ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (555)
  • Molecular Sequence Data  (406)
  • Protein Structure, Tertiary  (236)
  • 2015-2019  (92)
  • 2010-2014  (463)
  • Computer Science  (555)
Collection
  • Articles  (555)
Keywords
Years
Year
Topic
  • 1
    Publication Date: 2010-01-02
    Description: Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baudat, F -- Buard, J -- Grey, C -- Fledel-Alon, A -- Ober, C -- Przeworski, M -- Coop, G -- de Massy, B -- 03S1/PHS HHS/ -- GM83098/GM/NIGMS NIH HHS/ -- HD21244/HD/NICHD NIH HHS/ -- HL085197/HL/NHLBI NIH HHS/ -- R01 GM083098/GM/NIGMS NIH HHS/ -- R01 HD021244/HD/NICHD NIH HHS/ -- R01 HL085197/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):836-40. doi: 10.1126/science.1183439. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique Humaine, UPR1142, CNRS, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044539" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/metabolism ; DNA Breaks, Double-Stranded ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Genome ; Genome, Human ; Genotype ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/*metabolism ; Humans ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Phenotype ; *Recombination, Genetic ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-07
    Description: For RNA viruses, rapid viral evolution and the biological similarity of closely related host species have been proposed as key determinants of the occurrence and long-term outcome of cross-species transmission. Using a data set of hundreds of rabies viruses sampled from 23 North American bat species, we present a general framework to quantify per capita rates of cross-species transmission and reconstruct historical patterns of viral establishment in new host species using molecular sequence data. These estimates demonstrate diminishing frequencies of both cross-species transmission and host shifts with increasing phylogenetic distance between bat species. Evolutionary constraints on viral host range indicate that host species barriers may trump the intrinsic mutability of RNA viruses in determining the fate of emerging host-virus interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Streicker, Daniel G -- Turmelle, Amy S -- Vonhof, Maarten J -- Kuzmin, Ivan V -- McCracken, Gary F -- Rupprecht, Charles E -- 0430418/PHS HHS/ -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):676-9. doi: 10.1126/science.1188836.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rabies Team, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA. dstrike@uga.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20689015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; Chiroptera/*classification/genetics/*virology ; Communicable Diseases, Emerging/transmission/*veterinary/virology ; Evolution, Molecular ; Genes, Viral ; Host-Pathogen Interactions ; Likelihood Functions ; Molecular Sequence Data ; Monte Carlo Method ; Nucleocapsid Proteins/genetics ; *Phylogeny ; Rabies/transmission/*veterinary/virology ; Rabies virus/classification/genetics/*pathogenicity/physiology ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stroud, David A -- Meisinger, Chris -- Pfanner, Nikolaus -- Wiedemann, Nils -- New York, N.Y. -- Science. 2010 May 14;328(5980):831-2. doi: 10.1126/science.1190507.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biochemie und Molekularbiologie, ZBMZ, Trinationales Graduiertenkolleg 1478, Fakultat fur Biologie, and Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466908" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/chemistry/*metabolism ; Carrier Proteins/metabolism ; Cell Membrane/*metabolism ; Chloroplasts/metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Intracellular Membranes/metabolism ; Liposomes ; Mitochondria/metabolism ; Molecular Chaperones/chemistry/metabolism ; Multiprotein Complexes/chemistry/metabolism ; Peptidylprolyl Isomerase/metabolism ; Protein Folding ; Protein Precursors/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tate, Christopher G -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1644-5. doi: 10.1126/science.1193065.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. cgt@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576878" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Cell Membrane/*chemistry/metabolism ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers ; Membrane Transport Proteins/chemistry/metabolism ; Multiprotein Complexes/chemistry/metabolism ; Mutant Proteins/chemistry/metabolism ; Protein Engineering ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-12-15
    Description: Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baxter, Laura -- Tripathy, Sucheta -- Ishaque, Naveed -- Boot, Nico -- Cabral, Adriana -- Kemen, Eric -- Thines, Marco -- Ah-Fong, Audrey -- Anderson, Ryan -- Badejoko, Wole -- Bittner-Eddy, Peter -- Boore, Jeffrey L -- Chibucos, Marcus C -- Coates, Mary -- Dehal, Paramvir -- Delehaunty, Kim -- Dong, Suomeng -- Downton, Polly -- Dumas, Bernard -- Fabro, Georgina -- Fronick, Catrina -- Fuerstenberg, Susan I -- Fulton, Lucinda -- Gaulin, Elodie -- Govers, Francine -- Hughes, Linda -- Humphray, Sean -- Jiang, Rays H Y -- Judelson, Howard -- Kamoun, Sophien -- Kyung, Kim -- Meijer, Harold -- Minx, Patrick -- Morris, Paul -- Nelson, Joanne -- Phuntumart, Vipa -- Qutob, Dinah -- Rehmany, Anne -- Rougon-Cardoso, Alejandra -- Ryden, Peter -- Torto-Alalibo, Trudy -- Studholme, David -- Wang, Yuanchao -- Win, Joe -- Wood, Jo -- Clifton, Sandra W -- Rogers, Jane -- Van den Ackerveken, Guido -- Jones, Jonathan D G -- McDowell, John M -- Beynon, Jim -- Tyler, Brett M -- 079643/Wellcome Trust/United Kingdom -- BB/C509123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E007120/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024815/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024882/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F0161901/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G015244/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- EP/F500025/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- T12144/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1549-51. doi: 10.1126/science.1195203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148394" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Arabidopsis/*parasitology ; Enzymes/genetics ; *Evolution, Molecular ; Gene Dosage ; Genes ; *Genome ; Host-Pathogen Interactions ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Oomycetes/*genetics/*growth & development/pathogenicity/physiology ; Phytophthora/genetics ; Plant Diseases/*parasitology ; Polymorphism, Single Nucleotide ; Proteins/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Spores/physiology ; Synteny ; Virulence Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-04-10
    Description: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xiao-Wei -- Yan, Xiao-Jing -- Zhou, Zi-Ren -- Yang, Fei-Fei -- Wu, Zi-Yu -- Sun, Hong-Bin -- Liang, Wen-Xue -- Song, Ai-Xin -- Lallemand-Breitenbach, Valerie -- Jeanne, Marion -- Zhang, Qun-Ye -- Yang, Huai-Yu -- Huang, Qiu-Hua -- Zhou, Guang-Biao -- Tong, Jian-Hua -- Zhang, Yan -- Wu, Ji-Hui -- Hu, Hong-Yu -- de The, Hugues -- Chen, Sai-Juan -- Chen, Zhu -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):240-3. doi: 10.1126/science.1183424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378816" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism ; Arsenicals/*metabolism/*pharmacology ; Cell Line ; Humans ; Leukemia, Promyelocytic, Acute/drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Oxazines/metabolism ; Oxides/*metabolism/*pharmacology ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-07-31
    Description: Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ting -- Ghosal, Gargi -- Yuan, Jingsong -- Chen, Junjie -- Huang, Jun -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):693-6. doi: 10.1126/science.1192656. Epub 2010 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA/*metabolism ; DNA Damage ; *DNA Repair ; Exodeoxyribonucleases/chemistry/genetics/*metabolism ; Fanconi Anemia Complementation Group D2 Protein/*metabolism ; Fanconi Anemia Complementation Group Proteins/*metabolism ; Gene Knockdown Techniques ; HeLa Cells ; Humans ; Mitomycin/pharmacology ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Protein Binding ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Sebyung -- Douglas, Trevor -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):42-3. doi: 10.1126/science.1184318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry and Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044564" target="_blank"〉PubMed〈/a〉
    Keywords: Acetaldehyde/metabolism ; *Cell Compartmentation ; Crystallization ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry/enzymology/*ultrastructure ; Escherichia coli Proteins/*chemistry/metabolism ; Ethanolamine/*metabolism ; Polyproteins/chemistry/metabolism ; Protein Folding ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-12-15
    Description: The genetics of sex determination remain mysterious in many organisms, including some that are otherwise well studied. Here we report the discovery and analysis of the mating-type locus of the model organism Dictyostelium discoideum. Three forms of a single genetic locus specify this species' three mating types: two versions of the locus are entirely different in sequence, and the third resembles a composite of the other two. Single, unrelated genes are sufficient to determine two of the mating types, whereas homologs of both these genes are required in the composite type. The key genes encode polypeptides that possess no recognizable similarity to established protein families. Sex determination in the social amoebae thus appears to use regulators that are unrelated to any others currently known.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloomfield, Gareth -- Skelton, Jason -- Ivens, Alasdair -- Tanaka, Yoshimasa -- Kay, Robert R -- 06724/Wellcome Trust/United Kingdom -- 076964/Wellcome Trust/United Kingdom -- MC_U105115237/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1533-6. doi: 10.1126/science.1197423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. garethb@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Dictyostelium/*genetics/growth & development/*physiology ; Gene Deletion ; *Genes, Protozoan ; Genetic Loci ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; Peptides/chemistry/genetics/physiology ; Protozoan Proteins/chemistry/*genetics/*physiology ; Reproduction/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-02-06
    Description: Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo-electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Peng -- Tsao, Jun -- Schein, Stan -- Green, Todd J -- Luo, Ming -- Zhou, Z Hong -- AI050066/AI/NIAID NIH HHS/ -- AI069015/AI/NIAID NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- R01 AI050066/AI/NIAID NIH HHS/ -- R01 AI050066-08/AI/NIAID NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 5;327(5966):689-93. doi: 10.1126/science.1181766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133572" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Lipid Bilayers ; Models, Molecular ; Mutagenesis ; Nucleocapsid Proteins/*chemistry/genetics/ultrastructure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry/ultrastructure ; Vesiculovirus/*chemistry/physiology/*ultrastructure ; Viral Matrix Proteins/*chemistry/ultrastructure ; Virion/chemistry/ultrastructure ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-01-16
    Description: Integrins mediate cell adhesion to the extracellular matrix and transmit signals within the cell that stimulate cell spreading, retraction, migration, and proliferation. The mechanism of integrin outside-in signaling has been unclear. We found that the heterotrimeric guanine nucleotide-binding protein (G protein) Galpha13 directly bound to the integrin beta3 cytoplasmic domain and that Galpha13-integrin interaction was promoted by ligand binding to the integrin alphaIIbbeta3 and by guanosine triphosphate (GTP) loading of Galpha13. Interference of Galpha13 expression or a myristoylated fragment of Galpha13 that inhibited interaction of alphaIIbbeta3 with Galpha13 diminished activation of protein kinase c-Src and stimulated the small guanosine triphosphatase RhoA, consequently inhibiting cell spreading and accelerating cell retraction. We conclude that integrins are noncanonical Galpha13-coupled receptors that provide a mechanism for dynamic regulation of RhoA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Haixia -- Shen, Bo -- Flevaris, Panagiotis -- Chow, Christina -- Lam, Stephen C-T -- Voyno-Yasenetskaya, Tatyana A -- Kozasa, Tohru -- Du, Xiaoping -- GM061454/GM/NIGMS NIH HHS/ -- GM074001/GM/NIGMS NIH HHS/ -- HL062350/HL/NHLBI NIH HHS/ -- HL068819/HL/NHLBI NIH HHS/ -- HL080264/HL/NHLBI NIH HHS/ -- R01 GM061454/GM/NIGMS NIH HHS/ -- R01 GM061454-09/GM/NIGMS NIH HHS/ -- R01 GM074001/GM/NIGMS NIH HHS/ -- R01 GM074001-02/GM/NIGMS NIH HHS/ -- R01 HL062350/HL/NHLBI NIH HHS/ -- R01 HL062350-09/HL/NHLBI NIH HHS/ -- R01 HL068819/HL/NHLBI NIH HHS/ -- R01 HL068819-08/HL/NHLBI NIH HHS/ -- R01 HL080264/HL/NHLBI NIH HHS/ -- R01 HL080264-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):340-3. doi: 10.1126/science.1174779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Room E403, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Blood Platelets/*physiology ; Clot Retraction ; Fibrinogen/metabolism ; GTP-Binding Protein alpha Subunits, G12-G13/genetics/*metabolism ; Humans ; Integrin beta3/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Platelet Adhesiveness ; Platelet Glycoprotein GPIIb-IIIa Complex/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins pp60(c-src)/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; rhoA GTP-Binding Protein/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-05-29
    Description: The mechanism by which multispanning helix-bundle membrane proteins are inserted into their target membrane remains unclear. In both prokaryotic and eukaryotic cells, membrane proteins are inserted cotranslationally into the lipid bilayer. Positively charged residues flanking the transmembrane helices are important topological determinants, but it is not known whether they act strictly locally, affecting only the nearest transmembrane helices, or can act globally, affecting the topology of the entire protein. Here we found that the topology of an Escherichia coli inner membrane protein with four or five transmembrane helices could be controlled by a single positively charged residue placed in different locations throughout the protein, including the very C terminus. This observation points to an unanticipated plasticity in membrane protein insertion mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seppala, Susanna -- Slusky, Joanna S -- Lloris-Garcera, Pilar -- Rapp, Mikaela -- von Heijne, Gunnar -- 232648/European Research Council/International -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1698-700. doi: 10.1126/science.1188950. Epub 2010 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508091" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Cell Membrane/*chemistry ; Drug Resistance, Bacterial ; Escherichia coli/*chemistry/drug effects/growth & development/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Ethidium/pharmacology ; Lipid Bilayers ; Membrane Transport Proteins/chemistry/metabolism ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Engineering ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-11-13
    Description: CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the alpha phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Baocheng -- Xiong, Yong -- Steitz, Thomas A -- GM57510/GM/NIGMS NIH HHS/ -- R01 GM057510/GM/NIGMS NIH HHS/ -- R01 GM057510-13/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):937-40. doi: 10.1126/science.1194985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071662" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry/*metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/chemistry/metabolism ; Archaeoglobus fulgidus/*enzymology ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Cytidine Triphosphate/metabolism ; Cytosine/chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; RNA Nucleotidyltransferases/*chemistry/*metabolism ; RNA, Transfer/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-10-12
    Description: Lymphocyte survival during immune responses is controlled by the relative expression of pro- and anti-apoptotic molecules, regulating the magnitude, quality, and duration of the response. We investigated the consequences of deleting genes encoding the anti-apoptotic molecules Mcl1 and Bcl2l1 (Bcl-x(L)) from B cells using an inducible system synchronized with expression of activation-induced cytidine deaminase (Aicda) after immunization. This revealed Mcl1 and not Bcl2l1 to be indispensable for the formation and persistence of germinal centers (GCs). Limiting Mcl1 expression reduced the magnitude of the GC response with an equivalent, but not greater, effect on memory B cell formation and no effect on persistence. Our results identify Mcl1 as the main anti-apoptotic regulator of activated B cell survival and suggest distinct mechanisms controlling survival of GC and memory B cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vikstrom, Ingela -- Carotta, Sebastian -- Luthje, Katja -- Peperzak, Victor -- Jost, Philipp J -- Glaser, Stefan -- Busslinger, Meinrad -- Bouillet, Philippe -- Strasser, Andreas -- Nutt, Stephen L -- Tarlinton, David M -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- R01 CA043540/CA/NCI NIH HHS/ -- R01 CA043540-22/CA/NCI NIH HHS/ -- R01 CA080188-08/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1095-9. doi: 10.1126/science.1191793. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929728" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Affinity ; B-Lymphocytes/*immunology ; Cell Survival ; Gene Deletion ; Germinal Center/cytology/*immunology ; *Immunologic Memory ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Myeloid Cell Leukemia Sequence 1 Protein ; Proto-Oncogene Proteins c-bcl-2/genetics/*immunology ; bcl-X Protein/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-07-31
    Description: During embryonic development, many organs form by extensive branching of epithelia through the formation of clefts and buds. In cleft formation, buds are delineated by the conversion of epithelial cell-cell adhesions to cell-matrix adhesions, but the mechanisms of cleft formation are not clear. We have identified Btbd7 as a dynamic regulator of branching morphogenesis. Btbd7 provides a mechanistic link between the extracellular matrix and cleft propagation through its highly focal expression leading to local regulation of Snail2 (Slug), E-cadherin, and epithelial cell motility. Inhibition experiments show that Btbd7 is required for branching of embryonic mammalian salivary glands and lungs. Hence, Btbd7 is a regulatory gene that promotes epithelial tissue remodeling and formation of branched organs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Onodera, Tomohiro -- Sakai, Takayoshi -- Hsu, Jeff Chi-feng -- Matsumoto, Kazue -- Chiorini, John A -- Yamada, Kenneth M -- ZIA DE000525-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):562-5. doi: 10.1126/science.1191880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cadherins/metabolism ; Cell Adhesion ; Cell Line ; Cell Movement ; Dogs ; Epithelial Cells/*physiology ; Fibronectins/genetics/metabolism ; Genes, Regulator ; Lung/*embryology/metabolism ; Mice ; Mice, Inbred ICR ; Models, Biological ; Molecular Sequence Data ; *Morphogenesis ; Nuclear Proteins ; Organ Culture Techniques ; Proteins/chemistry/*genetics/*physiology ; RNA, Small Interfering ; Salivary Glands/*embryology/metabolism ; Submandibular Gland/embryology ; Transcription Factors/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-01-02
