ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (718)
  • Latest Papers from Table of Contents or Articles in Press  (718)
  • Molecular Sequence Data  (457)
  • Protein Conformation  (332)
  • 2000-2004  (677)
  • 1980-1984  (41)
  • 1935-1939
Collection
  • Articles  (718)
Source
  • Latest Papers from Table of Contents or Articles in Press  (718)
Keywords
Years
Year
  • 1
    Publication Date: 2004-06-05
    Description: The mechanisms by which hydrophobic molecules, such as long-chain fatty acids, enter cells are poorly understood. In Gram-negative bacteria, the lipopolysaccharide layer in the outer membrane is an efficient barrier for fatty acids and aromatic hydrocarbons destined for biodegradation. We report crystal structures of the long-chain fatty acid transporter FadL from Escherichia coli at 2.6 and 2.8 angstrom resolution. FadL forms a 14-stranded beta barrel that is occluded by a central hatch domain. The structures suggest that hydrophobic compounds bind to multiple sites in FadL and use a transport mechanism that involves spontaneous conformational changes in the hatch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Berg, Bert -- Black, Paul N -- Clemons, William M Jr -- Rapoport, Tom A -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1506-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. lvandenberg@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178802" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Binding Sites ; Biological Transport ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Fatty Acid Transport Proteins ; Fatty Acids/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-05-08
    Description: There are 481 segments longer than 200 base pairs (bp) that are absolutely conserved (100% identity with no insertions or deletions) between orthologous regions of the human, rat, and mouse genomes. Nearly all of these segments are also conserved in the chicken and dog genomes, with an average of 95 and 99% identity, respectively. Many are also significantly conserved in fish. These ultraconserved elements of the human genome are most often located either overlapping exons in genes involved in RNA processing or in introns or nearby genes involved in the regulation of transcription and development. Along with more than 5000 sequences of over 100 bp that are absolutely conserved among the three sequenced mammals, these represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserved between these species than are proteins and appear to be essential for the ontogeny of mammals and other vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bejerano, Gill -- Pheasant, Michael -- Makunin, Igor -- Stephen, Stuart -- Kent, W James -- Mattick, John S -- Haussler, David -- 1P41HG02371/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 May 28;304(5675):1321-5. Epub 2004 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA. jill@soe.ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131266" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Base Sequence ; Chickens/genetics ; Computational Biology ; *Conserved Sequence ; DNA, Intergenic ; Dogs/genetics ; Evolution, Molecular ; Exons ; Gene Expression Regulation ; Genes ; Genome ; *Genome, Human ; Humans ; Introns ; Mice/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; RNA/chemistry/genetics/metabolism ; Rats/genetics ; Takifugu/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beja-Pereira, Albano -- England, Phillip R -- Ferrand, Nuno -- Jordan, Steve -- Bakhiet, Amel O -- Abdalla, Mohammed A -- Mashkour, Marjan -- Jordana, Jordi -- Taberlet, Pierre -- Luikart, Gordon -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1781.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lab. d'Ecologie Alpine, UMR CNRS-UJF 5553, 38041 Grenoble, France. albano.beja-pereira@ujf-grenoble.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15205528" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animal Husbandry ; Animals ; *Animals, Domestic/classification/genetics ; Animals, Wild/genetics ; Archaeology ; Asia ; Cytochromes b/genetics ; DNA, Mitochondrial/genetics ; Equidae/classification/*genetics ; Haplotypes ; Molecular Sequence Data ; *Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-01-06
    Description: Pairing, synapsis, and recombination are prerequisites for accurate chromosome segregation in meiosis. The phs1 gene in maize is required for pairing to occur between homologous chromosomes. In the phs1 mutant, homologous chromosome synapsis is completely replaced by synapsis between nonhomologous partners. The phs1 gene is also required for installation of the meiotic recombination machinery on chromosomes, as the mutant almost completely lacks chromosomal foci of the recombination protein RAD51. Thus, in the phs1 mutant, synapsis is uncoupled from recombination and pairing. The protein encoded by the phs1 gene likely acts in a multistep process to coordinate pairing, recombination, and synapsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pawlowski, Wojciech P -- Golubovskaya, Inna N -- Timofejeva, Ljudmilla -- Meeley, Robert B -- Sheridan, William F -- Cande, W Zacheus -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. wpawlows@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704428" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Nucleus/metabolism ; *Chromosome Pairing ; Chromosomes, Plant/*physiology ; Cloning, Molecular ; Conserved Sequence ; DNA, Plant/metabolism ; DNA-Binding Proteins ; Genes, Plant ; In Situ Hybridization, Fluorescence ; In Situ Nick-End Labeling/methods ; *Meiosis ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Proteins/chemistry/genetics/*physiology ; RNA, Ribosomal, 5S/genetics ; Rad51 Recombinase ; *Recombination, Genetic ; Sequence Alignment ; Synaptonemal Complex/metabolism/ultrastructure ; Telomere/physiology ; Zea mays/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-01-06
    Description: MDM2 binds the p53 tumor suppressor protein with high affinity and negatively modulates its transcriptional activity and stability. Overexpression of MDM2, found in many human tumors, effectively impairs p53 function. Inhibition of MDM2-p53 interaction can stabilize p53 and may offer a novel strategy for cancer therapy. Here, we identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes. These compounds bind MDM2 in the p53-binding pocket and activate the p53 pathway in cancer cells, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassilev, Lyubomir T -- Vu, Binh T -- Graves, Bradford -- Carvajal, Daisy -- Podlaski, Frank -- Filipovic, Zoran -- Kong, Norman -- Kammlott, Ursula -- Lukacs, Christine -- Klein, Christian -- Fotouhi, Nader -- Liu, Emily A -- New York, N.Y. -- Science. 2004 Feb 6;303(5659):844-8. Epub 2004 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Discovery Oncology, Roche Research Center, Hoffmann-La Roche, Inc., Nutley, NJ 07110, USA. lyubomir.vassilev@roche.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*drug effects ; Binding Sites ; Cell Cycle/drug effects ; Cell Division/*drug effects ; Cell Line ; Cell Line, Tumor ; Cell Survival/drug effects ; Crystallization ; Crystallography, X-Ray ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/metabolism ; Dose-Response Relationship, Drug ; Gene Expression ; Genes, p53 ; Humans ; Hydrophobic and Hydrophilic Interactions ; Imidazoles/chemistry/metabolism/*pharmacology ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Weight ; NIH 3T3 Cells ; Neoplasm Transplantation ; Neoplasms, Experimental/drug therapy/metabolism/*pathology ; *Nuclear Proteins ; Phosphorylation ; Piperazines/chemistry/metabolism/*pharmacology ; Protein Conformation ; Proto-Oncogene Proteins/*antagonists & inhibitors/chemistry/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Stereoisomerism ; Transplantation, Heterologous ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-04-07
    Description: We have applied "whole-genome shotgun sequencing" to microbial populations collected en masse on tangential flow and impact filters from seawater samples collected from the Sargasso Sea near Bermuda. A total of 1.045 billion base pairs of nonredundant sequence was generated, annotated, and analyzed to elucidate the gene content, diversity, and relative abundance of the organisms within these environmental samples. These data are estimated to derive from at least 1800 genomic species based on sequence relatedness, including 148 previously unknown bacterial phylotypes. We have identified over 1.2 million previously unknown genes represented in these samples, including more than 782 new rhodopsin-like photoreceptors. Variation in species present and stoichiometry suggests substantial oceanic microbial diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venter, J Craig -- Remington, Karin -- Heidelberg, John F -- Halpern, Aaron L -- Rusch, Doug -- Eisen, Jonathan A -- Wu, Dongying -- Paulsen, Ian -- Nelson, Karen E -- Nelson, William -- Fouts, Derrick E -- Levy, Samuel -- Knap, Anthony H -- Lomas, Michael W -- Nealson, Ken -- White, Owen -- Peterson, Jeremy -- Hoffman, Jeff -- Parsons, Rachel -- Baden-Tillson, Holly -- Pfannkoch, Cynthia -- Rogers, Yu-Hui -- Smith, Hamilton O -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):66-74. Epub 2004 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biological Energy Alternatives, 1901 Research Boulevard, Rockville, MD 20850, USA. jcventer@tcag.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001713" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/*genetics ; Atlantic Ocean ; Bacteria/*genetics ; Bacteriophages/genetics ; Biodiversity ; Computational Biology ; Cyanobacteria/genetics/growth & development/metabolism ; *Ecosystem ; Eukaryotic Cells ; Genes, Archaeal ; Genes, Bacterial ; Genes, rRNA ; Genome, Archaeal ; *Genome, Bacterial ; *Genomics ; Molecular Sequence Data ; Photosynthesis ; Phylogeny ; Plasmids ; Rhodopsin/genetics ; Rhodopsins, Microbial ; Seawater/*microbiology ; *Sequence Analysis, DNA ; Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-01-06
    Description: RNA interference (RNAi) is a widespread silencing mechanism that acts at both the posttranscriptional and transcriptional levels. Here, we describe the purification of an RNAi effector complex termed RITS (RNA-induced initiation of transcriptional gene silencing) that is required for heterochromatin assembly in fission yeast. The RITS complex contains Ago1 (the fission yeast Argonaute homolog), Chp1 (a heterochromatin-associated chromodomain protein), and Tas3 (a novel protein). In addition, the complex contains small RNAs that require the Dicer ribonuclease for their production. These small RNAs are homologous to centromeric repeats and are required for the localization of RITS to heterochromatic domains. The results suggest a mechanism for the role of the RNAi machinery and small RNAs in targeting of heterochromatin complexes and epigenetic gene silencing at specific chromosomal loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244756/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244756/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verdel, Andre -- Jia, Songtao -- Gerber, Scott -- Sugiyama, Tomoyasu -- Gygi, Steven -- Grewal, Shiv I S -- Moazed, Danesh -- R01 GM072805/GM/NIGMS NIH HHS/ -- R01 GM072805-01/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):672-6. Epub 2004 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Argonaute Proteins ; Cell Cycle Proteins/chemistry/genetics/isolation & purification/*metabolism ; Centromere/metabolism ; Chromosomes, Fungal/metabolism ; Endoribonucleases/chemistry/genetics/isolation & purification/metabolism ; Genes, Reporter ; Heterochromatin/*metabolism ; Mass Spectrometry ; Models, Genetic ; Molecular Sequence Data ; Mutation ; Precipitin Tests ; Protein Binding ; *RNA Interference ; RNA, Fungal/metabolism ; RNA, Small Interfering/metabolism ; RNA-Binding Proteins ; Ribonuclease III/metabolism ; Schizosaccharomyces/*genetics/metabolism ; Schizosaccharomyces pombe Proteins/chemistry/genetics/isolation & ; purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-11-30
    Description: Polycomb group proteins preserve body patterning through development by maintaining transcriptional silencing of homeotic genes. A long-standing hypothesis is that silencing involves creating chromatin structure that is repressive to gene transcription. We demonstrate by electron microscopy that core components of Polycomb Repressive Complex 1 induce compaction of defined nucleosomal arrays. Compaction by Polycomb proteins requires nucleosomes but not histone tails. Each Polycomb complex can compact about three nucleosomes. A region of Posterior Sex Combs that is important for gene silencing in vivo is also important for chromatin compaction, linking the two activities. This mechanism of chromatin compaction might be central to stable gene silencing by the Polycomb group.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Francis, Nicole J -- Kingston, Robert E -- Woodcock, Christopher L -- GM43786/GM/NIGMS NIH HHS/ -- NIH-P41-RR01777/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567868" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/*chemistry/metabolism/ultrastructure ; DNA/*chemistry/metabolism ; Gene Expression Regulation ; Gene Silencing ; HeLa Cells ; Histones/*chemistry/metabolism ; Humans ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Nucleosomes/*chemistry/metabolism/ultrastructure ; Polycomb-Group Proteins ; Protein Conformation ; Repressor Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-02-07
    Description: The 1918 influenza pandemic resulted in about 20 million deaths. This enormous impact, coupled with renewed interest in emerging infections, makes characterization of the virus involved a priority. Receptor binding, the initial event in virus infection, is a major determinant of virus transmissibility that, for influenza viruses, is mediated by the hemagglutinin (HA) membrane glycoprotein. We have determined the crystal structures of the HA from the 1918 virus and two closely related HAs in complex with receptor analogs. They explain how the 1918 HA, while retaining receptor binding site amino acids characteristic of an avian precursor HA, is able to bind human receptors and how, as a consequence, the virus was able to spread in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gamblin, S J -- Haire, L F -- Russell, R J -- Stevens, D J -- Xiao, B -- Ha, Y -- Vasisht, N -- Steinhauer, D A -- Daniels, R S -- Elliot, A -- Wiley, D C -- Skehel, J J -- AI-13654/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1838-42. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764886" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; History, 20th Century ; Humans ; Hydrogen Bonding ; Influenza A virus/*immunology/metabolism/pathogenicity ; Influenza, Human/epidemiology/history/*virology ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Virus/*metabolism ; Sequence Alignment ; Sialic Acids/metabolism ; Species Specificity ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-04
    Description: DNA photolyases use light energy to repair DNA that comprises ultraviolet-induced lesions such as the cis-syn cyclobutane pyrimidine dimers (CPDs). Here we report the crystal structure of a DNA photolyase bound to duplex DNA that is bent by 50 degrees and comprises a synthetic CPD lesion. This CPD lesion is flipped into the active site and split there into two thymines by synchrotron radiation at 100 K. Although photolyases catalyze blue light-driven CPD cleavage only above 200 K, this structure apparently mimics a structural substate during light-driven DNA repair in which back-flipping of the thymines into duplex DNA has not yet taken place.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mees, Alexandra -- Klar, Tobias -- Gnau, Petra -- Hennecke, Ulrich -- Eker, Andre P M -- Carell, Thomas -- Essen, Lars-Oliver -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1789-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Butenandt-Strasse 5-13, Ludwig Maximilians University, D-81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576622" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; *DNA Damage ; *DNA Repair ; DNA, Single-Stranded/chemistry/metabolism ; Deoxyribodipyrimidine Photo-Lyase/*chemistry/metabolism ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Nucleic Acid Conformation ; Protein Conformation ; Pyrimidine Dimers/*chemistry/metabolism ; Synechococcus/*enzymology ; Thymine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-04-24
    Description: The mechanisms controlling axon guidance are of fundamental importance in understanding brain development. Growing corticospinal and somatosensory axons cross the midline in the medulla to reach their targets and thus form the basis of contralateral motor control and sensory input. The motor and sensory projections appeared uncrossed in patients with horizontal gaze palsy with progressive scoliosis (HGPPS). In patients affected with HGPPS, we identified mutations in the ROBO3 gene, which shares homology with roundabout genes important in axon guidance in developing Drosophila, zebrafish, and mouse. Like its murine homolog Rig1/Robo3, but unlike other Robo proteins, ROBO3 is required for hindbrain axon midline crossing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618874/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618874/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jen, Joanna C -- Chan, Wai-Man -- Bosley, Thomas M -- Wan, Jijun -- Carr, Janai R -- Rub, Udo -- Shattuck, David -- Salamon, Georges -- Kudo, Lili C -- Ou, Jing -- Lin, Doris D M -- Salih, Mustafa A M -- Kansu, Tulay -- Al Dhalaan, Hesham -- Al Zayed, Zayed -- MacDonald, David B -- Stigsby, Bent -- Plaitakis, Andreas -- Dretakis, Emmanuel K -- Gottlob, Irene -- Pieh, Christina -- Traboulsi, Elias I -- Wang, Qing -- Wang, Lejin -- Andrews, Caroline -- Yamada, Koki -- Demer, Joseph L -- Karim, Shaheen -- Alger, Jeffry R -- Geschwind, Daniel H -- Deller, Thomas -- Sicotte, Nancy L -- Nelson, Stanley F -- Baloh, Robert W -- Engle, Elizabeth C -- DC00162/DC/NIDCD NIH HHS/ -- DC05524/DC/NIDCD NIH HHS/ -- EY12498/EY/NEI NIH HHS/ -- EY13583/EY/NEI NIH HHS/ -- EY15298/EY/NEI NIH HHS/ -- EY15311/EY/NEI NIH HHS/ -- MH60233/MH/NIMH NIH HHS/ -- P30 HD 18655/HD/NICHD NIH HHS/ -- R01 EY008313/EY/NEI NIH HHS/ -- R01 EY008313-14/EY/NEI NIH HHS/ -- R01 HL066251/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1509-13. Epub 2004 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles, CA 90095, USA. jjen@ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105459" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Alternative Splicing ; Amino Acid Motifs ; Amino Acid Sequence ; Axons/*physiology ; Evoked Potentials, Motor ; Evoked Potentials, Somatosensory ; Female ; Functional Laterality ; Genetic Linkage ; Humans ; In Situ Hybridization ; Magnetic Resonance Imaging ; Male ; Medulla Oblongata/growth & development/pathology ; Microsatellite Repeats ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Neural Pathways ; Ophthalmoplegia/*genetics/pathology/physiopathology ; Pedigree ; Protein Structure, Tertiary ; Receptors, Immunologic/chemistry/*genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Rhombencephalon/*growth & development/pathology ; Scoliosis/*genetics/pathology/physiopathology ; Sequence Analysis, DNA ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-05-25
