral DNA and is fully infectious. SV40 mutants with small deletions or base substitutions have been isolated by in vitro site-specific or random local mutagenesis of recombinant DNA followed by cloning in E. coli. Many of the mutants thus isolated are defective in specific viral functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peden, K W -- Pipas, J M -- Pearson-White, S -- Nathans, D -- New York, N.Y. -- Science. 1980 Sep 19;209(4463):1392-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6251547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Neoplasm/*genetics ; Antigens, Viral/genetics ; Cell Transformation, Viral ; Cells, Cultured ; Chromosome Deletion ; DNA, Recombinant ; DNA, Viral/*genetics ; Escherichia coli ; *Mutation ; Simian virus 40/*genetics ; Viral Proteins/*genetics ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-04-11
    Description: The activities of cyclic nucleotide phosphohydrolase, an enzyme marker for oligodendrocytes, and glutamine synthetase, an enzyme marker for astrocytes, were studied at early (21 to 26) and late (82 to 88) cell passages. The activity of cyclic nucleotide phosphohydrolase was markedly high and that of glutamine synthetase was low in the early passages, but this relation was reversed in the late passages. These findings suggest a "transdifferentiation" of C6 glial cells with passage in culture.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, K K -- Norenberg, M D -- Vernadakis, A -- New York, N.Y. -- Science. 1980 Apr 11;208(4440):179-81.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6102413" target="_blank"〉PubMed〈/a〉
    Keywords: 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism ; Animals ; Astrocytes/enzymology ; *Cell Differentiation ; Cells, Cultured ; Glutamate-Ammonia Ligase/metabolism ; Neuroglia/*enzymology ; Oligodendroglia/enzymology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-08-08
    Description: The growth of the MCF-7 human breast cancer cell line is unresponsive to the presence of estrogen in culture media. Paradoxically, in nude mice, growth of these cells and formation of solid tumors are dependent on estrogen. Tumors fail to develop in ovariectomized mice, but do develop in intact mice and in ovariectomized mice given estrogen. Primary cultures derived from MCF-7 tumors revert to unresponsiveness to estrogen. However, when these cultures are again transplanted into nude mice, estrogen is required for tumor formation. The continuous culture, the solid tumor, and the primary cultures therefrom have similar estrogen-binding capacities and affinities. These results indicate that mammary carcinoma cell growth in vivo is subject to inhibition that can be overcome by estrogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shafie, S M -- New York, N.Y. -- Science. 1980 Aug 8;209(4457):701-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6994231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/metabolism/*physiopathology ; Castration ; Cell Division/drug effects ; Cell Line ; Cytosol/metabolism ; Estradiol/metabolism/*pharmacology ; Female ; Humans ; Insulin/pharmacology ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Receptors, Estrogen/metabolism ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1980-08-29
    Description: Several subpopulations of cells were isolated from trypsin-dissociated embryonic (14 days) chick retinas. The cells of each subpopulation differed in associative behavior measured by cell aggregation and stationary culture assays and in glycoproteins that contain glucosamine. Freeze-fracture analysis showed that these populations also differed in intramembrane particle content.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheffield, J B -- Pressman, D -- Lynch, M -- New York, N.Y. -- Science. 1980 Aug 29;209(4460):1043-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7403867" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Cell Fractionation/methods ; Cell Membrane/ultrastructure ; Cells, Cultured ; Chick Embryo ; Membrane Proteins/metabolism ; Retina/cytology/*embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-11-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, M -- New York, N.Y. -- Science. 1980 Nov 7;210(4470):618.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6159683" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Drug Industry ; Fibroblasts/metabolism ; Humans ; Interferons/*biosynthesis ; Male ; National Institutes of Health (U.S.) ; Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1980-11-07
    Description: Monolayer cultures of rat aorta smooth muscle cells synthesized the anti-aggregatory substance prostacyclin via the cyclooxygenase pathway from 14C-labeled arachidonic acid. The product was identified both by bioassay and by mass spectrometry. Labeled cells produced prostacyclin only when exposed to the initiator thrombin: treatment with therapeutic concentrations of aspirin (0.2 millimolar) for 30 minutes completely destroyed the cells' ability to synthesize prostacyclin. Prostacyclin synthesis from exogenous arachidonic acid recovered fully within 1 to 2 hours by a cycloheximide-sensitive process. Thrombin responsivness, which was permanently impaired in confluent nondividing cultures, recovered substantially and within 24 hours only when cells were stimulated to divide by subculturing. These results indicate that resting vascular cells can rapidly synthesize new cyclooxygenase, but that aspirin destroys additional components of the prostacyclin system which can only be replaced during cell division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whiting, J -- Salata, K -- Bailey, J M -- New York, N.Y. -- Science. 1980 Nov 7;210(4470):663-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6776627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/*drug effects ; Arachidonic Acids/metabolism ; Aspirin/*pharmacology ; Cells, Cultured ; Cyclooxygenase Inhibitors ; Epoprostenol/*biosynthesis ; Muscle, Smooth/drug effects ; Prostaglandins/*biosynthesis ; Rats ; Thrombin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1980-10-17
    Description: The genotoxicity of the antihypertensive agents hydralazine and dihydralazine was tested in mammalian cells and bacteria. Both drugs elicited DNA repair in rat hepatocyte primary cultures. In the Ames test, both with and without an S-9 fraction, hydralazine was mutagenic in strains TA100 and TA1537, whereas dihydralazine was weakly mutagenic in strain TA1537. These findings support the observation that hydralazine is carcinogenic in mice. The carcinogenicity of many chemicals results from interaction with DNA. Since these studies demonstrate that hydralazine and dihydralazine damage DNA in mammalian cells, these drugs should be viewed as potential human carcinogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, G M -- Mazue, G -- McQueen, C A -- Shimada, T -- N 01-CP-55705/CP/NCI NIH HHS/ -- New York, N.Y. -- Science. 1980 Oct 17;210(4467):329-30.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7423193" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Biotransformation ; *Carcinogens ; Cells, Cultured ; DNA Repair/*drug effects ; Dihydralazine/*toxicity ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Hydralazine/*analogs & derivatives/*toxicity ; Liver/metabolism ; *Mutagens ; Rats ; Salmonella typhi/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1980-01-11
    Description: A strain of type 2 human rotavirus (Wa) was grown to relatively high titer through 14 passages in primary cultures of African green monkey kidney (AGMK) cells. This passage series was initiated with virus that had been passaged 11 times serially in newborn gnotobiotic piglets. In contrast, virus present in the stool of patient Wa as well as virus from the first, second, or third passage in piglets could not be propagated successfully in African green monkey kidney cells. Prior to each passage in cell culture, the virus was treated with trypsin and the inoculated cultures were centrifuged at low speed. Cultivation of a type 2 human rotavirus should aid attempts to characterize this virus and to develop a means of immunoprophylaxis for a serious diarrheal disease of human infants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyatt, R G -- James, W D -- Bohl, E H -- Theil, K W -- Saif, L J -- Kalica, A R -- Greenberg, H B -- Kapikian, A Z -- Chanock, R M -- New York, N.Y. -- Science. 1980 Jan 11;207(4427):189-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6243190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Viral/analysis ; Cells, Cultured ; Diarrhea, Infantile/microbiology ; Germ-Free Life ; Haplorhini ; Humans ; Infant ; RNA Viruses/*growth & development ; Rotavirus/*growth & development/immunology ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1981-11-20
