ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (95)
  • Cloning, Molecular  (93)
  • American Association for the Advancement of Science (AAAS)  (184)
  • Wiley
  • 1995-1999  (184)
  • 1999  (82)
  • 1998  (102)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (184)
  • Wiley
Years
  • 1995-1999  (184)
Year
  • 1
    Publication Date: 1998-03-21
    Description: The T cell receptor (TCR) inherently has dual specificity. T cells must recognize self-antigens in the thymus during maturation and then discriminate between foreign pathogens in the periphery. A molecular basis for this cross-reactivity is elucidated by the crystal structure of the alloreactive 2C TCR bound to self peptide-major histocompatibility complex (pMHC) antigen H-2Kb-dEV8 refined against anisotropic 3.0 angstrom resolution x-ray data. The interface between peptide and TCR exhibits extremely poor shape complementarity, and the TCR beta chain complementarity-determining region 3 (CDR3) has minimal interaction with the dEV8 peptide. Large conformational changes in three of the TCR CDR loops are induced upon binding, providing a mechanism of structural plasticity to accommodate a variety of different peptide antigens. Extensive TCR interaction with the pMHC alpha helices suggests a generalized orientation that is mediated by the Valpha domain of the TCR and rationalizes how TCRs can effectively "scan" different peptides bound within a large, low-affinity MHC structural framework for those that provide the slight additional kinetic stabilization required for signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, K C -- Degano, M -- Pease, L R -- Huang, M -- Peterson, P A -- Teyton, L -- Wilson, I A -- AI42266/AI/NIAID NIH HHS/ -- AI42267/AI/NIAID NIH HHS/ -- R01 CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1166-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallization ; Crystallography, X-Ray ; H-2 Antigens/*chemistry/*immunology/metabolism ; Ligands ; Mice ; Mice, Transgenic ; Models, Molecular ; Mutation ; Oligopeptides/*chemistry/immunology/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/*immunology/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: Mice homozygous for a disrupted allele of the mismatch repair gene Pms2 have a mutator phenotype. When this allele is crossed into quasi-monoclonal (QM) mice, which have a very limited B cell repertoire, homozygotes have fewer somatic mutations at the immunoglobulin heavy chain and lambda chain loci than do heterozygotes or wild-type QM mice. That is, mismatch repair seems to contribute to somatic hypermutation rather than stifling it. It is suggested that at immunoglobulin loci in hypermutable B cells, mismatched base pairs are "corrected" according to the newly synthesized DNA strand, thereby fixing incipient mutations instead of eliminating them.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cascalho, M -- Wong, J -- Steinberg, C -- Wabl, M -- 1R01 GM37699/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0670, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469811" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenosine Triphosphatases ; Alleles ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology ; Base Composition ; Base Sequence ; Cloning, Molecular ; Crosses, Genetic ; *DNA Repair ; *DNA Repair Enzymes ; *DNA-Binding Proteins ; Female ; Gene Rearrangement ; *Genes, Immunoglobulin ; Heterozygote ; Immunoglobulin Heavy Chains/chemistry/genetics ; Immunoglobulin Variable Region/chemistry/*genetics ; Immunoglobulin lambda-Chains/chemistry/genetics ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Mutation ; Proteins/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-12-05
    Description: Group I introns possess a single active site that catalyzes the two sequential reactions of self-splicing. An RNA comprising the two domains of the Tetrahymena thermophila group I intron catalytic core retains activity, and the 5.0 angstrom crystal structure of this 247-nucleotide ribozyme is now described. Close packing of the two domains forms a shallow cleft capable of binding the short helix that contains the 5' splice site. The helix that provides the binding site for the guanosine substrate deviates significantly from A-form geometry, providing a tight binding pocket. The binding pockets for both the 5' splice site helix and guanosine are formed and oriented in the absence of these substrates. Thus, this large ribozyme is largely preorganized for catalysis, much like a globular protein enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golden, B L -- Gooding, A R -- Podell, E R -- Cech, T R -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):259-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA. bgolden@petunia.colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Guanosine/metabolism ; Introns ; Magnesium/metabolism ; Manganese/metabolism ; *Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phosphates/metabolism ; RNA Splicing ; RNA, Catalytic/*chemistry/metabolism ; Tetrahymena thermophila/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: The 2.5 angstrom resolution x-ray crystal structure of the Escherichia coli RNA polymerase (RNAP) alpha subunit amino-terminal domain (alphaNTD), which is necessary and sufficient to dimerize and assemble the other RNAP subunits into a transcriptionally active enzyme