    Description: Mammalian meiotic recombination, which preferentially occurs at specialized sites called hotspots, ensures the orderly segregation of meiotic chromosomes and creates genetic variation among offspring. A locus on mouse chromosome 17, which controls activation of recombination at multiple distant hotspots, has been mapped within a 181-kilobase interval, three of whose genes can be eliminated as candidates. The remaining gene, Prdm9, codes for a zinc finger containing histone H3K4 trimethylase that is expressed in early meiosis and whose deficiency results in sterility in both sexes. Mus musculus exhibits five alleles of Prdm9; human populations exhibit two predominant alleles and multiple minor alleles. The identification of Prdm9 as a protein regulating mammalian recombination hotspots initiates molecular studies of this important biological control system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821451/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821451/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parvanov, Emil D -- Petkov, Petko M -- Paigen, Kenneth -- 076468/PHS HHS/ -- 078452/PHS HHS/ -- 083408/PHS HHS/ -- CA 34196/CA/NCI NIH HHS/ -- GM 078643/GM/NIGMS NIH HHS/ -- P30 CA034196-26/CA/NCI NIH HHS/ -- P50 GM076468/GM/NIGMS NIH HHS/ -- P50 GM076468-030004/GM/NIGMS NIH HHS/ -- R01 GM078452/GM/NIGMS NIH HHS/ -- R01 GM078452-02/GM/NIGMS NIH HHS/ -- R01 GM078643/GM/NIGMS NIH HHS/ -- R01 GM078643-03/GM/NIGMS NIH HHS/ -- R01 GM083408/GM/NIGMS NIH HHS/ -- R01 GM083408-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):835. doi: 10.1126/science.1181495. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044538" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Chromosome Mapping ; Female ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/metabolism ; Humans ; Male ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; *Recombination, Genetic ; Sequence Analysis, DNA ; Testis/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-08-28
    Description: The organized societies of ants include short-lived worker castes displaying specialized behavior and morphology and long-lived queens dedicated to reproduction. We sequenced and compared the genomes of two socially divergent ant species: Camponotus floridanus and Harpegnathos saltator. Both genomes contained high amounts of CpG, despite the presence of DNA methylation, which in non-Hymenoptera correlates with CpG depletion. Comparison of gene expression in different castes identified up-regulation of telomerase and sirtuin deacetylases in longer-lived H. saltator reproductives, caste-specific expression of microRNAs and SMYD histone methyltransferases, and differential regulation of genes implicated in neuronal function and chemical communication. Our findings provide clues on the molecular differences between castes in these two ants and establish a new experimental model to study epigenetics in aging and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772619/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772619/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonasio, Roberto -- Zhang, Guojie -- Ye, Chaoyang -- Mutti, Navdeep S -- Fang, Xiaodong -- Qin, Nan -- Donahue, Greg -- Yang, Pengcheng -- Li, Qiye -- Li, Cai -- Zhang, Pei -- Huang, Zhiyong -- Berger, Shelley L -- Reinberg, Danny -- Wang, Jun -- Liebig, Jurgen -- 2009005/Howard Hughes Medical Institute/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1068-71. doi: 10.1126/science.1192428.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798317" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Amino Acid Sequence ; Animals ; Ants/classification/*genetics/physiology ; Behavior, Animal ; DNA/chemistry/genetics ; Dinucleoside Phosphates/analysis ; *Epigenesis, Genetic ; Gene Expression Profiling ; Gene Expression Regulation ; *Genes, Insect ; *Genome ; Group III Histone Deacetylases/genetics/metabolism ; Hydrocarbons/metabolism ; Insect Proteins/chemistry/*genetics/metabolism ; MicroRNAs/genetics ; Molecular Sequence Data ; Protein Methyltransferases/genetics/metabolism ; Proteome ; Repetitive Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Social Behavior ; Species Specificity ; Telomerase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-08-14
    Description: A hallmark of mitosis is the appearance of high levels of histone phosphorylation, yet the roles of these modifications remain largely unknown. Here, we demonstrate that histone H3 phosphorylated at threonine 3 is directly recognized by an evolutionarily conserved binding pocket in the BIR domain of Survivin, which is a member of the chromosomal passenger complex (CPC). This binding mediates recruitment of the CPC to chromosomes and the resulting activation of its kinase subunit Aurora B. Consistently, modulation of the kinase activity of Haspin, which phosphorylates H3T3, leads to defects in the Aurora B-dependent processes of spindle assembly and inhibition of nuclear reformation. These findings establish a direct cellular role for mitotic histone H3T3 phosphorylation, which is read and translated by the CPC to ensure accurate cell division.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177562/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177562/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly, Alexander E -- Ghenoiu, Cristina -- Xue, John Z -- Zierhut, Christian -- Kimura, Hiroshi -- Funabiki, Hironori -- GM075249/GM/NIGMS NIH HHS/ -- R01 GM075249/GM/NIGMS NIH HHS/ -- R01 GM075249-01/GM/NIGMS NIH HHS/ -- R01 GM075249-02/GM/NIGMS NIH HHS/ -- R01 GM075249-03/GM/NIGMS NIH HHS/ -- R01 GM075249-04/GM/NIGMS NIH HHS/ -- R01 GM075249-05/GM/NIGMS NIH HHS/ -- R01 GM075249-05S1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):235-9. doi: 10.1126/science.1189505. Epub 2010 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA. akelly@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aurora Kinases ; Cell Division ; Centromere/metabolism ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes/*metabolism ; Enzyme Activation ; Histones/*metabolism ; *Mitosis ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Serine-Threonine Kinases/*metabolism ; Spindle Apparatus/metabolism ; Threonine/metabolism ; Xenopus Proteins/chemistry/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-03-27
    Description: Shelterin is an essential telomeric protein complex that prevents DNA damage signaling and DNA repair at mammalian chromosome ends. Here we report on the role of the TRF2-interacting factor Rap1, a conserved shelterin subunit of unknown function. We removed Rap1 from mouse telomeres either through gene deletion or by replacing TRF2 with a mutant that does not bind Rap1. Rap1 was dispensable for the essential functions of TRF2--repression of ATM kinase signaling and nonhomologous end joining (NHEJ)--and mice lacking telomeric Rap1 were viable and fertile. However, Rap1 was critical for the repression of homology-directed repair (HDR), which can alter telomere length. The data reveal that HDR at telomeres can take place in the absence of DNA damage foci and underscore the functional compartmentalization within shelterin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- Kabir, Shaheen -- van Overbeek, Megan -- Celli, Giulia B -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM049046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 AG016642-01/AG/NIA NIH HHS/ -- R01 AG016642-02/AG/NIA NIH HHS/ -- R01 AG016642-03/AG/NIA NIH HHS/ -- R01 AG016642-04/AG/NIA NIH HHS/ -- R01 AG016642-05/AG/NIA NIH HHS/ -- R01 AG016642-06/AG/NIA NIH HHS/ -- R01 AG016642-07/AG/NIA NIH HHS/ -- R01 AG016642-08/AG/NIA NIH HHS/ -- R01 AG016642-09/AG/NIA NIH HHS/ -- R01 AG016642-10/AG/NIA NIH HHS/ -- R01 AG016642-11/AG/NIA NIH HHS/ -- R01 GM049046/GM/NIGMS NIH HHS/ -- R01 GM049046-07/GM/NIGMS NIH HHS/ -- R01 GM049046-08/GM/NIGMS NIH HHS/ -- R01 GM049046-09/GM/NIGMS NIH HHS/ -- R01 GM049046-10/GM/NIGMS NIH HHS/ -- R01 GM049046-11/GM/NIGMS NIH HHS/ -- R01 GM049046-12/GM/NIGMS NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- R37 GM049046-13/GM/NIGMS NIH HHS/ -- R37 GM049046-14/GM/NIGMS NIH HHS/ -- R37 GM049046-15/GM/NIGMS NIH HHS/ -- R37 GM049046-16/GM/NIGMS NIH HHS/ -- R37 GM049046-17/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1657-61. doi: 10.1126/science.1185100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Proliferation ; Cells, Cultured ; Checkpoint Kinase 2 ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Gene Deletion ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Recombination, Genetic ; Signal Transduction ; Sister Chromatid Exchange ; Telomere/*genetics/metabolism ; Telomere-Binding Proteins/chemistry/*genetics/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-02-27
    Description: Legume plants host nitrogen-fixing endosymbiotic Rhizobium bacteria in root nodules. In Medicago truncatula, the bacteria undergo an irreversible (terminal) differentiation mediated by hitherto unidentified plant factors. We demonstrated that these factors are nodule-specific cysteine-rich (NCR) peptides that are targeted to the bacteria and enter the bacterial membrane and cytosol. Obstruction of NCR transport in the dnf1-1 signal peptidase mutant correlated with the absence of terminal bacterial differentiation. On the contrary, ectopic expression of NCRs in legumes devoid of NCRs or challenge of cultured rhizobia with peptides provoked symptoms of terminal differentiation. Because NCRs resemble antimicrobial peptides, our findings reveal a previously unknown innovation of the host plant, which adopts effectors of the innate immune system for symbiosis to manipulate the cell fate of endosymbiotic bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van de Velde, Willem -- Zehirov, Grigor -- Szatmari, Agnes -- Debreczeny, Monika -- Ishihara, Hironobu -- Kevei, Zoltan -- Farkas, Attila -- Mikulass, Kata -- Nagy, Andrea -- Tiricz, Hilda -- Satiat-Jeunemaitre, Beatrice -- Alunni, Benoit -- Bourge, Mickael -- Kucho, Ken-ichi -- Abe, Mikiko -- Kereszt, Attila -- Maroti, Gergely -- Uchiumi, Toshiki -- Kondorosi, Eva -- Mergaert, Peter -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1122-6. doi: 10.1126/science.1184057.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut des Sciences du Vegetal, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/pharmacology ; Cell Division ; Cell Membrane/metabolism ; Cytosol/metabolism ; Genes, Plant ; Lotus/genetics/metabolism/microbiology ; Medicago truncatula/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Nitrogen Fixation ; Peptides/chemistry/genetics/*metabolism/pharmacology ; Plant Proteins/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; Protein Transport ; Root Nodules, Plant/metabolism/microbiology ; Sinorhizobium meliloti/*cytology/drug effects/*physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-10-23
    Description: The M2 protein from the influenza A virus, an acid-activated proton-selective channel, has been the subject of numerous conductance, structural, and computational studies. However, little is known at the atomic level about the heart of the functional mechanism for this tetrameric protein, a His(37)-Trp(41) cluster. We report the structure of the M2 conductance domain (residues 22 to 62) in a lipid bilayer, which displays the defining features of the native protein that have not been attainable from structures solubilized by detergents. We propose that the tetrameric His(37)-Trp(41) cluster guides protons through the channel by forming and breaking hydrogen bonds between adjacent pairs of histidines and through specific interactions of the histidines with the tryptophan gate. This mechanism explains the main observations on M2 proton conductance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384994/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384994/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Mukesh -- Yi, Myunggi -- Dong, Hao -- Qin, Huajun -- Peterson, Emily -- Busath, David D -- Zhou, Huan-Xiang -- Cross, Timothy A -- AI023007/AI/NIAID NIH HHS/ -- R01 AI023007/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):509-12. doi: 10.1126/science.1191750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966252" target="_blank"〉PubMed〈/a〉
    Keywords: Histidine/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/physiology ; Ion Channels/*chemistry ; Ion Transport ; Lipid Bilayers ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Structure, Tertiary ; *Protons ; Tryptophan/chemistry ; Viral Matrix Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-05-01
    Description: Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolodkin-Gal, Ilana -- Romero, Diego -- Cao, Shugeng -- Clardy, Jon -- Kolter, Roberto -- Losick, Richard -- CA24487/CA/NCI NIH HHS/ -- GM086258/GM/NIGMS NIH HHS/ -- GM18546/GM/NIGMS NIH HHS/ -- GM58213/GM/NIGMS NIH HHS/ -- R01 GM018568/GM/NIGMS NIH HHS/ -- R01 GM018568-39/GM/NIGMS NIH HHS/ -- R01 GM058213/GM/NIGMS NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):627-9. doi: 10.1126/science.1188628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism/pharmacology ; Bacillus subtilis/*physiology ; Bacterial Proteins/chemistry/metabolism ; *Biofilms/growth & development ; Cell Wall ; Culture Media, Conditioned ; Genes, Bacterial ; Leucine/metabolism/pharmacology ; Methionine/metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Pseudomonas aeruginosa/physiology ; Staphylococcus aureus/physiology ; Stereoisomerism ; Tryptophan/metabolism/pharmacology ; Tyrosine/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-06-26
    Description: The heme-copper oxidases (HCOs) accomplish the key event of aerobic respiration; they couple O2 reduction and transmembrane proton pumping. To gain new insights into the still enigmatic process, we structurally characterized a C-family HCO--essential for the pathogenicity of many bacteria--that differs from the two other HCO families, A and B, that have been structurally analyzed. The x-ray structure of the C-family cbb3 oxidase from Pseudomonas stutzeri at 3.2 angstrom resolution shows an electron supply system different from families A and B. Like family-B HCOs, C HCOs have only one pathway, which conducts protons via an alternative tyrosine-histidine cross-link. Structural differences around hemes b and b3 suggest a different redox-driven proton-pumping mechanism and provide clues to explain the higher activity of family-C HCOs at low oxygen concentrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buschmann, Sabine -- Warkentin, Eberhard -- Xie, Hao -- Langer, Julian D -- Ermler, Ulrich -- Michel, Hartmut -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):327-30. doi: 10.1126/science.1187303. Epub 2010 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576851" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Electron Transport ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/chemistry ; Histidine/chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxygen/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proton Pumps/*chemistry/*metabolism ; *Protons ; Pseudomonas stutzeri/*enzymology ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-07-22
    Description: A substantial proportion of eukaryotic transcripts are considered to be noncoding RNAs because they contain only short open reading frames (sORFs). Recent findings suggest, however, that some sORFs encode small bioactive peptides. Here, we show that peptides of 11 to 32 amino acids encoded by the polished rice (pri) sORF gene control epidermal differentiation in Drosophila by modifying the transcription factor Shavenbaby (Svb). Pri peptides trigger the amino-terminal truncation of the Svb protein, which converts Svb from a repressor to an activator. Our results demonstrate that during Drosophila embryogenesis, Pri sORF peptides provide a strict temporal control to the transcriptional program of epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, T -- Plaza, S -- Zanet, J -- Benrabah, E -- Valenti, P -- Hashimoto, Y -- Kobayashi, S -- Payre, F -- Kageyama, Y -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):336-9. doi: 10.1126/science.1188158.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, 5-1 Myodaiji-Higashiyama, Okazaki 444-8787, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647469" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Embryo, Nonmammalian/cytology/*metabolism ; Embryonic Development ; Epidermis/cytology/metabolism ; *Gene Expression Regulation, Developmental ; Genes, Insect ; Mutation ; Open Reading Frames ; Peptides/genetics/*metabolism ; Protein Isoforms/chemistry/genetics/metabolism ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; RNA, Untranslated/genetics ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-02-27
    Description: CKAMP44, identified here by a proteomic approach, is a brain-specific type I transmembrane protein that associates with AMPA receptors in synaptic spines. CKAMP44 expressed in Xenopus oocytes reduced GluA1- and A2-mediated steady-state currents, but did not affect kainate- or N-methyl-D-aspartate (NMDA) receptor-mediated currents. Mouse hippocampal CA1 pyramidal neurons expressed CKAMP44 at low abundance, and overexpression of CKAMP44 led to stronger and faster AMPA receptor desensitization, slower recovery from desensitization, and a reduction in the paired-pulse ratio of AMPA currents. By contrast, dentate gyrus granule cells exhibited strong CKAMP44 expression, and CKAMP44 knockout increased the paired-pulse ratio of AMPA currents in lateral and medial perforant path-granule cell synapses. CKAMP44 thus modulates short-term plasticity at specific excitatory synapses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Engelhardt, Jakob -- Mack, Volker -- Sprengel, Rolf -- Kavenstock, Netta -- Li, Ka Wan -- Stern-Bach, Yael -- Smit, August B -- Seeburg, Peter H -- Monyer, Hannah -- New York, N.Y. -- Science. 2010 Mar 19;327(5972):1518-22. doi: 10.1126/science.1184178. Epub 2010 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Neurobiology, University of Heidelberg, 6910 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185686" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA1 Region, Hippocampal/metabolism ; Calcium Channels/metabolism ; Dendritic Spines/metabolism ; Dentate Gyrus/cytology/*metabolism ; Excitatory Postsynaptic Potentials ; Glutamic Acid/metabolism ; Guanylate Kinase ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins/metabolism ; Mice ; Mice, Knockout ; Miniature Postsynaptic Potentials ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Neural Inhibition ; *Neuronal Plasticity ; Neurons/*metabolism ; Oocytes/metabolism ; Patch-Clamp Techniques ; Perforant Pathway ; Protein Interaction Domains and Motifs ; Protein Isoforms/genetics/metabolism ; Proteomics ; Pyramidal Cells/metabolism ; Receptors, AMPA/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Synapses/*physiology ; *Synaptic Transmission ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-11-06
    Description: Protein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl-transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resolution. EF-Tu is in its active conformation, the switch I loop is ordered, and the catalytic histidine is coordinating the nucleophilic water in position for inline attack on the gamma-phosphate of GTP. This activated conformation is due to a critical and conserved interaction of the histidine with A2662 of the sarcin-ricin loop of the 23S ribosomal RNA. The structure suggests a universal mechanism for GTPase activation and hydrolysis in translational GTPases on the ribosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763471/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763471/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voorhees, Rebecca M -- Schmeing, T Martin -- Kelley, Ann C -- Ramakrishnan, V -- 082086/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):835-8. doi: 10.1126/science.1194460.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051640" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Guanosine Triphosphate/analogs & derivatives/*metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Nucleic Acid Conformation ; Paromomycin/metabolism ; Peptide Elongation Factor Tu/*chemistry/*metabolism ; Phosphates/metabolism ; Protein Structure, Tertiary ; RNA, Bacterial/chemistry/*metabolism ; RNA, Ribosomal, 23S/chemistry/metabolism ; RNA, Transfer, Amino Acyl/chemistry/*metabolism ; Ribosomes/*metabolism ; Thermus thermophilus/chemistry/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-05-08
