ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-05-10
    Description: Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166216/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166216/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banks, Jo Ann -- Nishiyama, Tomoaki -- Hasebe, Mitsuyasu -- Bowman, John L -- Gribskov, Michael -- dePamphilis, Claude -- Albert, Victor A -- Aono, Naoki -- Aoyama, Tsuyoshi -- Ambrose, Barbara A -- Ashton, Neil W -- Axtell, Michael J -- Barker, Elizabeth -- Barker, Michael S -- Bennetzen, Jeffrey L -- Bonawitz, Nicholas D -- Chapple, Clint -- Cheng, Chaoyang -- Correa, Luiz Gustavo Guedes -- Dacre, Michael -- DeBarry, Jeremy -- Dreyer, Ingo -- Elias, Marek -- Engstrom, Eric M -- Estelle, Mark -- Feng, Liang -- Finet, Cedric -- Floyd, Sandra K -- Frommer, Wolf B -- Fujita, Tomomichi -- Gramzow, Lydia -- Gutensohn, Michael -- Harholt, Jesper -- Hattori, Mitsuru -- Heyl, Alexander -- Hirai, Tadayoshi -- Hiwatashi, Yuji -- Ishikawa, Masaki -- Iwata, Mineko -- Karol, Kenneth G -- Koehler, Barbara -- Kolukisaoglu, Uener -- Kubo, Minoru -- Kurata, Tetsuya -- Lalonde, Sylvie -- Li, Kejie -- Li, Ying -- Litt, Amy -- Lyons, Eric -- Manning, Gerard -- Maruyama, Takeshi -- Michael, Todd P -- Mikami, Koji -- Miyazaki, Saori -- Morinaga, Shin-ichi -- Murata, Takashi -- Mueller-Roeber, Bernd -- Nelson, David R -- Obara, Mari -- Oguri, Yasuko -- Olmstead, Richard G -- Onodera, Naoko -- Petersen, Bent Larsen -- Pils, Birgit -- Prigge, Michael -- Rensing, Stefan A -- Riano-Pachon, Diego Mauricio -- Roberts, Alison W -- Sato, Yoshikatsu -- Scheller, Henrik Vibe -- Schulz, Burkhard -- Schulz, Christian -- Shakirov, Eugene V -- Shibagaki, Nakako -- Shinohara, Naoki -- Shippen, Dorothy E -- Sorensen, Iben -- Sotooka, Ryo -- Sugimoto, Nagisa -- Sugita, Mamoru -- Sumikawa, Naomi -- Tanurdzic, Milos -- Theissen, Gunter -- Ulvskov, Peter -- Wakazuki, Sachiko -- Weng, Jing-Ke -- Willats, William W G T -- Wipf, Daniel -- Wolf, Paul G -- Yang, Lixing -- Zimmer, Andreas D -- Zhu, Qihui -- Mitros, Therese -- Hellsten, Uffe -- Loque, Dominique -- Otillar, Robert -- Salamov, Asaf -- Schmutz, Jeremy -- Shapiro, Harris -- Lindquist, Erika -- Lucas, Susan -- Rokhsar, Daniel -- Grigoriev, Igor V -- GM065383/GM/NIGMS NIH HHS/ -- GM84051/GM/NIGMS NIH HHS/ -- HG004164/HG/NHGRI NIH HHS/ -- R01 GM043644/GM/NIGMS NIH HHS/ -- R01 GM084051/GM/NIGMS NIH HHS/ -- R01 GM084051-01A1/GM/NIGMS NIH HHS/ -- R01 HG004164/HG/NHGRI NIH HHS/ -- R01 HG004164-02/HG/NHGRI NIH HHS/ -- R01 HG004164-03/HG/NHGRI NIH HHS/ -- R01 HG004164-04/HG/NHGRI NIH HHS/ -- T32 GM007757/GM/NIGMS NIH HHS/ -- T32-HG00035/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):960-3. doi: 10.1126/science.1203810. Epub 2011 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA. banksj@purdue.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21551031" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/chemistry/genetics ; *Biological Evolution ; Bryopsida/genetics ; Chlamydomonas/chemistry/genetics ; DNA Transposable Elements ; Evolution, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; *Genome, Plant ; MicroRNAs/genetics ; Molecular Sequence Data ; Phylogeny ; Plant Proteins/genetics/metabolism ; Proteome/analysis ; RNA Editing ; RNA, Plant/genetics ; Repetitive Sequences, Nucleic Acid ; Selaginellaceae/*genetics/growth & development/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Cytokinin ; Gametophore over-producing mutants ; Physcomitrella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several phenotypically distinct classes of gametophore overproducing mutants have been isolated in P. patens. Mutants belonging to one class resemble the wild-type strain grown on medium containing a high concentration (5–50μM) of exogenously supplied cytokinin. Mutants of this type can increase the production of gametophores in the wildtype strain by cross-feeding it through the culture medium. Mutants belonging to another class resemble the wild-type strain cultured on medium containing a lower concentration (50–500 nM) of exogenous cytokinin. Mutants of this kind cannot cross-feed the wild-type strain through the culture medium. A component, required by the wild-type strain for the initiation of gametophores in response to cytokinin, either is not formed or is not activated in the dark. Gametophore over-producing mutants may also be unable to synthesize/activate this component in the dark and thus, like the wild-type strain, they produce no gametophores in the dark.