ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-10-05
    Description: The detection of single-nucleotide polymorphisms in pathogenic microorganisms has normally been carried out by trial and error. Here we show that DNA hybridization with high-density oligonucleotide arrays provides rapid and convenient detection of single-nucleotide polymorphisms in Plasmodium falciparum, despite its exceptionally high adenine-thymine (AT) content (82%). A disproportionate number of polymorphisms are found in genes encoding proteins associated with the cell membrane. These genes are targets for only 22% of the oligonucleotide probes but account for 69% of the polymorphisms. Genetic variation is also enriched in subtelomeric regions, which account for 22% of the chromosome but 76% of the polymorphisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, Sarah K -- Hartl, Daniel L -- Wirth, Dyann F -- Nielsen, Kaare M -- Choi, Mehee -- Batalov, Serge -- Zhou, Yingyao -- Plouffe, David -- Le Roch, Karine G -- Abagyan, Ruben -- Winzeler, Elizabeth A -- GM61351/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 4;298(5591):216-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12364807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomes/genetics ; DNA, Protozoan/genetics ; *Genes, Protozoan ; Genetic Variation ; Genome, Protozoan ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; Plasmodium falciparum/*genetics ; *Polymorphism, Single Nucleotide ; Protozoan Proteins/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-02-11
    Description: Eukaryotic genome sizes range over five orders of magnitude. This variation cannot be explained by differences in organismic complexity (the C value paradox). To test the hypothesis that some variation in genome size can be attributed to differences in the patterns of insertion and deletion (indel) mutations among organisms, this study examines the indel spectrum in Laupala crickets, which have a genome size 11 times larger than that of Drosophila. Consistent with the hypothesis, DNA loss is more than 40 times slower in Laupala than in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrov, D A -- Sangster, T A -- Johnston, J S -- Hartl, D L -- Shaw, K L -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1060-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard University Society of Fellows, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. dpetrov@oeb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669421" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA/genetics ; Drosophila/*genetics ; *Evolution, Molecular ; *Genome ; Gryllidae/*genetics ; Likelihood Functions ; Multigene Family ; *Mutation ; Phylogeny ; Polymerase Chain Reaction ; Pseudogenes ; *Retroelements ; Sequence Deletion ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-07-21
    Description: Genetic variability of Plasmodium falciparum underlies its transmission success and thwarts efforts to control disease caused by this parasite. Genetic variation in antigenic, drug resistance, and pathogenesis determinants is abundant, consistent with an ancient origin of P. falciparum, whereas DNA variation at silent (synonymous) sites in coding sequences appears virtually absent, consistent with a recent origin of the parasite. To resolve this paradox, we analyzed introns and demonstrated that these are deficient in single-nucleotide polymorphisms, as are synonymous sites in coding regions. These data establish the recent origin of P. falciparum and further provide an explanation for the abundant diversity observed in antigen and other selected genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, S K -- Barry, A E -- Lyons, E J -- Nielsen, K M -- Thomas, S M -- Choi, M -- Thakore, S S -- Day, K P -- Wirth, D F -- Hartl, D L -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):482-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Harvard-Oxford Malaria Genome Diversity Project, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11463913" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Agriculture ; Alternative Splicing ; Animals ; Base Sequence ; *Biological Evolution ; Genes, Protozoan ; *Genetic Variation ; Humans ; *Introns ; Malaria, Falciparum/epidemiology/parasitology/transmission ; *Microsatellite Repeats ; Molecular Sequence Data ; Mutation ; Plasmodium/genetics ; Plasmodium falciparum/*genetics ; *Polymorphism, Single Nucleotide
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-01-06
    Description: Rapid adaptive fixation of a new favorable mutation is expected to affect neighboring genes along the chromosome. Evolutionary theory predicts that the chromosomal region would show a reduced level of genetic variation and an excess of rare alleles. We have confirmed these predictions in a region of the X chromosome of Drosophila melanogaster that contains a newly evolved gene for a component of the sperm axoneme. In D. simulans, where the novel gene does not exist, the pattern of genetic variation is consistent with selection against recurrent deleterious mutations. These findings imply that the pattern of genetic variation along a chromosome may be useful for inferring its evolutionary history and for revealing regions in which recent adaptive fixations have taken place.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nurminsky, D -- Aguiar, D D -- Bustamante, C D -- Hartl, D L -- GM 60035/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):128-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141564" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Axonemal Dyneins ; Drosophila/genetics ; *Drosophila Proteins ; Drosophila melanogaster/*genetics ; Dyneins/*genetics ; *Evolution, Molecular ; *Genes, Insect ; *Genetic Variation ; Likelihood Functions ; Logistic Models ; Mutation ; Polymorphism, Genetic ; Selection, Genetic ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-03
    Description: The ability to clone large fragments of DNA in yeast artificial chromosomes (YAC's) has created the possibility of obtaining global physical maps of complex genomes. For this application to be feasible, most sequences in complex genomes must be able to be cloned in YAC's, and most clones must be genetically stable and colinear with the genomic sequences from which they originated (that is, not liable to undergo rearrangement). These requirements have been met with a YAC library containing DNA fragments from Drosophila melanogaster ranging in size up to several hundred kilobase pairs. Preliminary characterization of the Drosophila YAC library was carried out by in situ hybridization of random clones and analysis of clones containing known sequences. The results suggest that most euchromatic sequences can be cloned. The library also contains clones in which the inserted DNA is derived from the centromeric heterochromatin. The locations of 58 clones collectively representing about 8 percent of the euchromatic genome are presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garza, D -- Ajioka, J W -- Burke, D T -- Hartl, D L -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):641-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110-1095.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2510296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chromosome Mapping ; Chromosomes, Fungal ; Cloning, Molecular ; Drosophila melanogaster/*genetics ; *Genes ; Genomic Library ; Heterochromatin/analysis ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics ; Salivary Glands/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-11