    Description: Clathrin-mediated endocytosis, the major pathway for ligand internalization into eukaryotic cells, is thought to be initiated by the clustering of clathrin and adaptors around receptors destined for internalization. However, here we report that the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2) were required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. Changes in FCHo1/2 expression levels correlated directly with numbers of CCV budding events, ligand endocytosis, and synaptic vesicle marker recycling. FCHo1/2 proteins bound specifically to the plasma membrane and recruited the scaffold proteins eps15 and intersectin, which in turn engaged the adaptor complex AP2. The FCHo F-BAR membrane-bending activity was required, leading to the proposal that FCHo1/2 sculpt the initial bud site and recruit the clathrin machinery for CCV formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henne, William Mike -- Boucrot, Emmanuel -- Meinecke, Michael -- Evergren, Emma -- Vallis, Yvonne -- Mittal, Rohit -- McMahon, Harvey T -- MC_U105178795/Medical Research Council/United Kingdom -- U.1051.02.007(78795)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1281-4. doi: 10.1126/science.1188462. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448150" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex 2/metabolism ; Adaptor Proteins, Signal Transducing ; Adaptor Proteins, Vesicular Transport/metabolism ; Animals ; Calcium-Binding Proteins/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Clathrin/*metabolism ; Clathrin-Coated Vesicles/*metabolism ; *Endocytosis ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins ; Mice ; Models, Molecular ; Neurons/cytology/metabolism ; Phosphoproteins/metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/metabolism ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-01-16
    Description: We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849982/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849982/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werren, John H -- Richards, Stephen -- Desjardins, Christopher A -- Niehuis, Oliver -- Gadau, Jurgen -- Colbourne, John K -- Nasonia Genome Working Group -- Beukeboom, Leo W -- Desplan, Claude -- Elsik, Christine G -- Grimmelikhuijzen, Cornelis J P -- Kitts, Paul -- Lynch, Jeremy A -- Murphy, Terence -- Oliveira, Deodoro C S G -- Smith, Christopher D -- van de Zande, Louis -- Worley, Kim C -- Zdobnov, Evgeny M -- Aerts, Maarten -- Albert, Stefan -- Anaya, Victor H -- Anzola, Juan M -- Barchuk, Angel R -- Behura, Susanta K -- Bera, Agata N -- Berenbaum, May R -- Bertossa, Rinaldo C -- Bitondi, Marcia M G -- Bordenstein, Seth R -- Bork, Peer -- Bornberg-Bauer, Erich -- Brunain, Marleen -- Cazzamali, Giuseppe -- Chaboub, Lesley -- Chacko, Joseph -- Chavez, Dean -- Childers, Christopher P -- Choi, Jeong-Hyeon -- Clark, Michael E -- Claudianos, Charles -- Clinton, Rochelle A -- Cree, Andrew G -- Cristino, Alexandre S -- Dang, Phat M -- Darby, Alistair C -- de Graaf, Dirk C -- Devreese, Bart -- Dinh, Huyen H -- Edwards, Rachel -- Elango, Navin -- Elhaik, Eran -- Ermolaeva, Olga -- Evans, Jay D -- Foret, Sylvain -- Fowler, Gerald R -- Gerlach, Daniel -- Gibson, Joshua D -- Gilbert, Donald G -- Graur, Dan -- Grunder, Stefan -- Hagen, Darren E -- Han, Yi -- Hauser, Frank -- Hultmark, Da -- Hunter, Henry C 4th -- Hurst, Gregory D D -- Jhangian, Shalini N -- Jiang, Huaiyang -- Johnson, Reed M -- Jones, Andrew K -- Junier, Thomas -- Kadowaki, Tatsuhiko -- Kamping, Albert -- Kapustin, Yuri -- Kechavarzi, Bobak -- Kim, Jaebum -- Kim, Jay -- Kiryutin, Boris -- Koevoets, Tosca -- Kovar, Christie L -- Kriventseva, Evgenia V -- Kucharski, Robert -- Lee, Heewook -- Lee, Sandra L -- Lees, Kristin -- Lewis, Lora R -- Loehlin, David W -- Logsdon, John M Jr -- Lopez, Jacqueline A -- Lozado, Ryan J -- Maglott, Donna -- Maleszka, Ryszard -- Mayampurath, Anoop -- Mazur, Danielle J -- McClure, Marcella A -- Moore, Andrew D -- Morgan, Margaret B -- Muller, Jean -- Munoz-Torres, Monica C -- Muzny, Donna M -- Nazareth, Lynne V -- Neupert, Susanne -- Nguyen, Ngoc B -- Nunes, Francis M F -- Oakeshott, John G -- Okwuonu, Geoffrey O -- Pannebakker, Bart A -- Pejaver, Vikas R -- Peng, Zuogang -- Pratt, Stephen C -- Predel, Reinhard -- Pu, Ling-Ling -- Ranson, Hilary -- Raychoudhury, Rhitoban -- Rechtsteiner, Andreas -- Reese, Justin T -- Reid, Jeffrey G -- Riddle, Megan -- Robertson, Hugh M -- Romero-Severson, Jeanne -- Rosenberg, Miriam -- Sackton, Timothy B -- Sattelle, David B -- Schluns, Helge -- Schmitt, Thomas -- Schneider, Martina -- Schuler, Andreas -- Schurko, Andrew M -- Shuker, David M -- Simoes, Zila L P -- Sinha, Saurabh -- Smith, Zachary -- Solovyev, Victor -- Souvorov, Alexandre -- Springauf, Andreas -- Stafflinger, Elisabeth -- Stage, Deborah E -- Stanke, Mario -- Tanaka, Yoshiaki -- Telschow, Arndt -- Trent, Carol -- Vattathil, Selina -- Verhulst, Eveline C -- Viljakainen, Lumi -- Wanner, Kevin W -- Waterhouse, Robert M -- Whitfield, James B -- Wilkes, Timothy E -- Williamson, Michael -- Willis, Judith H -- Wolschin, Florian -- Wyder, Stefan -- Yamada, Takuji -- Yi, Soojin V -- Zecher, Courtney N -- Zhang, Lan -- Gibbs, Richard A -- 5R01GM070026-04/GM/NIGMS NIH HHS/ -- 5R01HG000747-14/HG/NHGRI NIH HHS/ -- 5R24GM084917-02/GM/NIGMS NIH HHS/ -- AI028309-13A2/AI/NIAID NIH HHS/ -- R01 AI055624/AI/NIAID NIH HHS/ -- R01 GM064864/GM/NIGMS NIH HHS/ -- R01 GM064864-04/GM/NIGMS NIH HHS/ -- R01 GM064864-05A2/GM/NIGMS NIH HHS/ -- R01 GM070026/GM/NIGMS NIH HHS/ -- R01 GM070026-04S1/GM/NIGMS NIH HHS/ -- R01 GM079484/GM/NIGMS NIH HHS/ -- R01 GM085163/GM/NIGMS NIH HHS/ -- R01 GM085163-01/GM/NIGMS NIH HHS/ -- R01 GM085233/GM/NIGMS NIH HHS/ -- R01 HG000747/HG/NHGRI NIH HHS/ -- R01 HG000747-14/HG/NHGRI NIH HHS/ -- R01GM064864/GM/NIGMS NIH HHS/ -- R24 GM084917/GM/NIGMS NIH HHS/ -- R24 GM084917-01/GM/NIGMS NIH HHS/ -- R24 GM084917-02/GM/NIGMS NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- U54 HG003273-03/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):343-8. doi: 10.1126/science.1178028.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/parasitology ; *Biological Evolution ; DNA Methylation ; DNA Transposable Elements ; Female ; Gene Transfer, Horizontal ; Genes, Insect ; Genetic Speciation ; Genetic Variation ; *Genome, Insect ; Host-Parasite Interactions ; Insect Proteins/genetics/metabolism ; Insect Viruses/genetics ; Insects/genetics ; Male ; Molecular Sequence Data ; Quantitative Trait Loci ; Recombination, Genetic ; Sequence Analysis, DNA ; Wasp Venoms/chemistry/toxicity ; Wasps/*genetics/physiology ; Wolbachia/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-08-21
    Description: Multicellular organisms activate immunity upon recognition of pathogen-associated molecular patterns (PAMPs). Chitin is the major component of fungal cell walls, and chitin oligosaccharides act as PAMPs in plant and mammalian cells. Microbial pathogens deliver effector proteins to suppress PAMP-triggered host immunity and to establish infection. Here, we show that the LysM domain-containing effector protein Ecp6 of the fungal plant pathogen Cladosporium fulvum mediates virulence through perturbation of chitin-triggered host immunity. During infection, Ecp6 sequesters chitin oligosaccharides that are released from the cell walls of invading hyphae to prevent elicitation of host immunity. This may represent a common strategy of host immune suppression by fungal pathogens, because LysM effectors are widely conserved in the fungal kingdom.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Jonge, Ronnie -- van Esse, H Peter -- Kombrink, Anja -- Shinya, Tomonori -- Desaki, Yoshitake -- Bours, Ralph -- van der Krol, Sander -- Shibuya, Naoto -- Joosten, Matthieu H A J -- Thomma, Bart P H J -- New York, N.Y. -- Science. 2010 Aug 20;329(5994):953-5. doi: 10.1126/science.1190859.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724636" target="_blank"〉PubMed〈/a〉
    Keywords: Chitin/metabolism ; Chitinase/metabolism ; Cladosporium/immunology/*pathogenicity ; Fungal Proteins/chemistry/immunology/*physiology ; Lycopersicon esculentum/*immunology/microbiology ; Plant Diseases/immunology/microbiology ; Protein Binding ; Protein Structure, Tertiary ; Trichoderma/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-10-30
    Description: Prions are an unusual form of epigenetics: Their stable inheritance and complex phenotypes come about through protein folding rather than nucleic acid-associated changes. With intimate ties to protein homeostasis and a remarkable sensitivity to stress, prions are a robust mechanism that links environmental extremes with the acquisition and inheritance of new traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halfmann, Randal -- Lindquist, Susan -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):629-32. doi: 10.1126/science.1191081.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030648" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Biological Evolution ; *Epigenesis, Genetic ; Genetic Variation ; Homeostasis ; Peptide Termination Factors/chemistry/metabolism/physiology ; Phenotype ; Prions/*chemistry/metabolism/*physiology ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/physiology ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-02-13
    Description: Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerization on c-di-GMP binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828054/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828054/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krasteva, Petya V -- Fong, Jiunn C N -- Shikuma, Nicholas J -- Beyhan, Sinem -- Navarro, Marcos V A S -- Yildiz, Fitnat H -- Sondermann, Holger -- 1R01GM081373/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI055987/AI/NIAID NIH HHS/ -- R01 AI055987-06A1/AI/NIAID NIH HHS/ -- R01 GM081373/GM/NIGMS NIH HHS/ -- R01 GM081373-03/GM/NIGMS NIH HHS/ -- R01AI055987/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):866-8. doi: 10.1126/science.1181185.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20150502" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Biofilms/*growth & development ; Crystallography, X-Ray ; Cyclic GMP/*analogs & derivatives/metabolism ; DNA, Bacterial/metabolism ; Dimerization ; Extracellular Matrix/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Models, Molecular ; Movement ; Point Mutation ; Polysaccharides, Bacterial/genetics/metabolism ; Protein Folding ; Protein Multimerization ; Protein Structure, Tertiary ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic ; Vibrio cholerae O1/cytology/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-11-06
    Description: Self-incompatibility in flowering plants prevents inbreeding and promotes outcrossing to generate genetic diversity. In Solanaceae, a multiallelic gene, S-locus F-box (SLF), was previously shown to encode the pollen determinant in self-incompatibility. It was postulated that an SLF allelic product specifically detoxifies its non-self S-ribonucleases (S-RNases), allelic products of the pistil determinant, inside pollen tubes via the ubiquitin-26S-proteasome system, thereby allowing compatible pollinations. However, it remained puzzling how SLF, with much lower allelic sequence diversity than S-RNase, might have the capacity to recognize a large repertoire of non-self S-RNases. We used in vivo functional assays and protein interaction assays to show that in Petunia, at least three types of divergent SLF proteins function as the pollen determinant, each recognizing a subset of non-self S-RNases. Our findings reveal a collaborative non-self recognition system in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubo, Ken-ichi -- Entani, Tetsuyuki -- Takara, Akie -- Wang, Ning -- Fields, Allison M -- Hua, Zhihua -- Toyoda, Mamiko -- Kawashima, Shin-ichi -- Ando, Toshio -- Isogai, Akira -- Kao, Teh-hui -- Takayama, Seiji -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):796-9. doi: 10.1126/science.1195243.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051632" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Crosses, Genetic ; F-Box Proteins/chemistry/genetics/*physiology ; Flowers/genetics/physiology ; Gene Expression Profiling ; Genes, Plant ; Genetic Variation ; Haplotypes ; Models, Genetic ; Molecular Sequence Data ; Petunia/*genetics/*physiology ; Plant Proteins/chemistry/genetics/*physiology ; Plants, Genetically Modified ; Pollen/*genetics/*physiology ; Pollen Tube/physiology ; Pollination ; Protein Interaction Mapping ; Ribonucleases/genetics/*metabolism ; Self-Fertilization ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-01-23
    Description: Current methods for differentiating isolates of predominant lineages of pathogenic bacteria often do not provide sufficient resolution to define precise relationships. Here, we describe a high-throughput genomics approach that provides a high-resolution view of the epidemiology and microevolution of a dominant strain of methicillin-resistant Staphylococcus aureus (MRSA). This approach reveals the global geographic structure within the lineage, its intercontinental transmission through four decades, and the potential to trace person-to-person transmission within a hospital environment. The ability to interrogate and resolve bacterial populations is applicable to a range of infectious diseases, as well as microbial ecology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harris, Simon R -- Feil, Edward J -- Holden, Matthew T G -- Quail, Michael A -- Nickerson, Emma K -- Chantratita, Narisara -- Gardete, Susana -- Tavares, Ana -- Day, Nick -- Lindsay, Jodi A -- Edgeworth, Jonathan D -- de Lencastre, Herminia -- Parkhill, Julian -- Peacock, Sharon J -- Bentley, Stephen D -- 076964/Wellcome Trust/United Kingdom -- Department of Health/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Jan 22;327(5964):469-74. doi: 10.1126/science.1182395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15A, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20093474" target="_blank"〉PubMed〈/a〉
    Keywords: Asia/epidemiology ; Bacterial Typing Techniques ; Cross Infection/epidemiology/*microbiology/transmission ; Europe/epidemiology ; Evolution, Molecular ; *Genome, Bacterial ; Genomics/methods ; Humans ; Likelihood Functions ; Methicillin-Resistant Staphylococcus aureus/*classification/*genetics/isolation & ; purification ; Molecular Epidemiology ; Molecular Sequence Data ; Phylogeny ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA ; South America/epidemiology ; Staphylococcal Infections/epidemiology/*microbiology/transmission ; Time Factors ; United States/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, Stephen C -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1026-7. doi: 10.1126/science.1194922.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Jack and Eileen Connors Laboratory of Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA. harrison@crystal.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798308" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/*chemistry/*ultrastructure ; Capsid Proteins/*chemistry/ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Protein Structure, Tertiary ; Virion/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-11-26
    Description: Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760481/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760481/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denoeud, France -- Henriet, Simon -- Mungpakdee, Sutada -- Aury, Jean-Marc -- Da Silva, Corinne -- Brinkmann, Henner -- Mikhaleva, Jana -- Olsen, Lisbeth Charlotte -- Jubin, Claire -- Canestro, Cristian -- Bouquet, Jean-Marie -- Danks, Gemma -- Poulain, Julie -- Campsteijn, Coen -- Adamski, Marcin -- Cross, Ismael -- Yadetie, Fekadu -- Muffato, Matthieu -- Louis, Alexandra -- Butcher, Stephen -- Tsagkogeorga, Georgia -- Konrad, Anke -- Singh, Sarabdeep -- Jensen, Marit Flo -- Huynh Cong, Evelyne -- Eikeseth-Otteraa, Helen -- Noel, Benjamin -- Anthouard, Veronique -- Porcel, Betina M -- Kachouri-Lafond, Rym -- Nishino, Atsuo -- Ugolini, Matteo -- Chourrout, Pascal -- Nishida, Hiroki -- Aasland, Rein -- Huzurbazar, Snehalata -- Westhof, Eric -- Delsuc, Frederic -- Lehrach, Hans -- Reinhardt, Richard -- Weissenbach, Jean -- Roy, Scott W -- Artiguenave, Francois -- Postlethwait, John H -- Manak, J Robert -- Thompson, Eric M -- Jaillon, Olivier -- Du Pasquier, Louis -- Boudinot, Pierre -- Liberles, David A -- Volff, Jean-Nicolas -- Philippe, Herve -- Lenhard, Boris -- Roest Crollius, Hugues -- Wincker, Patrick -- Chourrout, Daniel -- Z01 LM000073-12/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1381-5. doi: 10.1126/science.1194167. Epub 2010 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commissariat a l'Energie Atomique, Institut de Genomique, Genoscope, Evry, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21097902" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; DNA Transposable Elements ; DNA, Intergenic ; Exons ; Gene Order ; Genes, Duplicate ; Genes, Homeobox ; *Genome ; Introns ; Invertebrates/classification/genetics ; Molecular Sequence Data ; Recombination, Genetic ; Spliceosomes/metabolism ; Synteny ; Urochordata/anatomy & histology/classification/*genetics/immunology ; Vertebrates/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-09-11
    Description: Many bacteria and archaea contain clustered regularly interspaced short palindromic repeats (CRISPRs) that confer resistance to invasive genetic elements. Central to this immune system is the production of CRISPR-derived RNAs (crRNAs) after transcription of the CRISPR locus. Here, we identify the endoribonuclease (Csy4) responsible for CRISPR transcript (pre-crRNA) processing in Pseudomonas aeruginosa. A 1.8 angstrom crystal structure of Csy4 bound to its cognate RNA reveals that Csy4 makes sequence-specific interactions in the major groove of the crRNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these enable Csy4 to bind selectively and cleave pre-crRNAs using phylogenetically conserved serine and histidine residues in the active site. The RNA recognition mechanism identified here explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133607/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133607/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haurwitz, Rachel E -- Jinek, Martin -- Wiedenheft, Blake -- Zhou, Kaihong -- Doudna, Jennifer A -- 5 T32 GM08295/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1355-8. doi: 10.1126/science.1192272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Bacterial Proteins/*chemistry/*metabolism ; Base Pairing ; Base Sequence ; CRISPR-Associated Proteins ; Crystallization ; Crystallography, X-Ray ; Endoribonucleases/*chemistry/*metabolism ; Genes, Bacterial ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; Pseudomonas aeruginosa/*enzymology/*genetics ; *RNA Processing, Post-Transcriptional ; RNA, Bacterial/chemistry/genetics/*metabolism ; *Repetitive Sequences, Nucleic Acid ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-08-26
    Description: The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown owing to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous gamma-Proteobacteria that are closely related to known petroleum degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrated faster-than-expected hydrocarbon biodegradation rates at 5 degrees C. Based on these results, the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hazen, Terry C -- Dubinsky, Eric A -- DeSantis, Todd Z -- Andersen, Gary L -- Piceno, Yvette M -- Singh, Navjeet -- Jansson, Janet K -- Probst, Alexander -- Borglin, Sharon E -- Fortney, Julian L -- Stringfellow, William T -- Bill, Markus -- Conrad, Mark E -- Tom, Lauren M -- Chavarria, Krystle L -- Alusi, Thana R -- Lamendella, Regina -- Joyner, Dominique C -- Spier, Chelsea -- Baelum, Jacob -- Auer, Manfred -- Zemla, Marcin L -- Chakraborty, Romy -- Sonnenthal, Eric L -- D'haeseleer, Patrik -- Holman, Hoi-Ying N -- Osman, Shariff -- Lu, Zhenmei -- Van Nostrand, Joy D -- Deng, Ye -- Zhou, Jizhong -- Mason, Olivia U -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):204-8. doi: 10.1126/science.1195979. Epub 2010 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MS 70A-3317, One Cyclotron Road, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. tchazen@lbl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20736401" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodegradation, Environmental ; Biomass ; Colony Count, Microbial ; *Environmental Pollution ; Fatty Acids/analysis ; Gammaproteobacteria/classification/growth & development/isolation & ; purification/*metabolism ; Genes, Bacterial ; Genes, rRNA ; Hydrocarbons/*metabolism ; Molecular Sequence Data ; Oceanospirillaceae/classification/genetics/isolation & purification/*metabolism ; Petroleum/*metabolism ; Phospholipids/analysis ; Phylogeny ; Seawater/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-07-03