and contains all of the sequence elements conserved among eukaryotic alpha homologs, has been determined. The alphaNTD monomer comprises two distinct, flexibly linked domains, only one of which participates in the dimer interface. In the alphaNTD dimer, a pair of helices from one monomer interact with the cognate helices of the other to form an extensive hydrophobic core. All of the determinants for interactions with the other RNAP subunits lie on one face of the alphaNTD dimer. Sequence alignments, combined with secondary-structure predictions, support proposals that a heterodimer of the eukaryotic RNAP subunits related to Saccharomyces cerevisiae Rpb3 and Rpb11 plays the role of the alphaNTD dimer in prokaryotic RNAP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, G -- Darst, S A -- GM19441-01/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/*chemistry ; Dimerization ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Polymerase II/chemistry ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-06-11
    Description: Sickle cell anemia is the most common heritable hematological disease, yet no curative treatment exists for this disorder. Moreover, the intricacies of globin gene expression have made the development of treatments for hemoglobinopathies based on gene therapy difficult. An alternative genetic approach to sickle cell therapy is based on RNA repair. A trans-splicing group I ribozyme was used to alter mutant beta-globin transcripts in erythrocyte precursors derived from peripheral blood from individuals with sickle cell disease. Sickle beta-globin transcripts were converted into messenger RNAs encoding the anti-sickling protein gamma-globin. These results suggest that RNA repair may become a useful approach in the treatment of genetic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lan, N -- Howrey, R P -- Lee, S W -- Smith, C A -- Sullenger, B A -- HL57606/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1593-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genetic and Cellular Therapies, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616120" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/*blood/therapy ; Cloning, Molecular ; Erythroid Precursor Cells/*metabolism ; Exons ; Fetal Blood ; Genetic Therapy ; Globins/*genetics ; Humans ; Mutation ; Polymerase Chain Reaction ; *RNA Splicing ; RNA, Catalytic/genetics/*metabolism ; RNA, Messenger/chemistry/*genetics/metabolism ; Transfection ; Uridine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-02-21
    Description: Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, L -- Anderson, K -- Stokoe, D -- Erdjument-Bromage, H -- Painter, G F -- Holmes, A B -- Gaffney, P R -- Reese, C B -- McCormick, F -- Tempst, P -- Coadwell, J -- Hawkins, P T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):710-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inositide Laboratory, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445477" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cloning, Molecular ; DNA, Complementary ; Drosophila ; Drosophila Proteins ; Enzyme Activation ; Humans ; Liposomes/metabolism ; Molecular Sequence Data ; Open Reading Frames ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/isolation & ; purification/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Recombinant Proteins/metabolism ; Sheep ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adams, M W -- Stiefel, E I -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1842-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA. adams@bmb.uga.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9874636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carbon Monoxide/chemistry ; Clostridium/*enzymology ; Crystallography, X-Ray ; Cyanides/chemistry ; Humans ; Hydrogen/*metabolism ; Hydrogenase/*chemistry/*metabolism ; Iron/chemistry ; Ligands ; Oxidation-Reduction ; Pyruvic Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: The three-dimensional structure of a 70-kilodalton amino terminally truncated form of human topoisomerase I in complex with a 22-base pair duplex oligonucleotide, determined to a resolution of 2.8 angstroms, reveals all of the structural elements of the enzyme that contact DNA. The linker region that connects the central core of the enzyme to the carboxyl-terminal domain assumes a coiled-coil configuration and protrudes away from the remainder of the enzyme. The positively charged DNA-proximal surface of the linker makes only a few contacts with the DNA downstream of the cleavage site. In combination with the crystal structures of the reconstituted human topoisomerase I before and after DNA cleavage, this information suggests which amino acid residues are involved in catalyzing phosphodiester bond breakage and religation. The structures also lead to the proposal that the topoisomerization step occurs by a mechanism termed "controlled rotation."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, L -- Redinbo, M R -- Qiu, X -- Hol, W G -- Champoux, J J -- CA65656/CA/NCI NIH HHS/ -- GM16713/GM/NIGMS NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1534-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195-7742, USA. emerald_biostructures@rocketmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):521-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9575097" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Drug Resistance, Microbial/genetics ; Escherichia coli/genetics/pathogenicity ; *Genes, Bacterial ; Integrases/*genetics/metabolism ; *Recombination, Genetic ; *Repetitive Sequences, Nucleic Acid ; Vibrio cholerae/enzymology/*genetics/pathogenicity ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-04-16