    Description: Cells of the homogeneous hybrid line neuroblastoma x glioma (NG108-15) have many neuronal properties. Immunocytochemical tests show that they contain both immunoreactive renin and angiotensin; direct radioimmunoassays show that they are positive for renin, angiotensin I, and angiotensin II; enzymatic assays show that they contain angiotensinogen and converting enzyme as well. The renin appears to be present in an enzymatically inactive form that can be activated by trypsin and then blocked by antiserum to purified mouse submaxillary renin. Renin concentration and activity are increased by enhancing cellular differentiation with dibutyryl cyclic adenosine monophosphate or by serum withdrawal. These findings demonstrate a complete renin-angiotensin system within these neuron-like cells, and suggest that activation of intracellular renin could generate angiotensin II.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fishman, M C -- Zimmerman, E A -- Slater, E E -- HL-21247/HL/NHLBI NIH HHS/ -- HL-24105/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1981 Nov 20;214(4523):921-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6272392" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensin I/*analysis ; Angiotensin II/*analysis ; Angiotensins/*analysis ; Animals ; Cell Line ; Cricetinae ; Glioma/*metabolism ; Hybrid Cells/*metabolism ; Mice ; Neuroblastoma/*metabolism ; Peptidyl-Dipeptidase A/metabolism ; Radioimmunoassay ; Rats ; Renin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1981-04-03
    Description: Human malignant cancer tumors grafted into nude mice produce tumors containing both human cancer cells and the host's stromal cells. After short-term propagation of these tumors in vitro, the murine mesenchymal cells appear transformed and are tumorigenic in nude mice. However, established human cancer cell lines fail to similarly after adjacent murine stromal cells when used to produce tumors in nude mice. These experiments suggest that cancer cells may recruit normal cells to become malignant, qualifying the view of the clonal (unicellular) origin of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldenberg, D M -- Pavia, R A -- 1R01 CA17198/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1981 Apr 3;212(4490):65-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7209521" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/pathology ; Animals ; Cell Line ; Cells, Cultured ; Colonic Neoplasms/pathology ; Fibrosarcoma/*etiology ; Humans ; Karyotyping ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Middle Aged ; Neoplasm Transplantation ; Neoplasms, Experimental/*etiology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furcinitti, P S -- Todd, P -- New York, N.Y. -- Science. 1981 Apr 3;212(4490):6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7209518" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Survival/*radiation effects ; Cells, Cultured ; Dose-Response Relationship, Radiation ; HeLa Cells/radiation effects ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-10-23
    Description: Voltage clamp studies of macrophages from cultures of mouse spleen macrophages produced N-shaped steady-state current-voltage curves containing a region of negative slope resistance. Some macrophages exhibit two stable states of membrane potential, having current-voltage relationships that cross the voltage axis at three points. Outward currents that turn on at voltages of +15 millivolts or greater were noted in several cells. The addition of barium chloride to the bathing medium abolished the negative slope resistance and reduced the inward currents in response to hyperpolarizing voltage steps. These data provide direct evidence that macrophages exhibit at least tow different voltage-dependent conductances and demonstrate that voltage clamp techniques can be useful in studying the membrane properties of leukocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallin, E K -- New York, N.Y. -- Science. 1981 Oct 23;214(4519):458-60.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7291986" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Barium/pharmacology ; Cell Membrane/physiology ; Cells, Cultured ; Electric Conductivity ; Macrophages/*physiology ; Membrane Potentials ; Mice ; Spleen/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-10-23
    Description: The addition of ethanol or other aliphatic alcohols to rat brain membranes strongly inhibits binding of enkephalins at concentrations at which little inhibition of opiate alkaloids is seen. Inhibition is reversible, and potency increases with chain length of the alcohol. The results suggest that delta receptors are considerably more sensitive to alcohols than mu receptors. This is the first demonstration of selective inhibition of one of the postulated classes of opiate receptors by a reagent that is not a ligand for the receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiller, J M -- Angel, L M -- Simon, E J -- DA-00017/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 1981 Oct 23;214(4519):468-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6270788" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohols/*pharmacology ; Animals ; Brain/metabolism ; Cells, Cultured ; In Vitro Techniques ; Neuroblastoma/metabolism ; Rats ; Receptors, Opioid/classification/*drug effects/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-02-27
    Description: A line or rat hepatoma cells in culture which, in response to serum starvation, become arrested in the early G1 phase of growth, can be stimulated by insulin alone to enter the cell cycle and traverse S phase. A half-maximum response is observed at 30 to 70 picomolar concentrations and the maximum response is essentially identical to that found with optimum serum concentrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koontz, J W -- Iwahashi, M -- AM 24047/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1981 Feb 27;211(4485):947-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7008195" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/drug effects ; Cell Division/drug effects ; Cell Line ; *Growth Substances ; Insulin/*pharmacology ; Liver Neoplasms, Experimental/*pathology ; Mitosis/drug effects ; Proinsulin/pharmacology ; Rats ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1981-06-05
    Description: Two divalent cation ionophores, A23187 and Ionomycin, which are selective for calcium, stimulated the resorption of fetal rat long bones in organ culture at 0.1 to 1 micromolar but not at higher concentrations. Both agents inhibited DNA synthesis at concentrations that stimulated resorption. These results might explain the differences in ionophore effects on bone previously reported, and they imply that cell replication is not required for osteoclast formation in fetal rat long bone cultures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorenzo, J A -- Raisz, L G -- AM 07290/AM/NIADDK NIH HHS/ -- AM 18063/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1981 Jun 5;212(4499):1157-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6785885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*pharmacology ; Bone Resorption/*drug effects ; Bone and Bones/drug effects/*metabolism ; Calcimycin/*pharmacology ; Calcium/metabolism ; Calcium Radioisotopes ; Cells, Cultured ; DNA/*biosynthesis ; DNA Replication/*drug effects ; Ethers/pharmacology ; Fetus ; Ionomycin ; Ionophores/pharmacology ; Kinetics ; Mice ; Parathyroid Hormone/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1981-04-03
    Description: The antigen of a monoclonal antibody that is specific for cells of human carcinoma of the colon is a monosialoganglioside as determined by the direct binding of antibody to thin-layer chromatograms of total lipid extracts of tissues. Binding of antibody to chromatograms is detected by autoradiography after the application of iodine-125-labeled F(ab')2 of rabbit immunoglobulin G antibodies to mouse immunoglobulins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magnani, J L -- Brockhaus, M -- Smith, D F -- Ginsburg, V -- Blaszczyk, M -- Mitchell, K F -- Steplewski, Z -- Koprowski, H -- CA-10815/CA/NCI NIH HHS/ -- CA-21124/CA/NCI NIH HHS/ -- RR-05540/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1981 Apr 3;212(4490):55-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7209516" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/*immunology ; Antibodies, Neoplasm/*immunology ; Antibody Specificity ; Antigens, Neoplasm/*immunology/isolation & purification ; Cell Line ; Chromatography, Thin Layer ; Colonic Neoplasms/*immunology ; Gangliosides/*immunology/isolation & purification ; Humans ; Melanoma/immunology ; Neuraminidase/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1981-09-04