    Description: Proton-pumping respiratory complex I is one of the largest and most complicated membrane protein complexes. Its function is critical for efficient energy supply in aerobic cells, and malfunctions are implicated in many neurodegenerative disorders. Here, we report an x-ray crystallographic analysis of mitochondrial complex I. The positions of all iron-sulfur clusters relative to the membrane arm were determined in the complete enzyme complex. The ubiquinone reduction site resides close to 30 angstroms above the membrane domain. The arrangement of functional modules suggests conformational coupling of redox chemistry with proton pumping and essentially excludes direct mechanisms. We suggest that a approximately 60-angstrom-long helical transmission element is critical for transducing conformational energy to proton-pumping elements in the distal module of the membrane arm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hunte, Carola -- Zickermann, Volker -- Brandt, Ulrich -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):448-51. doi: 10.1126/science.1191046. Epub 2010 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry and Molecular Biology, Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Fungal Proteins/chemistry/metabolism ; Iron/chemistry ; Mitochondria/enzymology ; Mitochondrial Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protons ; Sulfur/chemistry ; Ubiquinone/chemistry/metabolism ; Yarrowia/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-08-28
    Description: Rational development of adenovirus vectors for therapeutic gene transfer is hampered by the lack of accurate structural information. Here, we report the x-ray structure at 3.5 angstrom resolution of the 150-megadalton adenovirus capsid containing nearly 1 million amino acids. We describe interactions between the major capsid protein (hexon) and several accessory molecules that stabilize the capsid. The virus structure also reveals an altered association between the penton base and the trimeric fiber protein, perhaps reflecting an early event in cell entry. The high-resolution structure provides a substantial advance toward understanding the assembly and cell entry mechanisms of a large double-stranded DNA virus and provides new opportunities for improving adenovirus-mediated gene transfer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, Vijay S -- Natchiar, S Kundhavai -- Stewart, Phoebe L -- Nemerow, Glen R -- AI042929/AI/NIAID NIH HHS/ -- EY011431/EY/NEI NIH HHS/ -- HL054352/HL/NHLBI NIH HHS/ -- R01 AI070771/AI/NIAID NIH HHS/ -- R01 AI070771-03/AI/NIAID NIH HHS/ -- R01 EY011431/EY/NEI NIH HHS/ -- R01 EY011431-13/EY/NEI NIH HHS/ -- R01 HL054352/HL/NHLBI NIH HHS/ -- R01 HL054352-17/HL/NHLBI NIH HHS/ -- R29 AI042929/AI/NIAID NIH HHS/ -- R29 AI042929-06/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1071-5. doi: 10.1126/science.1187292.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. reddyv@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798318" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/*chemistry/physiology/*ultrastructure ; Capsid/*chemistry/*ultrastructure ; Capsid Proteins/*chemistry/ultrastructure ; Crystallography, X-Ray ; Genetic Vectors ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-04-03
    Description: Semiconservative DNA replication ensures the faithful duplication of genetic information during cell divisions. However, how epigenetic information carried by histone modifications propagates through mitotic divisions remains elusive. To address this question, the DNA replication-dependent nucleosome partition pattern must be clarified. Here, we report significant amounts of H3.3-H4 tetramers split in vivo, whereas most H3.1-H4 tetramers remained intact. Inhibiting DNA replication-dependent deposition greatly reduced the level of splitting events, which suggests that (i) the replication-independent H3.3 deposition pathway proceeds largely by cooperatively incorporating two new H3.3-H4 dimers and (ii) the majority of splitting events occurred during replication-dependent deposition. Our results support the idea that "silent" histone modifications within large heterochromatic regions are maintained by copying modifications from neighboring preexisting histones without the need for H3-H4 splitting events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Mo -- Long, Chengzu -- Chen, Xiuzhen -- Huang, Chang -- Chen, She -- Zhu, Bing -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):94-8. doi: 10.1126/science.1178994.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360108" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aphidicolin/pharmacology ; Cell Cycle ; Chromatin/metabolism ; *Chromatin Assembly and Disassembly ; *DNA Replication ; Epigenesis, Genetic ; HeLa Cells ; Heterochromatin/metabolism ; Histones/*chemistry/*metabolism ; Humans ; Hydroxyurea/pharmacology ; Mass Spectrometry ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Multimerization ; S Phase ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-03-27
    Description: The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897825/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897825/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Rui -- Ekiert, Damian C -- Krause, Jens C -- Hai, Rong -- Crowe, James E Jr -- Wilson, Ian A -- AI057157/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-050002/AI/NIAID NIH HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- T32 GM080209-01A2/GM/NIGMS NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057157-06/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 16;328(5976):357-60. doi: 10.1126/science.1186430. Epub 2010 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339031" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/immunology ; Antibodies, Viral/chemistry/immunology ; Antigenic Variation ; Cross Reactions ; Crystallography, X-Ray ; Disease Outbreaks ; Epitopes ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*immunology ; Hemagglutinins, Viral/*chemistry/*immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Influenza A Virus, H1N1 Subtype/*immunology ; Influenza Vaccines/immunology ; Influenza, Human/epidemiology/*immunology/virology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-02-06
    Description: The cell surface receptor CED-1 mediates apoptotic cell recognition by phagocytic cells, enabling cell corpse clearance in Caenorhabditis elegans. Here, we found that the C. elegans intracellular protein sorting complex, retromer, was required for cell corpse clearance by mediating the recycling of CED-1. Retromer was recruited to the surfaces of phagosomes containing cell corpses, and its loss of function caused defective cell corpse removal. The retromer probably acted through direct interaction with CED-1 in the cell corpse recognition pathway. In the absence of retromer function, CED-1 associated with lysosomes and failed to recycle from phagosomes and cytosol to the plasma membrane. Thus, retromer is an essential mediator of apoptotic cell clearance by regulating phagocytic receptor(s) during cell corpse engulfment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Didi -- Xiao, Hui -- Zhang, Kai -- Wang, Bin -- Gao, Zhiyang -- Jian, Youli -- Qi, Xiaying -- Sun, Jianwei -- Miao, Long -- Yang, Chonglin -- New York, N.Y. -- Science. 2010 Mar 5;327(5970):1261-4. doi: 10.1126/science.1184840. Epub 2010 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133524" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Caenorhabditis elegans/cytology/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Membrane/metabolism ; Lysosomes/metabolism ; Membrane Proteins/*metabolism ; Microscopy, Electron, Transmission ; Molecular Sequence Data ; *Phagocytosis ; Phagosomes/*metabolism ; *Protein Transport ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Sorting Nexins ; Vesicular Transport Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-08-21
    Description: Chlorophylls are essential for light-harvesting and energy transduction in photosynthesis. Four chemically distinct varieties have been known for the past 60 years. Here we report isolation of a fifth, which we designate chlorophyll f. Its in vitro absorption (706 nanometers) and fluorescence (722 nanometers) maxima are red-shifted compared to all other chlorophylls from oxygenic phototrophs. On the basis of the optical, mass, and nuclear magnetic resonance spectra, we propose that chlorophyll f is [2-formyl]-chlorophyll a (C55H70O6N4Mg). This finding suggests that oxygenic photosynthesis can be extended further into the infrared region and may open associated bioenergy applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Min -- Schliep, Martin -- Willows, Robert D -- Cai, Zheng-Li -- Neilan, Brett A -- Scheer, Hugo -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1318-9. doi: 10.1126/science.1191127. Epub 2010 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Sydney, NSW 2006, Australia. min.chen@sydney.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724585" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriochlorophylls/*chemistry/*isolation & purification ; Cyanobacteria/*chemistry/classification/genetics/isolation & purification ; Genes, Bacterial ; Genes, rRNA ; Mass Spectrometry ; Molecular Sequence Data ; Molecular Structure ; Nuclear Magnetic Resonance, Biomolecular ; Photosynthesis ; Pigments, Biological/*chemistry/*isolation & purification ; RNA, Ribosomal, 16S/genetics ; Spectrometry, Fluorescence ; Western Australia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-12-15
    Description: Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raffaele, Sylvain -- Farrer, Rhys A -- Cano, Liliana M -- Studholme, David J -- MacLean, Daniel -- Thines, Marco -- Jiang, Rays H Y -- Zody, Michael C -- Kunjeti, Sridhara G -- Donofrio, Nicole M -- Meyers, Blake C -- Nusbaum, Chad -- Kamoun, Sophien -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1540-3. doi: 10.1126/science.1193070.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148391" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics ; Amino Acid Sequence ; Computational Biology ; DNA Copy Number Variations ; Epistasis, Genetic ; *Evolution, Molecular ; Genes ; *Genome ; Host Specificity/*genetics ; Host-Parasite Interactions ; Lycopersicon esculentum/parasitology ; Molecular Sequence Data ; Phytophthora/classification/*genetics/pathogenicity/physiology ; Phytophthora infestans/classification/*genetics/*pathogenicity/physiology ; Plant Diseases/*parasitology ; Polymorphism, Single Nucleotide ; Proteins/chemistry/genetics/metabolism ; Selection, Genetic ; Sequence Analysis, DNA ; Solanum tuberosum/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-05-29
    Description: Horizontal gene transfer has been postulated to occur between crops to co-occurring parasitic plants, but empirical evidence has been lacking. We present evidence that an HGT event moved a nuclear monocot gene into the genome of the eudicot parasite witchweed (Striga hermonthica), which infects many grass species in Africa. Analysis of expressed sequence tags revealed that the genome of S. hermonthica contains a nuclear gene that is widely conserved among grass species but is not found in other eudicots. Phylogenetically, this gene clusters with sorghum genes, the monocot host of the parasitic weed, suggesting that nuclear genes can be captured by parasitic weeds in nature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida, Satoko -- Maruyama, Shinichiro -- Nozaki, Hisayoshi -- Shirasu, Ken -- New York, N.Y. -- Science. 2010 May 28;328(5982):1128. doi: 10.1126/science.1187145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508124" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Blotting, Southern ; Cell Nucleus/genetics ; Conserved Sequence ; Crops, Agricultural/genetics ; Expressed Sequence Tags ; *Gene Transfer, Horizontal ; Genome, Plant ; Molecular Sequence Data ; Phylogeny ; Plant Proteins/genetics ; Poaceae/*genetics ; Sorghum/*genetics ; Striga/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-11-27
    Description: The brain's circuitry is established by directed migration and synaptogenesis of neurons during development. Although neurons mature and migrate in specific patterns, little is known about how neurons exit their germinal zone niche. We found that cerebellar granule neuron germinal zone exit is regulated by proteasomal degradation of Pard3A by the Seven in Absentia homolog (Siah) E3 ubiquitin ligase. Pard3A gain of function and Siah loss of function induce precocious radial migration. Time-lapse imaging using a probe to measure neuronal cell contact reveals that Pard3A promotes adhesive interactions needed for germinal zone exit by recruiting the epithelial tight junction adhesion molecule C to the neuronal cell surface. Our findings define a Siah-Pard3A signaling pathway that controls adhesion-dependent exit of neuronal progenitors or immature neurons from a germinal zone niche.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065828/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065828/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Famulski, Jakub K -- Trivedi, Niraj -- Howell, Danielle -- Yang, Yuan -- Tong, Yiai -- Gilbertson, Richard -- Solecki, David J -- P01 CA096832/CA/NCI NIH HHS/ -- P01 CA096832-07/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01 CA129541-04/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1834-8. doi: 10.1126/science.1198480. Epub 2010 Nov 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Adhesion ; Cell Adhesion Molecules/chemistry/*metabolism ; Cell Line ; *Cell Movement ; Cell Polarity ; Cerebellum/*cytology/embryology/*metabolism ; Dogs ; Humans ; Immunoglobulins/chemistry/metabolism ; Mice ; Morphogenesis ; Neurons/cytology/*physiology ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Stem Cells/physiology ; Transfection ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-07-10
    Description: Cross-reactive neutralizing antibodies (NAbs) are found in the sera of many HIV-1-infected individuals, but the virologic basis of their neutralization remains poorly understood. We used knowledge of HIV-1 envelope structure to develop antigenically resurfaced glycoproteins specific for the structurally conserved site of initial CD4 receptor binding. These probes were used to identify sera with NAbs to the CD4-binding site (CD4bs) and to isolate individual B cells from such an HIV-1-infected donor. By expressing immunoglobulin genes from individual cells, we identified three monoclonal antibodies, including a pair of somatic variants that neutralized over 90% of circulating HIV-1 isolates. Exceptionally broad HIV-1 neutralization can be achieved with individual antibodies targeted to the functionally conserved CD4bs of glycoprotein 120, an important insight for future HIV-1 vaccine design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Xueling -- Yang, Zhi-Yong -- Li, Yuxing -- Hogerkorp, Carl-Magnus -- Schief, William R -- Seaman, Michael S -- Zhou, Tongqing -- Schmidt, Stephen D -- Wu, Lan -- Xu, Ling -- Longo, Nancy S -- McKee, Krisha -- O'Dell, Sijy -- Louder, Mark K -- Wycuff, Diane L -- Feng, Yu -- Nason, Martha -- Doria-Rose, Nicole -- Connors, Mark -- Kwong, Peter D -- Roederer, Mario -- Wyatt, Richard T -- Nabel, Gary J -- Mascola, John R -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):856-61. doi: 10.1126/science.1187659. Epub 2010 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616233" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Antibodies, Monoclonal/*immunology/isolation & purification ; Antibodies, Neutralizing/*immunology/isolation & purification ; Antibody Specificity ; Antigens, CD4/immunology/metabolism ; B-Lymphocytes/immunology ; Binding Sites, Antibody ; Cross Reactions ; Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes/immunology ; Genes, Immunoglobulin Heavy Chain ; Genes, Immunoglobulin Light Chain ; HIV Antibodies/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology/virology ; HIV-1/genetics/*immunology ; Humans ; Molecular Sequence Data ; Neutralization Tests ; Protein Engineering ; Recombinant Proteins/chemistry/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-06-05
    Description: Staphylococcus aureus is a major human pathogen that is resistant to numerous antibiotics in clinical use. We found two nonribosomal peptide secondary metabolites--the aureusimines, made by S. aureus--that are not antibiotics, but function as regulators of virulence factor expression and are necessary for productive infections. In vivo mouse models of bacteremia showed that strains of S. aureus unable to produce aureusimines were attenuated and/or cleared from major organs, including the spleen, liver, and heart. Targeting aureusimine synthesis may offer novel leads for anti-infective drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyatt, Morgan A -- Wang, Wenliang -- Roux, Christelle M -- Beasley, Federico C -- Heinrichs, David E -- Dunman, Paul M -- Magarvey, Nathan A -- MOP-38002/Canadian Institutes of Health Research/Canada -- RA107380/RA/ARRA NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):294-6. doi: 10.1126/science.1188888. Epub 2010 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522739" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteremia/microbiology ; Dipeptides/chemistry/isolation & purification ; Heart/microbiology ; Hemolysis ; Liver/microbiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Peptide Biosynthesis, Nucleic Acid-Independent ; Peptide Synthases/chemistry/genetics/metabolism ; Pyrazines/chemistry/*metabolism ; Spleen/microbiology ; Staphylococcal Infections/*microbiology ; Staphylococcus aureus/genetics/isolation & ; purification/*metabolism/*pathogenicity ; Virulence Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-03-27
    Description: Phosphoinositide 3-kinases (PI3Ks) are lipid kinases with diverse roles in health and disease. The primordial PI3K, Vps34, is present in all eukaryotes and has essential roles in autophagy, membrane trafficking, and cell signaling. We solved the crystal structure of Vps34 at 2.9 angstrom resolution, which revealed a constricted adenine-binding pocket, suggesting the reason that specific inhibitors of this class of PI3K have proven elusive. Both the phosphoinositide-binding loop and the carboxyl-terminal helix of Vps34 mediate catalysis on membranes and suppress futile adenosine triphosphatase cycles. Vps34 appears to alternate between a closed cytosolic form and an open form on the membrane. Structures of Vps34 complexes with a series of inhibitors reveal the reason that an autophagy inhibitor preferentially inhibits Vps34 and underpin the development of new potent and specific Vps34 inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860105/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860105/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Simon -- Tavshanjian, Brandon -- Oleksy, Arkadiusz -- Perisic, Olga -- Houseman, Benjamin T -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- U.1051.03.014(78824)/Medical Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1638-42. doi: 10.1126/science.1184429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339072" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/metabolism/pharmacology ; Adenosine Triphosphatases/metabolism ; Animals ; Autophagy/*drug effects ; Binding Sites ; Catalysis ; Catalytic Domain ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Drosophila melanogaster ; Enzyme Inhibitors/chemical synthesis/chemistry/*metabolism/pharmacology ; Furans/chemistry/metabolism/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Phosphatidylinositol 3-Kinases/*antagonists & ; inhibitors/*chemistry/genetics/metabolism ; Phosphatidylinositols/metabolism ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridines/chemistry/metabolism/pharmacology ; Pyrimidines/chemistry/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-05-01