    Description: Photoactive yellow protein (PYP) is a member of the xanthopsin family of eubacterial blue-light photoreceptors. On absorption of light, PYP enters a photocycle that ultimately transduces the energy contained in a light signal into an altered biological response. Nanosecond time-resolved x-ray crystallography was used to determine the structure of the short-lived, red-shifted, intermediate state denoted [pR], which develops within 1 nanosecond after photoelectronic excitation of the chromophore of PYP by absorption of light. The resulting structural model demonstrates that the [pR] state possesses the cis conformation of the 4-hydroxyl cinnamic thioester chromophore, and that the process of trans to cis isomerization is accompanied by the specific formation of new hydrogen bonds that replace those broken upon excitation of the chromophore. Regions of flexibility that compose the chromophore-binding pocket serve to lower the activation energy barrier between the dark state, denoted pG, and [pR], and help initiate entrance into the photocycle. Direct structural evidence is provided for the initial processes of transduction of light energy, which ultimately translate into a physiological signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perman, B -- Srajer, V -- Ren, Z -- Teng, T -- Pradervand, C -- Ursby, T -- Bourgeois, D -- Schotte, F -- Wulff, M -- Kort, R -- Hellingwerf, K -- Moffat, K -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1946-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506946" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Chromatiaceae/chemistry ; Crystallography, X-Ray ; Energy Metabolism ; Fourier Analysis ; Hydrogen Bonding ; Isomerism ; Kinetics ; *Light ; Models, Molecular ; *Photoreceptors, Microbial ; *Protein Conformation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):978-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490484" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Databases, Factual ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry/classification/genetics ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9446222" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Binding Sites ; Cell Division ; Crystallization ; Crystallography/*methods ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; GTP-Binding Proteins/chemistry ; Guanosine Triphosphate/metabolism ; Microtubules/chemistry ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary ; Tubulin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1999-10-09
    Description: The Yersinia pseudotuberculosis invasin protein promotes bacterial entry by binding to host cell integrins with higher affinity than natural substrates such as fibronectin. The 2.3 angstrom crystal structure of the invasin extracellular region reveals five domains that form a 180 angstrom rod with structural similarities to tandem fibronectin type III domains. The integrin-binding surfaces of invasin and fibronectin include similarly located key residues, but in the context of different folds and surface shapes. The structures of invasin and fibronectin provide an example of convergent evolution, in which invasin presents an optimized surface for integrin binding, in comparison with host substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamburger, Z A -- Brown, M S -- Isberg, R R -- Bjorkman, P J -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):291-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514372" target="_blank"〉PubMed〈/a〉
    Keywords: *Adhesins, Bacterial ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Evolution, Molecular ; Fibronectins/chemistry/metabolism ; Hydrogen Bonding ; Integrins/*metabolism ; Ligands ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Yersinia pseudotuberculosis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crow, J F -- New York, N.Y. -- Science. 1999 Mar 12;283(5408):1651-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Wisconsin, Madison, WI 53706, USA. jfcrow@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10189318" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics/physiology ; Cell Nucleus/metabolism ; Cloning, Molecular ; Drosophila/*genetics/physiology ; *Drosophila Proteins ; *GTPase-Activating Proteins ; *Genes, Insect ; Male ; *Meiosis ; Nuclear Proteins/*genetics/physiology ; Sperm Maturation ; Spermatozoa/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1265-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*enzymology ; Brain/*enzymology ; Cloning, Molecular ; Glutamic Acid/metabolism ; Neurons/metabolism ; Racemases and Epimerases/*genetics/metabolism ; Rats ; Receptors, N-Methyl-D-Aspartate/metabolism ; Serine/*biosynthesis/metabolism ; Stereoisomerism ; Synapses/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1999-11-27