    Description: The protein-remodeling factor Hsp104 governs inheritance of [PSI+], a yeast prion formed by self-perpetuating amyloid conformers of the translation termination factor Sup35. Perplexingly, either excess or insufficient Hsp104 eliminates [PSI+]. In vitro, at low concentrations, Hsp104 catalyzed the formation of oligomeric intermediates that proved critical for the nucleation of Sup 35 fibrillization de novo and displayed a conformation common among amyloidogenic polypeptides. At higher Hsp104 concentrations, amyloidogenic oligomerization and contingent fibrillization were abolished. Hsp104 also disassembled mature fibers in a manner that initially exposed new surfaces for conformational replication but eventually exterminated prion conformers. These Hsp104 activities differed in their reaction mechanism and can explain [PSI+] inheritance patterns.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shorter, James -- Lindquist, Susan -- GM25874/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1793-7. Epub 2004 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155912" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Amyloid/chemistry ; Amyloid beta-Peptides/chemistry/immunology ; Antibodies/immunology ; Biopolymers ; Catalysis ; Heat-Shock Proteins/chemistry/genetics/*metabolism ; Hydrolysis ; Mutation ; Peptide Fragments/chemistry/immunology ; Peptide Termination Factors ; Prions/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-02-21
    Description: Feline immunodeficiency virus (FIV) induces a disease similar to acquired immunodeficiency syndrome (AIDS) in cats, yet in contrast to human immunodeficiency virus (HIV), CD4 is not the viral receptor. We identified a primary receptor for FIV as CD134 (OX40), a T cell activation antigen and costimulatory molecule. CD134 expression promotes viral binding and renders cells permissive for viral entry, productive infection, and syncytium formation. Infection is CXCR4-dependent, analogous to infection with X4 strains of HIV. Thus, despite the evolutionary divergence of the feline and human lentiviruses, both viruses use receptors that target the virus to a subset of cells that are pivotal to the acquired immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimojima, Masayuki -- Miyazawa, Takayuki -- Ikeda, Yasuhiro -- McMonagle, Elizabeth L -- Haining, Hayley -- Akashi, Hiroomi -- Takeuchi, Yasuhiro -- Hosie, Margaret J -- Willett, Brian J -- R01 AI49765-01A1/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1192-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976315" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CD4-Positive T-Lymphocytes/immunology/metabolism/virology ; Cats ; Cell Line ; Cell Line, Tumor ; DNA, Complementary ; Gene Library ; HIV/metabolism ; HeLa Cells ; Heterocyclic Compounds/pharmacology ; Humans ; Immunodeficiency Virus, Feline/*metabolism/pathogenicity ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Receptors, CXCR4/antagonists & inhibitors/metabolism ; Receptors, OX40 ; Receptors, Tumor Necrosis Factor/chemistry/genetics/immunology/*metabolism ; Receptors, Virus/chemistry/genetics/immunology/*metabolism ; Species Specificity ; Transduction, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-10-02
    Description: A stable phase of toroidal, or ringlike, supramolecular assemblies was formed by combining dilute solution characteristics critical for both bundling of like-charged biopolymers and block copolymer micelle formation. The key to toroid versus classic cylinder micelle formation is the interaction of the negatively charged hydrophilic block of an amphiphilic triblock copolymer with a positively charged divalent organic counterion. This produces a self-attraction of cylindrical micelles that leads to toroid formation, a mechanism akin to the toroidal bundling of semiflexible charged biopolymers such as DNA. The toroids can be kinetically trapped or chemically cross-linked. Insight into the mechanism of toroid formation can be gained by observation of intermediate structures kinetically trapped during film casting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pochan, Darrin J -- Chen, Zhiyun -- Cui, Honggang -- Hales, Kelly -- Qi, Kai -- Wooley, Karen L -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):94-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459386" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylates/chemistry ; Acrylic Resins/chemistry ; Actins/chemistry ; Biopolymers/chemistry ; DNA/chemistry ; Diethylamines/chemistry ; Furans/chemistry ; Hydrophobic and Hydrophilic Interactions ; *Micelles ; Molecular Structure ; Nucleic Acid Conformation ; Polymers/*chemistry ; Protein Conformation ; Styrene/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-01-13
    Description: A family of unusual proteins is deposited in flat, structural platelets in reflective tissues of the squid Euprymna scolopes. These proteins, which we have named reflectins, are encoded by at least six genes in three subfamilies and have no reported homologs outside of squids. Reflectins possess five repeating domains, which are highly conserved among members of the family. The proteins have a very unusual composition, with four relatively rare residues (tyrosine, methionine, arginine, and tryptophan) comprising approximately 57% of a reflectin, and several common residues (alanine, isoleucine, leucine, and lysine) occurring in none of the family members. These protein-based reflectors in squids provide a marked example of nanofabrication in animal systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crookes, Wendy J -- Ding, Lin-Lin -- Huang, Qing Ling -- Kimbell, Jennifer R -- Horwitz, Joseph -- McFall-Ngai, Margaret J -- NEI R01 EY3897/EY/NEI NIH HHS/ -- R01 A150661/PHS HHS/ -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):235-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii-Manoa, 41 Ahui Street, Honolulu, HI 96813, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Animals ; DNA, Complementary ; Decapodiformes/anatomy & histology/*chemistry/genetics ; Electrophoresis, Polyacrylamide Gel ; Immunoblotting ; Immunohistochemistry ; *Light ; Microscopy, Immunoelectron ; Molecular Sequence Data ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Proteins/*analysis/*chemistry/genetics/isolation & purification ; Sequence Alignment ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-02-21
    Description: To achieve X-chromosome dosage compensation, organisms must distinguish X chromosomes from autosomes. We identified multiple, cis-acting regions that recruit the Caenorhabditis elegans dosage compensation complex (DCC) through a search for regions of X that bind the complex when detached from X. The DCC normally assembles along the entire X chromosome, but not all detached regions recruit the complex, despite having genes known to be dosage compensated on the native X. Thus, the DCC binds first to recruitment sites, then spreads to neighboring X regions to accomplish chromosome-wide gene repression. From a large chromosomal domain, we defined a 793-base pair fragment that functions in vivo as an X-recognition element to recruit the DCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Csankovszki, Gyorgyi -- McDonel, Patrick -- Meyer, Barbara J -- F32-GM065007/GM/NIGMS NIH HHS/ -- R37-GM30702/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1182-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Base Sequence ; Binding Sites ; Caenorhabditis elegans/*genetics/metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Carrier Proteins/metabolism ; Chromosomes/metabolism ; Cosmids ; DNA-Binding Proteins/metabolism ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; In Situ Hybridization, Fluorescence ; Male ; Models, Genetic ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Repetitive Sequences, Nucleic Acid ; X Chromosome/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-02-14
    Description: The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westover, Kenneth D -- Bushnell, David A -- Kornberg, Roger D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):1014-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963331" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Crystallization ; Crystallography, X-Ray ; DNA, Single-Stranded/*chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; Promoter Regions, Genetic ; Protein Conformation ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Complementary/*chemistry/metabolism ; Saccharomyces cerevisiae/enzymology ; Templates, Genetic ; Transcription Factor TFIIB/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, Ingrid -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):28-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704404" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aplysia/physiology ; Memory/*physiology ; Neurons/*physiology ; Prions/chemistry/metabolism/*physiology ; Protein Biosynthesis ; Protein Conformation ; RNA, Messenger/genetics/metabolism ; Solubility ; Transcription Factors/chemistry/genetics/*metabolism ; Yeasts/genetics/metabolism ; mRNA Cleavage and Polyadenylation Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-01-17
    Description: Several human and animal Ebola outbreaks have occurred over the past 4 years in Gabon and the Republic of Congo. The human outbreaks consisted of multiple simultaneous epidemics caused by different viral strains, and each epidemic resulted from the handling of a distinct gorilla, chimpanzee, or duiker carcass. These animal populations declined markedly during human Ebola outbreaks, apparently as a result of Ebola infection. Recovered carcasses were infected by a variety of Ebola strains, suggesting that Ebola outbreaks in great apes result from multiple virus introductions from the natural host. Surveillance of animal mortality may help to predict and prevent human Ebola outbreaks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leroy, Eric M -- Rouquet, Pierre -- Formenty, Pierre -- Souquiere, Sandrine -- Kilbourne, Annelisa -- Froment, Jean-Marc -- Bermejo, Magdalena -- Smit, Sheilag -- Karesh, William -- Swanepoel, Robert -- Zaki, Sherif R -- Rollin, Pierre E -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):387-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherche pour le Developpement, UR034, Centre International de Recherches Medicales de Franceville, BP 769 Franceville, Gabon. Eric.Leroy@ird.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14726594" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Central/epidemiology ; Animals ; Animals, Wild/*virology ; Ape Diseases/*epidemiology/virology ; Base Sequence ; *Disease Outbreaks/veterinary ; Disease Reservoirs ; Ebolavirus/classification/*genetics/isolation & purification ; Gabon/epidemiology ; Genes, Viral ; Gorilla gorilla/virology ; Hemorrhagic Fever, Ebola/*epidemiology/transmission/*veterinary/virology ; Humans ; Molecular Sequence Data ; Pan troglodytes/virology ; Population Density ; Population Surveillance ; Ruminants/virology ; Viral Envelope Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-01-24
    Description: Unlike major histocompatibility proteins, which bind peptides, CD1 proteins display lipid antigens to T cells. Here, we report that CD1a presents a family of previously unknown lipopeptides from Mycobacterium tuberculosis, named didehydroxymycobactins because of their structural relation to mycobactin siderophores. T cell activation was mediated by the alphabeta T cell receptors and was specific for structure of the acyl and peptidic components of these antigens. These studies identify a means of intracellular pathogen detection and identify lipopeptides as a biochemical class of antigens for T cells, which, like conventional peptides, have a potential for marked structural diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moody, D Branch -- Young, David C -- Cheng, Tan-Yun -- Rosat, Jean-Pierre -- Roura-Mir, Carme -- O'Connor, Peter B -- Zajonc, Dirk M -- Walz, Andrew -- Miller, Marvin J -- Levery, Steven B -- Wilson, Ian A -- Costello, Catherine E -- Brenner, Michael B -- AI30988/AI/NIAID NIH HHS/ -- AI50216/AI/NIAID NIH HHS/ -- AR48632/AR/NIAMS NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- GM25845/GM/NIGMS NIH HHS/ -- GM62116/GM/NIGMS NIH HHS/ -- P20 RR16459/RR/NCRR NIH HHS/ -- P41-RR10888/RR/NCRR NIH HHS/ -- S10-RR10493/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):527-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Smith Building Room 514, 1 Jimmy Fund Way, Boston, MA 02115, USA. bmoody@rics.bwh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739458" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigen Presentation ; Antigens, Bacterial/chemistry/*immunology/metabolism ; Antigens, CD1/chemistry/immunology/metabolism ; Cell Line ; Chromatography, High Pressure Liquid ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydroxylation ; Lipoproteins/chemistry/*immunology/metabolism ; *Lymphocyte Activation ; Models, Molecular ; Mycobacterium tuberculosis/growth & development/*immunology ; Oxazoles/chemistry/*immunology/metabolism ; Protein Conformation ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; T-Lymphocytes/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, Ingrid -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):791-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514121" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid beta-Peptides/*chemistry/metabolism/toxicity ; Animals ; Cell Death/drug effects ; Cells, Cultured ; Congo Red/*analogs & derivatives/*chemical ; synthesis/chemistry/*metabolism/*pharmacology ; Ligands ; Neurons/cytology/*drug effects ; Piperidines/*chemical synthesis/chemistry/metabolism/*pharmacology ; Protein Conformation ; Rats ; Tacrolimus Binding Proteins/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-08-18
    Description: Colonies of the Caribbean coral Montastraea cavernosa exhibit a solar-stimulated orange-red fluorescence that is spectrally similar to a variety of fluorescent proteins expressed by corals. The source of this fluorescence is phycoerythrin in unicellular, nonheterocystis, symbiotic cyanobacteria within the host cells of the coral. The cyanobacteria coexist with the symbiotic dinoflagellates (zooxanthellae) of the coral and express the nitrogen-fixing enzyme nitrogenase. The presence of this prokaryotic symbiont in a nitrogen-limited zooxanthellate coral suggests that nitrogen fixation may be an important source of this limiting element for the symbiotic association.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lesser, Michael P -- Mazel, Charles H -- Gorbunov, Maxim Y -- Falkowski, Paul G -- New York, N.Y. -- Science. 2004 Aug 13;305(5686):997-1000.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology and Center for Marine Biology, University of New Hampshire, Durham, NH 03824, USA. mpl@cisunix.unh.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15310901" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/*microbiology/physiology ; Cyanobacteria/genetics/isolation & purification/*physiology/ultrastructure ; Dinoflagellida/isolation & purification/physiology ; Fluorescence ; Microscopy, Fluorescence ; Molecular Sequence Data ; *Nitrogen Fixation ; Nitrogenase/genetics/metabolism ; Organelles/ultrastructure ; Phycoerythrin/metabolism ; *Symbiosis ; Thylakoids/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-08-03
    Description: Propionibacterium acnes is a major inhabitant of adult human skin, where it resides within sebaceous follicles, usually as a harmless commensal although it has been implicated in acne vulgaris formation. The entire genome sequence of this Gram-positive bacterium encodes 2333 putative genes and revealed numerous gene products involved in degrading host molecules, including sialidases, neuraminidases, endoglycoceramidases, lipases, and pore-forming factors. Surface-associated and other immunogenic factors have been identified, which might be involved in triggering acne inflammation and other P. acnes-associated diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bruggemann, Holger -- Henne, Anke -- Hoster, Frank -- Liesegang, Heiko -- Wiezer, Arnim -- Strittmatter, Axel -- Hujer, Sandra -- Durre, Peter -- Gottschalk, Gerhard -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):671-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gottingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Gottingen, Grisebachstrasse 8, 37077 Gottingen, Germany. hbruegg@pasteur.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15286373" target="_blank"〉PubMed〈/a〉
    Keywords: Acne Vulgaris/immunology/microbiology ; Amino Acid Motifs ; Amino Acid Sequence ; Antigens, Bacterial/chemistry/genetics ; Bacterial Proteins/chemistry/genetics/immunology ; Base Sequence ; Chromosomes, Bacterial/genetics ; Computational Biology ; Energy Metabolism ; Esterases/genetics/metabolism ; Genes, Bacterial ; *Genome, Bacterial ; Heat-Shock Proteins/chemistry/genetics ; Humans ; Hydrolases/genetics/metabolism ; Lipase/genetics/metabolism ; Molecular Sequence Data ; Oxidative Phosphorylation ; Propionibacterium acnes/*genetics/immunology/physiology ; *Sequence Analysis, DNA ; Skin/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-03-27
    Description: Heterosexual transmission accounts for the majority of human immunodeficiency virus-1 (HIV-1) infections worldwide, yet the viral properties that determine transmission fitness or outgrowth have not been elucidated. Here we show, for eight heterosexual transmission pairs, that recipient viruses were monophyletic, encoding compact, glycan-restricted envelope glycoproteins. These viruses were also uniquely sensitive to neutralization by antibody from the transmitting partner. Thus, the exposure of neutralizing epitopes, which are lost in chronic infection because of immune escape, appears to be favored in the newly infected host. This reveals characteristics of the envelope glycoprotein that influence HIV-1 transmission and may have implications for vaccine design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Derdeyn, Cynthia A -- Decker, Julie M -- Bibollet-Ruche, Frederic -- Mokili, John L -- Muldoon, Mark -- Denham, Scott A -- Heil, Marintha L -- Kasolo, Francis -- Musonda, Rosemary -- Hahn, Beatrice H -- Shaw, George M -- Korber, Bette T -- Allen, Susan -- Hunter, Eric -- AI-40951/AI/NIAID NIH HHS/ -- AI-51231/AI/NIAID NIH HHS/ -- N01-85338/PHS HHS/ -- U01-AI-41530/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 26;303(5666):2019-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15044802" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Cohort Studies ; Epitopes/immunology ; Female ; Genes, env ; Glycosylation ; HIV Antibodies/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/*immunology ; HIV Infections/*immunology/*transmission/virology ; HIV-1/genetics/*immunology/physiology ; Heterosexuality ; Humans ; Likelihood Functions ; Male ; Molecular Sequence Data ; Neutralization Tests ; Prospective Studies ; Viral Load ; Zambia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-02-07
    Description: The 1918 "Spanish" influenza pandemic represents the largest recorded outbreak of any infectious disease. The crystal structure of the uncleaved precursor of the major surface antigen of the extinct 1918 virus was determined at 3.0 angstrom resolution after reassembly of the hemagglutinin gene from viral RNA fragments preserved in 1918 formalin-fixed lung tissues. A narrow avian-like receptor-binding site, two previously unobserved histidine patches, and a less exposed surface loop at the cleavage site that activates viral membrane fusion reveal structural features primarily found in avian viruses, which may have contributed to the extraordinarily high infectivity and mortality rates observed during 1918.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, James -- Corper, Adam L -- Basler, Christopher F -- Taubenberger, Jeffery K -- Palese, Peter -- Wilson, Ian A -- AI058113/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- AI50619/AI/NIAID NIH HHS/ -- CA55896/CA/NCI NIH HHS/ -- P50-GM 62411/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1866-70. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764887" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carbohydrate Conformation ; Cloning, Molecular ; Crystallography, X-Ray ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/metabolism ; Histidine/chemistry/metabolism ; History, 20th Century ; Humans ; Hydrogen Bonding ; Influenza A virus/classification/*immunology/pathogenicity ; Influenza, Human/epidemiology/history/virology ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Virus/metabolism ; Sialic Acids/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-09-09