    Description: Analogs of adenosine 3',5'-monophosphate (cyclic AMP) inhibit the growth of cultured cell lines. The effects of 8-bromo- and N6-butyryl-substituted analogs of cyclic and noncyclic AMP on six cell lines were examined and were equally inhibitory. Variant cell lines with altered cyclic AMP-dependent protein kinase were more resistant to both cyclic and noncyclic nucleotides. We conclude that growth inhibition by analogs of cyclic AMP (i) does not require a 3',5' phosphodiester bond and (ii) may be mediated by a pathway involving endogenous cyclic AMP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, T F -- Kowalchyk, J A -- AM 25861/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1981 Sep 4;213(4512):1120-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6267695" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/*drug effects ; Cell Line ; Cricetinae ; Cyclic AMP/*pharmacology ; DNA/biosynthesis ; Growth Inhibitors/*pharmacology ; Mice ; Phosphodiesterase Inhibitors/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-08-14
    Description: Raji cells, a human B lymphoblastoid cell line of Burkitt lymphoma origin, formed lupus inclusions when grown in a medium conditioned by the growth of Raji cells whose DNA thymidine residues had been unifilarly (single-strandedly) substituted with bromodeoxyuridine. Ultracentrifugation of this medium in excess of that required to remove Epstein-Barr virus and all other known mammalian viruses did not prevent the formation of the inclusions, and treatment of the conditioned medium with pronase destroyed the activity. These results demonstrate the presence of a protein that is secreted from bromodeoxyuridine-substituted Raji cells and is capable of inducing nonbromodeoxyuridine-substituted cells to form lupus inclusions. Interferon (100 units per milliliter) was found in the conditioned medium. Inclusions also formed in Raji cells grown in fresh medium supplemented with human leukocyte or fibroblast interferon (100 units per milliliter).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rich, S A -- New York, N.Y. -- Science. 1981 Aug 14;213(4509):772-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6166984" target="_blank"〉PubMed〈/a〉
    Keywords: Bromodeoxyuridine/*metabolism ; Burkitt Lymphoma ; Cell Line ; Culture Media ; Cytoplasmic Granules/ultrastructure ; DNA Replication ; Humans ; Interferons/*biosynthesis ; Lupus Erythematosus, Systemic/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1981-07-31
    Description: The cell-to-cell channels in the junctions of an insect salivary gland and of insect and mammalian cells in culture were probed with fluorescent molecules-neutral linear oligosaccharides, neutral branched glycopeptides, and charged linear peptides. From the molecular dimensions of the largest permeants and smallest impermeants the permeation-limiting channel diameter was obtained: 16 to 20 angstroms for the mammalian cells and 20 to 30 angstroms for the insect cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwarzmann, G -- Wiegandt, H -- Rose, B -- Zimmerman, A -- Ben-Haim, D -- Loewenstein, W R -- CA 14464/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1981 Jul 31;213(4507):551-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7244653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chironomidae ; Fluorescent Dyes ; Glycopeptides/*metabolism ; Intercellular Junctions/*ultrastructure ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Oligosaccharides/*metabolism ; Protein Conformation ; Salivary Glands/*ultrastructure ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1981-07-31
    Description: Erythrocytes infected with the late stages of the human malarial parasite Plasmodium falciparum became attached to a subpopulation of cultured human endothelial cells by knoblike protrusions on the surface of the infected erythrocytes. Infected erythrocytes did not bind to cultured fibroblasts; uninfected erythrocytes did not bind to either endothelial cells or fibroblasts. The results suggest a specific receptor-ligand interaction between endothelial cells and a component, components, in the knobs of the infected erythrocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Udeinya, I J -- Schmidt, J A -- Aikawa, M -- Miller, L H -- Green, I -- New York, N.Y. -- Science. 1981 Jul 31;213(4507):555-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7017935" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aotus trivirgatus ; Cells, Cultured ; Endothelium/microbiology ; Erythrocytes/*microbiology/ultrastructure ; Female ; Humans ; Microscopy, Electron ; Plasmodium falciparum/*pathogenicity ; Pregnancy ; Umbilical Veins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1981-05-15
    Description: In this study the hormonal requirements for the growth of arterial smooth muscle cells in vitro were determined. A serum-free, biochemically defined medium, supplemented with the relevant hormones, permitted proliferation and propagation of normal diploid mammalian arterial smooth muscle cells. Serum-free, hormone-supplemented cultures spontaneously formed atherosclerotic plaque-like nodules. Thus atherosclerosis may be mediated by a complex endocrine system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinstein, R -- Stemerman, M B -- Maciag, T -- AM 07026/AM/NIADDK NIH HHS/ -- HL 06197/HL/NHLBI NIH HHS/ -- HL 07374/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1981 May 15;212(4496):818-20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7013068" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta, Abdominal/cytology ; Cell Division/drug effects ; Cells, Cultured ; Culture Media ; Growth Substances/pharmacology ; Hormones/*pharmacology ; Insulin/pharmacology ; Muscle, Smooth, Vascular/*cytology ; Rats ; Transferrin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-08-07
    Description: The tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate causes differentiation of cells of the human leukemia cell line HL60 to nondividing macrophage-like cells. These differentiated cells are cytotoxic for tumor cells (including parent, untreated HL60 cells) in vitro. Agents that induce this desirable differentiation to nondividing, antitumor effector cells may be useful in the experimental treatment of leukemia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinberg, J B -- 27070-02/PHS HHS/ -- New York, N.Y. -- Science. 1981 Aug 7;213(4508):655-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7196085" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects ; Cell Line ; *Cytotoxicity, Immunologic ; Humans ; Immunity, Cellular ; Leukemia, Experimental/immunology/*pathology ; Macrophages/cytology/*immunology ; Phorbols/*pharmacology ; Tetradecanoylphorbol Acetate/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-07-31
    Description: An established line of mesenchymal cells from the human embryonic palate is highly sensitive to the stimulatory effect of epidermal growth factor on growth, labeled thymidine incorporation, and ornithine decarboxylase activity. The results suggest that epidermal growth factor may play a key role in development of various human embryonic and fetal tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoneda, T -- Pratt, R M -- New York, N.Y. -- Science. 1981 Jul 31;213(4507):563-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7017936" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division/drug effects ; Cell Line ; DNA Replication/drug effects ; Embryo, Mammalian ; Epidermal Growth Factor/*pharmacology ; Female ; Humans ; Insulin/pharmacology ; Kinetics ; Organ Specificity ; Ornithine Decarboxylase/metabolism ; Palate/drug effects/*physiology ; Peptides/*pharmacology ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1981-06-26
    Description: The ability of murine tumor cells to metastasize spontaneously from subcutaneous sites is positively correlated with the total sialic acid content of the cells in culture, the degree to which the sialic acid is exposed on the tumor cell surface, and, most strongly, with the degree of sialylation of galactosyl and N-acetylgalactosaminyl residues in cell surface glycoconjugates. These findings suggest that sialic acid on the cell surface may play a role in tumor cell metastasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yogeeswaran, G -- Salk, P L -- CA19312-01/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1981 Jun 26;212(4502):1514-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7233237" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*physiology ; Cell Transformation, Neoplastic ; Cell Transformation, Viral ; Mice ; *Neoplasm Metastasis ; Neoplasms, Experimental/*physiopathology ; Sialic Acids/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1982-12-10