    Description: X-ray crystal structures of three species related to the oxidative half of the reaction of the copper-containing quinoprotein amine oxidase from Escherichia coli have been determined. Crystals were freeze-trapped either anaerobically or aerobically after exposure to substrate, and structures were determined to resolutions between 2.1 and 2.4 angstroms. The oxidation state of the quinone cofactor was investigated by single-crystal spectrophotometry. The structures reveal the site of bound dioxygen and the proton transfer pathways involved in oxygen reduction. The quinone cofactor is regenerated from the iminoquinone intermediate by hydrolysis involving Asp383, the catalytic base in the reductive half-reaction. Product aldehyde inhibits the hydrolysis, making release of product the rate-determining step of the reaction in the crystal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilmot, C M -- Hajdu, J -- McPherson, M J -- Knowles, P F -- Phillips, S E -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1724-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576737" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amine Oxidase (Copper-Containing)/*chemistry/*metabolism ; Anaerobiosis ; Aspartic Acid/chemistry/metabolism ; Binding Sites ; Catalysis ; Copper/*metabolism ; Crystallography, X-Ray ; Dihydroxyphenylalanine/*analogs & derivatives/chemistry/metabolism ; Dimerization ; Electrons ; Escherichia coli/enzymology ; Hydrogen Bonding ; Nitric Oxide/metabolism ; Oxidation-Reduction ; Oxygen/*metabolism ; Phenethylamines/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protons ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1999-09-25
    Description: The 7.8 angstrom crystal structure of the 70S ribosome reveals a discrete double-helical bridge (B4) that projects from the 50S subunit, making contact with the 30S subunit. Preliminary modeling studies localized its contact site, near the bottom of the platform, to the binding site for ribosomal protein S15. Directed hydroxyl radical probing from iron(II) tethered to S15 specifically cleaved nucleotides in the 715 loop of domain II of 23S ribosomal RNA, one of the known sites in 23S ribosomal RNA that are footprinted by the 30S subunit. Reconstitution studies show that protection of the 715 loop, but none of the other 30S-dependent protections, is correlated with the presence of S15 in the 30S subunit. The 715 loop is specifically protected by binding free S15 to 50S subunits. Moreover, the previously determined structure of a homologous stem-loop from U2 small nuclear RNA fits closely to the electron density of the bridge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culver, G M -- Cate, J H -- Yusupova, G Z -- Yusupov, M M -- Noller, H F -- 1F32GM18065-01/GM/NIGMS NIH HHS/ -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2133-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497132" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/chemistry ; Hydroxyl Radical ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Bacterial/*chemistry/metabolism ; RNA, Ribosomal, 23S/*chemistry/metabolism ; RNA, Small Nuclear/chemistry/metabolism ; Ribosomal Proteins/chemistry/*metabolism ; Ribosomes/*chemistry/metabolism/ultrastructure ; Thermus thermophilus/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, I A -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1867-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. wilson@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*chemistry/immunology/metabolism ; Binding Sites ; CD4-Positive T-Lymphocytes/immunology/metabolism ; CD8-Positive T-Lymphocytes/immunology/metabolism ; Crystallography, X-Ray ; Histocompatibility Antigens Class I/chemistry/immunology/metabolism ; Histocompatibility Antigens Class II/*chemistry/immunology/metabolism ; Mice ; Models, Molecular ; Peptides/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1999-03-26
    Description: The carboxyl-terminal domain of colicin E5 was shown to inhibit protein synthesis of Escherichia coli. Its target, as revealed through in vivo and in vitro experiments, was not ribosomes as in the case of E3, but the transfer RNAs (tRNAs) for Tyr, His, Asn, and Asp, which contain a modified base, queuine, at the wobble position of each anticodon. The E5 carboxyl-terminal domain hydrolyzed these tRNAs just on the 3' side of this nucleotide. Tight correlation was observed between the toxicity of E5 and the cleavage of intracellular tRNAs of this group, implying that these tRNAs are the primary targets of colicin E5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogawa, T -- Tomita, K -- Ueda, T -- Watanabe, K -- Uozumi, T -- Masaki, H -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2097-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092236" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/*metabolism ; Bacterial Proteins/biosynthesis/genetics/pharmacology ; Base Sequence ; Cloning, Molecular ; Colicins/genetics/*metabolism/pharmacology ; Escherichia coli/drug effects/metabolism ; *Escherichia coli Proteins ; Guanine/analogs & derivatives/analysis ; Molecular Sequence Data ; RNA, Bacterial/chemistry/*metabolism ; RNA, Ribosomal, 16S/metabolism ; RNA, Transfer, Amino Acid-Specific/chemistry/*metabolism ; RNA, Transfer, Asn/chemistry/metabolism ; RNA, Transfer, Asp/chemistry/metabolism ; RNA, Transfer, His/chemistry/metabolism ; RNA, Transfer, Tyr/chemistry/metabolism ; Ribonucleases/genetics/*metabolism/pharmacology ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, V -- Goodenough, D A -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10428705" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium Channels/metabolism ; Cell Membrane/metabolism/ultrastructure ; Claudins ; Cloning, Molecular ; Humans ; Ion Channels ; Ion Transport ; Kidney Diseases/genetics/*metabolism ; Kidney Tubules/*metabolism/ultrastructure ; Lipid Bilayers/metabolism ; Magnesium/blood/*metabolism ; Magnesium Deficiency/genetics/*metabolism ; Membrane Proteins/genetics/*physiology ; Mutation ; Tight Junctions/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liljas, A -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2077-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Center for Chemistry and Chemical Engineering, University of Lund, Lund, Sweden. anders.liljas@mbfys.