    Description: Carotenoids are colored compounds produced by plants, fungi, and microorganisms and are required in the diet of most animals for oxidation control or light detection. Pea aphids display a red-green color polymorphism, which influences their susceptibility to natural enemies, and the carotenoid torulene occurs only in red individuals. Unexpectedly, we found that the aphid genome itself encodes multiple enzymes for carotenoid biosynthesis. Phylogenetic analyses show that these aphid genes are derived from fungal genes, which have been integrated into the genome and duplicated. Red individuals have a 30-kilobase region, encoding a single carotenoid desaturase that is absent from green individuals. A mutation causing an amino acid replacement in this desaturase results in loss of torulene and of red body color. Thus, aphids are animals that make their own carotenoids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moran, Nancy A -- Jarvik, Tyler -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):624-7. doi: 10.1126/science.1187113.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, 1041 East Lowell Street, University of Arizona, Tucson, AZ 85721, USA. nancy.moran@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aphids/*genetics/*metabolism/microbiology ; Carotenoids/analysis/*biosynthesis/genetics ; Crosses, Genetic ; Fungi/genetics ; Gene Duplication ; *Gene Transfer, Horizontal ; *Genes, Fungal ; *Genes, Insect ; Genome, Insect ; Heterozygote ; Molecular Sequence Data ; Mutation ; Oxidoreductases/genetics ; Phylogeny ; Pigmentation/genetics ; Pigments, Biological/chemistry ; Polymorphism, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mindell, Joseph A -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):601-2. doi: 10.1126/science.1198306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. mindellj@ninds.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030639" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*chemistry/metabolism ; Antiporters/*chemistry/metabolism ; Binding Sites ; Chloride Channels/*chemistry/metabolism ; Chlorides/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Eukaryota/*chemistry ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Models, Molecular ; Protein Structure, Tertiary ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2010-08-28
    Description: Somatic loss of wild-type alleles can produce disease traits such as neoplasia. Conversely, somatic loss of disease-causing mutations can revert phenotypes; however, these events are infrequently observed. Here we show that ichthyosis with confetti, a severe, sporadic skin disease in humans, is associated with thousands of revertant clones of normal skin that arise from loss of heterozygosity on chromosome 17q via mitotic recombination. This allowed us to map and identify disease-causing mutations in the gene encoding keratin 10 (KRT10); all result in frameshifts into the same alternative reading frame, producing an arginine-rich C-terminal peptide that redirects keratin 10 from the cytokeratin filament network to the nucleolus. The high frequency of somatic reversion in ichthyosis with confetti suggests that revertant stem cell clones are under strong positive selection and/or that the rate of mitotic recombination is elevated in individuals with this disorder.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choate, Keith A -- Lu, Yin -- Zhou, Jing -- Choi, Murim -- Elias, Peter M -- Farhi, Anita -- Nelson-Williams, Carol -- Crumrine, Debra -- Williams, Mary L -- Nopper, Amy J -- Bree, Alanna -- Milstone, Leonard M -- Lifton, Richard P -- K08 AR056305/AR/NIAMS NIH HHS/ -- K08 AR056305-01/AR/NIAMS NIH HHS/ -- K08 AR056305-02/AR/NIAMS NIH HHS/ -- K08 AR056305-03/AR/NIAMS NIH HHS/ -- K08 AR056305-04/AR/NIAMS NIH HHS/ -- T32 AR007016/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):94-7. doi: 10.1126/science.1192280. Epub 2010 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798280" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Nucleolus/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 17/*genetics ; Female ; *Frameshift Mutation ; Humans ; Ichthyosiform Erythroderma, Congenital/*genetics/pathology ; Intermediate Filaments/metabolism/ultrastructure ; Keratin-10/chemistry/*genetics/metabolism ; Keratins/metabolism ; Loss of Heterozygosity ; Male ; *Mitosis ; Molecular Sequence Data ; Mosaicism ; Mutant Proteins/chemistry/genetics/metabolism ; *Recombination, Genetic ; Selection, Genetic ; Skin/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-07-10
    Description: Recent studies have shown that some plants and animals harbor microbial symbionts that protect them against natural enemies. Here we demonstrate that a maternally transmitted bacterium, Spiroplasma, protects Drosophila neotestacea against the sterilizing effects of a parasitic nematode, both in the laboratory and the field. This nematode parasitizes D. neotestacea at high frequencies in natural populations, and, until recently, almost all infections resulted in complete sterility. Several lines of evidence suggest that Spiroplasma is spreading in North American populations of D. neotestacea and that a major adaptive change to a symbiont-based mode of defense is under way. These findings demonstrate the profound and potentially rapid effects of defensive symbionts, which are increasingly recognized as major players in the ecology of species interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaenike, John -- Unckless, Robert -- Cockburn, Sarah N -- Boelio, Lisa M -- Perlman, Steve J -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):212-5. doi: 10.1126/science.1188235.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Rochester, Rochester, NY 14627, USA. john.jaenike@rochester.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616278" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; DNA, Mitochondrial/genetics ; Drosophila/genetics/microbiology/parasitology/*physiology ; Female ; Fertility ; Haplotypes ; Host-Parasite Interactions ; Molecular Sequence Data ; Polymerase Chain Reaction ; Spiroplasma/isolation & purification/*physiology ; *Symbiosis ; Tylenchida/anatomy & histology/*physiology ; Wolbachia/isolation & purification/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-05-29
    Description: High-conductance voltage- and Ca2+-activated K+ (BK) channels encode negative feedback regulation of membrane voltage and Ca2+ signaling, playing a central role in numerous physiological processes. We determined the x-ray structure of the human BK Ca2+ gating apparatus at a resolution of 3.0 angstroms and deduced its tetrameric assembly by solving a 6 angstrom resolution structure of a Na+-activated homolog. Two tandem C-terminal regulator of K+ conductance (RCK) domains from each of four channel subunits form a 350-kilodalton gating ring at the intracellular membrane surface. A sequence of aspartic amino acids that is known as the Ca2+ bowl, and is located within the second of the tandem RCK domains, creates four Ca2+ binding sites on the outer perimeter of the gating ring at the "assembly interface" between RCK domains. Functionally important mutations cluster near the Ca2+ bowl, near the "flexible interface" between RCK domains, and on the surface of the gating ring that faces the voltage sensors. The structure suggests that the Ca2+ gating ring, in addition to regulating the pore directly, may also modulate the voltage sensor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022345/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022345/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Peng -- Leonetti, Manuel D -- Pico, Alexander R -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):182-6. doi: 10.1126/science.1190414. Epub 2010 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium/*metabolism ; Crystallography, X-Ray ; Humans ; *Ion Channel Gating ; Large-Conductance Calcium-Activated Potassium Channel alpha ; Subunits/*chemistry/genetics/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Patch-Clamp Techniques ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-10-12
    Description: CLC proteins transport chloride (Cl(-)) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl(-) ion channels, whereas others are secondary active transporters that exchange Cl(-) ions and protons (H(+)) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl(-)/H(+) exchange and a simple mechanistic connection between CLC channels and transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Liang -- Campbell, Ernest B -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- R01 GM043949-21/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):635-41. doi: 10.1126/science.1195230. Epub 2010 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929736" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/metabolism ; Animals ; Antiporters/*chemistry/metabolism ; Binding Sites ; Cell Line ; Cell Membrane/chemistry ; Chloride Channels/*chemistry/metabolism ; Chlorides/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cystathionine beta-Synthase/chemistry ; Cytoplasm/chemistry ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Models, Biological ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Protons ; Rhodophyta/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-02-26
    Description: Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a Plasmodium-infected blood meal, mosquitoes were treated with M. anisopliae expressing salivary gland and midgut peptide 1 (SM1), which blocks attachment of sporozoites to salivary glands; a single-chain antibody that agglutinates sporozoites; or scorpine, which is an antimicrobial toxin. These reduced sporozoite counts by 71%, 85%, and 90%, respectively. M. anisopliae expressing scorpine and an [SM1](8):scorpine fusion protein reduced sporozoite counts by 98%, suggesting that Metarhizium-mediated inhibition of Plasmodium development could be a powerful weapon for combating malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153607/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153607/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Weiguo -- Vega-Rodriguez, Joel -- Ghosh, Anil K -- Jacobs-Lorena, Marcelo -- Kang, Angray -- St Leger, Raymond J -- 5R21A1079429-02/PHS HHS/ -- R01 AI031478/AI/NIAID NIH HHS/ -- R21 AI079429/AI/NIAID NIH HHS/ -- R21 AI088033/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1074-7. doi: 10.1126/science.1199115.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/*microbiology/*parasitology/physiology ; Antibodies, Protozoan/immunology ; Base Sequence ; Cloning, Molecular ; Defensins/genetics/metabolism ; Feeding Behavior ; Female ; Hemolymph/metabolism/microbiology/parasitology ; Humans ; Insect Vectors/*microbiology/*parasitology/physiology ; Malaria, Falciparum/transmission ; Metarhizium/*genetics/physiology ; Molecular Sequence Data ; Oligopeptides/genetics/metabolism ; Organisms, Genetically Modified ; Pest Control, Biological ; Plasmodium falciparum/*physiology ; Protozoan Proteins/immunology ; Salivary Glands/metabolism/parasitology ; Spores, Fungal/physiology ; Sporozoites/physiology ; Transformation, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-09-10
    Description: Engineered fluorescent protein (FP) chimeras that modulate their fluorescence in response to changes in calcium ion (Ca(2+)) concentration are powerful tools for visualizing intracellular signaling activity. However, despite a decade of availability, the palette of single FP-based Ca(2+) indicators has remained limited to a single green hue. We have expanded this palette by developing blue, improved green, and red intensiometric indicators, as well as an emission ratiometric indicator with an 11,000% ratio change. This series enables improved single-color Ca(2+) imaging in neurons and transgenic Caenorhabditis elegans. In HeLa cells, Ca(2+) was imaged in three subcellular compartments, and, in conjunction with a cyan FP-yellow FP-based indicator, Ca(2+) and adenosine 5'-triphosphate were simultaneously imaged. This palette of indicators paints the way to a colorful new era of Ca(2+) imaging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yongxin -- Araki, Satoko -- Wu, Jiahui -- Teramoto, Takayuki -- Chang, Yu-Fen -- Nakano, Masahiro -- Abdelfattah, Ahmed S -- Fujiwara, Manabi -- Ishihara, Takeshi -- Nagai, Takeharu -- Campbell, Robert E -- 94487/Canadian Institutes of Health Research/Canada -- 99085/Canadian Institutes of Health Research/Canada -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1888-91. doi: 10.1126/science.1208592. Epub 2011 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903779" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans ; Calcium/*analysis ; *Calcium Signaling ; *Directed Molecular Evolution ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins/*chemistry/genetics ; HeLa Cells ; Humans ; Luminescent Proteins/*chemistry/genetics ; Molecular Sequence Data ; Neurons/metabolism ; *Protein Engineering ; Rats ; Recombinant Fusion Proteins/*chemistry ; Spectrometry, Fluorescence ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-03-12
    Description: Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbalpha. Rev-erbalpha colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbalpha in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbalpha directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Dan -- Liu, Tao -- Sun, Zheng -- Bugge, Anne -- Mullican, Shannon E -- Alenghat, Theresa -- Liu, X Shirley -- Lazar, Mitchell A -- DK19525/DK/NIDDK NIH HHS/ -- DK43806/DK/NIDDK NIH HHS/ -- DK45586/DK/NIDDK NIH HHS/ -- DK49210/DK/NIDDK NIH HHS/ -- HG4069/HG/NHGRI NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- R37 DK043806-20/DK/NIDDK NIH HHS/ -- RC1 DK086239/DK/NIDDK NIH HHS/ -- RC1DK08623/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1315-9. doi: 10.1126/science.1198125.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393543" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Chromatin Immunoprecipitation ; Chronobiology Disorders/genetics/metabolism ; *Circadian Clocks ; *Circadian Rhythm ; DNA/metabolism ; Epigenesis, Genetic ; Fatty Liver/*metabolism ; Gene Expression Regulation ; *Genome ; Histone Deacetylases/*metabolism ; Histones/metabolism ; Homeostasis ; *Lipid Metabolism ; Lipogenesis/genetics ; Liver/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Nuclear Receptor Co-Repressor 1/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/metabolism ; RNA Polymerase II/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-01-29
    Description: Proper regulation of nuclear factor kappaB (NF-kappaB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-kappaB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-kappaB-inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-kappaB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-kappaB pathway in B lymphoproliferative disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosebeck, Shaun -- Madden, Lisa -- Jin, Xiaohong -- Gu, Shufang -- Apel, Ingrid J -- Appert, Alex -- Hamoudi, Rifat A -- Noels, Heidi -- Sagaert, Xavier -- Van Loo, Peter -- Baens, Mathijs -- Du, Ming-Qing -- Lucas, Peter C -- McAllister-Lucas, Linda M -- R01 CA124540/CA/NCI NIH HHS/ -- R01 CA124540-04/CA/NCI NIH HHS/ -- R01 HL082914/HL/NHLBI NIH HHS/ -- R01CA124540/CA/NCI NIH HHS/ -- T32-HD07513/HD/NICHD NIH HHS/ -- T32-HL007622-21A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):468-72. doi: 10.1126/science.1198946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics and Communicable Diseases, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273489" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; B-Lymphocytes/*metabolism ; Cell Adhesion ; Cell Line ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; I-kappa B Kinase/metabolism ; Lymphoma, B-Cell, Marginal Zone/genetics/*metabolism ; NF-kappa B/*metabolism ; NF-kappa B p52 Subunit/metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-13
    Description: Estimates suggest that only one-tenth of the true fungal diversity has been described. Among numerous fungal lineages known only from environmental DNA sequences, Soil Clone Group 1 is the most ubiquitous. These globally distributed fungi may dominate below-ground fungal communities, but their placement in the fungal tree of life has been uncertain. Here, we report cultures of this group and describe the class, Archaeorhizomycetes, phylogenetically placed within subphylum Taphrinomycotina in the Ascomycota. Archaeorhizomycetes comprises hundreds of cryptically reproducing filamentous species that do not form recognizable mycorrhizal structures and have saprotrophic potential, yet are omnipresent in roots and rhizosphere soil and show ecosystem and host root habitat specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosling, Anna -- Cox, Filipa -- Cruz-Martinez, Karelyn -- Ihrmark, Katarina -- Grelet, Gwen-Aelle -- Lindahl, Bjorn D -- Menkis, Audrius -- James, Timothy Y -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):876-9. doi: 10.1126/science.1206958.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Forest Mycology and Pathology, Uppsala BioCentre, SLU, Box 7026, 750 07 Uppsala, Sweden. anna.rosling@slu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836015" target="_blank"〉PubMed〈/a〉
    Keywords: *Ascomycota/classification/genetics/growth & development/isolation & purification ; Coniferophyta/microbiology ; *Ecosystem ; Genes, Fungal ; Genes, rRNA ; Meristem/*microbiology ; Molecular Sequence Data ; *Mycorrhizae/classification/genetics ; Phylogeny ; Rhizosphere ; *Soil Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-10
    Description: DNA transposons are mobile genetic elements that have shaped the genomes of eukaryotes for millions of years, yet their origins remain obscure. We discovered a virophage that, on the basis of genetic homology, likely represents an evolutionary link between double-stranded DNA viruses and Maverick/Polinton eukaryotic DNA transposons. The Mavirus virophage parasitizes the giant Cafeteria roenbergensis virus and encodes 20 predicted proteins, including a retroviral integrase and a protein-primed DNA polymerase B. On the basis of our data, we conclude that Maverick/Polinton transposons may have originated from ancient relatives of Mavirus, and thereby influenced the evolution of eukaryotic genomes, although we cannot rule out alternative evolutionary scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Matthias G -- Suttle, Curtis A -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):231-4. doi: 10.1126/science.1199412. Epub 2011 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, 1365-2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *DNA Transposable Elements ; DNA Viruses/*genetics/*physiology ; DNA, Viral/genetics ; DNA-Directed DNA Polymerase/genetics ; *Evolution, Molecular ; Genome, Viral ; Integrases/chemistry/genetics ; Molecular Sequence Data ; Phylogeny ; Satellite Viruses/*genetics/*physiology ; Stramenopiles/virology ; Viral Proteins/chemistry/genetics ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-05-14
    Description: We describe a general computational method for designing proteins that bind a surface patch of interest on a target macromolecule. Favorable interactions between disembodied amino acid residues and the target surface are identified and used to anchor de novo designed interfaces. The method was used to design proteins that bind a conserved surface patch on the stem of the influenza hemagglutinin (HA) from the 1918 H1N1 pandemic virus. After affinity maturation, two of the designed proteins, HB36 and HB80, bind H1 and H5 HAs with low nanomolar affinity. Further, HB80 inhibits the HA fusogenic conformational changes induced at low pH. The crystal structure of HB36 in complex with 1918/H1 HA revealed that the actual binding interface is nearly identical to that in the computational design model. Such designed binding proteins may be useful for both diagnostics and therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fleishman, Sarel J -- Whitehead, Timothy A -- Ekiert, Damian C -- Dreyfus, Cyrille -- Corn, Jacob E -- Strauch, Eva-Maria -- Wilson, Ian A -- Baker, David -- AI057141/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-07/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):816-21. doi: 10.1126/science.1202617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566186" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Binding Sites ; Computational Biology ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; *Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-06-04