    Description: Rhodamine-123, a cationic laser dye, markedly reduced the clonal growth of carcinoma cells but had little effect on nontumorigenic epithelial cells in vitro. This selective inhibitory effect of Rhodamine-123 on some carcinomas is unusual since known anticancer drugs, such as arabinosyl cytosine and methotrexate, have not been shown to exhibit such selectivity in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernal, S D -- Lampidis, T J -- Summerhayes, I C -- Chen, L B -- New York, N.Y. -- Science. 1982 Dec 10;218(4577):1117-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7146897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinoma/*drug therapy ; Cell Line ; Cell Survival/drug effects ; Mice ; Mitochondria/metabolism ; Neoplasms, Experimental/drug therapy ; Rhodamine 123 ; Rhodamines/metabolism/therapeutic use ; Time Factors ; Urinary Bladder Neoplasms/drug therapy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1982-07-16
    Description: A method has been developed for the measurement of intracellular free calcium in mammalian cells. The calcium-sensitive photoprotein aequorin can be incorporated into isolated cells by hypo-osmotic treatment without altering the cell viability, permeability, or metabolism. Intracellular calcium activity (Cai2+) was monitored in a perfusion system. In monkey kidney cells (LLC-MK2), Cai2+ is approximately 57 nanomoles per liter. Changes in Cai2+ with time can also be followed: exposure of the cells to anaerobiosis or the calcium ionophore A23187 reversibly increases Cai2+. The method has also been successfully tested in rat hepatocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borle, A B -- Snowdowne, K W -- New York, N.Y. -- Science. 1982 Jul 16;217(4556):252-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6806904" target="_blank"〉PubMed〈/a〉
    Keywords: *Aequorin ; Anaerobiosis ; Animals ; Calcimycin/pharmacology ; Calcium/*metabolism ; Cell Line ; Kidney/drug effects/*metabolism ; Kinetics ; *Luminescent Proteins ; Macaca mulatta
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1982-08-06
    Description: Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bump, E A -- Yu, N Y -- Brown, J M -- CA-15201/CA/NCI NIH HHS/ -- CM-87207/CM/NCI NIH HHS/ -- New York, N.Y. -- Science. 1982 Aug 6;217(4559):544-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7089580" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoxia ; Cell Survival/drug effects/*radiation effects ; Cells, Cultured ; Cricetinae ; Cricetulus ; Drug Synergism ; Glutathione/*metabolism ; Maleates/administration & dosage ; Mice ; Mice, Inbred BALB C ; Misonidazole/administration & dosage ; Neoplasms, Experimental/metabolism ; *Oxygen Consumption
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1982-07-02
    Description: The rat hippocampal formation was tested for the presence of factors that would accelerate neurite extension from chick parasympathetic (ciliary ganglion) or sympathetic (lumbar chain) neurons in vitro. Two growth factors were identified in extracts of this brain region. One accelerated neurite extension from sympathetic neurons and was blocked by antiserum to nerve growth factor. The other accelerated neurite extension from parasympathetic neurons but was not affected by the antiserum. These results suggest that specific growth factors account for the specificity of neuronal sprouting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crutcher, K A -- Collins, F -- NS 17131/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1982 Jul 2;217(4554):67-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7089542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Cells, Cultured ; Chick Embryo ; Ganglia, Parasympathetic/physiology ; Ganglia, Sympathetic/physiology ; Growth Substances/*physiology ; Hippocampus/*physiology ; Neurons/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1982-11-05
    Description: Receptors for maleylated or acetylated proteins as well as for alpha-2-macroglobulin-protease complexes on macrophages serve as scavengers by mediating the uptake of macromolecules from the extracellular compartment. Described in this report is a novel function of these receptors on macrophages: regulation of neutral protease secretion. The binding of maleylated bovine serum albumin to macrophages triggered secretion of three neutral proteases: neutral caseinases, plasminogen activator, and cytolytic proteinase. Release of acid phosphatase, however, was not induced. An important biological consequence of protease secretion by macrophages, tumor-cytolysis, was also triggered by engagement of the receptor for maleylated bovine serum albumin. By contrast, the binding of alpha-2-macroglobulin-protease complexes to the macrophages suppressed secretion of all three proteases. Thus two receptors heretofore believed to serve principally as scavengers also regulate secretory functions of macrophages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, W J -- Pizzo, S V -- Imber, M J -- Adams, D O -- New York, N.Y. -- Science. 1982 Nov 5;218(4572):574-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6289443" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Glycoproteins/*metabolism ; Macrophages/*enzymology ; *Metalloendopeptidases ; Mice ; Peptide Hydrolases/*secretion ; Plasminogen Activators/secretion ; Receptors, Cell Surface/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1982-12-24
    Description: Cyclic adenosine monophosphate (AMP) analogs or agents that increase intracellular cyclic AMP rapidly stimulate transcription of the prolactin gene in a line of cultured rat pituitary cells. This effect is correlated with the phosphorylation of a chromatin-associated basic protein designated BPR. These data are consistent with the postulate that increased intracellular cyclic AMP concentrations induce rapid transcriptional effects on specific genes in eukaryotes, mediated by direct or indirect phosphorylation of a specific chromatin-associated protein or proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murdoch, G H -- Rosenfeld, M G -- New York, N.Y. -- Science. 1982 Dec 24;218(4579):1315-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6293056" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Chromatin/*metabolism ; Cyclic AMP/analogs & derivatives/*metabolism ; Nucleoproteins/metabolism ; Phosphorylation ; Pituitary Gland/metabolism ; Prolactin/genetics ; Rats ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1982-08-27
    Description: A cavity was made in the brain (entorhinal cortex) of developing or adult rats, and a small piece of Gelfoam was emplaced to collect fluid secreted into the wound. The neuronotrophic activity of the fluid was assayed with sympathetic and parasympathetic neurons in culture. The results show that wounds in the brain of developing or adult rats stimulate the accumulation of neuronotrophic factors and that the activity of these factors increases over the first few days after infliction of the damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nieto-Sampedro, M -- Lewis, E R -- Cotman, C W -- Manthorpe, M -- Skaper, S D -- Barbin, G -- Longo, F M -- Varon, S -- AG-00538/AG/NIA NIH HHS/ -- MH-19691/MH/NIMH NIH HHS/ -- NS-16349/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1982 Aug 27;217(4562):860-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7100931" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic Fibers/physiology ; Animals ; Brain/*physiology ; Brain Injuries/*physiopathology ; Cell Survival/drug effects ; Cells, Cultured ; Cholinergic Fibers/physiology ; Kinetics ; Nerve Growth Factors/*metabolism/pharmacology ; *Nerve Regeneration ; Rats ; Rats, Inbred Strains ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1982-07-23
    Description: A cultured cell line of the K-1735 melanoma was x-irradiated to induce chromosome breakage and rearrangements and then was implanted into the footpads of syngenic C3H mice. Spontaneous lung metastases were isolated from different animals, established in culture as individual lines, and then karyotyped. Within certain metastases, the same chromosomal abnormality (or abnormalities) (recombinant chromosomes) was found in all the cells examined. Most metastases differed from one another in that they exhibited characteristic combinations of chromosomal markers. These findings indicated that the metastases were clonal and that they probably originated from different progenitor cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Talmadge, J E -- Wolman, S R -- Fidler, I J -- N01-CO-75380/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1982 Jul 23;217(4557):361-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6953592" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromosome Aberrations ; Genetic Markers ; Karyotyping ; Lung Neoplasms/secondary ; Melanoma ; Mice ; Mice, Inbred C3H ; Neoplasm Metastasis/*pathology ; Neoplasms, Experimental/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1982-03-26