    Description: We describe the synthesis and properties of a small molecule mimic of Smac, a pro-apoptotic protein that functions by relieving inhibitor-of-apoptosis protein (IAP)-mediated suppression of caspase activity. The compound binds to X chromosome- encoded IAP (XIAP), cellular IAP 1 (cIAP-1), and cellular IAP 2 (cIAP-2) and synergizes with both tumor necrosis factor alpha (TNFalpha) and TNF-related apoptosis-inducing ligand (TRAIL) to potently induce caspase activation and apoptosis in human cancer cells. The molecule has allowed a temporal, unbiased evaluation of the roles that IAP proteins play during signaling from TRAIL and TNF receptors. The compound is also a lead structure for the development of IAP antagonists potentially useful as therapy for cancer and inflammatory diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Lin -- Thomas, Ranny Mathew -- Suzuki, Hidetaka -- De Brabander, Jef K -- Wang, Xiaodong -- Harran, Patrick G -- P01 CA95471/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1471-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15353805" target="_blank"〉PubMed〈/a〉
    Keywords: Alkynes/chemical synthesis/chemistry/metabolism/*pharmacology ; *Apoptosis ; Apoptosis Regulatory Proteins ; Biotinylation ; *Carrier Proteins/chemistry/metabolism ; Caspase Inhibitors ; Caspases/metabolism ; Cell Line, Tumor ; Computer Simulation ; Dimerization ; Dipeptides/chemical synthesis/chemistry/metabolism/*pharmacology ; Diynes ; Glioblastoma ; Humans ; Inhibitor of Apoptosis Proteins ; Intracellular Signaling Peptides and Proteins ; Membrane Glycoproteins/metabolism/*pharmacology ; *Mitochondrial Proteins/chemistry/metabolism ; *Molecular Mimicry ; NF-kappa B/metabolism ; Poly(ADP-ribose) Polymerases/metabolism ; Protein Binding ; Protein Conformation ; Protein Engineering ; Proteins/metabolism ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Tetrazoles/chemical synthesis/chemistry/metabolism/*pharmacology ; Tumor Necrosis Factor-alpha/metabolism/*pharmacology ; X-Linked Inhibitor of Apoptosis Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-03-06
    Description: We have sequenced and annotated the genome of the filamentous ascomycete Ashbya gossypii. With a size of only 9.2 megabases, encoding 4718 protein-coding genes, it is the smallest genome of a free-living eukaryote yet characterized. More than 90% of A. gossypii genes show both homology and a particular pattern of synteny with Saccharomyces cerevisiae. Analysis of this pattern revealed 300 inversions and translocations that have occurred since divergence of these two species. It also provided compelling evidence that the evolution of S. cerevisiae included a whole genome duplication or fusion of two related species and showed, through inferred ancient gene orders, which of the duplicated genes lost one copy and which retained both copies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dietrich, Fred S -- Voegeli, Sylvia -- Brachat, Sophie -- Lerch, Anita -- Gates, Krista -- Steiner, Sabine -- Mohr, Christine -- Pohlmann, Rainer -- Luedi, Philippe -- Choi, Sangdun -- Wing, Rod A -- Flavier, Albert -- Gaffney, Thomas D -- Philippsen, Peter -- New York, N.Y. -- Science. 2004 Apr 9;304(5668):304-7. Epub 2004 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biozentrum der Universitat Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001715" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Biological Evolution ; Centromere/genetics ; Chromosome Inversion ; *Chromosome Mapping ; Computational Biology ; Fungal Proteins/genetics ; Gene Duplication ; Gene Order ; Genes, Fungal ; *Genome, Fungal ; Molecular Sequence Data ; Open Reading Frames ; Saccharomyces cerevisiae/*genetics ; Saccharomycetales/*genetics ; Sequence Alignment ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Synteny ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-31
    Description: Sixty-one SARS coronavirus genomic sequences derived from the early, middle, and late phases of the severe acute respiratory syndrome (SARS) epidemic were analyzed together with two viral sequences from palm civets. Genotypes characteristic of each phase were discovered, and the earliest genotypes were similar to the animal SARS-like coronaviruses. Major deletions were observed in the Orf8 region of the genome, both at the start and the end of the epidemic. The neutral mutation rate of the viral genome was constant but the amino acid substitution rate of the coding sequences slowed during the course of the epidemic. The spike protein showed the strongest initial responses to positive selection pressures, followed by subsequent purifying selection and eventual stabilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chinese SARS Molecular Epidemiology Consortium -- New York, N.Y. -- Science. 2004 Mar 12;303(5664):1666-9. Epub 2004 Jan 29.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14752165" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Substitution ; Animals ; Base Sequence ; Carnivora/virology ; China/epidemiology ; Cluster Analysis ; Coronavirus/genetics/isolation & purification ; *Disease Outbreaks ; *Evolution, Molecular ; *Genome, Viral ; Genotype ; Humans ; Membrane Glycoproteins/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Open Reading Frames ; Phylogeny ; Point Mutation ; RNA, Viral/genetics ; SARS Virus/*genetics/isolation & purification/physiology ; Selection, Genetic ; Sequence Deletion ; Severe Acute Respiratory Syndrome/*epidemiology/*virology ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/genetics ; Viral Matrix Proteins/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-01-24
    Description: Jun N-terminal kinases (JNKs) are essential for neuronal microtubule assembly and apoptosis. Phosphorylation of the activating protein 1 (AP1) transcription factor c-Jun, at multiple sites within its transactivation domain, is required for JNK-induced neurotoxicity. We report that in neurons the stability of c-Jun is regulated by the E3 ligase SCF(Fbw7), which ubiquitinates phosphorylated c-Jun and facilitates c-Jun degradation. Fbw7 depletion resulted in accumulation of phosphorylated c-Jun, stimulation of AP1 activity, and neuronal apoptosis. SCF(Fbw7) therefore antagonizes the apoptotic c-Jun-dependent effector arm of JNK signaling, allowing neurons to tolerate potentially neurotoxic JNK activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nateri, Abdolrahman S -- Riera-Sans, Lluis -- Da Costa, Clive -- Behrens, Axel -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1374-8. Epub 2004 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739463" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Base Sequence ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; F-Box Proteins/genetics/*metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinases/*metabolism ; Molecular Sequence Data ; Neurons/*physiology ; PC12 Cells ; Phosphorylation ; Proto-Oncogene Proteins c-jun/*metabolism ; RNA, Small Interfering/metabolism ; Rats ; Transcription Factor AP-1/metabolism ; Transfection ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-01-31
    Description: The lantibiotic lacticin 481 is synthesized on ribosomes as a prepeptide (LctA) and posttranslationally modified to its mature form. These modifications include dehydration of serines and threonines, followed by intramolecular addition of cysteines to the unsaturated amino acids, which generates cyclic thioethers. This process breaks eight chemical bonds and forms six newbonds and is catalyzed by one enzyme, LctM. We have characterized the in vitro activity of LctM, which completely processed a series of LctA mutants, displaying a permissive substrate specificity that holds promise for antibiotic engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, Lili -- Miller, Leah M -- Chatterjee, Champak -- Averin, Olga -- Kelleher, Neil L -- van der Donk, Wilfred A -- GM 067725/GM/NIGMS NIH HHS/ -- GM58822/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):679-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14752162" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*biosynthesis/genetics ; *Bacteriocins ; Cloning, Molecular ; Cysteine/metabolism ; Enzymes/chemistry/genetics/isolation & purification/*metabolism ; Escherichia coli/genetics ; Lactococcus lactis/enzymology/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Protein Precursors/chemistry/metabolism ; Protein Processing, Post-Translational ; Serine/metabolism ; Spectrometry, Mass, Electrospray Ionization ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Substrate Specificity ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-05-08
    Description: Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvey, Robert J -- Depner, Ulrike B -- Wassle, Heinz -- Ahmadi, Seifollah -- Heindl, Cornelia -- Reinold, Heiko -- Smart, Trevor G -- Harvey, Kirsten -- Schutz, Burkhard -- Abo-Salem, Osama M -- Zimmer, Andreas -- Poisbeau, Pierrick -- Welzl, Hans -- Wolfer, David P -- Betz, Heinrich -- Zeilhofer, Hanns Ulrich -- Muller, Ulrike -- New York, N.Y. -- Science. 2004 May 7;304(5672):884-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131310" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dinoprostone/administration & dosage/*metabolism/pharmacology ; Female ; Freund's Adjuvant ; Glycine/metabolism ; Humans ; Inflammation/metabolism/*physiopathology ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Neurons/metabolism ; Pain/*physiopathology ; Patch-Clamp Techniques ; Phosphorylation ; Posterior Horn Cells/*metabolism ; Receptors, Glycine/chemistry/genetics/*metabolism ; Signal Transduction ; Spinal Cord/*metabolism ; Synaptic Transmission ; Transfection ; Zymosan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-01-06
    Description: A previously unknown maltose transporter is essential for the conversion of starch to sucrose in Arabidopsis leaves at night. The transporter was identified by isolating two allelic mutants with high starch levels and very high maltose, an intermediate of starch breakdown. The mutations affect a gene of previously unknown function, MEX1. We show that MEX1is a maltose transporter that is unrelated to other sugar transporters. The severe mex1 phenotype demonstrates that MEX1is the predominant route of carbohydrate export from chloroplasts at night. Homologous genes in plants including rice and potato indicate that maltose export is of widespread significance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niittyla, Totte -- Messerli, Gaelle -- Trevisan, Martine -- Chen, Jychian -- Smith, Alison M -- Zeeman, Samuel C -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):87-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704427" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Biological Transport ; Chloroplasts/metabolism ; Cloning, Molecular ; Crosses, Genetic ; DNA, Complementary ; Genes, Plant ; Glucose/metabolism ; Maltose/*metabolism ; Molecular Sequence Data ; Monosaccharide Transport Proteins/chemistry/genetics/*metabolism ; Mutation ; Phenotype ; Plant Leaves/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; Starch/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-04-17
    Description: Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Here, we demonstrate that Abeta-binding alcohol dehydrogenase (ABAD) is a direct molecular link from Abeta to mitochondrial toxicity. Abeta interacts with ABAD in the mitochondria of AD patients and transgenic mice. The crystal structure of Abeta-bound ABAD shows substantial deformation of the active site that prevents nicotinamide adenine dinucleotide (NAD) binding. An ABAD peptide specifically inhibits ABAD-Abeta interaction and suppresses Abeta-induced apoptosis and free-radical generation in neurons. Transgenic mice overexpressing ABAD in an Abeta-rich environment manifest exaggerated neuronal oxidative stress and impaired memory. These data suggest that the ABAD-Abeta interaction may be a therapeutic target in AD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lustbader, Joyce W -- Cirilli, Maurizio -- Lin, Chang -- Xu, Hong Wei -- Takuma, Kazuhiro -- Wang, Ning -- Caspersen, Casper -- Chen, Xi -- Pollak, Susan -- Chaney, Michael -- Trinchese, Fabrizio -- Liu, Shumin -- Gunn-Moore, Frank -- Lue, Lih-Fen -- Walker, Douglas G -- Kuppusamy, Periannan -- Zewier, Zay L -- Arancio, Ottavio -- Stern, David -- Yan, Shirley ShiDu -- Wu, Hao -- 1K07AG00959/AG/NIA NIH HHS/ -- AG16736/AG/NIA NIH HHS/ -- AG17490/AG/NIA NIH HHS/ -- NS42855/NS/NINDS NIH HHS/ -- P50AG08702/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):448-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Reproductive Sciences and Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15087549" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Hydroxyacyl CoA Dehydrogenases/chemistry/*metabolism ; Aged ; Aged, 80 and over ; Alzheimer Disease/*metabolism ; Amino Acid Sequence ; Amyloid beta-Peptides/chemistry/genetics/*metabolism ; Animals ; Binding Sites ; Brain/*metabolism ; Brain Chemistry ; Carrier Proteins/chemistry/*metabolism ; Cells, Cultured ; Cerebral Cortex/chemistry/metabolism ; Crystallization ; DNA Fragmentation ; Hippocampus/physiology ; Humans ; Learning ; Memory ; Mice ; Mice, Transgenic ; Microscopy, Confocal ; Microscopy, Immunoelectron ; Mitochondria/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; NAD/metabolism ; Neurons/metabolism ; Protein Binding ; Protein Conformation ; Reactive Oxygen Species/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-10-09
    Description: Nitric oxide (NO) is extremely toxic to Clostridium botulinum, but its molecular targets are unknown. Here, we identify a heme protein sensor (SONO) that displays femtomolar affinity for NO. The crystal structure of the SONO heme domain reveals a previously undescribed fold and a strategically placed tyrosine residue that modulates heme-nitrosyl coordination. Furthermore, the domain architecture of a SONO ortholog cloned from Chlamydomonas reinhardtii indicates that NO signaling through cyclic guanosine monophosphate arose before the origin of multicellular eukaryotes. Our findings have broad implications for understanding bacterial responses to NO, as well as for the activation of mammalian NO-sensitive guanylyl cyclase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nioche, Pierre -- Berka, Vladimir -- Vipond, Julia -- Minton, Nigel -- Tsai, Ah-Lim -- Raman, C S -- AY343540/PHS HHS/ -- R01 AI054444/AI/NIAID NIH HHS/ -- R01 AI054444-05/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1550-3. Epub 2004 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Research Center and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15472039" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Bacterial Proteins/chemistry/metabolism ; Biological Evolution ; Carrier Proteins/*chemistry/genetics/*metabolism ; Chemotaxis ; Chlamydomonas reinhardtii/chemistry/genetics/metabolism ; Cloning, Molecular ; Clostridium botulinum/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli/genetics/growth & development ; Guanylate Cyclase ; Heme/chemistry/metabolism ; Hemeproteins/*chemistry/genetics/*metabolism ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Nitric Oxide/*metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protoporphyrins/analysis/metabolism ; Receptors, Cytoplasmic and Nuclear/chemistry/metabolism ; Sequence Alignment ; Signal Transduction ; Static Electricity ; Thermoanaerobacter/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-04-24
    Description: MicroRNAs (miRNAs) are endogenous approximately 22-nucleotide RNAs, some of which are known to play important regulatory roles in animals by targeting the messages of protein-coding genes for translational repression. We find that miR-196, a miRNA encoded at three paralogous locations in the A, B, and C mammalian HOX clusters, has extensive, evolutionarily conserved complementarity to messages of HOXB8, HOXC8, and HOXD8. RNA fragments diagnostic of miR-196-directed cleavage of HOXB8 were detected in mouse embryos. Cell culture experiments demonstrated down-regulation of HOXB8, HOXC8, HOXD8, and HOXA7 and supported the cleavage mechanism for miR-196-directed repression of HOXB8. These results point to a miRNA-mediated mechanism for the posttranscriptional restriction of HOX gene expression during vertebrate development and demonstrate that metazoan miRNAs can repress expression of their natural targets through mRNA cleavage in addition to inhibiting productive translation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yekta, Soraya -- Shih, I-Hung -- Bartel, David P -- New York, N.Y. -- Science. 2004 Apr 23;304(5670):594-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105502" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Base Sequence ; Down-Regulation ; *Genes, Homeobox ; Genes, Reporter ; HeLa Cells ; Homeodomain Proteins/*genetics ; Humans ; Mice ; MicroRNAs/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Neoplasm Proteins/genetics ; RNA, Messenger/chemistry/*genetics/*metabolism ; Sequence Alignment ; Transcription Factors/genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-03-27
    Description: Images of entire cells are preceding atomic structures of the separate molecular machines that they contain. The resulting gap in knowledge can be partly bridged by protein-protein interactions, bioinformatics, and electron microscopy. Here we use interactions of known three-dimensional structure to model a large set of yeast complexes, which we also screen by electron microscopy. For 54 of 102 complexes, we obtain at least partial models of interacting subunits. For 29, including the exosome, the chaperonin containing TCP-1, a 3'-messenger RNA degradation complex, and RNA polymerase II, the process suggests atomic details not easily seen by homology, involving the combination of two or more known structures. We also consider interactions between complexes (cross-talk) and use these to construct a structure-based network of molecular machines in the cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aloy, Patrick -- Bottcher, Bettina -- Ceulemans, Hugo -- Leutwein, Christina -- Mellwig, Christian -- Fischer, Susanne -- Gavin, Anne-Claude -- Bork, Peer -- Superti-Furga, Giulio -- Serrano, Luis -- Russell, Robert B -- New York, N.Y. -- Science. 2004 Mar 26;303(5666):2026-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Structural and Computational Biology Programme, 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15044803" target="_blank"〉PubMed〈/a〉
    Keywords: Chaperonins/chemistry/metabolism ; Computational Biology ; Image Processing, Computer-Assisted ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Nuclear Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; *Protein Interaction Mapping ; Protein Structure, Tertiary ; RNA Polymerase II/chemistry/metabolism ; Ribonuclease P/chemistry/metabolism ; Saccharomyces cerevisiae/chemistry/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-02-14