    Description: Two-dimensional (2D) vibrational echo spectroscopy has previously been applied to structural determination of small peptides. Here we extend the technique to a more complex, biologically important system: the homodimeric transmembrane dimer from the alpha chain of the integrin alpha(IIb)beta(3). We prepared micelle suspensions of the pair of 30-residue chains that span the membrane in the native structure, with varying levels of heavy ((13)C=(18)O) isotopes substituted in the backbone of the central 10th through 20th positions. The constraints derived from vibrational coupling of the precisely spaced heavy residues led to determination of an optimized structure from a range of model candidates: Glycine residues at the 12th, 15th, and 16th positions form a tertiary contact in parallel right-handed helix dimers with crossing angles of -58 degrees +/- 9 degrees and interhelical distances of 7.7 +/- 0.5 angstroms. The frequency correlation established the dynamical model used in the analysis, and it indicated the absence of mobile water associated with labeled residues. Delocalization of vibrational excitations between the helices was also quantitatively established.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Remorino, Amanda -- Korendovych, Ivan V -- Wu, Yibing -- DeGrado, William F -- Hochstrasser, Robin M -- GM12592/GM/NIGMS NIH HHS/ -- GM54616/GM/NIGMS NIH HHS/ -- GM56423/GM/NIGMS NIH HHS/ -- GM60610/GM/NIGMS NIH HHS/ -- P41 RR001348-29/RR/NCRR NIH HHS/ -- P41 RR001348-30/RR/NCRR NIH HHS/ -- R01 GM012592-48/GM/NIGMS NIH HHS/ -- R01 GM054616/GM/NIGMS NIH HHS/ -- R01 GM054616-08/GM/NIGMS NIH HHS/ -- R01 GM056423/GM/NIGMS NIH HHS/ -- R01 GM056423-12/GM/NIGMS NIH HHS/ -- RR01348/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1206-9. doi: 10.1126/science.1202997.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21636774" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Carbon Isotopes ; Cell Membrane/*chemistry ; Energy Transfer ; Micelles ; Models, Molecular ; Molecular Dynamics Simulation ; Oxygen Isotopes ; Peptides/*chemistry ; Platelet Membrane Glycoprotein IIb/*chemistry ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrophotometry, Infrared ; Spectroscopy, Fourier Transform Infrared ; Vibration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-19
    Description: Dyneins are microtubule-based motor proteins that power ciliary beating, transport intracellular cargos, and help to construct the mitotic spindle. Evolved from ring-shaped hexameric AAA-family adenosine triphosphatases (ATPases), dynein's large size and complexity have posed challenges for understanding its structure and mechanism. Here, we present a 6 angstrom crystal structure of a functional dimer of two ~300-kilodalton motor domains of yeast cytoplasmic dynein. The structure reveals an unusual asymmetric arrangement of ATPase domains in the ring-shaped motor domain, the manner in which the mechanical element interacts with the ATPase ring, and an unexpected interaction between two coiled coils that create a base for the microtubule binding domain. The arrangement of these elements provides clues as to how adenosine triphosphate-driven conformational changes might be transmitted across the motor domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, Andrew P -- Cho, Carol -- Jin, Lan -- Vale, Ronald D -- MC_UP_A025_1011/Medical Research Council/United Kingdom -- R01 GM097312/GM/NIGMS NIH HHS/ -- R01 GM097312-01/GM/NIGMS NIH HHS/ -- R01 GM097312-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1159-65. doi: 10.1126/science.1202393. Epub 2011 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California-San Francisco, 600 16th Street, San Francisco, CA 94158, USA. cartera@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330489" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Methionine/chemistry ; Microtubules/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-05-21
    Description: The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than 10,000 exonic sites where the RNA sequences do not match that of the DNA. All 12 possible categories of discordances were observed. These differences were nonrandom as many sites were found in multiple individuals and in different cell types, including primary skin cells and brain tissues. Using mass spectrometry, we detected peptides that are translated from the discordant RNA sequences and thus do not correspond exactly to the DNA sequences. These widespread RNA-DNA differences in the human transcriptome provide a yet unexplored aspect of genome variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Mingyao -- Wang, Isabel X -- Li, Yun -- Bruzel, Alan -- Richards, Allison L -- Toung, Jonathan M -- Cheung, Vivian G -- R01 HG005854/HG/NHGRI NIH HHS/ -- R01 HG005854-01/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):53-8. doi: 10.1126/science.1207018. Epub 2011 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596952" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Amino Acid Sequence ; B-Lymphocytes ; Base Sequence ; Cell Line ; Cerebral Cortex/cytology ; DNA/chemistry/*genetics ; Exons ; Expressed Sequence Tags ; Fibroblasts ; Gene Expression Profiling ; *Genetic Variation ; *Genome, Human ; Genotype ; Humans ; Mass Spectrometry ; Middle Aged ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Proteins/chemistry ; Proteome/chemistry ; RNA, Messenger/chemistry/*genetics ; Sequence Analysis, DNA ; Sequence Analysis, RNA ; Skin/cytology ; Untranslated Regions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-04-23
    Description: The fission yeast clade--comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus--occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131103/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131103/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rhind, Nicholas -- Chen, Zehua -- Yassour, Moran -- Thompson, Dawn A -- Haas, Brian J -- Habib, Naomi -- Wapinski, Ilan -- Roy, Sushmita -- Lin, Michael F -- Heiman, David I -- Young, Sarah K -- Furuya, Kanji -- Guo, Yabin -- Pidoux, Alison -- Chen, Huei Mei -- Robbertse, Barbara -- Goldberg, Jonathan M -- Aoki, Keita -- Bayne, Elizabeth H -- Berlin, Aaron M -- Desjardins, Christopher A -- Dobbs, Edward -- Dukaj, Livio -- Fan, Lin -- FitzGerald, Michael G -- French, Courtney -- Gujja, Sharvari -- Hansen, Klavs -- Keifenheim, Dan -- Levin, Joshua Z -- Mosher, Rebecca A -- Muller, Carolin A -- Pfiffner, Jenna -- Priest, Margaret -- Russ, Carsten -- Smialowska, Agata -- Swoboda, Peter -- Sykes, Sean M -- Vaughn, Matthew -- Vengrova, Sonya -- Yoder, Ryan -- Zeng, Qiandong -- Allshire, Robin -- Baulcombe, David -- Birren, Bruce W -- Brown, William -- Ekwall, Karl -- Kellis, Manolis -- Leatherwood, Janet -- Levin, Henry -- Margalit, Hanah -- Martienssen, Rob -- Nieduszynski, Conrad A -- Spatafora, Joseph W -- Friedman, Nir -- Dalgaard, Jacob Z -- Baumann, Peter -- Niki, Hironori -- Regev, Aviv -- Nusbaum, Chad -- BB/E023754/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- DP1 OD003958/OD/NIH HHS/ -- R01 GM069957/GM/NIGMS NIH HHS/ -- R01 GM076396/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-06/HG/NHGRI NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):930-6. doi: 10.1126/science.1203357. Epub 2011 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA. nick.rhind@umassmed.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21511999" target="_blank"〉PubMed〈/a〉
    Keywords: Centromere/genetics/physiology/ultrastructure ; DNA Transposable Elements ; Evolution, Molecular ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Genes, Mating Type, Fungal ; *Genome, Fungal ; Genomics ; Glucose/metabolism ; Meiosis ; Molecular Sequence Annotation ; Molecular Sequence Data ; Phylogeny ; RNA, Antisense/genetics ; RNA, Fungal/genetics ; RNA, Small Interfering/genetics ; RNA, Untranslated/genetics ; Regulatory Elements, Transcriptional ; Schizosaccharomyces/*genetics/growth & development/metabolism ; Schizosaccharomyces pombe Proteins/genetics/metabolism ; Sequence Analysis, DNA ; Species Specificity ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-07-23
    Description: Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite-host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonkin, Michelle L -- Roques, Magali -- Lamarque, Mauld H -- Pugniere, Martine -- Douguet, Dominique -- Crawford, Joanna -- Lebrun, Maryse -- Boulanger, Martin J -- MOP82915/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):463-7. doi: 10.1126/science.1204988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778402" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Antibodies, Monoclonal/immunology ; Antibodies, Protozoan/immunology ; Antigens, Protozoan/*chemistry/genetics/immunology/*metabolism ; *Host-Parasite Interactions ; Hydrophobic and Hydrophilic Interactions ; Membrane Proteins/chemistry/immunology/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Peptide Fragments/chemistry/metabolism ; Plasmodium falciparum/chemistry/metabolism/pathogenicity ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protozoan Proteins/*chemistry/immunology/*metabolism ; Toxoplasma/chemistry/*metabolism/*pathogenicity/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godley, Lucy A -- Mondragon, Alfonso -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1017-8. doi: 10.1126/science.1202090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. lgodley@medicine.bsd.uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Crystallography, X-Ray ; Cysteine/chemistry ; DNA/*chemistry/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*chemistry/*metabolism ; *DNA Methylation ; Dinucleoside Phosphates/chemistry/metabolism ; Humans ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-07-30
    Description: The initiation of transcription by RNA polymerase II is a multistage process. X-ray crystal structures of transcription complexes containing short RNAs reveal three structural states: one with 2- and 3-nucleotide RNAs, in which only the 3'-end of the RNA is detectable; a second state with 4- and 5-nucleotide RNAs, with an RNA-DNA hybrid in a grossly distorted conformation; and a third state with RNAs of 6 nucleotides and longer, essentially the same as a stable elongating complex. The transition from the first to the second state correlates with a markedly reduced frequency of abortive initiation. The transition from the second to the third state correlates with partial "bubble collapse" and promoter escape. Polymerase structure is permissive for abortive initiation, thereby setting a lower limit on polymerase-promoter complex lifetime and allowing the dissociation of nonspecific complexes. Abortive initiation may be viewed as promoter proofreading, and the structural transitions as checkpoints for promoter control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Bushnell, David A -- Silva, Daniel-Adriano -- Huang, Xuhui -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 AI021144-27/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-19/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 29;333(6042):633-7. doi: 10.1126/science.1206629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798951" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-04-02
    Description: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPsigma). Here we report that RPTPsigma acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPsigma ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPsigma and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coles, Charlotte H -- Shen, Yingjie -- Tenney, Alan P -- Siebold, Christian -- Sutton, Geoffrey C -- Lu, Weixian -- Gallagher, John T -- Jones, E Yvonne -- Flanagan, John G -- Aricescu, A Radu -- 090532/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- EY11559/EY/NEI NIH HHS/ -- G0700232/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- HD29417/HD/NICHD NIH HHS/ -- R01 EY011559/EY/NEI NIH HHS/ -- R01 EY011559-19/EY/NEI NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 HD029417-20/HD/NICHD NIH HHS/ -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):484-8. doi: 10.1126/science.1200840. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Binding Sites ; Cell Membrane/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/chemistry/metabolism ; Crystallography, X-Ray ; Extracellular Matrix ; Ganglia, Spinal ; Glypicans/metabolism ; Growth Cones/metabolism ; Heparan Sulfate Proteoglycans/chemistry/*metabolism ; Heparitin Sulfate/analogs & derivatives/chemistry/metabolism ; Humans ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Neurites/physiology ; Neurocan/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*chemistry/*metabolism ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-08-13
    Description: When not transporting cargo, kinesin-1 is autoinhibited by binding of a tail region to the motor domains, but the mechanism of inhibition is unclear. We report the crystal structure of a motor domain dimer in complex with its tail domain at 2.2 angstroms and compare it with a structure of the motor domain alone at 2.7 angstroms. These structures indicate that neither an induced conformational change nor steric blocking is the cause of inhibition. Instead, the tail cross-links the motor domains at a second position, in addition to the coiled coil. This "double lockdown," by cross-linking at two positions, prevents the movement of the motor domains that is needed to undock the neck linker and release adenosine diphosphate. This autoinhibition mechanism could extend to some other kinesins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaan, Hung Yi Kristal -- Hackney, David D -- Kozielski, Frank -- NS058848/NS/NINDS NIH HHS/ -- R01 NS058848/NS/NINDS NIH HHS/ -- R01 NS058848-01A2/NS/NINDS NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):883-5. doi: 10.1126/science.1204824.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836017" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Kinesin/*antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-12-24
    Description: Proteins are synthesized by the ribosome and generally must fold to become functionally active. Although it is commonly assumed that the ribosome affects the folding process, this idea has been extremely difficult to demonstrate. We have developed an experimental system to investigate the folding of single ribosome-bound stalled nascent polypeptides with optical tweezers. In T4 lysozyme, synthesized in a reconstituted in vitro translation system, the ribosome slows the formation of stable tertiary interactions and the attainment of the native state relative to the free protein. Incomplete T4 lysozyme polypeptides misfold and aggregate when free in solution, but they remain folding-competent near the ribosomal surface. Altogether, our results suggest that the ribosome not only decodes the genetic information and synthesizes polypeptides, but also promotes efficient de novo attainment of the native state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172366/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172366/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Christian M -- Goldman, Daniel H -- Chodera, John D -- Tinoco, Ignacio Jr -- Bustamante, Carlos -- 5K99 GM 086516/GM/NIGMS NIH HHS/ -- 5R01 GM 10840/GM/NIGMS NIH HHS/ -- 5R01 GM 32543/GM/NIGMS NIH HHS/ -- K99 GM086516/GM/NIGMS NIH HHS/ -- R01 GM010840/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1723-7. doi: 10.1126/science.1209740.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Quantitative Biosciences , University of California-Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194581" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T4 ; Bayes Theorem ; Markov Chains ; Muramidase/biosynthesis/*chemistry/metabolism ; Optical Tweezers ; Protein Biosynthesis ; *Protein Folding ; Protein Structure, Tertiary ; Ribosomes/*metabolism ; Thermodynamics ; Viral Proteins/biosynthesis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-11-19
    Description: Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098850/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098850/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armache, Karim-Jean -- Garlick, Joseph D -- Canzio, Daniele -- Narlikar, Geeta J -- Kingston, Robert E -- GM043901/GM/NIGMS NIH HHS/ -- P41 RR012408/RR/NCRR NIH HHS/ -- R01 GM043901/GM/NIGMS NIH HHS/ -- R37 GM048405/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 18;334(6058):977-82. doi: 10.1126/science.1210915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096199" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; *Gene Silencing ; Histones/*chemistry/metabolism ; Hydrogen Bonding ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Mutant Proteins/chemistry/metabolism ; Nucleosomes/*chemistry/metabolism/ultrastructure ; Physicochemical Processes ; Protein Folding ; *Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Silent Information Regulator Proteins, Saccharomyces ; cerevisiae/*chemistry/genetics/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-06-18
    Description: Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLAGELLIN-SENSING 2 (FLS2) senses bacterial flagellin and initiates immune signaling through association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases, PUB12 and PUB13, to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12 and PUB13 and is required for FLS2-PUB12/13 association. PUB12 and PUB13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Dongping -- Lin, Wenwei -- Gao, Xiquan -- Wu, Shujing -- Cheng, Cheng -- Avila, Julian -- Heese, Antje -- Devarenne, Timothy P -- He, Ping -- Shan, Libo -- R01 GM092893/GM/NIGMS NIH HHS/ -- R01 GM092893-02/GM/NIGMS NIH HHS/ -- R01 GM097247/GM/NIGMS NIH HHS/ -- R01GM092893/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1439-42. doi: 10.1126/science.1204903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680842" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/*immunology/metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Flagellin/*immunology ; *Immunity, Innate ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Peptide Fragments/immunology ; Phosphorylation ; Plant Diseases/*immunology/microbiology ; Protein Interaction Domains and Motifs ; Protein Kinases/chemistry/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Pseudomonas syringae/growth & development/immunology ; Receptors, Pattern Recognition/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-07-19
    Description: Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheid, Johannes F -- Mouquet, Hugo -- Ueberheide, Beatrix -- Diskin, Ron -- Klein, Florian -- Oliveira, Thiago Y K -- Pietzsch, John -- Fenyo, David -- Abadir, Alexander -- Velinzon, Klara -- Hurley, Arlene -- Myung, Sunnie -- Boulad, Farid -- Poignard, Pascal -- Burton, Dennis R -- Pereyra, Florencia -- Ho, David D -- Walker, Bruce D -- Seaman, Michael S -- Bjorkman, Pamela J -- Chait, Brian T -- Nussenzweig, Michel C -- P01 AI081677/AI/NIAID NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1633-7. doi: 10.1126/science.1207227. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764753" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/immunology/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Cloning, Molecular ; Consensus Sequence ; Crystallography, X-Ray ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry ; Immunoglobulin Heavy Chains/chemistry ; Immunoglobulin Light Chains/chemistry ; Molecular Mimicry ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-02-26
    Description: The fire ant Solenopsis invicta is a significant pest that was inadvertently introduced into the southern United States almost a century ago and more recently into California and other regions of the world. An assessment of genetic variation at a diverse set of molecular markers in 2144 fire ant colonies from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta have occurred into newly invaded areas and that the main southern U.S. population is probably the source of all but one of these introductions. The sole exception involves a putative serial invasion from the southern United States to California to Taiwan. These results illustrate in stark fashion a severe negative consequence of an increasingly massive and interconnected global trade and travel system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ascunce, Marina S -- Yang, Chin-Cheng -- Oakey, Jane -- Calcaterra, Luis -- Wu, Wen-Jer -- Shih, Cheng-Jen -- Goudet, Jerome -- Ross, Kenneth G -- Shoemaker, DeWayne -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1066-8. doi: 10.1126/science.1198734.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, 1600/1700 Southwest 23rd Drive, Gainesville, FL, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350177" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ants/genetics ; Asia ; Australia ; Bayes Theorem ; Commerce ; Computer Simulation ; DNA, Mitochondrial/genetics ; Female ; Genes, Insect ; Genetic Variation ; Genotype ; Haplotypes ; *Introduced Species ; Male ; Microsatellite Repeats ; Molecular Sequence Data ; Population Dynamics ; Sequence Analysis, DNA ; South America ; Travel ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-02-19