    Description: Large numbers of granulocytes can be collected repeatedly from the supernatant medium of long-term cultures of mouse bone marrow cells. A constant relationship was found between the number of adherent hematopoietic stem cells and the lifetime cell production per culture. The data indicate that there is a limit to the proliferative capacity of normal and of irradiated stem cells. A similar limitation was found in the production of marked granulocytes from clonal cultures of "beige" C57 (bg/bgJ) stem cells placed in limiting dilutions into stromal culture layers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reincke, U -- Hannon, E C -- Rosenblatt, M -- Hellman, S -- CA 10941/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1982 Mar 26;215(4540):1619-22.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7071580" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Marrow Cells ; Cell Division/radiation effects ; Cells, Cultured ; Granulocytes/physiology ; *Hematopoiesis/radiation effects ; Hematopoietic Stem Cells/*cytology ; Mice ; Spleen/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1982-10-22
    Description: Gonadotropic activation of the adult rat testis in vitro and in vivo is followed by down-regulation of luteinizing hormone receptors and decreased androgen responses to subsequent hormonal stimulation. In contrast, treatment of cultured fetal testes with gonadotropins and dibutyryl adenosine 3',5'-monophosphate enhanced steroidogenic responsiveness and did not cause the luteinizing hormone-receptor loss and desensitization that is characteristic of the adult gonad. The analysis of gonadotropin receptors and action in cultured fetal testis cells facilitates developmental studies of gonadal function, and has revealed significant differences in the responses of fetal and adult Leydig cells to gonadotropic regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, D W -- Dufau, M L -- Catt, K J -- 1F33-HD06192/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1982 Oct 22;218(4570):375-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6289438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bucladesine/pharmacology ; Cell Differentiation/drug effects ; Cells, Cultured ; Chorionic Gonadotropin/pharmacology ; Hydroxyprogesterones/biosynthesis ; Leydig Cells/*drug effects ; Luteinizing Hormone/pharmacology ; Male ; Progesterone/biosynthesis ; Rats ; Receptors, Cell Surface/*drug effects/metabolism ; Receptors, LH ; Testis/*embryology/metabolism ; Testosterone/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-11-11
    Description: When injected into mice, the synthetic double-stranded polynucleotide poly(inosinic) X poly(cytidylic) acid induces high natural killer (NK) cell activity within 4 to 12 hours. Induction of NK activity in mice immunized 2 or 3 days previously, or the addition of NK cells to cultures immunized in vitro 2 or 3 days previously, promotes early termination of the ongoing primary immunoglobulin M antibody response. A target for NK cells is a population of accessory cells that has interacted with antigen and is necessary for sustaining the antibody response. The inference is strong that NK cells induced normally by immunization also terminate the usual antibody response in vivo by elimination of antigen-exposed accessory cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abruzzo, L V -- Rowley, D A -- 5-T32-CA-09267/CA/NCI NIH HHS/ -- R01-10242/PHS HHS/ -- New York, N.Y. -- Science. 1983 Nov 11;222(4624):581-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6685343" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Formation ; Antibody-Producing Cells/immunology ; Cells, Cultured ; Homeostasis ; Killer Cells, Natural/*immunology/radiation effects ; Lymphocyte Cooperation ; Lymphocytes/*immunology ; Mice ; Poly I-C/immunology ; Spleen/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-04-22
    Description: The human parasite Trypanosoma brucei gambiense grew continuously at 37 degrees C in primary cultures of murine bone marrow. Cultured parasites remained virulent for mice. Rapid parasite growth coincided with the appearance of adherent adipocyte-epitheloid cell aggregates that also promoted hematopoiesis. This culture system should permit studies of host cell control of trypanosome proliferation, pathogenic effects of trypanosomes on blood cell development, and the relative trypanocidal and marrow suppressive activities of drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balber, A E -- CA 14049/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1983 Apr 22;220(4595):421-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6836284" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Marrow ; Cells, Cultured ; Culture Media ; Humans ; Mice ; Mice, Inbred BALB C ; Trypanosoma brucei brucei/growth & development ; Trypanosoma brucei gambiense/*growth & development ; Trypanosomiasis, African/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1982-08-20
    Description: The transmission of adult T cell leukemia virus, a human retrovirus, into fresh leukocytes from normal humans was examined. One of three virus-carrying cell lines, tested after being subjected to lethal x-irradiation, consistently transformed leukocytes from adult peripheral blood and umbilical cord blood. All the transformed cell lines expressed adult T cell leukemia virus-associated antigen, but transformed lines originating from adult and umbilical cord blood exhibited T cell and non-T, non-B cell surface natures, respectively. Efforts to transform human leukocytes with cell-free virus were unsuccessful.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamamoto, N -- Okada, M -- Koyanagi, Y -- Kannagi, M -- Hinuma, Y -- New York, N.Y. -- Science. 1982 Aug 20;217(4561):737-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6980467" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Surface/immunology ; Antigens, Viral/immunology ; B-Lymphocytes/immunology ; Cell Line ; Fetal Blood ; Genes, Viral ; Humans ; Karyotyping ; Leukocytes/*physiology ; Retroviridae/*genetics ; T-Lymphocytes/immunology ; *Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1982-01-08
    Description: Prompt and long-term closure of full-thickness skin wounds is guinea pigs and humans is achieved by applying a bilayer polymeric membrane. The membrane comprises a top layer of a silicone elastomer and a bottom layer of a porous cross-linked network of collagen and glycosaminoglycan. The bottom layer can be seeded with a small number of autologous basal cells before grafting. No immunosuppression is used and infection, exudation, and rejection are absent. Host tissue utilizes the sterile membrane as a culture medium to synthesize neoepidermal and neodermal tissue. A functional extension of skin over the entire wound area is formed in about 4 weeks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yannas, I V -- Burke, J F -- Orgill, D P -- Skrabut, E M -- GM 21700/GM/NIGMS NIH HHS/ -- GM 23946/GM/NIGMS NIH HHS/ -- HL 14322/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1982 Jan 8;215(4529):174-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7031899" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Burns/*therapy ; Cells, Cultured ; Child ; Child, Preschool ; Collagen/therapeutic use ; Female ; Glycosaminoglycans/therapeutic use ; Guinea Pigs ; Humans ; Male ; Middle Aged ; Silicone Elastomers/therapeutic use ; *Skin Transplantation ; *Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1983-03-18
    Description: Immunohistochemical techniques were used to confirm biochemical evidence that parenchymal cells isolated from adult rat liver and maintained in nonreplicating monolayer culture for 2 days synthesized type IV basement membrane collagen. On continued incubation in serum-free medium, the hepatocytes also synthesized the interstitial collagens, types I and III. Consistent with these results in culture, type IV collagen was localized to the hepatocytes in slices of pathologic rat liver. Hence collagen formation is a previously unrecognized function of the hepatocyte that may be important in the pathogenesis of liver fibrosis or cirrhosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diegelmann, R F -- Guzelian, P S -- Gay, R -- Gay, S -- AM18976/AM/NIADDK NIH HHS/ -- DE02570/DE/NIDCR NIH HHS/ -- HL11310/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1983 Mar 18;219(4590):1343-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6828863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basement Membrane/metabolism ; Cells, Cultured ; Collagen/*biosynthesis/immunology ; Liver/cytology/*metabolism ; Molecular Weight ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-12-09