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523206" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon ; Bacterial Proteins/biosynthesis/chemistry ; Binding Sites ; Codon ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Nucleic Acid Conformation ; Peptide Elongation Factors/metabolism ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Ribosomal/chemistry ; RNA, Transfer/chemistry/metabolism ; Ribosomal Proteins/chemistry ; Ribosomes/*chemistry/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hederstedt, L -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1941-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Lund University, Lund, Sweden. Lars.Hederstedt@mikrbiol.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10400536" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacillus subtilis/enzymology ; Binding Sites ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Dimerization ; Electron Transport ; *Energy Metabolism ; Escherichia coli/*enzymology ; Evolution, Molecular ; Fumarates/metabolism ; Mitochondria/enzymology ; Oxidation-Reduction ; Oxygen Consumption ; Protein Conformation ; Protein Structure, Secondary ; Succinate Dehydrogenase/*chemistry/*metabolism ; Succinic Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1999-01-05
    Description: CmPP16 from Cucurbita maxima was cloned and the protein was shown to possess properties similar to those of viral movement proteins. CmPP16 messenger RNA (mRNA) is present in phloem tissue, whereas protein appears confined to sieve elements (SE). Microinjection and grafting studies revealed that CmPP16 moves from cell to cell, mediates the transport of sense and antisense RNA, and moves together with its mRNA into the SE of scion tissue. CmPP16 possesses the characteristics that are likely required to mediate RNA delivery into the long-distance translocation stream. Thus, RNA may move within the phloem as a component of a plant information superhighway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xoconostle-Cazares, B -- Xiang, Y -- Ruiz-Medrano, R -- Wang, H L -- Monzer, J -- Yoo, B C -- McFarland, K C -- Franceschi, V R -- Lucas, W J -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):94-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872750" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cloning, Molecular ; Cucumis sativus ; Cucurbitaceae/genetics/*metabolism ; Microinjections ; Molecular Sequence Data ; Plant Leaves/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Roots/metabolism ; Plant Stems/metabolism ; Plant Viral Movement Proteins ; RNA, Antisense/metabolism ; RNA, Messenger/*metabolism ; RNA, Plant/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Viral Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1999-12-22
    Description: The crystal structure of an efficient Diels-Alder antibody catalyst at 1.9 angstrom resolution reveals almost perfect shape complementarity with its transition state analog. Comparison with highly related progesterone and Diels-Alderase antibodies that arose from the same primordial germ line template shows the relatively subtle mutational steps that were able to evolve both structural complementarity and catalytic efficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, J -- Deng, Q -- Chen, J -- Houk, K N -- Bartek, J -- Hilvert, D -- Wilson, I A -- CA27489/CA/NCI NIH HHS/ -- GM38273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600746" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/genetics/*metabolism ; Binding Sites, Antibody ; Catalysis ; Chemistry, Physical ; Crystallography, X-Ray ; *Evolution, Molecular ; Haptens/chemistry/metabolism ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Ligands ; Models, Molecular ; Mutation ; Physicochemical Phenomena ; Progesterone/immunology ; Protein Conformation ; Solubility ; Temperature ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1999-08-14