    Description: Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)-dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstrom resolution and biochemical data revealing that the activated SRP:SR guanine triphosphatase (GTPase) complex binds the distal end of the SRP hairpin RNA where GTP hydrolysis is stimulated. Combined with previous findings, these results suggest that the SRP:SR GTPase complex initially assembles at the tetraloop end of the SRP RNA and then relocalizes to the opposite end of the RNA. This rearrangement provides a mechanism for coupling GTP hydrolysis to the handover of cargo to the translocon.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ataide, Sandro F -- Schmitz, Nikolaus -- Shen, Kuang -- Ke, Ailong -- Shan, Shu-ou -- Doudna, Jennifer A -- Ban, Nenad -- GM078024/GM/NIGMS NIH HHS/ -- R01 GM078024/GM/NIGMS NIH HHS/ -- R01 GM086766/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):881-6. doi: 10.1126/science.1196473.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Eidgenossische Technische Hochschule Zurich (ETH Zurich), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330537" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; GTP Phosphohydrolases/chemistry/metabolism ; Guanosine Triphosphate/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Transport ; RNA, Bacterial/*chemistry/metabolism ; Receptors, Cytoplasmic and Nuclear/*chemistry/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/metabolism ; Signal Recognition Particle/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-01-29
    Description: Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Breugel, Mark -- Hirono, Masafumi -- Andreeva, Antonina -- Yanagisawa, Haru-aki -- Yamaguchi, Shoko -- Nakazawa, Yuki -- Morgner, Nina -- Petrovich, Miriana -- Ebong, Ima-Obong -- Robinson, Carol V -- Johnson, Christopher M -- Veprintsev, Dmitry -- Zuber, Benoit -- MC_U105184294/Medical Research Council/United Kingdom -- MC_U105192716/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1196-9. doi: 10.1126/science.1199325. Epub 2011 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council-Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge, UK. vanbreug@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line, Tumor ; Centrioles/*chemistry/metabolism/ultrastructure ; Centrosome/metabolism ; Chlamydomonas reinhardtii/chemistry/metabolism ; Chromosomal Proteins, Non-Histone/*chemistry/metabolism ; Crystallography, X-Ray ; Flagella/metabolism/ultrastructure ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Mutant Proteins/chemistry ; Point Mutation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Zebrafish ; Zebrafish Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-03-26
    Description: Caenorhabditis elegans proteins AFF-1 and EFF-1 [C. elegans fusion family (CeFF) proteins] are essential for developmental cell-to-cell fusion and can merge insect cells. To study the structure and function of AFF-1, we constructed vesicular stomatitis virus (VSV) displaying AFF-1 on the viral envelope, substituting the native fusogen VSV glycoprotein. Electron microscopy and tomography revealed that AFF-1 formed distinct supercomplexes resembling pentameric and hexameric "flowers" on pseudoviruses. Viruses carrying AFF-1 infected mammalian cells only when CeFFs were on the target cell surface. Furthermore, we identified fusion family (FF) proteins within and beyond nematodes, and divergent members from the human parasitic nematode Trichinella spiralis and the chordate Branchiostoma floridae could also fuse mammalian cells. Thus, FF proteins are part of an ancient family of cellular fusogens that can promote fusion when expressed on a viral particle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Avinoam, Ori -- Fridman, Karen -- Valansi, Clari -- Abutbul, Inbal -- Zeev-Ben-Mordehai, Tzviya -- Maurer, Ulrike E -- Sapir, Amir -- Danino, Dganit -- Grunewald, Kay -- White, Judith M -- Podbilewicz, Benjamin -- 090532/Wellcome Trust/United Kingdom -- 090895/Wellcome Trust/United Kingdom -- AI22470/AI/NIAID NIH HHS/ -- R01 AI022470/AI/NIAID NIH HHS/ -- R01 AI022470-24/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):589-92. doi: 10.1126/science.1202333. Epub 2011 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436398" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arthropods/chemistry ; Biological Evolution ; Caenorhabditis elegans/chemistry ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism/ultrastructure ; *Cell Fusion ; Cell Line ; Cell Membrane/*metabolism ; Chordata, Nonvertebrate/chemistry ; Ctenophora/chemistry ; *Membrane Fusion ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Naegleria fowleri/chemistry ; Nematoda/chemistry ; Recombinant Proteins/metabolism ; Recombination, Genetic ; Vesicular stomatitis Indiana virus/genetics/*physiology/ultrastructure ; Viral Envelope Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-04-30
    Description: The interaction of complement receptor 2 (CR2)--which is present on B cells and follicular dendritic cells--with its antigen-bound ligand C3d results in an enhanced antibody response, thus providing an important link between the innate and adaptive immune systems. Although a cocrystal structure of a complex between C3d and the ligand-binding domains of CR2 has been published, several aspects of this structure, including the position in C3d of the binding interface, remained controversial because of disagreement with biochemical data. We now report a cocrystal structure of a CR2(SCR1-2):C3d complex at 3.2 angstrom resolution in which the interaction interfaces differ markedly from the previously published structure and are consistent with the biochemical data. It is likely that, in the previous structure, the interaction was influenced by the presence of zinc acetate additive in the crystallization buffer, leading to a nonphysiological complex. Detailed knowledge of the binding interface now at hand gives the potential to exploit the interaction in vaccine design or in therapeutics directed against autoreactive B cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Elsen, Jean M H -- Isenman, David E -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):608-11. doi: 10.1126/science.1201954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK. bssjmhve@bath.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21527715" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Complement C3d/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Mutagenesis, Site-Directed ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Receptors, Complement 3d/*chemistry/genetics/metabolism ; Zinc Acetate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-01-08
    Description: NifEN plays an essential role in the biosynthesis of the nitrogenase iron-molybdenum (FeMo) cofactor (M cluster). It is an alpha(2)beta(2) tetramer that is homologous to the catalytic molybdenum-iron (MoFe) protein (NifDK) component of nitrogenase. NifEN serves as a scaffold for the conversion of an iron-only precursor to a matured form of the M cluster before delivering the latter to its target location within NifDK. Here, we present the structure of the precursor-bound NifEN of Azotobacter vinelandii at 2.6 angstrom resolution. From a structural comparison of NifEN with des-M-cluster NifDK and holo NifDK, we propose similar pathways of cluster insertion for the homologous NifEN and NifDK proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138709/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138709/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jens T -- Hu, Yilin -- Wiig, Jared A -- Rees, Douglas C -- Ribbe, Markus W -- GM-45162/GM/NIGMS NIH HHS/ -- GM-67626/GM/NIGMS NIH HHS/ -- R01 GM067626/GM/NIGMS NIH HHS/ -- R01 GM067626-09/GM/NIGMS NIH HHS/ -- R37 GM045162/GM/NIGMS NIH HHS/ -- R37 GM045162-22/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):91-4. doi: 10.1126/science.1196954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212358" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azotobacter vinelandii/*chemistry/enzymology ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Molybdoferredoxin/*chemistry/metabolism ; Nitrogenase/*chemistry/metabolism ; Protein Multimerization ; Protein Precursors/chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-10-25
    Description: The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azoitei, Mihai L -- Correia, Bruno E -- Ban, Yih-En Andrew -- Carrico, Chris -- Kalyuzhniy, Oleksandr -- Chen, Lei -- Schroeter, Alexandria -- Huang, Po-Ssu -- McLellan, Jason S -- Kwong, Peter D -- Baker, David -- Strong, Roland K -- Schief, William R -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):373-6. doi: 10.1126/science.1209368.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021856" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Computational Biology ; Computer Simulation ; Crystallography, X-Ray ; Epitopes/immunology ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Surface Plasmon Resonance
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-05-14
    Description: Adenosine triphosphate (ATP)-binding cassette (ABC) transporters convert chemical energy from ATP hydrolysis to mechanical work for substrate translocation. They function by alternating between two states, exposing the substrate-binding site to either side of the membrane. A key question that remains to be addressed is how substrates initiate the transport cycle. Using x-ray crystallography, we have captured the maltose transporter in an intermediate step between the inward- and outward-facing states. We show that interactions with substrate-loaded maltose-binding protein in the periplasm induce a partial closure of the MalK dimer in the cytoplasm. ATP binding to this conformation then promotes progression to the outward-facing state. These results, interpreted in light of biochemical and functional studies, provide a structural basis to understand allosteric communication in ABC transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldham, Michael L -- Chen, Jue -- GM070515/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1202-5. doi: 10.1126/science.1200767. Epub 2011 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, Howard Hughes Medical Institute, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566157" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Binding Sites ; Biological Transport, Active ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Maltose/metabolism ; Maltose-Binding Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/*chemistry/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-05-14
    Description: Pluripotent cells in the embryo can generate all cell types, but lineage-restricted cells are generally thought to replenish adult tissues. Planarians are flatworms and regenerate from tiny body fragments, a process requiring a population of proliferating cells (neoblasts). Whether regeneration is accomplished by pluripotent cells or by the collective activity of multiple lineage-restricted cell types is unknown. We used ionizing radiation and single-cell transplantation to identify neoblasts that can form large descendant-cell colonies in vivo. These clonogenic neoblasts (cNeoblasts) produce cells that differentiate into neuronal, intestinal, and other known postmitotic cell types and are distributed throughout the body. Single transplanted cNeoblasts restored regeneration in lethally irradiated hosts. We conclude that broadly distributed, adult pluripotent stem cells underlie the remarkable regenerative abilities of planarians.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338249/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338249/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, Daniel E -- Wang, Irving E -- Reddien, Peter W -- R01 GM080639/GM/NIGMS NIH HHS/ -- R01 GM080639-05/GM/NIGMS NIH HHS/ -- R01GM080639/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):811-6. doi: 10.1126/science.1203983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology (MIT), Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566185" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/cytology/*physiology/transplantation ; Animals ; Base Sequence ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Clone Cells/cytology/physiology ; Genes, Helminth ; Genotype ; Intestines/cytology ; Molecular Sequence Data ; Neurons/cytology ; Planarians/*cytology/genetics/*physiology/radiation effects ; Pluripotent Stem Cells/cytology/*physiology/transplantation ; *Regeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-09-03
    Description: Ionic flux mediates essential physiological and behavioral functions in defined cell populations. Cell type-specific activators of diverse ionic conductances are needed for probing these effects. We combined chemistry and protein engineering to enable the systematic creation of a toolbox of ligand-gated ion channels (LGICs) with orthogonal pharmacologic selectivity and divergent functional properties. The LGICs and their small-molecule effectors were able to activate a range of ionic conductances in genetically specified cell types. LGICs constructed for neuronal perturbation could be used to selectively manipulate neuron activity in mammalian brains in vivo. The diversity of ion channel tools accessible from this approach will be useful for examining the relationship between neuronal activity and animal behavior, as well as for cell biological and physiological applications requiring chemical control of ion conductance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210548/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210548/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magnus, Christopher J -- Lee, Peter H -- Atasoy, Deniz -- Su, Helen H -- Looger, Loren L -- Sternson, Scott M -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1292-6. doi: 10.1126/science.1206606.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885782" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzamides/chemistry/metabolism/pharmacology ; Bicyclo Compounds/chemistry/metabolism/pharmacology ; Brain/cytology/physiology ; Feeding Behavior ; Female ; HEK293 Cells ; Humans ; Ion Channel Gating ; Ligand-Gated Ion Channels/chemistry/*genetics/*metabolism ; Ligands ; Membrane Potentials ; Mice ; Mice, Inbred C57BL ; Mutagenesis ; Neurons/*physiology ; Patch-Clamp Techniques ; Protein Binding ; *Protein Engineering ; Protein Structure, Tertiary ; Quinuclidines/chemistry/metabolism/pharmacology ; Receptors, Glycine/genetics/metabolism ; Receptors, Nicotinic/chemistry/genetics/metabolism ; Receptors, Serotonin, 5-HT3/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Molecule Libraries ; Stereoisomerism ; alpha7 Nicotinic Acetylcholine Receptor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-07-23
    Description: A 7000-year record of Coccolithovirus and its host, the calcifying haptophyte Emiliania huxleyi, was reconstructed on the basis of genetic signatures preserved in sediments underlying the Black Sea. The data show that the same virus and host populations can persist for centuries. Major changes in virus and host populations occurred during early sapropel deposition, ~5600 years ago, and throughout the formation of the coccolith-bearing sediments of Unit I during the past 2500 years, when the Black Sea experienced dramatic changes in hydrologic and nutrient regimes. Unit I saw a reoccurrence of the same host genotype thousands of years later in the presence of a different subset of viruses. Historical plankton virus populations can thus be included in paleoecological and paleoenvironmental studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coolen, Marco J L -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):451-2. doi: 10.1126/science.1200072.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. mcoolen@whoi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778399" target="_blank"〉PubMed〈/a〉
    Keywords: Black Sea ; Capsid Proteins/genetics ; DNA, Viral/classification/genetics ; Denaturing Gradient Gel Electrophoresis ; *Ecosystem ; Electron Transport Complex IV/genetics ; *Genes, Viral ; Genotype ; *Geologic Sediments ; *Haptophyta/classification/genetics/virology ; Molecular Sequence Data ; Phosphoglycerate Mutase/genetics ; *Phycodnaviridae/classification/genetics/isolation & purification ; Phylogeny ; Polymerase Chain Reaction ; Population Dynamics ; Seawater ; Sequence Analysis, DNA ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-01-06
    Description: Rhizobium-root nodule symbiosis is generally considered to be unique for legumes. However, there is one exception, and that is Parasponia. In this nonlegume, the rhizobial nodule symbiosis evolved independently and is, as in legumes, induced by rhizobium Nod factors. We used Parasponia andersonii to identify genetic constraints underlying evolution of Nod factor signaling. Part of the signaling cascade, downstream of Nod factor perception, has been recruited from the more-ancient arbuscular endomycorrhizal symbiosis. However, legume Nod factor receptors that activate this common signaling pathway are not essential for arbuscular endomycorrhizae. Here, we show that in Parasponia a single Nod factor-like receptor is indispensable for both symbiotic interactions. Therefore, we conclude that the Nod factor perception mechanism also is recruited from the widespread endomycorrhizal symbiosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Op den Camp, Rik -- Streng, Arend -- De Mita, Stephane -- Cao, Qingqin -- Polone, Elisa -- Liu, Wei -- Ammiraju, Jetty S S -- Kudrna, Dave -- Wing, Rod -- Untergasser, Andreas -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):909-12. doi: 10.1126/science.1198181. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, Wageningen University, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205637" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cloning, Molecular ; Evolution, Molecular ; Gene Duplication ; Genes, Plant ; Glomeromycota/physiology ; Lipopolysaccharides/*metabolism ; Molecular Sequence Data ; Mycorrhizae/*physiology ; Nitrogen Fixation ; Phylogeny ; Plant Proteins/genetics/*metabolism ; Plant Root Nodulation ; Protein Kinases/genetics/*metabolism ; RNA Interference ; Root Nodules, Plant/microbiology/physiology ; Signal Transduction ; Sinorhizobium/*physiology ; *Symbiosis ; Ulmaceae/genetics/*microbiology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-10-15
    Description: The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short beta-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificity. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pejchal, Robert -- Doores, Katie J -- Walker, Laura M -- Khayat, Reza -- Huang, Po-Ssu -- Wang, Sheng-Kai -- Stanfield, Robyn L -- Julien, Jean-Philippe -- Ramos, Alejandra -- Crispin, Max -- Depetris, Rafael -- Katpally, Umesh -- Marozsan, Andre -- Cupo, Albert -- Maloveste, Sebastien -- Liu, Yan -- McBride, Ryan -- Ito, Yukishige -- Sanders, Rogier W -- Ogohara, Cassandra -- Paulson, James C -- Feizi, Ten -- Scanlan, Christopher N -- Wong, Chi-Huey -- Moore, John P -- Olson, William C -- Ward, Andrew B -- Poignard, Pascal -- Schief, William R -- Burton, Dennis R -- Wilson, Ian A -- AI082362/AI/NIAID NIH HHS/ -- AI33292/AI/NIAID NIH HHS/ -- AI74372/AI/NIAID NIH HHS/ -- AI84817/AI/NIAID NIH HHS/ -- F32 AI074372-03/AI/NIAID NIH HHS/ -- HFE-224662/Canadian Institutes of Health Research/Canada -- P01 AI082362/AI/NIAID NIH HHS/ -- P01 AI082362-03/AI/NIAID NIH HHS/ -- P01 AI082362-04/AI/NIAID NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI033292-14/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R01 AI084817-04/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U01 CA128416/CA/NCI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1097-103. doi: 10.1126/science.1213256. Epub 2011 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Skaggs Institute for Chemical Biology and International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, nhe Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998254" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry/genetics/*immunology/metabolism ; Antibody Specificity ; Binding Sites, Antibody ; Carbohydrate Conformation ; Cell Line ; Crystallography, X-Ray ; Disaccharides/chemistry/metabolism ; Epitopes ; Glycosylation ; HIV Antibodies/chemistry/genetics/*immunology/*metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology/physiology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Mannose/chemistry/immunology/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Mutation ; Oligosaccharides/chemistry/*immunology/metabolism ; Polysaccharides/chemistry/*immunology/*metabolism ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-02-19
