ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-02-13
    Description: Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood. Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively. Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal, the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neuronal differentiation is severely impaired. In Mll1-deficient cells, early proneural Mash1 (also known as Ascl1) and gliogenic Olig2 expression are preserved, but Dlx2, a key downstream regulator of subventricular zone neurogenesis, is not expressed. Overexpression of Dlx2 can rescue neurogenesis in Mll1-deficient cells. Chromatin immunoprecipitation demonstrates that Dlx2 is a direct target of MLL in subventricular zone cells. In differentiating wild-type subventricular zone cells, Mash1, Olig2 and Dlx2 loci have high levels of histone 3 trimethylated at lysine 4 (H3K4me3), consistent with their transcription. In contrast, in Mll1-deficient subventricular zone cells, chromatin at Dlx2 is bivalently marked by both H3K4me3 and histone 3 trimethylated at lysine 27 (H3K27me3), and the Dlx2 gene fails to properly activate. These data support a model in which Mll1 is required to resolve key silenced bivalent loci in postnatal neural precursors to the actively transcribed state for the induction of neurogenesis, but not for gliogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800116/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800116/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Daniel A -- Huang, Yin-Cheng -- Swigut, Tomek -- Mirick, Anika L -- Garcia-Verdugo, Jose Manuel -- Wysocka, Joanna -- Ernst, Patricia -- Alvarez-Buylla, Arturo -- 5R37-NS028478/NS/NINDS NIH HHS/ -- R37 NS028478/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Mar 26;458(7237):529-33. doi: 10.1038/nature07726. Epub 2009 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Street M779, San Francisco, California 94143, USA. limd@neurosurg.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212323" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cell Survival ; Cells, Cultured ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; Chromatin Immunoprecipitation ; Histone-Lysine N-Methyltransferase ; Histones/metabolism ; Homeodomain Proteins/chemistry/genetics/metabolism ; Methylation ; Mice ; Myeloid-Lymphoid Leukemia Protein/deficiency/genetics/*metabolism ; Nerve Tissue Proteins/metabolism ; *Neurogenesis ; Neuroglia/cytology/metabolism ; Neurons/*cytology/metabolism ; Olfactory Bulb/cytology/metabolism ; Stem Cells/*cytology/metabolism ; Transcription Factors/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-02-05
    Description: Heterozygous mutations in the gene encoding the CHD (chromodomain helicase DNA-binding domain) member CHD7, an ATP-dependent chromatin remodeller homologous to the Drosophila trithorax-group protein Kismet, result in a complex constellation of congenital anomalies called CHARGE syndrome, which is a sporadic, autosomal dominant disorder characterized by malformations of the craniofacial structures, peripheral nervous system, ears, eyes and heart. Although it was postulated 25 years ago that CHARGE syndrome results from the abnormal development of the neural crest, this hypothesis remained untested. Here we show that, in both humans and Xenopus, CHD7 is essential for the formation of multipotent migratory neural crest (NC), a transient cell population that is ectodermal in origin but undergoes a major transcriptional reprogramming event to acquire a remarkably broad differentiation potential and ability to migrate throughout the body, giving rise to craniofacial bones and cartilages, the peripheral nervous system, pigmentation and cardiac structures. We demonstrate that CHD7 is essential for activation of the NC transcriptional circuitry, including Sox9, Twist and Slug. In Xenopus embryos, knockdown of Chd7 or overexpression of its catalytically inactive form recapitulates all major features of CHARGE syndrome. In human NC cells CHD7 associates with PBAF (polybromo- and BRG1-associated factor-containing complex) and both remodellers occupy a NC-specific distal SOX9 enhancer and a conserved genomic element located upstream of the TWIST1 gene. Consistently, during embryogenesis CHD7 and PBAF cooperate to promote NC gene expression and cell migration. Our work identifies an evolutionarily conserved role for CHD7 in orchestrating NC gene expression programs, provides insights into the synergistic control of distal elements by chromatin remodellers, illuminates the patho-embryology of CHARGE syndrome, and suggests a broader function for CHD7 in the regulation of cell motility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890258/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890258/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bajpai, Ruchi -- Chen, Denise A -- Rada-Iglesias, Alvaro -- Zhang, Junmei -- Xiong, Yiqin -- Helms, Jill -- Chang, Ching-Pin -- Zhao, Yingming -- Swigut, Tomek -- Wysocka, Joanna -- R01 CA126832/CA/NCI NIH HHS/ -- R01 CA126832-01A1/CA/NCI NIH HHS/ -- R01 DK082664/DK/NIDDK NIH HHS/ -- R01 DK082664-01/DK/NIDDK NIH HHS/ -- R01 HL085345/HL/NHLBI NIH HHS/ -- R01 HL085345-04/HL/NHLBI NIH HHS/ -- R01DK082664/DK/NIDDK NIH HHS/ -- R01HL085345/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):958-62. doi: 10.1038/nature08733. Epub 2010 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cell Movement ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; DNA Helicases/chemistry/deficiency/genetics/*metabolism ; DNA-Binding Proteins/chemistry/deficiency/genetics/*metabolism ; Embryo, Nonmammalian/cytology/embryology/metabolism ; Embryonic Stem Cells/cytology/metabolism ; Enhancer Elements, Genetic/genetics ; Gene Expression Regulation, Developmental ; Humans ; Multipotent Stem Cells/*cytology/*metabolism ; Neural Crest/*cytology/embryology/*metabolism ; Protein Binding ; SOX9 Transcription Factor/genetics/metabolism ; Syndrome ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Twist Transcription Factor/genetics/metabolism ; Xenopus Proteins/chemistry/deficiency/genetics/*metabolism ; Xenopus laevis/embryology/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-22
    Description: Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections, and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2), which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs, HERVK retained multiple copies of intact open reading frames encoding retroviral proteins. However, HERVK is transcriptionally silenced by the host, with the exception of in certain pathological contexts such as germ-cell tumours, melanoma or human immunodeficiency virus (HIV) infection. Here we demonstrate that DNA hypomethylation at long terminal repeat elements representing the most recent genomic integrations, together with transactivation by OCT4 (also known as POU5F1), synergistically facilitate HERVK expression. Consequently, HERVK is transcribed during normal human embryogenesis, beginning with embryonic genome activation at the eight-cell stage, continuing through the emergence of epiblast cells in preimplantation blastocysts, and ceasing during human embryonic stem cell derivation from blastocyst outgrowths. Remarkably, we detected HERVK viral-like particles and Gag proteins in human blastocysts, indicating that early human development proceeds in the presence of retroviral products. We further show that overexpression of one such product, the HERVK accessory protein Rec, in a pluripotent cell line is sufficient to increase IFITM1 levels on the cell surface and inhibit viral infection, suggesting at least one mechanism through which HERVK can induce viral restriction pathways in early embryonic cells. Moreover, Rec directly binds a subset of cellular RNAs and modulates their ribosome occupancy, indicating that complex interactions between retroviral proteins and host factors can fine-tune pathways of early human development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503379/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503379/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grow, Edward J -- Flynn, Ryan A -- Chavez, Shawn L -- Bayless, Nicholas L -- Wossidlo, Mark -- Wesche, Daniel J -- Martin, Lance -- Ware, Carol B -- Blish, Catherine A -- Chang, Howard Y -- Pera, Renee A Reijo -- Wysocka, Joanna -- 1F30CA189514-01/CA/NCI NIH HHS/ -- 1S10RR02678001/RR/NCRR NIH HHS/ -- 1S10RR02933801/RR/NCRR NIH HHS/ -- DP2 AI112193/AI/NIAID NIH HHS/ -- DP2AI11219301/AI/NIAID NIH HHS/ -- F30 CA189514/CA/NCI NIH HHS/ -- P01GM099130/GM/NIGMS NIH HHS/ -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 GM112720/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 11;522(7555):221-5. doi: 10.1038/nature14308. Epub 2015 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health &Science University, Beaverton, Oregon 97006, USA. ; Stanford Immunology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA. ; Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA. ; Department of Comparative Medicine, University of Washington, Seattle, Washington 98195-8056, USA. ; Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [4] Department of Cell Biology and Neurosciences, Montana State University, Bozeman, Montana 59717, USA. ; 1] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [3] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25896322" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation/metabolism ; Blastocyst/cytology/metabolism/*virology ; Cell Line ; DNA Methylation ; Endogenous Retroviruses/genetics/*metabolism ; Female ; Gene Products, gag/metabolism ; Humans ; Male ; Octamer Transcription Factor-3/metabolism ; Open Reading Frames/genetics ; Pluripotent Stem Cells/cytology/metabolism/*virology ; RNA, Messenger/genetics/metabolism ; Ribosomes/genetics/metabolism ; Terminal Repeat Sequences/genetics ; Transcription, Genetic/genetics ; Transcriptional Activation ; Viral Envelope Proteins/genetics/metabolism ; *Virus Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-09-04