    Description: The tumor suppressor p53 exerts its anti-neoplastic activity primarily through the induction of apoptosis. We found that cytosolic localization of endogenous wild-type or trans-activation-deficient p53 was necessary and sufficient for apoptosis. p53 directly activated the proapoptotic Bcl-2 protein Bax in the absence of other proteins to permeabilize mitochondria and engage the apoptotic program. p53 also released both proapoptotic multidomain proteins and BH3-only proteins [Proapoptotic Bcl-2 family proteins that share only the third Bcl-2 homology domain (BH3)] that were sequestered by Bcl-xL. The transcription-independent activation of Bax by p53 occurred with similar kinetics and concentrations to those produced by activated Bid. We propose that when p53 accumulates in the cytosol, it can function analogously to the BH3-only subset of proapoptotic Bcl-2 proteins to activate Bax and trigger apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chipuk, Jerry E -- Kuwana, Tomomi -- Bouchier-Hayes, Lisa -- Droin, Nathalie M -- Newmeyer, Donald D -- Schuler, Martin -- Green, Douglas R -- AI40646/AI/NIAID NIH HHS/ -- AI47891/AI/NIAID NIH HHS/ -- GM52735/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):1010-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein ; Carrier Proteins/metabolism ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Cells, Cultured ; Cytochromes c/metabolism ; Cytosol/metabolism ; Gene Expression Regulation ; Genes, p53 ; HeLa Cells ; Humans ; Intracellular Membranes/*physiology ; Liposomes/metabolism ; Mice ; Mitochondria/*physiology ; Mutation ; Permeability ; Protein Conformation ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Recombinant Fusion Proteins/metabolism ; Tumor Suppressor Protein p53/chemistry/*metabolism ; Ultraviolet Rays ; Wheat Germ Agglutinins/pharmacology ; bcl-2-Associated X Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rutherford, A W -- Boussac, A -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1782-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Service of Bioenergetics, CNRS URA 2096, Departement de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette, France. rutherford@dsvidf.cea.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031485" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/analysis/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Electrons ; Free Radicals ; Histidine/chemistry/metabolism ; Hydrogen Bonding ; Ligands ; Manganese/analysis/metabolism ; Models, Chemical ; Models, Molecular ; Oxidation-Reduction ; Oxygen/analysis/metabolism ; Photolysis ; Photosynthetic Reaction Center Complex Proteins/chemistry/metabolism ; Photosystem II Protein Complex/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protons ; Tyrosine/*analogs & derivatives/chemistry/metabolism ; Water/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2004-12-18
    Description: The inositol pyrophosphates IP7 and IP8 contain highly energetic pyrophosphate bonds. Although implicated in various biologic functions, their molecular sites of action have not been clarified. Using radiolabeled IP7, we detected phosphorylation of multiple eukaryotic proteins. We also observed phosphorylation of endogenous proteins by endogenous IP7 in yeast. Phosphorylation by IP7 is nonenzymatic and may represent a novel intracellular signaling mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saiardi, Adolfo -- Bhandari, Rashna -- Resnick, Adam C -- Snowman, Adele M -- Snyder, Solomon H -- DA00074/DA/NIDA NIH HHS/ -- MH068830-02/MH/NIMH NIH HHS/ -- MH18501/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2101-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604408" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Drosophila Proteins/metabolism ; Drosophila melanogaster ; Escherichia coli Proteins/metabolism ; Humans ; Inositol Phosphates/*metabolism ; Kinetics ; Magnesium/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/chemistry/*metabolism ; Phosphates/metabolism ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/metabolism ; Protein Kinases/genetics/metabolism ; Proteins/*metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Serine/metabolism ; Signal Transduction ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2004-12-14
    Description: Malaria parasites secrete proteins across the vacuolar membrane into the erythrocyte, inducing modifications linked to disease and parasite survival. We identified an 11-amino acid signal required for the secretion of proteins from the Plasmodium falciparum vacuole to the human erythrocyte. Bioinformatics predicted a secretome of 〉320 proteins and conservation of the signal across parasite species. Functional studies indicated the predictive value of the signal and its role in targeting virulence proteins to the erythrocyte and implicated its recognition by a receptor/transporter. Erythrocyte modification by the parasite may involve plasmodial heat shock proteins and be vastly more complex than hitherto realized.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiller, N Luisa -- Bhattacharjee, Souvik -- van Ooij, Christiaan -- Liolios, Konstantinos -- Harrison, Travis -- Lopez-Estrano, Carlos -- Haldar, Kasturi -- AI39071/AI/NIAID NIH HHS/ -- HL69630/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1934-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591203" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Computational Biology ; Cytosol/metabolism ; Erythrocytes/*metabolism/parasitology ; Genes, Protozoan ; Humans ; Malaria, Falciparum/parasitology ; Membrane Proteins/chemistry/metabolism ; Molecular Sequence Data ; Plasmodium falciparum/genetics/growth & development/*metabolism/*pathogenicity ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Protein Transport ; Protozoan Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transgenes ; Vacuoles/metabolism/parasitology ; Virulence Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2004-09-14
    Description: The first structure of an ammonia channel from the Amt/MEP/Rh protein superfamily, determined to 1.35 angstrom resolution, shows it to be a channel that spans the membrane 11 times. Two structurally similar halves span the membrane with opposite polarity. Structures with and without ammonia or methyl ammonia show a vestibule that recruits NH4+/NH3, a binding site for NH4+, and a 20 angstrom-long hydrophobic channel that lowers the NH4+ pKa to below 6 and conducts NH3. Favorable interactions for NH3 are seen within the channel and use conserved histidines. Reconstitution of AmtB into vesicles shows that AmtB conducts uncharged NH3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khademi, Shahram -- O'Connell, Joseph 3rd -- Remis, Jonathan -- Robles-Colmenares, Yaneth -- Miercke, Larry J W -- Stroud, Robert M -- GM24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 10;305(5690):1587-94.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, S412C Genentech Hall, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15361618" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ammonia/*metabolism ; Binding Sites ; Biological Transport ; Cation Transport Proteins/*chemistry/genetics/metabolism ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Liposomes ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Quaternary Ammonium Compounds/metabolism ; Rh-Hr Blood-Group System/chemistry/metabolism ; Sequence Alignment ; Water/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2004-11-20
    Description: Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Robert -- Strauss, Juliane G -- Haemmerle, Guenter -- Schoiswohl, Gabriele -- Birner-Gruenberger, Ruth -- Riederer, Monika -- Lass, Achim -- Neuberger, Georg -- Eisenhaber, Frank -- Hermetter, Albin -- Zechner, Rudolf -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1383-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biosciences, University of Graz, Graz, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550674" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/*metabolism ; Adipose Tissue, Brown/enzymology/metabolism ; Amino Acid Sequence ; Animals ; COS Cells ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cytoplasm/enzymology ; DNA, Complementary ; Diglycerides/metabolism ; Fatty Acids/metabolism ; Gene Silencing ; Glycerol/metabolism ; Humans ; Isoproterenol/pharmacology ; *Lipid Mobilization ; Lipolysis ; Lipoprotein Lipase/chemistry/genetics/immunology/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Sterol Esterase/genetics/*metabolism ; Substrate Specificity ; Transfection ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2004-02-21
    Description: Cyclic nucleotides regulate axonal responses to a number of guidance cues through unknown molecular events. We report here that Drosophila nervy, a member of the myeloid translocation gene family of A kinase anchoring proteins (AKAPs), regulates repulsive axon guidance by linking the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) to the Semaphorin 1a (Sema-1a) receptor Plexin A (PlexA). Nervy and PKA antagonize Sema-1a-PlexA-mediated repulsion, and the AKAP binding region of Nervy is critical for this effect. Thus, Nervy couples cAMP-PKA signaling to PlexA to regulate Sema-1a-mediated axonal repulsion, revealing a simple molecular mechanism that allows growing axons to integrate inputs from multiple guidance cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Terman, Jonathan R -- Kolodkin, Alex L -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1204-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 1001 PCTB/725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976319" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Animals, Genetically Modified ; Axons/*physiology/ultrastructure ; Carrier Proteins/chemistry/*metabolism ; Central Nervous System/embryology ; Cues ; Cyclic AMP-Dependent Protein Kinases/*metabolism ; Drosophila/cytology/*embryology/genetics/metabolism ; Drosophila Proteins/chemistry/*metabolism ; Embryo, Nonmammalian/cytology/metabolism/physiology ; Molecular Sequence Data ; Motor Neurons/metabolism/*physiology/ultrastructure ; Muscles/embryology/innervation/metabolism ; Mutation ; Nerve Tissue Proteins/*metabolism ; Neural Pathways ; Phenotype ; Receptors, Cell Surface/*metabolism ; Semaphorins/*metabolism ; Signal Transduction ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2004-10-09
    Description: We identified a previously unknown riboswitch class in bacteria that is selectively triggered by glycine. A representative of these glycine-sensing RNAs from Bacillus subtilis operates as a rare genetic on switch for the gcvT operon, which codes for proteins that form the glycine cleavage system. Most glycine riboswitches integrate two ligand-binding domains that function cooperatively to more closely approximate a two-state genetic switch. This advanced form of riboswitch may have evolved to ensure that excess glycine is efficiently used to provide carbon flux through the citric acid cycle and maintain adequate amounts of the amino acid for protein synthesis. Thus, riboswitches perform key regulatory roles and exhibit complex performance characteristics that previously had been observed only with protein factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mandal, Maumita -- Lee, Mark -- Barrick, Jeffrey E -- Weinberg, Zasha -- Emilsson, Gail Mitchell -- Ruzzo, Walter L -- Breaker, Ronald R -- New York, N.Y. -- Science. 2004 Oct 8;306(5694):275-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, Post Office Box 208103, New Haven, CT 06520-8103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15472076" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/chemistry/*metabolism ; Allosteric Regulation ; Allosteric Site ; Bacillus subtilis/*genetics/metabolism ; Base Pairing ; Base Sequence ; Binding Sites ; *Gene Expression Regulation, Bacterial ; Glycine/*metabolism ; Ligands ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Operon ; RNA, Bacterial/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; Transcription, Genetic ; Vibrio cholerae/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2004-03-16
    Description: We used force-clamp atomic force microscopy to measure the end-to-end length of the small protein ubiquitin during its folding reaction at the single-molecule level. Ubiquitin was first unfolded and extended at a high force, then the stretching force was quenched and protein folding was observed. The folding trajectories were continuous and marked by several distinct stages. The time taken to fold was dependent on the contour length of the unfolded protein and the stretching force applied during folding. The folding collapse was marked by large fluctuations in the end-to-end length of the protein, but these fluctuations vanished upon the final folding contraction. These direct observations of the complete folding trajectory of a protein provide a benchmark to determine the physical basis of the folding reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez, Julio M -- Li, Hongbin -- New York, N.Y. -- Science. 2004 Mar 12;303(5664):1674-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA. jfernandez@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15017000" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Physical ; *Microscopy, Atomic Force ; Physicochemical Phenomena ; Polyubiquitin/*chemistry ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Protein Structure, Secondary ; Time Factors ; Ubiquitin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2004-05-08
    Description: Over 99% of modern animals are members of the evolutionary lineage Bilateria. The evolutionary success of Bilateria is credited partly to the origin of bilateral symmetry. Although animals of the phylum Cnidaria are not within the Bilateria, some representatives, such as the sea anemone Nematostella vectensis, exhibit bilateral symmetry. We show that Nematostella uses homologous genes to achieve bilateral symmetry: Multiple Hox genes are expressed in a staggered fashion along its primary body axis, and the transforming growth factor-beta gene decapentaplegic (dpp) is expressed in an asymmetric fashion about its secondary body axis. These data suggest that bilateral symmetry arose before the evolutionary split of Cnidaria and Bilateria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finnerty, John R -- Pang, Kevin -- Burton, Pat -- Paulson, Dave -- Martindale, Mark Q -- New York, N.Y. -- Science. 2004 May 28;304(5675):1335-7. Epub 2004 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131263" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Body Patterning ; Endoderm/physiology ; Gene Duplication ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Genes ; *Genes, Homeobox ; In Situ Hybridization ; Larva/genetics/growth & development ; Molecular Sequence Data ; Phylogeny ; Sea Anemones/*anatomy & histology/embryology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2004-04-17
    Description: Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra. We previously mapped a locus for a rare familial form of PD to chromosome 1p36 (PARK6). Here we show that mutations in PINK1 (PTEN-induced kinase 1) are associated with PARK6. We have identified two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families: a truncating nonsense mutation and a missense mutation at a highly conserved amino acid. Cell culture studies suggest that PINK1 is mitochondrially located and may exert a protective effect on the cell that is abrogated by the mutations, resulting in increased susceptibility to cellular stress. These data provide a direct molecular link between mitochondria and the pathogenesis of PD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valente, Enza Maria -- Abou-Sleiman, Patrick M -- Caputo, Viviana -- Muqit, Miratul M K -- Harvey, Kirsten -- Gispert, Suzana -- Ali, Zeeshan -- Del Turco, Domenico -- Bentivoglio, Anna Rita -- Healy, Daniel G -- Albanese, Alberto -- Nussbaum, Robert -- Gonzalez-Maldonado, Rafael -- Deller, Thomas -- Salvi, Sergio -- Cortelli, Pietro -- Gilks, William P -- Latchman, David S -- Harvey, Robert J -- Dallapiccola, Bruno -- Auburger, Georg -- Wood, Nicholas W -- G-4029/Parkinson's UK/United Kingdom -- GGP02089/Telethon/Italy -- New York, N.Y. -- Science. 2004 May 21;304(5674):1158-60. Epub 2004 Apr 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CSS IRCCS, Mendel Institute, viale Regina Margherita 261, 00198 Rome, Italy. e.valente@css-mendel.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15087508" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; COS Cells ; Cell Line, Tumor ; Codon, Nonsense ; Exons ; Humans ; Leupeptins/pharmacology ; Membrane Potentials ; Mitochondria/enzymology/*metabolism ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Neurons/metabolism/physiology ; Oxidative Stress ; Parkinson Disease/enzymology/*genetics/metabolism ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein Structure, Tertiary ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-08-07
    Description: Vesicle fusion involves vesicle tethering, docking, and membrane merger. We show that mitofusin, an integral mitochondrial membrane protein, is required on adjacent mitochondria to mediate fusion, which indicates that mitofusin complexes act in trans (that is, between adjacent mitochondria). A heptad repeat region (HR2) mediates mitofusin oligomerization by assembling a dimeric, antiparallel coiled coil. The transmembrane segments are located at opposite ends of the 95 angstrom coiled coil and provide a mechanism for organelle tethering. Consistent with this proposal, truncated mitofusin, in an HR2-dependent manner, causes mitochondria to become apposed with a uniform gap. Our results suggest that HR2 functions as a mitochondrial tether before fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koshiba, Takumi -- Detmer, Scott A -- Kaiser, Jens T -- Chen, Hsiuchen -- McCaffery, J Michael -- Chan, David C -- R01 GM62967/GM/NIGMS NIH HHS/ -- S10 RR019409-01/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):858-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, 1200 East California Boulevard, MC114-96, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Line ; Crystallography, X-Ray ; Dimerization ; GTP Phosphohydrolases/*chemistry/*metabolism ; Humans ; Hybrid Cells ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/physiology/ultrastructure ; Membrane Fusion ; Mice ; Mitochondria/*metabolism/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-10-02
    Description: Large RNA molecules, such as ribozymes, fold with well-defined tertiary structures that are important for their activity. There are many instances of ribozymes with identical function but differences in their secondary structures, suggesting alternative tertiary folds. Here, we report a crystal structure of the 161-nucleotide specificity domain of an A-type ribonuclease P that differs in secondary and tertiary structure from the specificity domain of a B-type molecule. Despite the differences, the cores of the domains have similar three-dimensional structure. Remarkably, the similar geometry of the cores is stabilized by a different set of interactions involving distinct auxiliary elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krasilnikov, Andrey S -- Xiao, Yinghua -- Pan, Tao -- Mondragon, Alfonso -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):104-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459389" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phylogeny ; RNA Precursors/chemistry/metabolism ; RNA, Bacterial/*chemistry/metabolism ; RNA, Transfer/chemistry/metabolism ; Ribonuclease P/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism ; Thermus thermophilus/*chemistry/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2004-01-06