    Description: Nonmalignant diploid human fibroblast cells (GM3498B) derived from a skin biopsy of a patient with Bloom's syndrome have been transformed by transfection with DNA from a tumorigenic mouse cell line (Ha-8) carrying a single copy of the Harvey murine sarcoma virus (Ha-MuSV) genome. The transformed cell lines have an extended life-span, form colonies in agarose, and proliferate in nude mice--characteristics of neoplastic transformation. Like the parental cells, they also exhibit a high spontaneous level of sister chromatid exchanges. Finally, the transformed cells contain most, if not all, of the Ha-MuSV genome as well as the human rasH sequence. These experiments show that these diploid nonmalignant human cells can be used as recipients in transfection experiments for studying the genetic control of neoplastic transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doniger, J -- Di Paolo, J A -- Popescu, N C -- New York, N.Y. -- Science. 1983 Dec 9;222(4628):1144-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6648529" target="_blank"〉PubMed〈/a〉
    Keywords: Bloom Syndrome/*genetics ; Cell Adhesion ; *Cell Transformation, Neoplastic ; Cells, Cultured ; DNA, Neoplasm/*genetics ; Humans ; Oncogenes ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-08-05
    Description: Tissue culture cells from several mammalian species, including three primate lines, were transfected with recombinant vectors carrying Escherichia coli xanthine-guanine phosphoribosyltransferase or Tn5 aminoglycoside phosphotransferase dominant selectable markers. Human HeLa and SV40-transformed xeroderma pigmentosum cells exhibited stable transformation frequencies of at least 10(-3) (0.1 percent). CV-1, an African green monkey kidney cell line, could be stably transformed with the exceptionally high frequency of 6 X 10(-2) (6 percent).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gorman, C -- Padmanabhan, R -- Howard, B H -- New York, N.Y. -- Science. 1983 Aug 5;221(4610):551-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6306768" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Sarcoma Viruses/genetics ; Cell Line ; Cercopithecus aethiops ; Cricetinae ; Cricetulus ; DNA, Recombinant/*metabolism ; Genetic Vectors ; HeLa Cells/metabolism ; Humans ; Mice ; Plasmids ; *Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1983-04-08
    Description: Cultured bronchial epithelial and fibroblastic cells from humans were used to study DNA damage and toxicity caused by formaldehyde. Formaldehyde caused the formation of cross-links between DNA and proteins, caused single-strand breaks in DNA, and inhibited the resealing of single-strand breaks produced by ionizing radiation. Formaldehyde also inhibited the unscheduled DNA synthesis that occurs after exposure of cells to ultraviolet irradiation or to benzo[a]pyrene diolexpoxide but at doses substantially higher than those required to inhibit the resealing of x-ray-induced single-strand breaks. Therefore, formaldehyde could exert its mutagenic and carcinogenic effects by both damaging DNA and inhibiting DNA repair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grafstrom, R C -- Fornace, A J Jr -- Autrup, H -- Lechner, J F -- Harris, C C -- New York, N.Y. -- Science. 1983 Apr 8;220(4593):216-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6828890" target="_blank"〉PubMed〈/a〉
    Keywords: Bronchi/*cytology/drug effects ; Cells, Cultured ; *DNA/biosynthesis ; DNA Repair/*drug effects ; Epithelium/drug effects ; Fibroblasts/drug effects ; Formaldehyde/*pharmacology ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-10-07
    Description: Suspensions of embryonic chick neuronal cells adhered to monolayers of glial cells, but few neurons bound to control monolayers of fibroblastic cells from meninges or skin. Neuronal cell-glial cell adhesion was inhibited by prior incubation of the neurons with Fab' fragments of antibodies to neuronal membranes. In contrast, antibodies to the neural cell adhesion molecule (N-CAM) did not inhibit the binding. These results suggest that a specific adhesive mechanism between neurons and glial cells exists and that it is mediated by CAM's that differ from those so far identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grumet, M -- Rutishauser, U -- Edelman, G M -- AI-11378/AI/NIAID NIH HHS/ -- HD-09635/HD/NICHD NIH HHS/ -- HD-16550/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1983 Oct 7;222(4619):60-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6194561" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antigen-Antibody Complex ; *Cell Adhesion ; Cell Membrane/immunology ; Cells, Cultured ; Chick Embryo ; Epitopes ; Immunoglobulin Fab Fragments ; Neuroglia/*physiology ; Neurons/immunology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1983-09-23
    Description: Evidence is presented that a tumor-derived transforming growth factor is responsible for stimulating bone resorption and causing hypercalcemia in an animal tumor model of the hypercalcemia of malignancy. Both conditioned medium harvested from cultured tumor cells and tumor extracts of the transplantable rat Leydig cell tumor associated with hypercalcemia contained a macromolecular bone resorbing factor with the chemical characteristics of a tumor-derived transforming growth factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ibbotson, K J -- D'Souza, S M -- Ng, K W -- Osborne, C K -- Niall, M -- Martin, T J -- Mundy, G R -- AM-28149/AM/NIADDK NIH HHS/ -- CA-29537/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1983 Sep 23;221(4617):1292-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6577602" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Resorption ; Calcium ; Cells, Cultured ; Culture Media ; Growth Substances/*physiology ; Hypercalcemia/*etiology ; Leydig Cell Tumor/complications/*physiopathology ; Male ; Neoplasm Proteins/*physiology ; Neoplasms, Experimental/complications/physiopathology ; Peptides/*physiology ; Rats ; Transforming Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1983-04-01
    Description: The tissue culture condition that is required for the type of chromosome breakage seen at most fragile sites, namely, the absence of folic acid and thymidine in the medium, greatly enhanced micronucleus formation in proliferating lymphocyte cultures from normal individuals. This suggests that chromosome breakage at fragile sites and the apparently spontaneous damage that gives rise to micronuclei are controlled by the same mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacky, P B -- Beek, B -- Sutherland, G R -- New York, N.Y. -- Science. 1983 Apr 1;220(4592):69-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6828880" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Cell Nucleus/drug effects/ultrastructure ; Cells, Cultured ; Child ; *Chromosome Aberrations ; Chromosome Fragile Sites ; *Chromosome Fragility ; Culture Media ; Dose-Response Relationship, Drug ; Female ; Folic Acid/pharmacology ; Humans ; Lymphocytes/ultrastructure ; Male ; Middle Aged ; Thymidine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1983-12-09
    Description: Three cell lines were derived from a homosexual patient with probable acquired immunodeficiency syndrome and Burkitt's lymphoma. The cell lines produce an unusual strain of Epstein-Barr virus which will both transform cord blood lymphocytes and induce early antigens in Raji cells. Translocations between chromosomes 8 and 22 have occurred in all three lines, but the cells synthesize immunoglobulin M with light chains of the kappa type, in contrast to the usual concordance between a translocation involving chromosome 22 and lambda chain synthesis. Both kappa genes and one lambda gene are rearranged. These findings indicate either that translocation may occur as a separate event from immunoglobulin gene rearrangement or that the proposed hierarchical sequence of immunoglobulin gene rearrangements is not always adhered to. The data also imply that in cells containing a translocation between the long arm of chromosome 8 and a chromosome bearing an immunoglobulin gene, alteration of cellular myc expression may occur regardless of the immunoglobulin gene that is expressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magrath, I -- Erikson, J -- Whang-Peng, J -- Sieverts, H -- Armstrong, G -- Benjamin, D -- Triche, T -- Alabaster, O -- Croce, C M -- New York, N.Y. -- Science. 1983 Dec 9;222(4628):1094-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6316501" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/complications ; Antigens, Viral/analysis ; Burkitt Lymphoma/complications/*genetics ; Cell Line ; Chromosomes, Human, 21-22 and Y ; Chromosomes, Human, 6-12 and X ; Epstein-Barr Virus Nuclear Antigens ; Herpesvirus 4, Human/analysis ; Homosexuality ; Humans ; Immunoglobulin Light Chains/*biosynthesis ; Immunoglobulin kappa-Chains/*biosynthesis ; Male ; Oncogenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1983-09-23