    Description: Meiosis requires that each chromosome find its homologous partner and undergo at least one crossover. X-Y chromosome segregation hinges on efficient crossing-over in a very small region of homology, the pseudoautosomal region (PAR). We find that mouse PAR DNA occupies unusually long chromosome axes, potentially as shorter chromatin loops, predicted to promote double-strand break (DSB) formation. Most PARs show delayed appearance of RAD51/DMC1 foci, which mark DSB ends, and all PARs undergo delayed DSB-mediated homologous pairing. Analysis of Spo11beta isoform-specific transgenic mice revealed that late RAD51/DMC1 foci in the PAR are genetically distinct from both early PAR foci and global foci and that late PAR foci promote efficient X-Y pairing, recombination, and male fertility. Our findings uncover specific mechanisms that surmount the unique challenges of X-Y recombination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151169/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151169/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kauppi, Liisa -- Barchi, Marco -- Baudat, Frederic -- Romanienko, Peter J -- Keeney, Scott -- Jasin, Maria -- R01 HD040916/HD/NICHD NIH HHS/ -- R01 HD040916-01/HD/NICHD NIH HHS/ -- R01 HD040916-10/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):916-20. doi: 10.1126/science.1195774.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330546" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Cycle Proteins/metabolism ; Chromatin/chemistry/metabolism ; *Chromosome Pairing ; Chromosome Segregation ; *Crossing Over, Genetic ; DNA Breaks, Double-Stranded ; Endodeoxyribonucleases/genetics/*metabolism ; Female ; In Situ Hybridization, Fluorescence ; Male ; *Meiosis ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Protein Isoforms ; Rad51 Recombinase/metabolism ; X Chromosome/*physiology ; Y Chromosome/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-01-15
    Description: The synthesis of both proinflammatory leukotrienes and anti-inflammatory lipoxins requires the enzyme 5-lipoxygenase (5-LOX). 5-LOX activity is short-lived, apparently in part because of an intrinsic instability of the enzyme. We identified a 5-LOX-specific destabilizing sequence that is involved in orienting the carboxyl terminus, which binds the catalytic iron. Here, we report the crystal structure at 2.4 angstrom resolution of human 5-LOX stabilized by replacement of this sequence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, Nathaniel C -- Bartlett, Sue G -- Waight, Maria T -- Neau, David B -- Boeglin, William E -- Brash, Alan R -- Newcomer, Marcia E -- GM-15431/GM/NIGMS NIH HHS/ -- P01 GM015431/GM/NIGMS NIH HHS/ -- P01 GM015431-44/GM/NIGMS NIH HHS/ -- R01 HL107887/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):217-9. doi: 10.1126/science.1197203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonate 5-Lipoxygenase/*chemistry/genetics/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Stability ; Humans ; Iron/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-09-24
    Description: Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214010/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214010/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Daniel C -- Monda, Julie K -- Bennett, Eric J -- Harper, J Wade -- Schulman, Brenda A -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- R01 GM054137/GM/NIGMS NIH HHS/ -- R01 GM054137-13/GM/NIGMS NIH HHS/ -- R01 GM069530/GM/NIGMS NIH HHS/ -- R01 GM069530-10/GM/NIGMS NIH HHS/ -- R01 GM070565/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):674-8. doi: 10.1126/science.1209307. Epub 2011 Sep 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940857" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Cullin Proteins/metabolism ; Humans ; Molecular Sequence Data ; Multiprotein Complexes/*metabolism ; Protein Binding ; Saccharomyces cerevisiae Proteins/*metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-12-24
    Description: Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of adenosine triphosphatases (ATPases). We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydrolyzed in one subunit and suggests that clamp closure and ejection of the loader involves disruption of the ATP-dependent match in symmetry. The structures explain how synergy among the loader, the clamp, and DNA can trigger ATP hydrolysis and release of the closed clamp on DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281585/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281585/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelch, Brian A -- Makino, Debora L -- O'Donnell, Mike -- Kuriyan, John -- F32 GM087888/GM/NIGMS NIH HHS/ -- F32 GM087888-02/GM/NIGMS NIH HHS/ -- F32-087888/PHS HHS/ -- R01 GM038839/GM/NIGMS NIH HHS/ -- R01 GM038839-26/GM/NIGMS NIH HHS/ -- R01 GM045547/GM/NIGMS NIH HHS/ -- R01 GM045547-20/GM/NIGMS NIH HHS/ -- R01-GM308839/GM/NIGMS NIH HHS/ -- R01-GM45547/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1675-80. doi: 10.1126/science.1211884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194570" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Bacteriophage T4 ; Binding Sites ; Crystallography, X-Ray ; DNA, A-Form/*chemistry/metabolism ; DNA, Viral/*chemistry/metabolism ; DNA-Directed DNA Polymerase/chemistry/*metabolism ; Hydrolysis ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; Templates, Genetic ; Trans-Activators/*chemistry/metabolism ; Viral Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-05-10
    Description: Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166216/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166216/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banks, Jo Ann -- Nishiyama, Tomoaki -- Hasebe, Mitsuyasu -- Bowman, John L -- Gribskov, Michael -- dePamphilis, Claude -- Albert, Victor A -- Aono, Naoki -- Aoyama, Tsuyoshi -- Ambrose, Barbara A -- Ashton, Neil W -- Axtell, Michael J -- Barker, Elizabeth -- Barker, Michael S -- Bennetzen, Jeffrey L -- Bonawitz, Nicholas D -- Chapple, Clint -- Cheng, Chaoyang -- Correa, Luiz Gustavo Guedes -- Dacre, Michael -- DeBarry, Jeremy -- Dreyer, Ingo -- Elias, Marek -- Engstrom, Eric M -- Estelle, Mark -- Feng, Liang -- Finet, Cedric -- Floyd, Sandra K -- Frommer, Wolf B -- Fujita, Tomomichi -- Gramzow, Lydia -- Gutensohn, Michael -- Harholt, Jesper -- Hattori, Mitsuru -- Heyl, Alexander -- Hirai, Tadayoshi -- Hiwatashi, Yuji -- Ishikawa, Masaki -- Iwata, Mineko -- Karol, Kenneth G -- Koehler, Barbara -- Kolukisaoglu, Uener -- Kubo, Minoru -- Kurata, Tetsuya -- Lalonde, Sylvie -- Li, Kejie -- Li, Ying -- Litt, Amy -- Lyons, Eric -- Manning, Gerard -- Maruyama, Takeshi -- Michael, Todd P -- Mikami, Koji -- Miyazaki, Saori -- Morinaga, Shin-ichi -- Murata, Takashi -- Mueller-Roeber, Bernd -- Nelson, David R -- Obara, Mari -- Oguri, Yasuko -- Olmstead, Richard G -- Onodera, Naoko -- Petersen, Bent Larsen -- Pils, Birgit -- Prigge, Michael -- Rensing, Stefan A -- Riano-Pachon, Diego Mauricio -- Roberts, Alison W -- Sato, Yoshikatsu -- Scheller, Henrik Vibe -- Schulz, Burkhard -- Schulz, Christian -- Shakirov, Eugene V -- Shibagaki, Nakako -- Shinohara, Naoki -- Shippen, Dorothy E -- Sorensen, Iben -- Sotooka, Ryo -- Sugimoto, Nagisa -- Sugita, Mamoru -- Sumikawa, Naomi -- Tanurdzic, Milos -- Theissen, Gunter -- Ulvskov, Peter -- Wakazuki, Sachiko -- Weng, Jing-Ke -- Willats, William W G T -- Wipf, Daniel -- Wolf, Paul G -- Yang, Lixing -- Zimmer, Andreas D -- Zhu, Qihui -- Mitros, Therese -- Hellsten, Uffe -- Loque, Dominique -- Otillar, Robert -- Salamov, Asaf -- Schmutz, Jeremy -- Shapiro, Harris -- Lindquist, Erika -- Lucas, Susan -- Rokhsar, Daniel -- Grigoriev, Igor V -- GM065383/GM/NIGMS NIH HHS/ -- GM84051/GM/NIGMS NIH HHS/ -- HG004164/HG/NHGRI NIH HHS/ -- R01 GM043644/GM/NIGMS NIH HHS/ -- R01 GM084051/GM/NIGMS NIH HHS/ -- R01 GM084051-01A1/GM/NIGMS NIH HHS/ -- R01 HG004164/HG/NHGRI NIH HHS/ -- R01 HG004164-02/HG/NHGRI NIH HHS/ -- R01 HG004164-03/HG/NHGRI NIH HHS/ -- R01 HG004164-04/HG/NHGRI NIH HHS/ -- T32 GM007757/GM/NIGMS NIH HHS/ -- T32-HG00035/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):960-3. doi: 10.1126/science.1203810. Epub 2011 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA. banksj@purdue.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21551031" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/chemistry/genetics ; *Biological Evolution ; Bryopsida/genetics ; Chlamydomonas/chemistry/genetics ; DNA Transposable Elements ; Evolution, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; *Genome, Plant ; MicroRNAs/genetics ; Molecular Sequence Data ; Phylogeny ; Plant Proteins/genetics/metabolism ; Proteome/analysis ; RNA Editing ; RNA, Plant/genetics ; Repetitive Sequences, Nucleic Acid ; Selaginellaceae/*genetics/growth & development/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-09-10
    Description: Bacterial chromosomes are confined in submicrometer-sized nucleoids. Chromosome organization is facilitated by nucleoid-associated proteins (NAPs), but the mechanisms of action remain elusive. In this work, we used super-resolution fluorescence microscopy, in combination with a chromosome-conformation capture assay, to study the distributions of major NAPs in live Escherichia coli cells. Four NAPs--HU, Fis, IHF, and StpA--were largely scattered throughout the nucleoid. In contrast, H-NS, a global transcriptional silencer, formed two compact clusters per chromosome, driven by oligomerization of DNA-bound H-NS through interactions mediated by the amino-terminal domain of the protein. H-NS sequestered the regulated operons into these clusters and juxtaposed numerous DNA segments broadly distributed throughout the chromosome. Deleting H-NS led to substantial chromosome reorganization. These observations demonstrate that H-NS plays a key role in global chromosome organization in bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Wenqin -- Li, Gene-Wei -- Chen, Chongyi -- Xie, X Sunney -- Zhuang, Xiaowei -- GM 096450/GM/NIGMS NIH HHS/ -- R01 GM096450/GM/NIGMS NIH HHS/ -- R01 GM096450-03/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1445-9. doi: 10.1126/science.1204697.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903814" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Division ; Chromosomes, Bacterial/*metabolism/*ultrastructure ; DNA, Bacterial/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Escherichia coli K12/genetics/metabolism/*ultrastructure ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Factor For Inversion Stimulation Protein/metabolism ; Fimbriae Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; Genetic Loci ; Genome, Bacterial ; Integration Host Factors/metabolism ; Molecular Chaperones/metabolism ; Nucleic Acid Conformation ; Operon ; Protein Multimerization ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-01-22
    Description: The NLR (nucleotide binding and oligomerization, leucine-rich repeat) family of proteins senses microbial infections and activates the inflammasome, a multiprotein complex that promotes microbial clearance. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to several human malignancies. We found that KSHV Orf63 is a viral homolog of human NLRP1. Orf63 blocked NLRP1-dependent innate immune responses, including caspase-1 activation and processing of interleukins IL-1beta and IL-18. KSHV Orf63 interacted with NLRP1, NLRP3, and NOD2. Inhibition of Orf63 expression resulted in increased expression of IL-1beta during the KSHV life cycle. Furthermore, inhibition of NLRP1 was necessary for efficient reactivation and generation of progeny virus. The viral homolog subverts the function of cellular NLRs, which suggests that modulation of NLR-mediated innate immunity is important for the lifelong persistence of herpesviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gregory, Sean M -- Davis, Beckley K -- West, John A -- Taxman, Debra J -- Matsuzawa, Shu-ichi -- Reed, John C -- Ting, Jenny P Y -- Damania, Blossom -- 5R21CA131645/CA/NCI NIH HHS/ -- AI057157/AI/NIAID NIH HHS/ -- AI077437/AI/NIAID NIH HHS/ -- AI56324/AI/NIAID NIH HHS/ -- AI91967/AI/NIAID NIH HHS/ -- CA096500/CA/NCI NIH HHS/ -- CA156330/CA/NCI NIH HHS/ -- DE018281/DE/NIDCR NIH HHS/ -- F32-AI78735/AI/NIAID NIH HHS/ -- R01 AI091967/AI/NIAID NIH HHS/ -- R01 CA096500/CA/NCI NIH HHS/ -- R01 CA096500-10/CA/NCI NIH HHS/ -- R01 DE018281/DE/NIDCR NIH HHS/ -- R01 DE018281-05/DE/NIDCR NIH HHS/ -- T32-AI007001/AI/NIAID NIH HHS/ -- T32-AI007419/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 21;331(6015):330-4. doi: 10.1126/science.1199478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21252346" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Amino Acid Sequence ; Apoptosis ; Apoptosis Regulatory Proteins/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Carrier Proteins/metabolism ; Caspase 1/metabolism ; Caspase Inhibitors ; Cell Line ; Cell Line, Tumor ; Herpesvirus 8, Human/genetics/immunology/*physiology ; Humans ; *Immune Evasion ; *Immunity, Innate ; Inflammasomes/*antagonists & inhibitors/metabolism ; Interleukin-1beta/metabolism ; Molecular Sequence Data ; Monocytes/virology ; Nod2 Signaling Adaptor Protein/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Transfection ; Viral Proteins/chemistry/genetics/*metabolism ; Virus Activation ; Virus Latency ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-04-09
    Description: Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhabha, Gira -- Lee, Jeeyeon -- Ekiert, Damian C -- Gam, Jongsik -- Wilson, Ian A -- Dyson, H Jane -- Benkovic, Stephen J -- Wright, Peter E -- GM080209/GM/NIGMS NIH HHS/ -- GM75995/GM/NIGMS NIH HHS/ -- R01 GM075995/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):234-8. doi: 10.1126/science.1198542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474759" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Folic Acid/chemistry ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; NADP/chemistry ; Protein Conformation ; Tetrahydrofolate Dehydrogenase/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Fumin -- Lemmon, Mark A -- New York, N.Y. -- Science. 2011 May 27;332(6033):1043-4. doi: 10.1126/science.1208063.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617065" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Catalytic Domain ; Cell Membrane/enzymology ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/*metabolism ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-raf/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-13
    Description: Pyrazinamide (PZA) is a first-line tuberculosis drug that plays a unique role in shortening the duration of tuberculosis chemotherapy. PZA is hydrolyzed intracellularly to pyrazinoic acid (POA) by pyrazinamidase (PZase, encoded by pncA), an enzyme frequently lost in PZA-resistant strains, but the target of POA in Mycobacterium tuberculosis has remained elusive. Here, we identify a previously unknown target of POA as the ribosomal protein S1 (RpsA), a vital protein involved in protein translation and the ribosome-sparing process of trans-translation. Three PZA-resistant clinical isolates without pncA mutation harbored RpsA mutations. RpsA overexpression conferred increased PZA resistance, and we confirmed that POA bound to RpsA (but not a clinically identified DeltaAla mutant) and subsequently inhibited trans-translation rather than canonical translation. Trans-translation is essential for freeing scarce ribosomes in nonreplicating organisms, and its inhibition may explain the ability of PZA to eradicate persisting organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Wanliang -- Zhang, Xuelian -- Jiang, Xin -- Yuan, Haiming -- Lee, Jong Seok -- Barry, Clifton E 3rd -- Wang, Honghai -- Zhang, Wenhong -- Zhang, Ying -- AI44063/AI/NIAID NIH HHS/ -- ZIA AI000783-16/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1630-2. doi: 10.1126/science.1208813. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835980" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/genetics/metabolism ; Amino Acid Sequence ; Antitubercular Agents/metabolism/*pharmacology ; Bacterial Proteins/chemistry/genetics/*metabolism ; Drug Resistance, Bacterial ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Mutation ; Mycobacterium tuberculosis/*drug effects/genetics/metabolism ; Prodrugs/metabolism/pharmacology ; Protein Binding ; Protein Biosynthesis/drug effects ; Protein Structure, Tertiary ; Pyrazinamide/*analogs & derivatives/metabolism/*pharmacology ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; RNA, Transfer/metabolism ; Ribosomal Proteins/chemistry/genetics/*metabolism ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-13
    Description: Plants and their arbuscular mycorrhizal fungal symbionts interact in complex underground networks involving multiple partners. This increases the potential for exploitation and defection by individuals, raising the question of how partners maintain a fair, two-way transfer of resources. We manipulated cooperation in plants and fungal partners to show that plants can detect, discriminate, and reward the best fungal partners with more carbohydrates. In turn, their fungal partners enforce cooperation by increasing nutrient transfer only to those roots providing more carbohydrates. On the basis of these observations we conclude that, unlike many other mutualisms, the symbiont cannot be "enslaved." Rather, the mutualism is evolutionarily stable because control is bidirectional, and partners offering the best rate of exchange are rewarded.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kiers, E Toby -- Duhamel, Marie -- Beesetty, Yugandhar -- Mensah, Jerry A -- Franken, Oscar -- Verbruggen, Erik -- Fellbaum, Carl R -- Kowalchuk, George A -- Hart, Miranda M -- Bago, Alberto -- Palmer, Todd M -- West, Stuart A -- Vandenkoornhuyse, Philippe -- Jansa, Jan -- Bucking, Heike -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):880-2. doi: 10.1126/science.1208473.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, Netherlands. toby.kiers@vu.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836016" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Carbohydrate Metabolism ; Carbon/metabolism ; Glomeromycota/genetics/growth & development/*physiology ; Medicago truncatula/*microbiology/*physiology ; Molecular Sequence Data ; Mycorrhizae/genetics/growth & development/*physiology ; Phosphorus/metabolism ; Plant Roots/*microbiology/physiology ; RNA, Fungal/metabolism ; Species Specificity ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-11-15
    Description: The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruz-Migoni, Abimael -- Hautbergue, Guillaume M -- Artymiuk, Peter J -- Baker, Patrick J -- Bokori-Brown, Monika -- Chang, Chung-Te -- Dickman, Mark J -- Essex-Lopresti, Angela -- Harding, Sarah V -- Mahadi, Nor Muhammad -- Marshall, Laura E -- Mobbs, George W -- Mohamed, Rahmah -- Nathan, Sheila -- Ngugi, Sarah A -- Ong, Catherine -- Ooi, Wen Fong -- Partridge, Lynda J -- Phillips, Helen L -- Raih, M Firdaus -- Ruzheinikov, Sergei -- Sarkar-Tyson, Mitali -- Sedelnikova, Svetlana E -- Smither, Sophie J -- Tan, Patrick -- Titball, Richard W -- Wilson, Stuart A -- Rice, David W -- 085162/Wellcome Trust/United Kingdom -- BB/D011795/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D524975/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E025293/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT085162AIA/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):821-4. doi: 10.1126/science.1211915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076380" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Bacterial Proteins/*chemistry/genetics/metabolism/*toxicity ; Bacterial Toxins/*chemistry/genetics/metabolism/*toxicity ; Burkholderia pseudomallei/*chemistry/*pathogenicity ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Cytotoxins/chemistry/genetics/metabolism/toxicity ; Escherichia coli Proteins/chemistry ; Eukaryotic Initiation Factor-4A/*antagonists & inhibitors/metabolism ; Glutamine/metabolism ; Humans ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Mutant Proteins/toxicity ; Peptide Chain Initiation, Translational/drug effects ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...