    Description: Methylation of arginine (Arg) and lysine residues in histones has been correlated with epigenetic forms of gene regulation. Although histone methyltransferases are known, enzymes that demethylate histones have not been identified. Here, we demonstrate that human peptidylarginine deiminase 4 (PAD4) regulates histone Arg methylation by converting methyl-Arg to citrulline and releasing methylamine. PAD4 targets multiple sites in histones H3 and H4, including those sites methylated by coactivators CARM1 (H3 Arg17) and PRMT1 (H4 Arg3). A decrease of histone Arg methylation, with a concomitant increase of citrullination, requires PAD4 activity in human HL-60 granulocytes. Moreover, PAD4 activity is linked with the transcriptional regulation of estrogen-responsive genes in MCF-7 cells. These data suggest that PAD4 mediates gene expression by regulating Arg methylation and citrullination in histones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yanming -- Wysocka, Joanna -- Sayegh, Joyce -- Lee, Young-Ho -- Perlin, Julie R -- Leonelli, Lauriebeth -- Sonbuchner, Lakshmi S -- McDonald, Charles H -- Cook, Richard G -- Dou, Yali -- Roeder, Robert G -- Clarke, Steven -- Stallcup, Michael R -- Allis, C David -- Coonrod, Scott A -- DK55274/DK/NIDDK NIH HHS/ -- GM R01 26020/GM/NIGMS NIH HHS/ -- GM R01 50659/GM/NIGMS NIH HHS/ -- HD R01 38353/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 8;306(5694):279-83. Epub 2004 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15345777" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/*metabolism ; Blotting, Western ; Calcimycin/pharmacology ; Cell Line, Tumor ; Citrulline/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HL-60 Cells ; Histones/*metabolism ; Humans ; Hydrolases/*metabolism ; Ionophores/pharmacology ; Membrane Proteins/genetics ; Methylamines/metabolism ; Methylation ; Molecular Sequence Data ; Presenilin-2 ; Promoter Regions, Genetic ; Protein-Arginine N-Methyltransferases/metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-12-17
    Description: Cell-fate transitions involve the integration of genomic information encoded by regulatory elements, such as enhancers, with the cellular environment. However, identification of genomic sequences that control human embryonic development represents a formidable challenge. Here we show that in human embryonic stem cells (hESCs), unique chromatin signatures identify two distinct classes of genomic elements, both of which are marked by the presence of chromatin regulators p300 and BRG1, monomethylation of histone H3 at lysine 4 (H3K4me1), and low nucleosomal density. In addition, elements of the first class are distinguished by the acetylation of histone H3 at lysine 27 (H3K27ac), overlap with previously characterized hESC enhancers, and are located proximally to genes expressed in hESCs and the epiblast. In contrast, elements of the second class, which we term 'poised enhancers', are distinguished by the absence of H3K27ac, enrichment of histone H3 lysine 27 trimethylation (H3K27me3), and are linked to genes inactive in hESCs and instead are involved in orchestrating early steps in embryogenesis, such as gastrulation, mesoderm formation and neurulation. Consistent with the poised identity, during differentiation of hESCs to neuroepithelium, a neuroectoderm-specific subset of poised enhancers acquires a chromatin signature associated with active enhancers. When assayed in zebrafish embryos, poised enhancers are able to direct cell-type and stage-specific expression characteristic of their proximal developmental gene, even in the absence of sequence conservation in the fish genome. Our data demonstrate that early developmental enhancers are epigenetically pre-marked in hESCs and indicate an unappreciated role of H3K27me3 at distal regulatory elements. Moreover, the wealth of new regulatory sequences identified here provides an invaluable resource for studies and isolation of transient, rare cell populations representing early stages of human embryogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445674/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445674/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rada-Iglesias, Alvaro -- Bajpai, Ruchi -- Swigut, Tomek -- Brugmann, Samantha A -- Flynn, Ryan A -- Wysocka, Joanna -- K99 DE019853/DE/NIDCR NIH HHS/ -- England -- Nature. 