    Description: The crystal structure of biotin synthase from Escherichia coli in complex with S-adenosyl-L-methionine and dethiobiotin has been determined to 3.4 angstrom resolution. This structure addresses how "AdoMet radical" or "radical SAM" enzymes use Fe4S4 clusters and S-adenosyl-L-methionine to generate organic radicals. Biotin synthase catalyzes the radical-mediated insertion of sulfur into dethiobiotin to form biotin. The structure places the substrates between the Fe4S4 cluster, essential for radical generation, and the Fe2S2 cluster, postulated to be the source of sulfur, with both clusters in unprecedented coordination environments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456065/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456065/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berkovitch, Frederick -- Nicolet, Yvain -- Wan, Jason T -- Jarrett, Joseph T -- Drennan, Catherine L -- NSLS X25/NS/NINDS NIH HHS/ -- R01 GM059175/GM/NIGMS NIH HHS/ -- R01-GM59175/GM/NIGMS NIH HHS/ -- R01-GM65337/GM/NIGMS NIH HHS/ -- T32-GM07229/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):76-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704425" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Biotin/*analogs & derivatives/*chemistry/metabolism ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrogen/chemistry ; Hydrogen Bonding ; Iron/chemistry ; Ligands ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; S-Adenosylmethionine/*chemistry/metabolism ; Sulfur/chemistry ; Sulfurtransferases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2004-10-23
    Description: Relatively little is known about the importance of amino acid interactions in protein and phenotypic evolution. Here we examine whether mutations that are pathogenic in Drosophila melanogaster become fixed via epistasis in other Dipteran genomes. Overall divergence at pathogenic amino acid sites is reduced. However, approximately 10% of the substitutions at these sites carry the exact same pathogenic amino acid found in D. melanogaster mutants. Hence compensatory mutation(s) must have evolved. Surprisingly, the fraction 10% is not affected by phylogenetic distance. These results support a selection-driven process that allows compensated amino acid substitutions to become rapidly fixed in taxa with large populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kulathinal, Rob J -- Bettencourt, Brian R -- Hartl, Daniel L -- GM068465/GM/NIGMS NIH HHS/ -- P41-HG00739/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1553-4. Epub 2004 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15498973" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Anopheles gambiae/*genetics ; Codon, Nonsense ; Drosophila/*genetics ; Drosophila melanogaster/*genetics ; Epistasis, Genetic ; *Evolution, Molecular ; Genes, Insect ; *Genome ; Insect Proteins/chemistry/*genetics ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Phenotype ; Phylogeny ; Selection, Genetic ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2004-01-13
    Description: Advances in transition state theory and computer simulations are providing new insights into the sources of enzyme catalysis. Both lowering of the activation free energy and changes in the generalized transmission coefficient (recrossing of the transition state, tunneling, and nonequilibrium contributions) can play a role. A framework for understanding these effects is presented, and the contributions of the different factors, as illustrated by specific enzymes, are identified and quantified by computer simulations. The resulting understanding of enzyme catalysis is used to comment on alternative proposals of how enzymes work.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia-Viloca, Mireia -- Gao, Jiali -- Karplus, Martin -- Truhlar, Donald G -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):186-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716003" target="_blank"〉PubMed〈/a〉
    Keywords: *Catalysis ; Computer Simulation ; Enzymes/*chemistry/*metabolism ; Kinetics ; Mathematics ; Models, Chemical ; Models, Molecular ; Protein Conformation ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2004-10-02
    Description: Microbial sensory rhodopsins are a family of membrane-embedded photoreceptors in prokaryotic and eukaryotic organisms. Structures of archaeal rhodopsins, which function as light-driven ion pumps or photosensors, have been reported. We present the structure of a eubacterial rhodopsin, which differs from those of previously characterized archaeal rhodopsins in its chromophore and cytoplasmic-side portions. Anabaena sensory rhodopsin exhibits light-induced interconversion between stable 13-cis and all-trans states of the retinylidene protein. The ratio of its cis and trans chromophore forms depends on the wavelength of illumination, thus providing a mechanism for a single protein to signal the color of light, for example, to regulate color-sensitive processes such as chromatic adaptation in photosynthesis. Its cytoplasmic half channel, highly hydrophobic in the archaeal rhodopsins, contains numerous hydrophilic residues networked by water molecules, providing a connection from the photoactive site to the cytoplasmic surface believed to interact with the receptor's soluble 14-kilodalton transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogeley, Lutz -- Sineshchekov, Oleg A -- Trivedi, Vishwa D -- Sasaki, Jun -- Spudich, John L -- Luecke, Hartmut -- R01-GM067808/GM/NIGMS NIH HHS/ -- R01-GM59970/GM/NIGMS NIH HHS/ -- R37-GM27750/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1390-3. Epub 2004 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459346" target="_blank"〉PubMed〈/a〉
    Keywords: Anabaena/*chemistry ; Archaeal Proteins/chemistry ; Bacterial Proteins/chemistry ; Binding Sites ; Chemistry, Physical ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Hydrogen Bonding ; Light ; Lipid Bilayers/chemistry ; Models, Molecular ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Secondary ; Sensory Rhodopsins/*chemistry ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-07-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Hippel, Peter H -- GM-15792/GM/NIGMS NIH HHS/ -- GM-29158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):350-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA. petevh@molbio.uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256661" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; DNA, Bacterial/*chemistry/*metabolism ; Diffusion ; Dimerization ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; *Gene Expression Regulation, Bacterial ; Hydrogen Bonding ; Kinetics ; Lac Operon ; Lac Repressors ; Models, Genetic ; Models, Molecular ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Static Electricity ; Thermodynamics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2004-01-24
    Description: DsbA, a thioredoxin superfamily member, introduces disulfide bonds into newly translocated proteins. This process is thought to occur via formation of mixed disulfide complexes between DsbA and its substrates. However, these complexes are difficult to detect, probably because of their short-lived nature. Here we show that it is possible to detect such covalent intermediates in vivo by a mutation in DsbA that alters cis proline-151. Further, this mutant allowed us to identify substrates of DsbA. Alteration of the cis proline, highly conserved among thioredoxin superfamily members, may be useful for the detection of substrates and intermediate complexes in other systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kadokura, Hiroshi -- Tian, Hongping -- Zander, Thomas -- Bardwell, James C A -- Beckwith, Jon -- GM41883/GM/NIGMS NIH HHS/ -- GM57039/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):534-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739460" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/chemistry/metabolism ; Disulfides/chemistry ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli Proteins/*chemistry/*metabolism ; Isomerism ; Mass Spectrometry ; Membrane Proteins/chemistry/metabolism ; Molecular Weight ; Mutation ; Oxidation-Reduction ; Plasmids ; Proline/chemistry ; Protein Conformation ; Protein Disulfide-Isomerases/*chemistry/genetics/*metabolism ; *Protein Folding ; Thioredoxins/chemistry/metabolism ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2004-11-13
    Description: Variant Creutzfeldt-Jakob disease (vCJD) is a unique and highly distinctive clinicopathological and molecular phenotype of human prion disease associated with infection with bovine spongiform encephalopathy (BSE)-like prions. Here, we found that generation of this phenotype in transgenic mice required expression of human prion protein (PrP) with methionine 129. Expression of human PrP with valine 129 resulted in a distinct phenotype and, remarkably, persistence of a barrier to transmission of BSE-derived prions on subpassage. Polymorphic residue 129 of human PrP dictated propagation of distinct prion strains after BSE prion infection. Thus, primary and secondary human infection with BSE-derived prions may result in sporadic CJD-like or novel phenotypes in addition to vCJD, depending on the genotype of the prion source and the recipient.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadsworth, Jonathan D F -- Asante, Emmanuel A -- Desbruslais, Melanie -- Linehan, Jacqueline M -- Joiner, Susan -- Gowland, Ian -- Welch, Julie -- Stone, Lisa -- Lloyd, Sarah E -- Hill, Andrew F -- Brandner, Sebastian -- Collinge, John -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1793-6. Epub 2004 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15539564" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/genetics ; Animals ; Brain/pathology ; Cattle ; Creutzfeldt-Jakob Syndrome/genetics/*metabolism/*pathology/transmission ; Encephalopathy, Bovine Spongiform/pathology/transmission ; Humans ; Methionine ; Mice ; Mice, Transgenic ; Phenotype ; Polymorphism, Genetic ; PrPC Proteins/chemistry/*genetics/metabolism ; PrPSc Proteins/metabolism/*pathogenicity ; Prions ; Protein Conformation ; Protein Precursors/genetics ; *Valine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-11-13
    Description: Plants under oxidative stress suffer from damages that have been interpreted as unavoidable consequences of injuries inflicted upon plants by toxic levels of reactive oxygen species (ROS). However, this paradigm needs to be modified. Inactivation of a single gene, EXECUTER1, is sufficient to abrogate stress responses of Arabidopsis thaliana caused by the release of singlet oxygen: External conditions under which these stress responses are observed and the amounts of ROS that accumulate in plants exposed to these environmental conditions do not directly cause damages. Instead, seedling lethality and growth inhibition of mature plants result from genetic programs that are activated after the release of singlet oxygen has been perceived by the plant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, Daniela -- Przybyla, Dominika -- Op den Camp, Roel -- Kim, Chanhong -- Landgraf, Frank -- Lee, Keun Pyo -- Wursch, Marco -- Laloi, Christophe -- Nater, Mena -- Hideg, Eva -- Apel, Klaus -- New York, N.Y. -- Science. 2004 Nov 12;306(5699):1183-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15539603" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/cytology/*genetics/growth & development/*physiology ; Arabidopsis Proteins/chemistry/*genetics/*physiology ; Cell Death/drug effects ; Chromosome Mapping ; Cloning, Molecular ; Cosmids ; Darkness ; Diuron/pharmacology ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Complementation Test ; Light ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; *Oxidative Stress ; Photosystem II Protein Complex/metabolism ; Plant Leaves/cytology/drug effects/metabolism ; Reactive Oxygen Species/metabolism ; Singlet Oxygen/*metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2004-10-23
    Description: A waxy protective cuticle coats all primary aerial plant tissues. Its synthesis requires extensive export of lipids from epidermal cells to the plant surface. Arabidopsis cer5 mutants had reduced stem cuticular wax loads and accumulated sheetlike inclusions in the cytoplasm of wax-secreting cells. These inclusions represented abnormal deposits of cuticular wax and resembled inclusions found in a human disorder caused by a defective peroxisomal adenosine triphosphate binding cassette (ABC) transporter. We found that the CER5 gene encodes an ABC transporter localized in the plasma membrane of epidermal cells and conclude that it is required for wax export to the cuticle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pighin, Jamie A -- Zheng, Huanquan -- Balakshin, Laura J -- Goodman, Ian P -- Western, Tamara L -- Jetter, Reinhard -- Kunst, Ljerka -- Samuels, A Lacey -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):702-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of British Columbia (UBC), 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499022" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/chemistry/genetics/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/cytology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Biological Transport, Active ; Cell Membrane/metabolism ; Cloning, Molecular ; Dimerization ; Genes, Plant ; Inclusion Bodies/ultrastructure ; *Lipid Metabolism ; Microscopy, Electron ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Plant Epidermis/cytology/*metabolism/ultrastructure ; Plant Stems/cytology/metabolism/ultrastructure ; Plants, Genetically Modified ; Recombinant Fusion Proteins/metabolism ; Vacuoles/ultrastructure ; Waxes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2004-06-26
    Description: The antigenic evolution of influenza A (H3N2) virus was quantified and visualized from its introduction into humans in 1968 to 2003. Although there was remarkable correspondence between antigenic and genetic evolution, significant differences were observed: Antigenic evolution was more punctuated than genetic evolution, and genetic change sometimes had a disproportionately large antigenic effect. The method readily allows monitoring of antigenic differences among vaccine and circulating strains and thus estimation of the effects of vaccination. Further, this approach offers a route to predicting the relative success of emerging strains, which could be achieved by quantifying the combined effects of population level immune escape and viral fitness on strain evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Derek J -- Lapedes, Alan S -- de Jong, Jan C -- Bestebroer, Theo M -- Rimmelzwaan, Guus F -- Osterhaus, Albert D M E -- Fouchier, Ron A M -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):371-6. Epub 2004 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. dsmith@zoo.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218094" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antigenic Variation ; *Evolution, Molecular ; *Genes, Viral ; Genetic Drift ; Genetic Variation ; Hemagglutination Inhibition Tests ; *Hemagglutinins, Viral/chemistry/genetics/immunology ; Humans ; Influenza A virus/*genetics/*immunology ; Influenza, Human/epidemiology/virology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Seasons ; Virology/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2004-09-04
    Description: Methylation of arginine (Arg) and lysine residues in histones has been correlated with epigenetic forms of gene regulation. Although histone methyltransferases are known, enzymes that demethylate histones have not been identified. Here, we demonstrate that human peptidylarginine deiminase 4 (PAD4) regulates histone Arg methylation by converting methyl-Arg to citrulline and releasing methylamine. PAD4 targets multiple sites in histones H3 and H4, including those sites methylated by coactivators CARM1 (H3 Arg17) and PRMT1 (H4 Arg3). A decrease of histone Arg methylation, with a concomitant increase of citrullination, requires PAD4 activity in human HL-60 granulocytes. Moreover, PAD4 activity is linked with the transcriptional regulation of estrogen-responsive genes in MCF-7 cells. These data suggest that PAD4 mediates gene expression by regulating Arg methylation and citrullination in histones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yanming -- Wysocka, Joanna -- Sayegh, Joyce -- Lee, Young-Ho -- Perlin, Julie R -- Leonelli, Lauriebeth -- Sonbuchner, Lakshmi S -- McDonald, Charles H -- Cook, Richard G -- Dou, Yali -- Roeder, Robert G -- Clarke, Steven -- Stallcup, Michael R -- Allis, C David -- Coonrod, Scott A -- DK55274/DK/NIDDK NIH HHS/ -- GM R01 26020/GM/NIGMS NIH HHS/ -- GM R01 50659/GM/NIGMS NIH HHS/ -- HD R01 38353/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 8;306(5694):279-83. Epub 2004 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15345777" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/*metabolism ; Blotting, Western ; Calcimycin/pharmacology ; Cell Line, Tumor ; Citrulline/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HL-60 Cells ; Histones/*metabolism ; Humans ; Hydrolases/*metabolism ; Ionophores/pharmacology ; Membrane Proteins/genetics ; Methylamines/metabolism ; Methylation ; Molecular Sequence Data ; Presenilin-2 ; Promoter Regions, Genetic ; Protein-Arginine N-Methyltransferases/metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2004-10-16
    Description: The apparent biotic affinities between the mainland and the island in the Western Ghats-Sri Lanka biodiversity hotspot have been interpreted as the result of frequent migrations during recent periods of low sea level. We show, using molecular phylogenies of two invertebrate and four vertebrate groups, that biotic interchange between these areas has been much more limited than hitherto assumed. Despite several extended periods of land connection during the past 500,000 years, Sri Lanka has maintained a fauna that is largely distinct from that of the Indian mainland. Future conservation programs for the subcontinent should take into account such patterns of local endemism at the finest scale at which they may occur.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bossuyt, Franky -- Meegaskumbura, Madhava -- Beenaerts, Natalie -- Gower, David J -- Pethiyagoda, Rohan -- Roelants, Kim -- Mannaert, An -- Wilkinson, Mark -- Bahir, Mohomed M -- Manamendra-Arachchi, Kelum -- Ng, Peter K L -- Schneider, Christopher J -- Oommen, Oommen V -- Milinkovitch, Michel C -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):479-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Unit of Ecology and Systematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. fbossuyt@vub.ac.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486298" target="_blank"〉PubMed〈/a〉
    Keywords: Amphibians/anatomy & histology/classification/genetics ; Animals ; *Biodiversity ; Biological Evolution ; Brachyura/anatomy & histology/classification/genetics ; Conservation of Natural Resources ; Cyprinidae/anatomy & histology/classification/genetics ; DNA, Mitochondrial ; Decapoda (Crustacea)/anatomy & histology/classification/genetics ; *Ecosystem ; Genes, rRNA ; India ; *Invertebrates/anatomy & histology/classification ; Molecular Sequence Data ; Phylogeny ; Population Density ; Ranidae/anatomy & histology/classification/genetics ; Snakes/anatomy & histology/classification/genetics ; Sri Lanka ; *Vertebrates/anatomy & histology/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2004-06-12
    Description: A tight coupling between adenosine triphosphate (ATP) hydrolysis and vectorial ion transport has to be maintained by ATP-consuming ion pumps. We report two crystal structures of Ca2+-bound sarco(endo)plasmic reticulum Ca2+-adenosine triphosphatase (SERCA) at 2.6 and 2.9 angstrom resolution in complex with (i) a nonhydrolyzable ATP analog [adenosine (beta-gamma methylene)-triphosphate] and (ii) adenosine diphosphate plus aluminum fluoride. SERCA reacts with ATP by an associative mechanism mediated by two Mg2+ ions to form an aspartyl-phosphorylated intermediate state (Ca2-E1 approximately P). The conformational changes that accompany the reaction with ATP pull the transmembrane helices 1 and 2 and close a cytosolic entrance for Ca2+, thereby preventing backflow before Ca2+ is released on the other side of the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sorensen, Thomas Lykke-Moller -- Moller, Jesper Vuust -- Nissen, Poul -- New York, N.Y. -- Science. 2004 Jun 11;304(5677):1672-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15192230" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*analogs & derivatives/*metabolism ; Aluminum Compounds/metabolism ; Animals ; Binding Sites ; Calcium/*metabolism ; Calcium-Transporting ATPases/*chemistry/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cytosol/metabolism ; Fluorides/metabolism ; Models, Molecular ; Muscle Fibers, Fast-Twitch/*enzymology ; Phosphorylation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rabbits ; Sarcoplasmic Reticulum Calcium-Transporting ATPases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2004-05-08