    Description: When cultured in a hypoxic environment similar to that found in the center of a wound, macrophages secreted active angiogenesis factor into the medium. Under conditions similar to those of well-oxygenated tissue, macrophages did not secrete active angiogenesis factor. Macrophages that secreted the factor at hypoxic conditions stopped secreting it when returned to room air. Thus the control of angiogenesis in wound healing may be the result of macrophages responding to tissue oxygen tension without the necessity of interacting with other cell types or biochemical signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knighton, D R -- Hunt, T K -- Scheuenstuhl, H -- Halliday, B J -- Werb, Z -- Banda, M J -- GM27345/GM/NIGMS NIH HHS/ -- HL26323/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1983 Sep 23;221(4617):1283-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6612342" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inducing Agents/*biosynthesis ; Animals ; Anoxia/physiopathology ; Cells, Cultured ; Cornea ; Growth Substances/*biosynthesis ; Macrophages/*physiology ; Models, Biological ; Oxygen/*physiology ; Rabbits ; *Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-02-04
    Description: The distribution of keratin intermediate filaments, previously considered static in organization and imperturbable by conventional drugs used to alter the structure and organization of the cytoskeleton, can be altered significantly by treatment with colchicine and cytochalasin D. The loss of microfilaments and microtubules converts the keratin cytoskeleton from a branching, even distribution to a series of starlike structures whose filaments are maintained by multiple membrane attachment sites. These findings provide a means for manipulating cytokeratin organization to investigate the role of keratins in cytoskeletal structure and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knapp, L W -- O'Guin, W M -- Sawyer, R H -- New York, N.Y. -- Science. 1983 Feb 4;219(4584):501-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6186022" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Colchicine/*pharmacology ; Cytochalasin D ; Cytochalasins/*pharmacology ; Cytoskeleton/*drug effects ; Epithelium ; *Keratins ; Mice ; Microtubules/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1983-11-11
    Description: Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thornton, S C -- Mueller, S N -- Levine, E M -- AG-00839/AG/NIA NIH HHS/ -- T32-CA-09171/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1983 Nov 11;222(4624):623-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6635659" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division/drug effects ; Cells, Cultured ; Clone Cells/enzymology ; Endothelium/*cytology ; Growth Substances/pharmacology ; Heparin/*pharmacology ; Humans ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-05-27
    Description: Parasympathetic neurons, when cultured alone, lose sensitivity to acetylcholine, but if striated muscle is included in the culture, neuronal chemosensitivity is maintained. The membrane remnants of myotubes ruptured by osmotic shock also supported the responsiveness of the cultured neurons to transmitter, whereas muscle-conditioned medium or membrane remnants of nonmuscle embryonic skin cells did not support this responsiveness. The regulation of chemosensitivity by contact of neurons with the target cell membrane may be important in the formation and maintenance of neuronal circuitry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuttle, J B -- NS-10338/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1983 May 27;220(4600):977-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6133352" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/physiology ; Animals ; Cell Membrane/physiology ; Cells, Cultured ; Chick Embryo ; Fibroblasts/physiology ; Muscles/*physiology ; Nervous System/growth & development ; Neurons/*physiology ; Neurotransmitter Agents/*physiology ; Synapses/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-06-03
    Description: When normal diploid fibroblasts from mice, hamsters, and humans were grown in culture, the 5-methylcytosine content of their DNA's markedly decreased. The greatest rate of loss of 5-methylcytosine residues was observed in mouse cells, which survived the least number of division. Immortal mouse cell lines had more stable rates of methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, V L -- Jones, P A -- 1-T32-CA09320/CA/NCI NIH HHS/ -- R01-GM30892/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1983 Jun 3;220(4601):1055-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6844925" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine ; *Aging ; Animals ; Cell Division ; Cell Line ; Cricetinae ; Cytosine/analogs & derivatives/metabolism ; DNA/metabolism/*physiology ; Fibroblasts/metabolism ; Humans ; Mesocricetus ; Methylation ; Mice ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1983-10-28
    Description: A protoplast fusion method was developed to stably transfect human cells with pSV2-derived plasmids at frequencies greater than 10(-3). This procedure made it possible to test the biological effect of a hepatitis B virus (HBV) gene independent of the viral structures required for infection. A pSV2gpt+ plasmid constructed to carry a subgenomic fragment of HBV that contained the core antigen gene (HBc gene) was transfected into human cells. A human epithelial cell line was stably transfected with the HBc+ gene by selecting recipient cells for expression of guanine phosphoribosyl transferase expression. With this gpt+/HBc+ cell line it was shown that growth in serum-free medium or treatment with 5'-azacytidine stimulates the production of the HBV core antigen. A hepatocellular carcinoma carrying the entire HBV genome was stimulated to produce the HBc gene product in response to the same factors that stimulated HBcAg production in the gpt+/HBc+ cell line constructed by transfection. The temporal relation between the cytopathologic response and HBc gene expression was similar for both cell types, indicating a primary role for HBc gene expression in the cytopathology of HBV-infected human liver.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoakum, G H -- Korba, B E -- Lechner, J F -- Tokiwa, T -- Gazdar, A F -- Seeley, T -- Siegel, M -- Leeman, L -- Autrup, H -- Harris, C C -- New York, N.Y. -- Science. 1983 Oct 28;222(4622):385-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6194563" target="_blank"〉PubMed〈/a〉
    Keywords: Azacitidine/pharmacology ; Cell Fusion ; *Cell Transformation, Viral ; Cells, Cultured ; Cytopathogenic Effect, Viral ; Gene Expression Regulation/drug effects ; Genes, Viral ; Hepatitis B Core Antigens/*genetics ; Humans ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-08-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 1984 Aug 17;225(4663):670-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6087452" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Hepatocellular/genetics ; Cell Line ; DNA, Bacterial ; *DNA, Neoplasm ; DNA, Viral ; Hepatitis B virus/genetics ; Humans ; Liver Neoplasms/genetics ; Oncogenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-04-27
    Description: Recent advances in biotechnology have created many public policy and legal issues, one of the most significant of which is the treatment of biotechnological industrial products, particularly under the patent system. Patents represent one of several types of intellectual property; their ownership confers the right to exclude others from benefitting from the tangible products of a proprietary subject matter. Intellectual property law and its protections will play a major role in the rate at which biotechnology develops in the United States. In this article biotechnological intellectual property issues are reviewed in the context of their underlying legal requirements. The implications of other factors, such as international competition, research funding, and gene ownership, are also considered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adler, R G -- New York, N.Y. -- Science. 1984 Apr 27;224(4647):357-63.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6584975" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomedical Research ; Cell Line ; Copyright ; DNA, Recombinant ; Economic Competition ; Federal Government ; *Genetic Engineering ; *Genetics, Microbial ; Government Regulation ; Legislation as Topic ; Ownership ; *Patents as Topic ; Research ; *Technology ; United States ; as a question of intellectual property rights. Attention is focused on the major ; role played by the U.S. patent system in establishing such rights, as illustrated ; by the case of products of recombinant DNA research. Trade secret, copyright, and ; trademark protections are also considered, as are policy issues such as ; international competition in the development of biomedical technologies and ; financing arrangements.