2011 Feb 10;470(7333):279-83. doi: 10.1038/nature09692. Epub 2010 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21160473" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Differentiation ; Cell Line ; Chromatin/*genetics/metabolism ; Chromatin Immunoprecipitation ; DNA Helicases/metabolism ; Embryonic Development/*genetics ; Embryonic Stem Cells/cytology/*metabolism ; Enhancer Elements, Genetic/*genetics ; Epigenesis, Genetic/genetics ; Gastrulation/genetics ; Gene Expression Regulation, Developmental/*genetics ; Germ Layers/embryology/metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/metabolism ; Mesoderm/cytology/embryology ; Methylation ; Neural Plate/cytology ; Neurulation/genetics ; Nuclear Proteins/metabolism ; RNA/analysis/genetics ; Transcription Factors/metabolism ; Zebrafish/embryology/genetics ; p300-CBP Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-23
    Description: The genome is extensively transcribed into long intergenic noncoding RNAs (lincRNAs), many of which are implicated in gene silencing. Potential roles of lincRNAs in gene activation are much less understood. Development and homeostasis require coordinate regulation of neighbouring genes through a process termed locus control. Some locus control elements and enhancers transcribe lincRNAs, hinting at possible roles in long-range control. In vertebrates, 39 Hox genes, encoding homeodomain transcription factors critical for positional identity, are clustered in four chromosomal loci; the Hox genes are expressed in nested anterior-posterior and proximal-distal patterns colinear with their genomic position from 3' to 5'of the cluster. Here we identify HOTTIP, a lincRNA transcribed from the 5' tip of the HOXA locus that coordinates the activation of several 5' HOXA genes in vivo. Chromosomal looping brings HOTTIP into close proximity to its target genes. HOTTIP RNA binds the adaptor protein WDR5 directly and targets WDR5/MLL complexes across HOXA, driving histone H3 lysine 4 trimethylation and gene transcription. Induced proximity is necessary and sufficient for HOTTIP RNA activation of its target genes. Thus, by serving as key intermediates that transmit information from higher order chromosomal looping into chromatin modifications, lincRNAs may organize chromatin domains to coordinate long-range gene activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670758/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670758/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kevin C -- Yang, Yul W -- Liu, Bo -- Sanyal, Amartya -- Corces-Zimmerman, Ryan -- Chen, Yong -- Lajoie, Bryan R -- Protacio, Angeline -- Flynn, Ryan A -- Gupta, Rajnish A -- Wysocka, Joanna -- Lei, Ming -- Dekker, Job -- Helms, Jill A -- Chang, Howard Y -- HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143-06/HG/NHGRI NIH HHS/ -- R01 HG003143-06S1/HG/NHGRI NIH HHS/ -- R01 HG003143-06S2/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 7;472(7341):120-4. doi: 10.1038/nature09819. Epub 2011 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21423168" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Chromatin/*genetics/metabolism ; DNA, Intergenic/genetics ; Embryo, Mammalian/metabolism ; Fibroblasts/metabolism ; Gene Expression Regulation, Developmental/*genetics ; Gene Knockdown Techniques ; Genes, Homeobox/*genetics ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Multigene Family/genetics ; Organ Specificity ; RNA, Untranslated/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-15
    Description: CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70-90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p53(25,26,53,54)), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p53(25,26,53,54) mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p53(25,26,53,54)(/-) embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Nostrand, Jeanine L -- Brady, Colleen A -- Jung, Heiyoun -- Fuentes, Daniel R -- Kozak, Margaret M -- Johnson, Thomas M -- Lin, Chieh-Yu -- Lin, Chien-Jung -- Swiderski, Donald L -- Vogel, Hannes -- Bernstein, Jonathan A -- Attie-Bitach, Tania -- Chang, Ching-Pin -- Wysocka, Joanna -- Martin, Donna M -- Attardi, Laura D -- 1F31CA167917-01/CA/NCI NIH HHS/ -- F31 CA167917/CA/NCI NIH HHS/ -- R01 CA140875/CA/NCI NIH HHS/ -- R01 DC009410/DC/NIDCD NIH HHS/ -- R01 GM095555/GM/NIGMS NIH HHS/ -- R01 HL118087/HL/NHLBI NIH HHS/ -- R01HL121197/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Oct 9;514(7521):228-32. doi: 10.1038/nature13585. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA (C.A.B.); Department of Medicine, University of Central Florida, Orlando, Florida 32827, USA (M.M.K.); Department of Emergency Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA (T.M.J.). ; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Otolaryngology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Departement de Genetique, Hopital Necker-Enfants Malades, APHP, 75015 Paris, France [2] Unite INSERM U1163, Universite Paris Descartes-Sorbonne Paris Cite, Institut Imagine, 75015 Paris, France. ; Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; 1] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2] Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; 1] Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119037" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/genetics/*metabolism ; Alleles ; Animals ; Apoptosis/genetics ; CHARGE Syndrome/*genetics/*metabolism ; Cell Cycle Checkpoints/genetics ; Craniofacial Abnormalities/genetics/metabolism ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Ear/abnormalities ; Embryo, Mammalian/abnormalities/metabolism ; Female ; Fibroblasts ; Gene Deletion ; Heterozygote ; Humans ; Male ; Mice ; Mutant Proteins/metabolism ; *Phenotype ; Promoter Regions, Genetic/genetics ; Tumor Suppressor Protein p53/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-04
    Description: DEAD-box RNA helicases are vital for the regulation of various aspects of the RNA life cycle, but the molecular underpinnings of their involvement, particularly in mammalian cells, remain poorly understood. Here we show that the DEAD-box RNA helicase DDX21 can sense the transcriptional status of both RNA polymerase (Pol) I and II to control multiple steps of ribosome biogenesis in human cells. We demonstrate that DDX21 widely associates with Pol I- and Pol II-transcribed genes and with diverse species of RNA, most prominently with non-coding RNAs involved in the formation of ribonucleoprotein complexes, including ribosomal RNA, small nucleolar RNAs (snoRNAs) and 7SK RNA. Although broad, these molecular interactions, both at the chromatin and RNA level, exhibit remarkable specificity for the regulation of ribosomal genes. In the nucleolus, DDX21 occupies the transcribed rDNA locus, directly contacts both rRNA and snoRNAs, and promotes rRNA transcription, processing and modification. In the nucleoplasm, DDX21 binds 7SK RNA and, as a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, is recruited to the promoters of Pol II-transcribed genes encoding ribosomal proteins and snoRNAs. Promoter-bound DDX21 facilitates the release of the positive transcription elongation factor b (P-TEFb) from the 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes. Our results uncover the multifaceted role of DDX21 in multiple steps of ribosome biogenesis, and provide evidence implicating a mammalian RNA helicase in RNA modification and Pol II elongation control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calo, Eliezer -- Flynn, Ryan A -- Martin, Lance -- Spitale, Robert C -- Chang, Howard Y -- Wysocka, Joanna -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 ES023168/ES/NIEHS NIH HHS/ -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01-ES023168/ES/NIEHS NIH HHS/ -- R01-GM095555/GM/NIGMS NIH HHS/ -- R01-HG004361/HG/NHGRI NIH HHS/ -- T32CA09302/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 12;518(7538):249-53. doi: 10.1038/nature13923. Epub 2014 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470060" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/genetics/metabolism ; DEAD-box RNA Helicases/*metabolism ; Genes, rRNA/*genetics ; Humans ; Positive Transcriptional Elongation Factor B/metabolism ; Protein Binding ; RNA Polymerase I/metabolism ; RNA Polymerase II/metabolism ; *RNA Processing, Post-Transcriptional ; RNA, Ribosomal/*biosynthesis/genetics/*metabolism ; RNA, Small Nucleolar/genetics/metabolism ; RNA-Binding Proteins/metabolism ; Ribonucleoproteins, Small Nuclear/chemistry/metabolism ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-06
    Description: To achieve guide RNA (gRNA) multiplexing and an efficient delivery of tens of distinct gRNAs into single cells, we developed a molecular assembly strategy termed chimeric array of gRNA oligonucleotides (CARGO). We coupled CARGO with dCas9 (catalytically dead Cas9) imaging to quantitatively measure the movement of enhancers and promoters that undergo differentiation-associated activity changes in live embryonic stem cells. Whereas all examined functional elements exhibited subdiffusive behavior, their relative mobility increased concurrently with transcriptional activation. Furthermore, acute perturbation of RNA polymerase II activity can reverse these activity-linked increases in loci mobility. Through quantitative CARGO-dCas9 imaging, we provide direct measurements of cis-regulatory element dynamics in living cells and distinct cellular and activity states and uncover an intrinsic connection between cis-regulatory element mobility and transcription.
    Keywords: Development, Molecular Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-12-01
    Print ISSN: 1046-2023
    Electronic ISSN: 1095-9130
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...