    Description: Copper active sites play a major role in enzymatic activation of dioxygen. We trapped the copper-dioxygen complex in the enzyme peptidylglycine-alphahydroxylating monooxygenase (PHM) by freezing protein crystals that had been soaked with a slow substrate and ascorbate in the presence of oxygen. The x-ray crystal structure of this precatalytic complex, determined to 1.85-angstrom resolution, shows that oxygen binds to one of the coppers in the enzyme with an end-on geometry. Given this structure, it is likely that dioxygen is directly involved in the electron transfer and hydrogen abstraction steps of the PHM reaction. These insights may apply to other copper oxygen-activating enzymes, such as dopamine beta-monooxygenase, and to the design of biomimetic complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prigge, Sean T -- Eipper, Betty A -- Mains, Richard E -- Amzel, L Mario -- DK32949/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 May 7;304(5672):864-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Immunology, The Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131304" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Catalysis ; Catalytic Domain ; Copper/*metabolism ; Crystallization ; Crystallography, X-Ray ; Dipeptides/chemistry/metabolism ; Electron Transport ; Glycine/chemistry/metabolism ; Hydrogen/metabolism ; Hydrogen Bonding ; Ligands ; Mixed Function Oxygenases/*chemistry/*metabolism ; Models, Molecular ; Multienzyme Complexes/*chemistry/*metabolism ; Oxidation-Reduction ; Oxygen/*metabolism ; Peptides/metabolism ; Protein Conformation ; Rats ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2004-08-03
    Description: Recombinant mouse prion protein (recMoPrP) produced in Escherichia coli was polymerized into amyloid fibrils that represent a subset of beta sheet-rich structures. Fibrils consisting of recMoPrP(89-230) were inoculated intracerebrally into transgenic (Tg) mice expressing MoPrP(89-231). The mice developed neurologic dysfunction between 380 and 660 days after inoculation. Brain extracts showed protease-resistant PrP by Western blotting; these extracts transmitted disease to wild-type FVB mice and Tg mice overexpressing PrP, with incubation times of 150 and 90 days, respectively. Neuropathological findings suggest that a novel prion strain was created. Our results provide compelling evidence that prions are infectious proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Legname, Giuseppe -- Baskakov, Ilia V -- Nguyen, Hoang-Oanh B -- Riesner, Detlev -- Cohen, Fred E -- DeArmond, Stephen J -- Prusiner, Stanley B -- AG02132/AG/NIA NIH HHS/ -- AG021601/AG/NIA NIH HHS/ -- AG10770/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):673-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15286374" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/chemistry/metabolism ; Animals ; Biopolymers ; Brain/metabolism/pathology ; Brain Chemistry ; Escherichia coli/genetics ; Female ; Glycosylation ; Male ; Mice ; Mice, Transgenic ; Plaque, Amyloid/pathology ; PrPSc Proteins/analysis/metabolism ; Prion Diseases/*etiology/pathology/transmission ; Prions/administration & dosage/biosynthesis/chemistry/*pathogenicity ; Protein Conformation ; Protein Folding ; Recombinant Proteins/administration & dosage/biosynthesis/chemistry ; Time Factors ; Tissue Extracts/administration & dosage ; Vacuoles/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2004-10-09
    Description: Very rare cases of human T cell acute lymphoblastic leukemia (T-ALL) harbor chromosomal translocations that involve NOTCH1, a gene encoding a transmembrane receptor that regulates normal T cell development. Here, we report that more than 50% of human T-ALLs, including tumors from all major molecular oncogenic subtypes, have activating mutations that involve the extracellular heterodimerization domain and/or the C-terminal PEST domain of NOTCH1. These findings greatly expand the role of activated NOTCH1 in the molecular pathogenesis of human T-ALL and provide a strong rationale for targeted therapies that interfere with NOTCH signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weng, Andrew P -- Ferrando, Adolfo A -- Lee, Woojoong -- Morris, John P 4th -- Silverman, Lewis B -- Sanchez-Irizarry, Cheryll -- Blacklow, Stephen C -- Look, A Thomas -- Aster, Jon C -- CA109901/CA/NCI NIH HHS/ -- CA21765/CA/NCI NIH HHS/ -- CA68484/CA/NCI NIH HHS/ -- CA82308/CA/NCI NIH HHS/ -- CA94233/CA/NCI NIH HHS/ -- CA98093/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 8;306(5694):269-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15472075" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Alleles ; Amino Acid Sequence ; Amyloid Precursor Protein Secretases ; Aspartic Acid Endopeptidases ; Cell Cycle ; Cell Line, Tumor ; Child ; Dimerization ; Endopeptidases/metabolism ; Frameshift Mutation ; Humans ; Leukemia-Lymphoma, Adult T-Cell/*genetics/metabolism ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Point Mutation ; Protease Inhibitors/pharmacology ; Protein Structure, Tertiary ; Receptor, Notch1 ; Receptors, Cell Surface/chemistry/*genetics/metabolism ; Sequence Deletion ; Signal Transduction ; Transcription Factors/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2004-02-14
    Description: Legumes can enter into symbiotic relationships with both nitrogen-fixing bacteria (rhizobia) and mycorrhizal fungi. Nodulation by rhizobia results from a signal transduction pathway induced in legume roots by rhizobial Nod factors. DMI3, a Medicago truncatula gene that acts immediately downstream of calcium spiking in this signaling pathway and is required for both nodulation and mycorrhizal infection, has high sequence similarity to genes encoding calcium and calmodulin-dependent protein kinases (CCaMKs). This indicates that calcium spiking is likely an essential component of the signaling cascade leading to nodule development and mycorrhizal infection, and sheds light on the biological role of plant CCaMKs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, Julien -- Bres, Cecile -- Geurts, Rene -- Chalhoub, Boulos -- Kulikova, Olga -- Duc, Gerard -- Journet, Etienne-Pascal -- Ane, Jean-Michel -- Lauber, Emmanuelle -- Bisseling, Ton -- Denarie, Jean -- Rosenberg, Charles -- Debelle, Frederic -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1361-4. Epub 2004 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire des Interactions Plantes-Microorganismes INRA-CNRS, BP27, 31326 Castanet-Tolosan Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963335" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Calmodulin/metabolism ; Chromosomes, Artificial, Bacterial ; Cloning, Molecular ; EF Hand Motifs ; Expressed Sequence Tags ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/metabolism ; Medicago/*enzymology/genetics/microbiology ; Molecular Sequence Data ; Mutation ; Mycorrhizae/*physiology ; Peas/*enzymology/genetics/microbiology ; Plant Roots/enzymology/microbiology ; Protein Structure, Tertiary ; Rhizobium/genetics ; Sinorhizobium meliloti/*physiology ; *Symbiosis ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sterner, Reinhard -- Schmid, Franz X -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1916-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universitat Regensburg, Institut fur Biophysik und Physikalische Biochemie, D-93040 Regensburg, Germany. reinhard.sterner@biologie.uni-regensburg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218133" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Substitution ; Binding Sites ; Catalysis ; Computational Biology ; Computer Simulation ; Directed Molecular Evolution ; *Escherichia coli Proteins/chemistry/genetics/metabolism ; Glutamic Acid/chemistry ; Glyceraldehyde 3-Phosphate/metabolism ; Histidine/chemistry ; Hydrogen Bonding ; Lysine/chemistry ; Models, Molecular ; *Periplasmic Binding Proteins/chemistry/genetics/metabolism ; Protein Conformation ; *Protein Engineering ; *Triose-Phosphate Isomerase/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2004-04-24
    Description: Acting as a signal, hydrogen peroxide circumvents antioxidant defense by overoxidizing peroxiredoxins (Prxs), the enzymes that metabolize peroxides. We show that sestrins, a family of proteins whose expression is modulated by p53, are required for regeneration of Prxs containing Cys-SO(2)H, thus reestablishing the antioxidant firewall. Sestrins contain a predicted redox-active domain homologous to AhpD, the enzyme catalyzing the reduction of a bacterial Prx, AhpC. Purified Hi95 (sestrin 2) protein supports adenosine triphosphate-dependent reduction of overoxidized PrxI in vitro, indicating that unlike AhpD, which is a disulfide reductase, sestrins are cysteine sulfinyl reductases. As modulators of peroxide signaling and antioxidant defense, sestrins constitute potential therapeutic targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Budanov, Andrei V -- Sablina, Anna A -- Feinstein, Elena -- Koonin, Eugene V -- Chumakov, Peter M -- New York, N.Y. -- Science. 2004 Apr 23;304(5670):596-600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105503" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Cell Division ; Cell Line, Tumor ; Cell Survival ; Cells, Cultured ; Heat-Shock Proteins/chemistry/genetics/*metabolism ; Humans ; Hydrogen Peroxide/metabolism ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oxidation-Reduction ; Oxidoreductases/genetics/metabolism ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; RNA, Small Interfering ; Reactive Oxygen Species/metabolism ; Recombinant Proteins/metabolism ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2004-10-16
    Description: We recently reported the discovery and preliminary characterization of Mimivirus, the largest known virus, with a 400-nanometer particle size comparable to mycoplasma. Mimivirus is a double-stranded DNA virus growing in amoebae. We now present its 1,181,404-base pair genome sequence, consisting of 1262 putative open reading frames, 10% of which exhibit a similarity to proteins of known functions. In addition to exceptional genome size, Mimivirus exhibits many features that distinguish it from other nucleocytoplasmic large DNA viruses. The most unexpected is the presence of numerous genes encoding central protein-translation components, including four amino-acyl transfer RNA synthetases, peptide release factor 1, translation elongation factor EF-TU, and translation initiation factor 1. The genome also exhibits six tRNAs. Other notable features include the presence of both type I and type II topoisomerases, components of all DNA repair pathways, many polysaccharide synthesis enzymes, and one intein-containing gene. The size and complexity of the Mimivirus genome challenge the established frontier between viruses and parasitic cellular organisms. This new sequence data might help shed a new light on the origin of DNA viruses and their role in the early evolution of eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raoult, Didier -- Audic, Stephane -- Robert, Catherine -- Abergel, Chantal -- Renesto, Patricia -- Ogata, Hiroyuki -- La Scola, Bernard -- Suzan, Marie -- Claverie, Jean-Michel -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1344-50. Epub 2004 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite des Rickettsies, Faculte de Medecine, CNRS UMR6020, Universite de la Mediterranee, 13385 Marseille Cedex 05, France. Didier.Raoult@medecine.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486256" target="_blank"〉PubMed〈/a〉
    Keywords: Acanthamoeba/virology ; Animals ; Base Composition ; Computational Biology ; DNA Repair/genetics ; DNA Topoisomerases/genetics ; DNA Viruses/classification/*genetics/metabolism ; DNA, Viral/chemistry/genetics ; Enzymes/genetics/metabolism ; Genes, Viral ; *Genome, Viral ; Inteins ; Introns ; Molecular Sequence Data ; Open Reading Frames ; Phylogeny ; Protein Biosynthesis ; Protein Folding ; Proteome ; RNA, Transfer/analysis ; RNA, Viral/analysis ; Sequence Analysis, DNA ; Viral Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2004-12-18
    Description: Alfalfa mosaic virus genomic RNAs are infectious only when the viral coat protein binds to the RNA 3' termini. The crystal structure of an alfalfa mosaic virus RNA-peptide complex reveals that conserved AUGC repeats and Pro-Thr-x-Arg-Ser-x-x-Tyr coat protein amino acids cofold upon interacting. Alternating AUGC residues have opposite orientation, and they base pair in different adjacent duplexes. Localized RNA backbone reversals stabilized by arginine-guanine interactions place the adenosines and guanines in reverse order in the duplex. The results suggest that a uniform, organized 3' conformation, similar to that found on viral RNAs with transfer RNA-like ends, may be essential for replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1500904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1500904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guogas, Laura M -- Filman, David J -- Hogle, James M -- Gehrke, Lee -- AI20566/AI/NIAID NIH HHS/ -- GM42504/GM/NIGMS NIH HHS/ -- R01 AI020566/AI/NIAID NIH HHS/ -- R01 GM042504/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2108-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604410" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Alfalfa mosaic virus/*chemistry/*physiology ; Amino Acid Sequence ; Base Pairing ; Base Sequence ; Binding Sites ; Capsid Proteins/*chemistry/metabolism ; Crystallization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Viral/*chemistry/metabolism ; Repetitive Sequences, Nucleic Acid ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2004-02-14
    Description: The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bushnell, David A -- Westover, Kenneth D -- Davis, Ralph E -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):983-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Hybridization ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; TATA Box ; TATA-Box Binding Protein/chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/*chemistry/metabolism ; Transcription Factors, TFII/chemistry/metabolism ; *Transcription, Genetic ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2004-07-31
    Description: Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jidong -- Carmell, Michelle A -- Rivas, Fabiola V -- Marsden, Carolyn G -- Thomson, J Michael -- Song, Ji-Joon -- Hammond, Scott M -- Joshua-Tor, Leemor -- Hannon, Gregory J -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1437-41. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284456" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Catalysis ; Cell Line ; Cells, Cultured ; Central Nervous System/embryology ; Embryonic and Fetal Development ; Eukaryotic Initiation Factor-2 ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; In Situ Hybridization ; Mice ; MicroRNAs/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Oligonucleotide Array Sequence Analysis ; Peptide Initiation Factors/chemistry/*metabolism ; Point Mutation ; *RNA Interference ; RNA, Double-Stranded ; RNA, Messenger/*metabolism ; RNA, Small Interfering/metabolism ; RNA-Induced Silencing Complex/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dobberstein, Bernhard -- Sinning, Irmgard -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):320-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zentrum fur Molekulare Biologie and I. Sinning is at the Biochemiezentrum, Universitat Heidelberg, 69120 Heidelberg, Germany. dobberstein@zmbh.uni-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14726579" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/*chemistry/metabolism ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Lipid Bilayers ; Membrane Proteins/*chemistry/metabolism ; Methanococcus/*chemistry/metabolism ; Models, Molecular ; Peptides/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Subunits ; *Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2004-03-27
    Description: The apicomplexan Cryptosporidium parvum is an intestinal parasite that affects healthy humans and animals, and causes an unrelenting infection in immunocompromised individuals such as AIDS patients. We report the complete genome sequence of C. parvum, type II isolate. Genome analysis identifies extremely streamlined metabolic pathways and a reliance on the host for nutrients. In contrast to Plasmodium and Toxoplasma, the parasite lacks an apicoplast and its genome, and possesses a degenerate mitochondrion that has lost its genome. Several novel classes of cell-surface and secreted proteins with a potential role in host interactions and pathogenesis were also detected. Elucidation of the core metabolism, including enzymes with high similarities to bacterial and plant counterparts, opens new avenues for drug development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abrahamsen, Mitchell S -- Templeton, Thomas J -- Enomoto, Shinichiro -- Abrahante, Juan E -- Zhu, Guan -- Lancto, Cheryl A -- Deng, Mingqi -- Liu, Chang -- Widmer, Giovanni -- Tzipori, Saul -- Buck, Gregory A -- Xu, Ping -- Bankier, Alan T -- Dear, Paul H -- Konfortov, Bernard A -- Spriggs, Helen F -- Iyer, Lakshminarayan -- Anantharaman, Vivek -- Aravind, L -- Kapur, Vivek -- U01 AI 46397/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):441-5. Epub 2004 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary and Biomedical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA. abe@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15044751" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiprotozoal Agents/pharmacology ; Carbohydrate Metabolism ; Cryptosporidium parvum/*genetics/*metabolism/pathogenicity/physiology ; DNA, Protozoan/genetics ; Drug Resistance/genetics ; Enzymes/genetics/*metabolism ; Ethanol/metabolism ; Genes, Protozoan ; *Genome, Protozoan ; Glycolysis ; Introns ; Mitochondria/genetics ; Molecular Sequence Data ; Multigene Family ; Open Reading Frames ; Organelles/genetics ; Protozoan Proteins/chemistry/genetics/*metabolism ; Purines/metabolism ; Sequence Analysis, DNA ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carrell, Robin W -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1692-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, UK. rwc1000@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576598" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appendix/chemistry ; Brain/pathology ; Carrier State ; Cattle ; Creutzfeldt-Jakob Syndrome/epidemiology/genetics/*metabolism/pathology ; Disease Outbreaks ; Encephalopathy, Bovine Spongiform/epidemiology/metabolism ; Genetic Predisposition to Disease ; Genotype ; Great Britain/epidemiology ; Humans ; Methionine ; Mice ; Mice, Transgenic ; Polymorphism, Genetic ; PrPC Proteins/analysis/chemistry/*genetics/pathogenicity ; Protein Conformation ; Valine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2004-01-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyrwicz, Lucjan S -- von Grotthuss, Marcin -- Pas, Jakub -- Rychlewski, Leszek -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):168; author reply 168.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14715990" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics ; Computational Biology ; DNA, Complementary ; Databases, Nucleic Acid ; Databases, Protein ; *Genome, Plant ; Molecular Sequence Data ; Oryza/*genetics ; Plant Proteins/chemistry/*genetics ; Sequence Homology, Amino Acid ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2004-12-14
