ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-30
    Description: Epigenetic signals are responsible for the establishment, maintenance, and reversal of metastable transcriptional states that are fundamental for the cell's ability to "remember" past events, such as changes in the external environment or developmental cues. Complex epigenetic states are orchestrated by several converging and reinforcing signals, including transcription factors, noncoding RNAs, DNA methylation, and histone modifications. Although all of these pathways modulate transcription from chromatin in vivo, the mechanisms by which epigenetic information is transmitted through cell division remain unclear. Because epigenetic states are metastable and change in response to the appropriate signals, a deeper understanding of their molecular framework will allow us to tackle the dysregulation of epigenetics in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonasio, Roberto -- Tu, Shengjiang -- Reinberg, Danny -- GM037120/GM/NIGMS NIH HHS/ -- GM064844/GM/NIGMS NIH HHS/ -- R01 GM064844/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):612-6. doi: 10.1126/science.1191078.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, School of Medicine, New York University, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Chromatin/chemistry/genetics/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Histones/*metabolism ; Humans ; Protein Processing, Post-Translational ; RNA, Untranslated/genetics/*metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-28
    Description: The organized societies of ants include short-lived worker castes displaying specialized behavior and morphology and long-lived queens dedicated to reproduction. We sequenced and compared the genomes of two socially divergent ant species: Camponotus floridanus and Harpegnathos saltator. Both genomes contained high amounts of CpG, despite the presence of DNA methylation, which in non-Hymenoptera correlates with CpG depletion. Comparison of gene expression in different castes identified up-regulation of telomerase and sirtuin deacetylases in longer-lived H. saltator reproductives, caste-specific expression of microRNAs and SMYD histone methyltransferases, and differential regulation of genes implicated in neuronal function and chemical communication. Our findings provide clues on the molecular differences between castes in these two ants and establish a new experimental model to study epigenetics in aging and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772619/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772619/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonasio, Roberto -- Zhang, Guojie -- Ye, Chaoyang -- Mutti, Navdeep S -- Fang, Xiaodong -- Qin, Nan -- Donahue, Greg -- Yang, Pengcheng -- Li, Qiye -- Li, Cai -- Zhang, Pei -- Huang, Zhiyong -- Berger, Shelley L -- Reinberg, Danny -- Wang, Jun -- Liebig, Jurgen -- 2009005/Howard Hughes Medical Institute/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1068-71. doi: 10.1126/science.1192428.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798317" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Amino Acid Sequence ; Animals ; Ants/classification/*genetics/physiology ; Behavior, Animal ; DNA/chemistry/genetics ; Dinucleoside Phosphates/analysis ; *Epigenesis, Genetic ; Gene Expression Profiling ; Gene Expression Regulation ; *Genes, Insect ; *Genome ; Group III Histone Deacetylases/genetics/metabolism ; Hydrocarbons/metabolism ; Insect Proteins/chemistry/*genetics/metabolism ; MicroRNAs/genetics ; Molecular Sequence Data ; Protein Methyltransferases/genetics/metabolism ; Proteome ; Repetitive Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Social Behavior ; Species Specificity ; Telomerase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-04-02
    Description: The carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) in mammals undergoes extensive posttranslational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the coactivator-associated arginine methyltransferase 1 (CARM1). Although methylation at R1810 is present on the hyperphosphorylated form of RNAPII in vivo, Ser2 or Ser5 phosphorylation inhibits CARM1 activity toward this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the misexpression of a variety of small nuclear RNAs and small nucleolar RNAs, an effect that is also observed in Carm1(-/-) mouse embryo fibroblasts. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sims, Robert J 3rd -- Rojas, Luis Alejandro -- Beck, David -- Bonasio, Roberto -- Schuller, Roland -- Drury, William J 3rd -- Eick, Dirk -- Reinberg, Danny -- F32 GM071166/GM/NIGMS NIH HHS/ -- GM-37120/GM/NIGMS NIH HHS/ -- GM-71166/GM/NIGMS NIH HHS/ -- R01 GM037120/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):99-103. doi: 10.1126/science.1202663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Biochemistry, New York University School of Medicine, 522 First Avenue, Smilow 211, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/metabolism ; Cell Line ; HeLa Cells ; Humans ; Methylation ; Mice ; Mutation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/metabolism ; RNA Polymerase II/genetics/*metabolism ; RNA, Small Nuclear/metabolism ; RNA, Small Nucleolar/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-02