    Description: Isoleucyl-transfer RNA (tRNA) synthetase (IleRS) joins Ile to tRNA(Ile) at its synthetic active site and hydrolyzes incorrectly acylated amino acids at its editing active site. The 2.2 angstrom resolution crystal structure of Staphylococcus aureus IleRS complexed with tRNA(Ile) and Mupirocin shows the acceptor strand of the tRNA(Ile) in the continuously stacked, A-form conformation with the 3' terminal nucleotide in the editing active site. To position the 3' terminus in the synthetic active site, the acceptor strand must adopt the hairpinned conformation seen in tRNA(Gln) complexed with its synthetase. The amino acid editing activity of the IleRS may result from the incorrect products shuttling between the synthetic and editing active sites, which is reminiscent of the editing mechanism of DNA polymerases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silvian, L F -- Wang, J -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1074-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446055" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Adenosine Monophosphate/analogs & derivatives/metabolism ; Amino Acids/metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA-Directed DNA Polymerase/metabolism ; Glutamate-tRNA Ligase/chemistry/metabolism ; Isoleucine/metabolism ; Isoleucine-tRNA Ligase/*chemistry/*metabolism ; Models, Molecular ; Mupirocin/chemistry/*metabolism ; Nucleic Acid Conformation ; Oligopeptides/metabolism ; Protein Conformation ; Protein Structure, Secondary ; RNA, Transfer, Gln/chemistry/metabolism ; RNA, Transfer, Ile/*chemistry/*metabolism ; Staphylococcus aureus/enzymology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1999-07-03
    Description: Epithelia permit selective and regulated flux from apical to basolateral surfaces by transcellular passage through cells or paracellular flux between cells. Tight junctions constitute the barrier to paracellular conductance; however, little is known about the specific molecules that mediate paracellular permeabilities. Renal magnesium ion (Mg2+) resorption occurs predominantly through a paracellular conductance in the thick ascending limb of Henle (TAL). Here, positional cloning has identified a human gene, paracellin-1 (PCLN-1), mutations in which cause renal Mg2+ wasting. PCLN-1 is located in tight junctions of the TAL and is related to the claudin family of tight junction proteins. These findings provide insight into Mg2+ homeostasis, demonstrate the role of a tight junction protein in human disease, and identify an essential component of a selective paracellular conductance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, D B -- Lu, Y -- Choate, K A -- Velazquez, H -- Al-Sabban, E -- Praga, M -- Casari, G -- Bettinelli, A -- Colussi, G -- Rodriguez-Soriano, J -- McCredie, D -- Milford, D -- Sanjad, S -- Lifton, R P -- F.1/Telethon/Italy -- R01DK51696/DK/NIDDK NIH HHS/ -- TGM06S01/Telethon/Italy -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390358" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/urine ; Chromosomes, Human, Pair 3/genetics ; Claudins ; Cloning, Molecular ; Female ; Genes, Recessive ; Homeostasis ; Humans ; Kidney Diseases/*genetics/metabolism ; Kidney Tubules/chemistry ; Loop of Henle/chemistry/*metabolism ; Magnesium/blood/*metabolism ; Magnesium Deficiency/*genetics/metabolism ; Male ; Membrane Proteins/analysis/chemistry/genetics/*physiology ; Molecular Sequence Data ; Mutation ; Pedigree ; Physical Chromosome Mapping ; Tight Junctions/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1999-02-12
    Description: Erythropoietin receptor (EPOR) is thought to be activated by ligand-induced homodimerization. However, structures of agonist and antagonist peptide complexes of EPOR, as well as an EPO-EPOR complex, have shown that the actual dimer configuration is critical for the biological response and signal efficiency. The crystal structure of the extracellular domain of EPOR in its unliganded form at 2.4 angstrom resolution has revealed a dimer in which the individual membrane-spanning and intracellular domains would be too far apart to permit phosphorylation by JAK2. This unliganded EPOR dimer is formed from self-association of the same key binding site residues that interact with EPO-mimetic peptide and EPO ligands. This model for a preformed dimer on the cell surface provides insights into the organization, activation, and plasticity of recognition of hematopoietic cell surface receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Livnah, O -- Stura, E A -- Middleton, S A -- Johnson, D L -- Jolliffe, L K -- Wilson, I A -- GM49497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):987-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9974392" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry ; Crystallography, X-Ray ; Dimerization ; Erythropoietin/metabolism ; Humans ; Hydrogen Bonding ; Janus Kinase 2 ; Ligands ; Models, Molecular ; Peptide Fragments/*chemistry/metabolism ; Peptides, Cyclic/metabolism ; Protein Conformation ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Erythropoietin/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1999-04-16
    Description: Mutation of the VHL tumor suppressor is associated with the inherited von Hippel-Lindau (VHL) cancer syndrome and the majority of kidney cancers. VHL binds the ElonginC-ElonginB complex and regulates levels of hypoxia-inducible proteins. The structure of the ternary complex at 2.7 angstrom resolution shows two interfaces, one between VHL and ElonginC and another between ElonginC and ElonginB. Tumorigenic mutations frequently occur in a 35-residue domain of VHL responsible for ElonginC binding. A mutational patch on a separate domain of VHL indicates a second macromolecular binding site. The structure extends the similarities to the SCF (Skp1-Cul1-F-box protein) complex that targets proteins for degradation, supporting the hypothesis that VHL may function in an analogous pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stebbins, C E -- Kaelin, W G Jr -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):455-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Structural Biology, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Cycle Proteins/chemistry/metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; *Ligases ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Neoplasms/genetics ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/metabolism ; S-Phase Kinase-Associated Proteins ; Surface Properties ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein ; von Hippel-Lindau Disease/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeLucas, L J -- New York, N.Y. -- Science. 1999 Jun 4;284(5420):1621.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10383336" target="_blank"〉PubMed〈/a〉