    Description: We report a draft sequence for the genome of the domesticated silkworm (Bombyx mori), covering 90.9% of all known silkworm genes. Our estimated gene count is 18,510, which exceeds the 13,379 genes reported for Drosophila melanogaster. Comparative analyses to fruitfly, mosquito, spider, and butterfly reveal both similarities and differences in gene content.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, Qingyou -- Zhou, Zeyang -- Lu, Cheng -- Cheng, Daojun -- Dai, Fangyin -- Li, Bin -- Zhao, Ping -- Zha, Xingfu -- Cheng, Tingcai -- Chai, Chunli -- Pan, Guoqing -- Xu, Jinshan -- Liu, Chun -- Lin, Ying -- Qian, Jifeng -- Hou, Yong -- Wu, Zhengli -- Li, Guanrong -- Pan, Minhui -- Li, Chunfeng -- Shen, Yihong -- Lan, Xiqian -- Yuan, Lianwei -- Li, Tian -- Xu, Hanfu -- Yang, Guangwei -- Wan, Yongji -- Zhu, Yong -- Yu, Maode -- Shen, Weide -- Wu, Dayang -- Xiang, Zhonghuai -- Yu, Jun -- Wang, Jun -- Li, Ruiqiang -- Shi, Jianping -- Li, Heng -- Li, Guangyuan -- Su, Jianning -- Wang, Xiaoling -- Li, Guoqing -- Zhang, Zengjin -- Wu, Qingfa -- Li, Jun -- Zhang, Qingpeng -- Wei, Ning -- Xu, Jianzhe -- Sun, Haibo -- Dong, Le -- Liu, Dongyuan -- Zhao, Shengli -- Zhao, Xiaolan -- Meng, Qingshun -- Lan, Fengdi -- Huang, Xiangang -- Li, Yuanzhe -- Fang, Lin -- Li, Changfeng -- Li, Dawei -- Sun, Yongqiao -- Zhang, Zhenpeng -- Yang, Zheng -- Huang, Yanqing -- Xi, Yan -- Qi, Qiuhui -- He, Dandan -- Huang, Haiyan -- Zhang, Xiaowei -- Wang, Zhiqiang -- Li, Wenjie -- Cao, Yuzhu -- Yu, Yingpu -- Yu, Hong -- Li, Jinhong -- Ye, Jiehua -- Chen, Huan -- Zhou, Yan -- Liu, Bin -- Wang, Jing -- Ye, Jia -- Ji, Hai -- Li, Shengting -- Ni, Peixiang -- Zhang, Jianguo -- Zhang, Yong -- Zheng, Hongkun -- Mao, Bingyu -- Wang, Wen -- Ye, Chen -- Li, Songgang -- Wang, Jian -- Wong, Gane Ka-Shu -- Yang, Huanming -- Biology Analysis Group -- 1 P50 HG02351/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1937-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Southwest Agricultural University, Chongqing Beibei, 400716, China. xiaqy@swau.cq.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591204" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Anopheles/genetics ; Body Patterning/genetics ; Bombyx/*genetics/growth & development/metabolism ; Butterflies/genetics ; Computational Biology ; DNA Transposable Elements ; Drosophila melanogaster/genetics ; Exocrine Glands/metabolism ; Expressed Sequence Tags ; Female ; Genes, Homeobox ; *Genes, Insect ; *Genome ; Immunity, Innate/genetics ; Insect Hormones/genetics ; Insect Proteins/genetics ; Male ; Molecular Sequence Data ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Sex Determination Processes ; Spiders/genetics ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2004-06-05
    Description: Condensins are conserved proteins containing SMC (structural maintenance of chromosomes) moieties that organize and compact chromosomes in an unknown mechanism essential for faithful chromosome partitioning. We show that MukBEF, the condensin in Escherichia coli, cooperatively compacts a single DNA molecule into a filament with an ordered, repetitive structure in an adenosine triphosphate (ATP) binding-dependent manner. When stretched to a tension of approximately 17 piconewtons, the filament extended in a series of repetitive transitions in a broad distribution centered on 45 nanometers. A filament so extended and held at a lower force recondensed in steps of 35 nanometers or its multiples; this cycle was repeatable even in the absence of ATP and free MukBEF. Remarkably, the pattern of transitions displayed by a given filament during the initial extension was identical in every subsequent extension. Hence, after being deformed micrometers in length, each filament returned to its original compact structure without the addition of energy. Incubation with topoisomerase I increased the rate of recondensation and allowed the structure to extend and reform almost reversibly, indicating that supercoiled DNA is trapped in the condensed structure. We suggest a new model for how MukBEF organizes the bacterial chromosome in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Case, Ryan B -- Chang, Yun-Pei -- Smith, Steven B -- Gore, Jeff -- Cozzarelli, Nicholas R -- Bustamante, Carlos -- GM31655/GM/NIGMS NIH HHS/ -- GM32543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):222-7. Epub 2004 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178751" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Chemistry, Physical ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; DNA Topoisomerases, Type I/metabolism ; DNA, Bacterial/*chemistry/*metabolism ; DNA, Superhelical/chemistry/metabolism ; Dimerization ; Escherichia coli/genetics ; Escherichia coli Proteins/chemistry/*metabolism ; Lasers ; Microspheres ; Models, Chemical ; Models, Molecular ; *Nucleic Acid Conformation ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Subunits ; Repressor Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2004-05-25
    Description: The herbicide glyphosate is effectively detoxified by N-acetylation. We screened a collection of microbial isolates and discovered enzymes exhibiting glyphosate N-acetyltransferase (GAT) activity. Kinetic properties of the discovered enzymes were insufficient to confer glyphosate tolerance to transgenic organisms. Eleven iterations of DNA shuffling improved enzyme efficiency by nearly four orders of magnitude from 0.87 mM-1 min-1 to 8320 mM-1 min-1. From the fifth iteration and beyond, GAT enzymes conferred increasing glyphosate tolerance to Escherichia coli, Arabidopsis, tobacco, and maize. Glyphosate acetylation provides an alternative strategy for supporting glyphosate use on crops.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Castle, Linda A -- Siehl, Daniel L -- Gorton, Rebecca -- Patten, Phillip A -- Chen, Yong Hong -- Bertain, Sean -- Cho, Hyeon-Je -- Duck, Nicholas -- Wong, James -- Liu, Donglong -- Lassner, Michael W -- New York, N.Y. -- Science. 2004 May 21;304(5674):1151-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verdia, Inc. Redwood City, CA 94063, USA. linda.castle@verdiainc.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155947" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/chemistry/*genetics/metabolism ; Amino Acid Sequence ; Bacillus/enzymology ; Catalysis ; *DNA Shuffling ; *Directed Molecular Evolution ; Drug Resistance ; Escherichia coli/genetics ; Gene Library ; Genetic Variation ; Glycine/*analogs & derivatives/metabolism/*toxicity ; Herbicides/metabolism/*toxicity ; Kinetics ; Molecular Sequence Data ; Mutagenesis ; *Plants, Genetically Modified/drug effects/genetics ; Recombinant Proteins/metabolism ; Recombination, Genetic ; Tobacco/drug effects/genetics/growth & development ; Transformation, Genetic ; Zea mays/drug effects/genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2004-08-03
    Description: The motor protein kinesin moves along microtubules, driven by adenosine triphosphate (ATP) hydrolysis. However, it remains unclear how kinesin converts the chemical energy into mechanical movement. We report crystal structures of monomeric kinesin KIF1A with three transition-state analogs: adenylyl imidodiphosphate (AMP-PNP), adenosine diphosphate (ADP)-vanadate, and ADP-AlFx (aluminofluoride complexes). These structures, together with known structures of the ADP-bound state and the adenylyl-(beta,gamma-methylene) diphosphate (AMP-PCP)-bound state, show that kinesin uses two microtubule-binding loops in an alternating manner to change its interaction with microtubules during the ATP hydrolysis cycle; loop L11 is extended in the AMP-PNP structure, whereas loop L12 is extended in the ADP structure. ADP-vanadate displays an intermediate structure in which a conformational change in two switch regions causes both loops to be raised from the microtubule, thus actively detaching kinesin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nitta, Ryo -- Kikkawa, Masahide -- Okada, Yasushi -- Hirokawa, Nobutaka -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):678-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15286375" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/metabolism ; Aluminum/metabolism ; Animals ; Binding Sites ; Crystallography, X-Ray ; Fluorides/metabolism ; Hydrogen Bonding ; Kinesin/*chemistry/*metabolism ; Mice ; Microtubules/*metabolism ; Models, Molecular ; Nerve Tissue Proteins/*chemistry/*metabolism ; Phosphates/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Vanadates/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2004-03-16
    Description: Plants with a winter growth habit flower earlier when exposed for several weeks to cold temperatures, a process called vernalization. We report here the positional cloning of the wheat vernalization gene VRN2, a dominant repressor of flowering that is down-regulated by vernalization. Loss of function of VRN2, whether by natural mutations or deletions, resulted in spring lines, which do not require vernalization to flower. Reduction of the RNA level of VRN2 by RNA interference accelerated the flowering time of transgenic winter-wheat plants by more than a month.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737501/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737501/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Liuling -- Loukoianov, Artem -- Blechl, Ann -- Tranquilli, Gabriela -- Ramakrishna, Wusirika -- SanMiguel, Phillip -- Bennetzen, Jeffrey L -- Echenique, Viviana -- Dubcovsky, Jorge -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2004 Mar 12;303(5664):1640-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Agronomy and Range Science, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15016992" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/genetics/growth & development ; Base Sequence ; Chromosome Mapping ; Cloning, Molecular ; *Cold Temperature ; Down-Regulation ; Epistasis, Genetic ; Evolution, Molecular ; Flowers/*growth & development ; Gene Deletion ; *Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Variation ; Hordeum/genetics ; Molecular Sequence Data ; Mutation ; Plant Proteins/chemistry/genetics/physiology ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Interference ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Seasons ; Transcription, Genetic ; Triticum/*genetics/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2004-06-26
    Description: Rational design of enzymes is a stringent test of our understanding of protein chemistry and has numerous potential applications. Here, we present and experimentally validate the computational design of enzyme activity in proteins of known structure. We have predicted mutations that introduce triose phosphate isomerase activity into ribose-binding protein, a receptor that normally lacks enzyme activity. The resulting designs contain 18 to 22 mutations, exhibit 10(5)- to 10(6)-fold rate enhancements over the uncatalyzed reaction, and are biologically active, in that they support the growth of Escherichia coli under gluconeogenic conditions. The inherent generality of the design method suggests that many enzymes can be designed by this approach.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dwyer, Mary A -- Looger, Loren L -- Hellinga, Homme W -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1967-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218149" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Binding Sites ; Catalysis ; Catalytic Domain ; Computational Biology ; Computer Simulation ; Dihydroxyacetone Phosphate/metabolism ; Dimerization ; Directed Molecular Evolution ; Enzyme Stability ; Escherichia coli/genetics/growth & development/metabolism ; *Escherichia coli Proteins/chemistry/genetics/metabolism ; Glyceraldehyde 3-Phosphate/metabolism ; Glycerol/metabolism ; Hydrogen Bonding ; Kinetics ; Lactates/metabolism ; Ligands ; Models, Molecular ; Molecular Conformation ; Mutation ; *Periplasmic Binding Proteins/chemistry/genetics/metabolism ; Protein Conformation ; *Protein Engineering ; Protons ; *Triose-Phosphate Isomerase/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2004-02-28
    Description: We determined the minimal portion of Escherichia coli RNA polymerase (RNAP) holoenzyme able to accomplish promoter melting, the crucial step in transcription initiation that provides RNAP access to the template strand. Upon duplex DNA binding, the N terminus of the beta' subunit (amino acids 1 to 314) and amino acids 94 to 507 of the sigma subunit, together comprising less than one-fifth of RNAP holoenzyme, were able to melt an extended -10 promoter in a reaction remarkably similar to that of authentic holoenzyme. Our results support the model that capture of nontemplate bases extruded from the DNA helix underlies the melting process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Brian A -- Gruber, Tanja M -- Gross, Carol A -- GM 57755/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1382-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Stomatology and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14988563" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Bacterial/chemistry/genetics/*metabolism ; DNA, Superhelical/chemistry/genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/*enzymology/*genetics ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Sigma Factor/chemistry/*metabolism ; Templates, Genetic ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2004-01-13
    Description: Ty elements of Saccharomyces cerevisiae are long terminal repeat (LTR) retroelements related to retroviruses. Normal levels of Ty1 transposition require Dbr1p, a cellular enzyme that cleaves 2'-5' RNA bonds. We show that Ty1 RNAs lacking identifiable 5' ends accumulate in virus-like particles (VLPs) in dbr1 mutants. Debranching this RNA in vitro with Dbr1p creates an uncapped version of the normal Ty1 RNA 5' end. We show that the 5' nucleotide (nt) of Ty1 RNA forms a 2'-5' bond with a nt near the 3' end of the same RNA, creating a lariat. The properties of the lariat suggest it forms by a novel mechanism and that branching and debranching may play roles in Ty1 reverse transcription at the minus-strand transfer step.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Zhi -- Menees, Thomas M -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):240-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716018" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Blotting, Northern ; DNA, Complementary/metabolism ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; RNA Caps ; RNA Nucleotidyltransferases/genetics/metabolism ; RNA, Fungal/*chemistry/genetics/*metabolism ; RNA, Messenger/chemistry/genetics/metabolism ; RNA-Directed DNA Polymerase/metabolism ; Retroelements/genetics/*physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonuclease H/metabolism ; Saccharomyces cerevisiae/*genetics ; Terminal Repeat Sequences ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2004-11-20
    Description: The observation of the regulation of fast protein dynamics in a cellular context requires the development of reliable technologies. Here, a signal regulation cascade reliant on the stimulus-dependent acceleration of the bidirectional flow of mitogen-activated protein kinase (extracellular signal-regulated kinase) across the nuclear envelope was visualized by reversible protein highlighting. Light-induced conversion between the bright and dark states of a monomeric fluorescent protein engineered from a novel coral protein was employed. Because of its photochromic properties, the protein could be highlighted, erased, and highlighted again in a nondestructive manner, allowing direct observation of regulated fast nucleocytoplasmic shuttling of key signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ando, Ryoko -- Mizuno, Hideaki -- Miyawaki, Atsushi -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1370-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550670" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Anthozoa ; COS Cells ; Cell Nucleus/*metabolism ; Cytoplasm/*metabolism ; Epidermal Growth Factor/pharmacology ; Fluorescence ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Light ; Luminescent Proteins/chemistry/*metabolism ; MAP Kinase Signaling System ; Microscopy, Confocal ; Mitogen-Activated Protein Kinase 3/*metabolism ; Molecular Sequence Data ; Nuclear Envelope/*metabolism ; Phosphorylation ; Protein Transport ; Recombinant Proteins/chemistry/metabolism ; Transfection ; beta Karyopherins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2004-05-15
    Description: Dynamic changes in chromatin structure, induced by posttranslational modification of histones, play a fundamental role in regulating eukaryotic transcription. Here we report that histone H2B is phosphorylated at evolutionarily conserved Ser33 (H2B-S33) by the carboxyl-terminal kinase domain (CTK) of the Drosophila TFIID subunit TAF1. Phosphorylation of H2B-S33 at the promoter of the cell cycle regulatory gene string and the segmentation gene giant coincides with transcriptional activation. Elimination of TAF1 CTK activity in Drosophila cells and embryos reduces transcriptional activation and phosphorylation of H2B-S33. These data reveal that H2B-S33 is a physiological substrate for the TAF1 CTK and that H2B-S33 phosphorylation is essential for transcriptional activation events that promote cell cycle progression and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maile, Tobias -- Kwoczynski, Simona -- Katzenberger, Rebeccah J -- Wassarman, David A -- Sauer, Frank -- GM066204-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 14;304(5673):1010-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California-Riverside, Riverside, CA 95121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15143281" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Cycle ; Cell Cycle Proteins ; DNA-Binding Proteins/genetics ; Drosophila/embryology/*genetics/metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Embryo, Nonmammalian/physiology ; Genes, Insect ; Histone Acetyltransferases ; Histones/chemistry/*metabolism ; Homeodomain Proteins/genetics ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/genetics ; RNA Interference ; Recombinant Proteins/chemistry/metabolism ; Repressor Proteins/genetics ; TATA-Binding Protein Associated Factors ; Transcription Factor TFIID/chemistry/genetics/*metabolism ; Transcription Factors ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hilgemann, Donald W -- New York, N.Y. -- Science. 2004 Apr 9;304(5668):223-4. Epub 2004 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Texas Southwestern, Dallas, TX 75235, USA. donald.hilgemann@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Eicosanoic Acids/*metabolism/pharmacology ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers ; Membrane Lipids/*metabolism ; Micelles ; Models, Biological ; Phosphatidylinositol 4,5-Diphosphate/*metabolism/pharmacology ; Potassium Channels, Voltage-Gated/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Sodium-Calcium Exchanger/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2004-10-02