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-05-04
    Description: Stress stimulates several adaptive hormonal responses. Prominent among these responses are the secretion of catecholamines from the adrenal medulla, corticosteroids from the adrenal cortex, and adrenocorticotropin from the anterior pituitary. A number of complex interactions are involved in the regulation of these hormones. Glucocorticoids regulate catecholamine biosynthesis in the adrenal medulla and catecholamines stimulate adrenocorticotropin release from the anterior pituitary. In addition, other hormones, including corticotropin-releasing factor, vasoactive intestinal peptide, and arginine vasopressin stimulate while the corticosteroids and somatostatin inhibit adrenocorticotropin secretion. Together these agents appear to determine the complex physiologic responses to a variety of stressors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Axelrod, J -- Reisine, T D -- New York, N.Y. -- Science. 1984 May 4;224(4648):452-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6143403" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Adrenal Cortex/metabolism ; Adrenal Medulla/metabolism ; Adrenocorticotropic Hormone/*metabolism ; Animals ; Brain/metabolism ; Catecholamines/*metabolism ; Cell Line ; Corticotropin-Releasing Hormone/metabolism ; Cyclic AMP/metabolism ; Glucocorticoids/*metabolism ; Humans ; Phospholipases A/metabolism ; Pituitary Gland, Anterior/metabolism ; Receptors, Adrenergic, alpha/metabolism ; Receptors, Adrenergic, beta/metabolism ; Receptors, Cell Surface/metabolism ; Receptors, Corticotropin-Releasing Hormone ; Receptors, Somatostatin ; Somatostatin/pharmacology ; Stress, Physiological/*metabolism ; Stress, Psychological/metabolism ; Sympathetic Nervous System/metabolism ; Vasoactive Intestinal Peptide/pharmacology ; Vasopressins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-10-12
    Description: A novel eukaryotic hybrid gene has been constructed from the 5' sequence of a rat gene and the bacterial neomycin-resistance gene. After transfection into hamster fibroblasts, the neo transcripts can be induced to high levels by the absence of glucose. Furthermore, this hybrid gene can be regulated by temperature when it is introduced into a temperature-sensitive mutant cell line.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Attenello, J W -- Lee, A S -- CA-27607/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1984 Oct 12;226(4671):187-90.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6484570" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; DNA, Recombinant ; Drug Resistance, Microbial ; Fibroblasts ; *Gene Expression Regulation ; Genes, Bacterial ; *Genes, Regulator ; Glucose/*pharmacology ; *HSP70 Heat-Shock Proteins ; Membrane Proteins/biosynthesis/*genetics ; Mutation ; Neomycin/pharmacology ; Rats ; Temperature ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1984-03-09
    Description: Activated mature T cells require T-cell growth factor (TCGF) for continuous proliferation. However, many mature T cells infected with human T-cell leukemia-lymphoma virus grow independently of exogenously added TCGF. It is now reported that cells infected with this virus also lack detectable TCGF messenger RNA (less than one copy per cell) and thus do not produce their own growth factor. The results apparently rule out an autostimulation mechanism of growth control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arya, S K -- Wong-Staal, F -- Gallo, R C -- New York, N.Y. -- Science. 1984 Mar 9;223(4640):1086-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6320374" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Deltaretrovirus/*physiology ; *Gene Expression Regulation/drug effects ; Humans ; Interferon-gamma/genetics ; Interleukin-2/*genetics ; Phytohemagglutinins/pharmacology ; RNA, Messenger/*genetics ; T-Lymphocytes/metabolism/*microbiology ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1984-08-31
    Description: Bromodeoxyuridine (BrdUrd) treatment of the prolactin nonproducing subclone of GH cells (rat pituitary tumor cells) induces amplification of a 20-kilobase DNA fragment including all of the prolactin gene coding sequences. This amplified DNA segment, which is flanked by two unamplified regions, thus designates a unit of BrdUrd-induced amplified sequence. Cloned DNA segments, 10.3 kilobases long, from the 5' end of the rat prolactin gene of BrdUrd-responsive and -nonresponsive cells, were ligated to the thymidine kinase gene of herpes simplex virus type 1 (HSV1TK), and the hybrid DNA was transferred to thymidine kinase-deficient mouse fibroblast cells by transfection. The HSV1TK gene and the rat prolactin gene were amplified together in drug-treated transfectants carrying the hybrid DNA HSV1TK gene and rat prolactin gene of BrdUrd-responsive GH cells. These results suggest that the 10.3-kilobase DNA segment at the 5' end of the rat prolactin gene of BrdUrd-responsive GH cells carries the information for drug-induced gene amplification (amplicon) and that another gene, such as the HSV1TK gene, is also amplified when the latter is placed adjacent to this segment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biswas, D K -- Hartigan, J A -- Pichler, M H -- CA28218/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1984 Aug 31;225(4665):941-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bromodeoxyuridine/*pharmacology ; Cell Line ; Cloning, Molecular ; DNA/*genetics ; DNA, Recombinant ; *Gene Amplification ; Genes, Viral ; Mice ; Prolactin/genetics ; Rats ; Simplexvirus/genetics ; Thymidine Kinase/genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...