    Keywords: Cryopreservation ; Crystallization ; Crystallography, X-Ray ; Drug Design ; Drug Industry ; Enzyme Inhibitors ; Neuraminidase/antagonists & inhibitors/*chemistry ; *Spacecraft ; United States ; United States National Aeronautics and Space Administration ; *Weightlessness
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1999-09-08
    Description: Photoperiodic responses in plants include flowering that is day-length-dependent. Mutations in the Arabidopsis thaliana GIGANTEA (GI) gene cause photoperiod-insensitive flowering and alteration of circadian rhythms. The GI gene encodes a protein containing six putative transmembrane domains. Circadian expression patterns of the GI gene and the clock-associated genes, LHY and CCA1, are altered in gi mutants, showing that GI is required for maintaining circadian amplitude and appropriate period length of these genes. The gi-1 mutation also affects light signaling to the clock, which suggests that GI participates in a feedback loop of the plant circadian system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, D H -- Somers, D E -- Kim, Y S -- Choy, Y H -- Lim, H K -- Soh, M S -- Kim, H J -- Kay, S A -- Nam, H G -- GM56006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1579-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477524" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/*physiology ; *Arabidopsis Proteins ; *Circadian Rhythm ; Cloning, Molecular ; Crosses, Genetic ; DNA-Binding Proteins/genetics ; Darkness ; Feedback ; Gene Expression Regulation, Plant ; *Genes, Plant ; Light ; Molecular Sequence Data ; Mutation ; Photoperiod ; Plant Leaves/physiology ; Plant Proteins/chemistry/*genetics/physiology ; Plant Structures/physiology ; Sequence Deletion ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1999-07-03
    Description: An estimated 170 million persons worldwide are infected with hepatitis C virus (HCV), a major cause of chronic liver disease. Despite increasing knowledge of genome structure and individual viral proteins, studies on virus replication and pathogenesis have been hampered by the lack of reliable and efficient cell culture systems. A full-length consensus genome was cloned from viral RNA isolated from an infected human liver and used to construct subgenomic selectable replicons. Upon transfection into a human hepatoma cell line, these RNAs were found to replicate to high levels, permitting metabolic radiolabeling of viral RNA and proteins. This work defines the structure of HCV replicons functional in cell culture and provides the basis for a long-sought cellular system that should allow detailed molecular studies of HCV and the development of antiviral drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lohmann, V -- Korner, F -- Koch, J -- Herian, U -- Theilmann, L -- Bartenschlager, R -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):110-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Virology, Johannes-Gutenberg University Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390360" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Hepatocellular ; Cloning, Molecular ; Drug Resistance ; *Genome, Viral ; Gentamicins/pharmacology ; Hepacivirus/genetics/*physiology ; Hepatitis C/virology ; Humans ; Liver Neoplasms ; RNA, Viral/*biosynthesis/genetics ; *Replicon ; Transfection ; Tumor Cells, Cultured/*virology ; Viral Nonstructural Proteins/analysis/genetics ; Virus Cultivation ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-27
    Description: Adenosine triphosphate (ATP) synthase contains a rotary motor involved in biological energy conversion. Its membrane-embedded F0 sector has a rotation generator fueled by the proton-motive force, which provides the energy required for the synthesis of ATP by the F1 domain. An electron density map obtained from crystals of a subcomplex of yeast mitochondrial ATP synthase shows a ring of 10 c subunits. Each c subunit forms an alpha-helical hairpin. The interhelical loops of six to seven of the c subunits are in close contact with the gamma and delta subunits of the central stalk. The extensive contact between the c ring and the stalk suggests that they may rotate as an ensemble during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stock, D -- Leslie, A G -- Walker, J E -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1700-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576729" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Hydrogen Bonding ; Mitochondria/enzymology ; Models, Molecular ; Molecular Motor Proteins/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proton-Motive Force ; Proton-Translocating ATPases/*chemistry/metabolism ; Protons ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1999-10-09