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Auxin ; Cytokinin ; Mutants ; Physcomitrella ; Protoplast fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mutants altered in their response to auxins and cytokinins have been isolated in the moss Physcomitrella patens either by screening clones from mutagenized spores for growth on high concentrations of cytokinin or auxin, in which case mutants showing altered sensitivities can be recognized 3–4 weeks later, or by non-selective isolation of morphologically abnormal mutants, some of which are found to have altered sensitivities. Most of the mutants obtained selectively are also morphologically abnormal. The mutants are heterogeneous in their responses to auxin and cytokinin, and the behaviour of some is consistent with their being unable to make auxin, while that of others may be due to their being unable to synthesize cytokinin. Physiological analysis of the mutants has shown that both endogenous auxin and cytokinin are likely to play important and interdependent roles in several steps of gametophytic development. Although their morphological abnormalities lead to sterility, genetic analysis of some of the mutants has been possible by polyethyleneglycol induced protoplast fusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 154 (1977), S. 87-95 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Eighteen nutritional mutants have been isolated in the haploid, monoecious moss, Physcomitrella patens: five nicotinic acid auxotrophs, four p-aminobenzoic acid auxotrophs, four adenine auxotrophs, two amino acid requiring mutants and three nitrate non-utilising mutants. Seventeen of them were obtained using total isolation; one was isolated selectively. Strains resistant to the amino acid analogues, D-serine and p-fluorophenyl-alanine, and the purine analogue, 8-azaguanine, have been selected. Many of the auxotrophs are self-sterile. Crosses between auxotrophic strains have been effected and the progeny analysed. No linkage has been detected. Nicotinic acid auxotrophy has resulted from mutation in at least two genes. Self-sterility segregates as a pleiotropic effect of four mutations which produce nutritional dependence. A diploid strain has been obtained by aposporus regeneration from a hybrid sporophyte and the phenotypes of progeny resulting from the self-fertilisation of this strain have been analysed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 154 (1977), S. 97-100 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A technique has been developed for the isolation of large numbers of protoplasts from protonemal tissue of Physcomitrella patens, and for their regeneration to give whole plants. Somatic hybrids have been selected following treatment of mixtures of protoplasts from complementary auxotrophic strains with 50 mM CaCl2 at high pH. The hybrids have a morphology different from that of normal haploid strains, but similar to that of aposporously produced diploids. The progeny resulting from selffertilisation of the hybrids show a segregation which is consistent with their being the products of meioses in an autotetraploid.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 155 (1977), S. 103-107 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Fusion of protoplasts from the moss, Physcomitrella patens, was induced using polyethyleneglycol. Protoplasts were isolated from six nicotinic acid auxotrophic strains of independent origin and fusion was induced in all possible pairwise combinations. Complementation was detected by the ability to recover hybrids able to grow without nicotinic acid supplement. On the basis of the results presented, three nonoverlapping complementation groups were identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-15
    Description: The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro , hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-20
    Description: Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus . Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1980-12-01
    Print ISSN: 0018-067X
    Electronic ISSN: 1365-2540
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1981-02-01
    Print ISSN: 0018-067X
    Electronic ISSN: 1365-2540
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...