    Description: Eusocial insects organize themselves into behavioral castes whose regulation has been proposed to involve epigenetic processes, including histone modification. In the carpenter ant Camponotus floridanus, morphologically distinct worker castes called minors and majors exhibit pronounced differences in foraging and scouting behaviors. We found that these behaviors are regulated by histone acetylation likely catalyzed by the conserved acetyltransferase CBP. Transcriptome and chromatin analysis in brains of scouting minors fed pharmacological inhibitors of CBP and histone deacetylases (HDACs) revealed hundreds of genes linked to hyperacetylated regions targeted by CBP. Majors rarely forage, but injection of a HDAC inhibitor or small interfering RNAs against the HDAC Rpd3 into young major brains induced and sustained foraging in a CBP-dependent manner. Our results suggest that behavioral plasticity in animals may be regulated in an epigenetic manner via histone modification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simola, Daniel F -- Graham, Riley J -- Brady, Cristina M -- Enzmann, Brittany L -- Desplan, Claude -- Ray, Anandasankar -- Zwiebel, Laurence J -- Bonasio, Roberto -- Reinberg, Danny -- Liebig, Jurgen -- Berger, Shelley L -- 2009005/Howard Hughes Medical Institute/ -- DP2MH107055/DP/NCCDPHP CDC HHS/ -- T32HD083185/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):aac6633. doi: 10.1126/science.aac6633.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. Program in Epigenetics, University of Pennsylvania, Philadelphia, PA 19104, USA. simola@upenn.edu danny.reinberg@nyumc.org juergen.liebig@asu.edu bergers@upenn.edu. ; Program in Epigenetics, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. Program in Epigenetics, University of Pennsylvania, Philadelphia, PA 19104, USA. ; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA. ; Department of Biology, New York University, New York, NY 10003, USA. ; Department of Entomology, University of California, Riverside, CA 92521, USA. ; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA. ; Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, NY 10016, USA. simola@upenn.edu danny.reinberg@nyumc.org juergen.liebig@asu.edu bergers@upenn.edu. ; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA. simola@upenn.edu danny.reinberg@nyumc.org juergen.liebig@asu.edu bergers@upenn.edu. ; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. Program in Epigenetics, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. simola@upenn.edu danny.reinberg@nyumc.org juergen.liebig@asu.edu bergers@upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26722000" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Ants/drug effects/*genetics/*physiology ; *Behavior, Animal ; Chromatin/metabolism ; *Epigenesis, Genetic ; Histone Deacetylase 2/antagonists & inhibitors/genetics/*physiology ; Histone Deacetylase Inhibitors/pharmacology ; Protein Processing, Post-Translational ; *Social Behavior ; Social Class ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2019
    Description: 〈p〉Gene silencing by chromatin compaction is integral to establishing and maintaining cell fates. H3K9me3-marked heterochromatin is reduced in embryonic stem cells compared to differentiated cells. However, the establishment and dynamics of closed regions of chromatin at protein coding genes, in embryologic development, remain elusive. We developed an antibody-independent method to isolate and map compacted heterochromatin from low cell number samples. We discovered high levels of compacted heterochromatin, H3K9me3-decorated, at protein coding genes in early, uncommitted cells at the germ layer stage, undergoing profound rearrangements and reduction upon differentiation, concomitant with cell type-specific gene expression. Perturbation of the three H3K9me3-related methyltransferases revealed a pivotal role for H3K9me3 heterochromatin during lineage commitment at the onset of organogenesis and for lineage fidelity maintenance.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Gene silencing by chromatin compaction is integral to establishing and maintaining cell fates. Trimethylated histone 3 lysine 9 (H3K9me3)–marked heterochromatin is reduced in embryonic stem cells compared to differentiated cells. However, the establishment and dynamics of closed regions of chromatin at protein-coding genes, in embryologic development, remain elusive. We developed an antibody-independent method to isolate and map compacted heterochromatin from low–cell number samples. We discovered high levels of compacted heterochromatin, H3K9me3-decorated, at protein-coding genes in early, uncommitted cells at the germ-layer stage, undergoing profound rearrangements and reduction upon differentiation, concomitant with cell type–specific gene expression. Perturbation of the three H3K9me3-related methyltransferases revealed a pivotal role for H3K9me3 heterochromatin during lineage commitment at the onset of organogenesis and for lineage fidelity maintenance.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...