    Description: Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for approximately 20% of global carbon fixation. We report the 34 million-base pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand-base pair mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, use of a range of nitrogenous compounds, and a complete urea cycle, all attributes that allow diatoms to prosper in aquatic environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armbrust, E Virginia -- Berges, John A -- Bowler, Chris -- Green, Beverley R -- Martinez, Diego -- Putnam, Nicholas H -- Zhou, Shiguo -- Allen, Andrew E -- Apt, Kirk E -- Bechner, Michael -- Brzezinski, Mark A -- Chaal, Balbir K -- Chiovitti, Anthony -- Davis, Aubrey K -- Demarest, Mark S -- Detter, J Chris -- Glavina, Tijana -- Goodstein, David -- Hadi, Masood Z -- Hellsten, Uffe -- Hildebrand, Mark -- Jenkins, Bethany D -- Jurka, Jerzy -- Kapitonov, Vladimir V -- Kroger, Nils -- Lau, Winnie W Y -- Lane, Todd W -- Larimer, Frank W -- Lippmeier, J Casey -- Lucas, Susan -- Medina, Monica -- Montsant, Anton -- Obornik, Miroslav -- Parker, Micaela Schnitzler -- Palenik, Brian -- Pazour, Gregory J -- Richardson, Paul M -- Rynearson, Tatiana A -- Saito, Mak A -- Schwartz, David C -- Thamatrakoln, Kimberlee -- Valentin, Klaus -- Vardi, Assaf -- Wilkerson, Frances P -- Rokhsar, Daniel S -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):79-86.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA. armbrust@ocean.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459382" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Algal Proteins/chemistry/genetics/physiology ; Animals ; *Biological Evolution ; Cell Nucleus/genetics ; Chromosomes ; DNA/genetics ; Diatoms/chemistry/cytology/*genetics/metabolism ; *Ecosystem ; Energy Metabolism ; *Genome ; Iron/metabolism ; Light ; Light-Harvesting Protein Complexes/chemistry/genetics/metabolism ; Mitochondria/genetics ; Molecular Sequence Data ; Nitrogen/metabolism ; Photosynthesis ; Plastids/genetics ; Restriction Mapping ; Sequence Alignment ; *Sequence Analysis, DNA ; Silicic Acid/metabolism ; Symbiosis ; Urea/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2004-10-02
    Description: Nodal proteins, members of the transforming growth factor-beta (TGFbeta) superfamily, have been identified as key endogenous mesoderm inducers in vertebrates. Precise control of Nodal signaling is essential for normal development of embryos. Here, we report that zebrafish dapper2 (dpr2) is expressed in mesoderm precursors during early embryogenesis and is positively regulated by Nodal signals. In vivo functional studies in zebrafish suggest that Dpr2 suppresses mesoderm induction activities of Nodal signaling. Dpr2 is localized in late endosomes, binds to the TGFbeta receptors ALK5 and ALK4, and accelerates lysosomal degradation of these receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Lixia -- Zhou, Hu -- Su, Ying -- Sun, Zhihui -- Zhang, Haiwen -- Zhang, Long -- Zhang, Yu -- Ning, Yuanheng -- Chen, Ye-Guang -- Meng, Anming -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):114-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, Ministry of Education (MOE), Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459392" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors, Type I/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Embryo, Nonmammalian/embryology/*metabolism ; *Embryonic Induction ; Endosomes/metabolism ; Fluorescent Antibody Technique ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; In Situ Hybridization ; Intracellular Signaling Peptides and Proteins ; Lysosomes/metabolism ; Mesoderm/*physiology ; Molecular Sequence Data ; Mutation ; Nodal Signaling Ligands ; Oligonucleotides, Antisense ; Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Signal Transduction ; Transforming Growth Factor beta/genetics/metabolism ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2004-07-13
    Description: The freshwater snail Biomphalaria glabrata possesses a diverse family of fibrinogen-related proteins (FREPs), hemolymph polypeptides that consist of one or two amino-terminal immunoglobulin superfamily (IgSF) domains and a carboxyl-terminal fibrinogen domain. Here, we show that the IgSF1 domain of the FREP3 subfamily is diversified at the genomic level at higher rates than those recorded for control genes. All sequence variants are derived from a small set of nine source sequences by point mutation and recombinatorial processes. Diverse FREP3 transcripts are also produced. We hypothesize a mechanism present in snails that is capable of diversifying molecules involved in internal defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Si-Ming -- Adema, Coen M -- Kepler, Thomas B -- Loker, Eric S -- R01AI24340/AI/NIAID NIH HHS/ -- R01AI52363/AI/NIAID NIH HHS/ -- RR-1P20RR18754/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):251-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15247481" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Biomphalaria/embryology/*genetics/immunology ; Blotting, Southern ; Computational Biology ; DNA, Complementary ; Disorders of Sex Development ; Genes, Immunoglobulin ; *Genetic Variation ; Hemocytes ; Immunoglobulins/chemistry/*genetics ; Molecular Sequence Data ; Point Mutation ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2004-07-27
    Description: Adherence by Helicobacter pylori increases the risk of gastric disease. Here, we report that more than 95% of strains that bind fucosylated blood group antigen bind A, B, and O antigens (generalists), whereas 60% of adherent South American Amerindian strains bind blood group O antigens best (specialists). This specialization coincides with the unique predominance of blood group O in these Amerindians. Strains differed about 1500-fold in binding affinities, and diversifying selection was evident in babA sequences. We propose that cycles of selection for increased and decreased bacterial adherence contribute to babA diversity and that these cycles have led to gradual replacement of generalist binding by specialist binding in blood group O-dominant human populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aspholm-Hurtig, Marina -- Dailide, Giedrius -- Lahmann, Martina -- Kalia, Awdhesh -- Ilver, Dag -- Roche, Niamh -- Vikstrom, Susanne -- Sjostrom, Rolf -- Linden, Sara -- Backstrom, Anna -- Lundberg, Carina -- Arnqvist, Anna -- Mahdavi, Jafar -- Nilsson, Ulf J -- Velapatino, Billie -- Gilman, Robert H -- Gerhard, Markus -- Alarcon, Teresa -- Lopez-Brea, Manuel -- Nakazawa, Teruko -- Fox, James G -- Correa, Pelayo -- Dominguez-Bello, Maria Gloria -- Perez-Perez, Guillermo I -- Blaser, Martin J -- Normark, Staffan -- Carlstedt, Ingemar -- Oscarson, Stefan -- Teneberg, Susann -- Berg, Douglas E -- Boren, Thomas -- P30 DK52574/DK/NIDDK NIH HHS/ -- R01 AI38166/AI/NIAID NIH HHS/ -- R01 DK53727/DK/NIDDK NIH HHS/ -- R01 DK63041/DK/NIDDK NIH HHS/ -- R03 AI49161/AI/NIAID NIH HHS/ -- R0IGM62370/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 23;305(5683):519-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Odontology, section of Oral Microbiology, Umea University, SE-901 87 Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15273394" target="_blank"〉PubMed〈/a〉
    Keywords: ABO Blood-Group System/*metabolism ; Adaptation, Biological ; Adhesins, Bacterial/chemistry/*genetics/immunology/*metabolism ; Alleles ; *Bacterial Adhesion ; Base Sequence ; Binding Sites ; Evolution, Molecular ; Fucose/metabolism ; Gastric Mucosa/microbiology ; Helicobacter Infections/microbiology ; Helicobacter pylori/genetics/immunology/*physiology ; Humans ; Indians, South American ; Lewis Blood-Group System/metabolism ; Molecular Sequence Data ; Mutation ; Peru ; Phenotype ; Phylogeny ; Protein Binding ; Selection, Genetic ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2004-07-13
    Description: Ribonucleotide reductase (RNR) synthesizes the deoxyribonucleotides for DNA synthesis. The R2 protein of normal class I ribonucleotide reductases contains a diiron site that produces a stable tyrosyl free radical, essential for enzymatic activity. Structural and electron paramagnetic resonance studies of R2 from Chlamydia trachomatis reveal a protein lacking a tyrosyl radical site. Instead, the protein yields an iron-coupled radical upon reconstitution. The coordinating structure of the diiron site is similar to that of diiron oxidases/monoxygenases and supports a role for this radical in the RNR mechanism. The specific ligand pattern in the C. trachomatis R2 metal site characterizes a new group of R2 proteins that so far has been found in eight organisms, three of which are human pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hogbom, Martin -- Stenmark, Pal -- Voevodskaya, Nina -- McClarty, Grant -- Graslund, Astrid -- Nordlund, Par -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Stockholm University, Roslagstullsbacken 15, Albanova University Center, SE-10691 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15247479" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chlamydia trachomatis/*enzymology ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Free Radicals ; Hydrogen Bonding ; Iron/analysis ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Folding ; Protein Structure, Secondary ; Ribonucleotide Reductases/*chemistry/classification/metabolism ; Tyrosine/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanabe, K -- Sakihama, N -- Kaneko, A -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):493.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Osaka Institute of Technology, Osaka 535-8585, Japan. kztanabe@ge.oit.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739451" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Antigens, Protozoan/chemistry/*genetics ; Antimalarials/pharmacology ; Chloroquine/pharmacology ; Drug Resistance ; Epitopes/genetics ; Genes, Protozoan ; Geography ; Haplotypes ; Humans ; Malaria, Falciparum/parasitology ; Membrane Proteins/chemistry/genetics ; Membrane Transport Proteins ; Merozoite Surface Protein 1/chemistry/genetics ; Molecular Sequence Data ; Plasmodium falciparum/drug effects/*genetics/*immunology ; *Polymorphism, Single Nucleotide ; Protozoan Proteins/chemistry/genetics ; Repetitive Sequences, Nucleic Acid ; Tandem Repeat Sequences ; Vanuatu
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2004-09-14
    Description: We performed molecular dynamics simulations of the collapse of a two-domain protein, the BphC enzyme, into a globular structure to examine how water molecules mediate hydrophobic collapse of proteins. In the interdomain region, liquid water persists with a density 10 to 15% lower than in the bulk, even at small domain separations. Water depletion and hydrophobic collapse occur on a nanosecond time scale, which is two orders of magnitude slower than that found in the collapse of idealized paraffin-like plates. When the electrostatic protein-water forces are turned off, a dewetting transition occurs in the interdomain region and the collapse speeds up by more than an order of magnitude. When attractive van der Waals forces are turned off as well, the dewetting in the interdomain region is more profound, and the collapse is even faster.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Ruhong -- Huang, Xuhui -- Margulis, Claudio J -- Berne, Bruce J -- GM4330/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 10;305(5690):1605-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computational Biology Center, IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. ruhongz@us.ibm.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15361621" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; *Dioxygenases ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Oxygenases/*chemistry ; Protein Conformation ; *Protein Folding ; *Protein Structure, Tertiary ; Static Electricity ; Surface Properties ; Water/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2004-10-09
    Description: Little is known of the fate of viruses involved in long-term obligatory associations with eukaryotes. For example, many species of parasitoid wasps have symbiotic viruses to manipulate host defenses and to allow development of parasitoid larvae. The complete nucleotide sequence of the DNA enclosed in the virus particles injected by a parasitoid wasp revealed a complex organization, resembling a eukaryote genomic region more than a viral genome. Although endocellular symbiont genomes have undergone a dramatic loss of genes, the evolution of symbiotic viruses appears to be characterized by extensive duplication of virulence genes coding for truncated versions of cellular proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Espagne, Eric -- Dupuy, Catherine -- Huguet, Elisabeth -- Cattolico, Laurence -- Provost, Bertille -- Martins, Nathalie -- Poirie, Marylene -- Periquet, Georges -- Drezen, Jean Michel -- New York, N.Y. -- Science. 2004 Oct 8;306(5694):286-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 6035, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15472078" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Ankyrin Repeat ; Base Composition ; *Biological Evolution ; Cysteine Proteinase Inhibitors/genetics ; Genes, Viral ; *Genome, Viral ; Introns ; Manduca/parasitology/virology ; Molecular Sequence Data ; Polydnaviridae/*genetics ; Protein Tyrosine Phosphatases/genetics ; *Sequence Analysis, DNA ; *Symbiosis ; Viral Proteins/chemistry/genetics ; Virulence Factors/genetics ; Wasps/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2004-02-07
    Description: A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Amy Hin Yan -- Lesage, Guillaume -- Bader, Gary D -- Ding, Huiming -- Xu, Hong -- Xin, Xiaofeng -- Young, James -- Berriz, Gabriel F -- Brost, Renee L -- Chang, Michael -- Chen, YiQun -- Cheng, Xin -- Chua, Gordon -- Friesen, Helena -- Goldberg, Debra S -- Haynes, Jennifer -- Humphries, Christine -- He, Grace -- Hussein, Shamiza -- Ke, Lizhu -- Krogan, Nevan -- Li, Zhijian -- Levinson, Joshua N -- Lu, Hong -- Menard, Patrice -- Munyana, Christella -- Parsons, Ainslie B -- Ryan, Owen -- Tonikian, Raffi -- Roberts, Tania -- Sdicu, Anne-Marie -- Shapiro, Jesse -- Sheikh, Bilal -- Suter, Bernhard -- Wong, Sharyl L -- Zhang, Lan V -- Zhu, Hongwei -- Burd, Christopher G -- Munro, Sean -- Sander, Chris -- Rine, Jasper -- Greenblatt, Jack -- Peter, Matthias -- Bretscher, Anthony -- Bell, Graham -- Roth, Frederick P -- Brown, Grant W -- Andrews, Brenda -- Bussey, Howard -- Boone, Charles -- GM39066/GM/NIGMS NIH HHS/ -- GM61221/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 6;303(5659):808-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada M5G 1L6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764870" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Computational Biology ; Cystic Fibrosis/genetics ; Gene Deletion ; Genes, Essential ; *Genes, Fungal ; Genetic Diseases, Inborn/genetics ; Genotype ; Humans ; Molecular Sequence Data ; Multifactorial Inheritance ; Mutation ; Phenotype ; Polymorphism, Genetic ; Retinitis Pigmentosa/genetics ; Saccharomyces cerevisiae/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2004-02-21
    Description: Mycobacteria have low-permeability outer membranes that render them resistant to most antibiotics. Hydrophilic nutrients can enter by way of transmembrane-channel proteins called porins. An x-ray analysis of the main porin from Mycobacterium smegmatis, MspA, revealed a homooctameric goblet-like conformation with a single central channel. This is the first structure of a mycobacterial outer-membrane protein. No structure-related protein was found in the Protein Data Bank. MspA contains two consecutive beta barrels with nonpolar outer surfaces that form a ribbon around the porin, which is too narrow to fit the thickness of the mycobacterial outer membrane in contemporary models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faller, Michael -- Niederweis, Michael -- Schulz, Georg E -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1189-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Organische Chemie und Biochemie, Albert-Ludwigs-Universitat, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry ; Cell Membrane Permeability ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; Electric Conductivity ; Escherichia coli/genetics ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mycobacterium smegmatis/*chemistry/metabolism ; Porins/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holmes, Edward C -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1787-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, Oxford OX1 3PS, UK. edward.holmes@zoo.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031487" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Disease Outbreaks/history ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; History, 20th Century ; Humans ; Influenza A virus/*immunology/metabolism/pathogenicity ; Influenza, Human/epidemiology/*history/*virology ; Membrane Glycoproteins/chemistry/metabolism ; Protein Conformation ; RNA, Viral/chemistry/genetics/isolation & purification ; Receptors, Virus/chemistry/metabolism ; Sialic Acids/metabolism ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2004-05-01
    Description: Receptor tyrosine kinase genes were sequenced in non-small cell lung cancer (NSCLC) and matched normal tissue. Somatic mutations of the epidermal growth factor receptor gene EGFR were found in 15of 58 unselected tumors from Japan and 1 of 61 from the United States. Treatment with the EGFR kinase inhibitor gefitinib (Iressa) causes tumor regression in some patients with NSCLC, more frequently in Japan. EGFR mutations were found in additional lung cancer samples from U.S. patients who responded to gefitinib therapy and in a lung adenocarcinoma cell line that was hypersensitive to growth inhibition by gefitinib, but not in gefitinib-insensitive tumors or cell lines. These results suggest that EGFR mutations may predict sensitivity to gefitinib.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paez, J Guillermo -- Janne, Pasi A -- Lee, Jeffrey C -- Tracy, Sean -- Greulich, Heidi -- Gabriel, Stacey -- Herman, Paula -- Kaye, Frederic J -- Lindeman, Neal -- Boggon, Titus J -- Naoki, Katsuhiko -- Sasaki, Hidefumi -- Fujii, Yoshitaka -- Eck, Michael J -- Sellers, William R -- Johnson, Bruce E -- Meyerson, Matthew -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1497-500. Epub 2004 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/pharmacology/therapeutic use ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/metabolism ; Cell Line, Tumor ; Controlled Clinical Trials as Topic ; Enzyme Inhibitors/pharmacology/therapeutic use ; Female ; *Genes, erbB-1 ; Humans ; Japan ; Lung Neoplasms/drug therapy/*genetics/metabolism ; Male ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Phosphorylation ; Protein Conformation ; Protein Structure, Tertiary ; Quinazolines/pharmacology/*therapeutic use ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Sequence Deletion ; Treatment Outcome ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-09-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knepper, Mark A -- Agre, Peter -- Z01 HL001285-21/Intramural NIH HHS/ -- Z99 HL999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 10;305(5690):1573-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Kidney and Electrolyte Metabolism, National Institutes of Health, Bethesda, MD 20892, USA. pagre@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15361612" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonia/*metabolism ; Biological Transport ; Carrier Proteins/metabolism ; Cation Transport Proteins/*chemistry/genetics/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Glycoproteins/metabolism ; Humans ; Hydrogen-Ion Concentration ; Kidney Tubules, Collecting/metabolism ; Lipid Bilayers/metabolism ; Liver/metabolism ; Membrane Glycoproteins/metabolism ; *Membrane Transport Proteins ; Models, Molecular ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Quaternary Ammonium Compounds/metabolism ; Rh-Hr Blood-Group System/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...