    Description: An ultimate goal of Drosophila genetics is to identify and define the functions of all the genes in the organism. Traditional approaches based on the isolation of mutant genes have been extraordinary fruitful. Recent advances in the manipulation and analysis of large DNA fragments have made it possible to develop detailed molecular maps of the Drosophila genome as the initial steps in determining the complete DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merriam, J -- Ashburner, M -- Hartl, D L -- Kafatos, F C -- New York, N.Y. -- Science. 1991 Oct 11;254(5029):221-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925579" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; *Chromosome Mapping ; Chromosomes ; *Cloning, Molecular ; Drosophila melanogaster/*genetics ; Gene Rearrangement ; Genes ; *Genome ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-12-20
    Description: Variable number of tandem repeat (VNTR) sequences are used to link defendants with crimes by matching DNA patterns. The probative value of a match is often calculated by multiplying together the estimated frequencies with which each particular VNTR pattern occurs in a reference database. However, this method is liable to potentially serious errors because ethnic subgroups within major racial categories exhibit genetic differences that are maintained by endogamy. The multiplication procedure currently in use can be made scientifically valid only by extensive sampling of VNTR frequency distributions in a variety of ethnic groups, similar to the ethnic studies of various blood groups done in the past. Alternative approaches for dealing with subpopulation heterogeneity are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewontin, R C -- Hartl, D L -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1745-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1845040" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Blood Group Antigens/genetics ; *DNA Fingerprinting ; DNA Probes ; Ethnic Groups/genetics ; European Continental Ancestry Group/genetics ; Gene Frequency ; *Genetics, Medical ; *Genetics, Population ; Humans ; Repetitive Sequences, Nucleic Acid ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-05-26
    Description: Identifying the properties of gene networks that influence their evolution is a fundamental research goal. However, modes of evolution cannot be inferred solely from the distribution of natural variation, because selection interacts with demography and mutation rates to shape polymorphism and divergence. We estimated the effects of naturally occurring mutations on gene expression while minimizing the effect of natural selection. We demonstrate that sensitivity of gene expression to mutations increases with both increasing trans-mutational target size and the presence of a TATA box. Genes with greater sensitivity to mutations are also more sensitive to systematic environmental perturbations and stochastic noise. These results provide a mechanistic basis for gene expression evolvability that can serve as a foundation for realistic models of regulatory evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landry, Christian R -- Lemos, Bernardo -- Rifkin, Scott A -- Dickinson, W J -- Hartl, Daniel L -- New York, N.Y. -- Science. 2007 Jul 6;317(5834):118-21. Epub 2007 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. clandry@post.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525304" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Evolution, Molecular ; *Gene Expression ; Gene Expression Regulation, Fungal ; *Gene Regulatory Networks ; *Genes, Fungal ; Genetic Variation ; Linear Models ; Models, Genetic ; *Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Promoter Regions, Genetic ; Saccharomyces cerevisiae/*genetics ; Selection, Genetic ; TATA Box ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-01-05
    Description: The paucity of polymorphisms in single-copy genes on the Y chromosome of Drosophila contrasts with data indicating that this chromosome has polymorphic phenotypic effects on sex ratio, temperature sensitivity, behavior, and fitness. We show that the Y chromosome of D. melanogaster harbors substantial genetic diversity in the form of polymorphisms for genetic elements that differentially affect the expression of hundreds of X-linked and autosomal genes. The affected genes are more highly expressed in males, more meagerly expressed in females, and more highly divergent between species. Functionally, they affect microtubule stability, lipid and mitochondrial metabolism, and the thermal sensitivity of spermatogenesis. Our findings provide a mechanism for adaptive phenotypic variation associated with the Y chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lemos, Bernardo -- Araripe, Luciana O -- Hartl, Daniel L -- GM065169/GM/NIGMS NIH HHS/ -- GM068465/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 4;319(5859):91-3. doi: 10.1126/science.1148861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. blemos@oeb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18174442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Climate ; DNA Transposable Elements ; Drosophila/*genetics/physiology ; Drosophila melanogaster/*genetics/physiology ; Epigenesis, Genetic ; Female ; *Gene Expression Regulation ; Genes, Insect ; Genetic Linkage ; Genetic Variation ; Heterochromatin/genetics ; Male ; *Polymorphism, Genetic ; Spermatogenesis ; Temperature ; Y Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-06-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartl, D L -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1659-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. dhartl@oeb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9206830" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Nucleotidyltransferases/chemistry/*genetics ; *DNA Transposable Elements ; Drosophila/genetics ; Genes, Protozoan ; Genome, Protozoan ; Leishmania major/*genetics ; Mutagenesis, Insertional ; Transfection ; Transposases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...