    Description: Norwalk virus, a noncultivatable human calicivirus, is the major cause of epidemic gastroenteritis in humans. The first x-ray structure of a calicivirus capsid, which consists of 180 copies of a single protein, has been determined by phase extension from a low-resolution electron microscopy structure. The capsid protein has a protruding (P) domain connected by a flexible hinge to a shell (S) domain that has a classical eight-stranded beta-sandwich motif. The structure of the P domain is unlike that of any other viral protein with a subdomain exhibiting a fold similar to that of the second domain in the eukaryotic translation elongation factor-Tu. This subdomain, located at the exterior of the capsid, has the largest sequence variation among Norwalk-like human caliciviruses and is likely to contain the determinants of strain specificity and cell binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prasad, B V -- Hardy, M E -- Dokland, T -- Bella, J -- Rossmann, M G -- Estes, M K -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):287-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs Mclean Department of Biochemistry, Division of Molecular Virology, Baylor College of Medicine, Houston, TX 77030, USA. bprasad@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514371" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Capsid/*chemistry/metabolism ; *Capsid Proteins ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Dimerization ; Genome, Viral ; Humans ; Hydrogen Bonding ; Image Processing, Computer-Assisted ; Models, Molecular ; Molecular Sequence Data ; Norwalk virus/*chemistry/genetics/physiology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610555" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*legislation & jurisprudence ; California ; Cloning, Molecular ; *Human Growth Hormone/genetics ; *Patents as Topic ; Universities/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1999-03-19
    Description: In higher plants, organogenesis occurs continuously from self-renewing apical meristems. Arabidopsis thaliana plants with loss-of-function mutations in the CLAVATA (CLV1, 2, and 3) genes have enlarged meristems and generate extra floral organs. Genetic analysis indicates that CLV1, which encodes a receptor kinase, acts with CLV3 to control the balance between meristem cell proliferation and differentiation. CLV3 encodes a small, predicted extracellular protein. CLV3 acts nonautonomously in meristems and is expressed at the meristem surface overlying the CLV1 domain. These proteins may act as a ligand-receptor pair in a signal transduction pathway, coordinating growth between adjacent meristematic regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fletcher, J C -- Brand, U -- Running, M P -- Simon, R -- Meyerowitz, E M -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1911-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10082464" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*cytology/genetics/growth & development/metabolism ; *Arabidopsis Proteins ; Cell Differentiation ; Cell Division ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; In Situ Hybridization ; Ligands ; Meristem/*cytology/growth & development/metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Shoots/cytology ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Receptor Protein-Tyrosine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1999-07-10
    Description: Drug resistance of pathogens is an increasing problem whose underlying mechanisms are not fully understood. Cellular uptake of the major drugs against Trypanosoma brucei spp., the causative agents of sleeping sickness, is thought to occur through an unusual, so far unidentified adenosine transporter. Saccharomyces cerevisiae was used in a functional screen to clone a gene (TbAT1) from Trypanosoma brucei brucei that encodes a nucleoside transporter. When expressed in yeast, TbAT1 enabled adenosine uptake and conferred susceptibility to melaminophenyl arsenicals. Drug-resistant trypanosomes harbor a defective TbAT1 variant. The molecular identification of the entry route of trypanocides opens the way to approaches for diagnosis and treatment of drug-resistant sleeping sickness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maser, P -- Sutterlin, C -- Kralli, A -- Kaminsky, R -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):242-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Tropical Institute, CH-4002 Basel, Switzerland. Biozentrum, University of Basel, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398598" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*metabolism ; Amino Acid Sequence ; Animals ; Arsenicals/metabolism/pharmacology ; Biological Transport ; Carrier Proteins/chemistry/genetics/*metabolism ; Cloning, Molecular ; Drug Resistance/genetics ; Genes, Protozoan ; Membrane Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Nucleoside Transport Proteins ; Nucleosides/metabolism ; Purines/metabolism/pharmacology ; Saccharomyces cerevisiae/genetics ; Substrate Specificity ; Trypanocidal Agents/metabolism/*pharmacology ; Trypanosoma brucei brucei/*drug effects/genetics/*metabolism ; Trypanosomiasis, African/drug therapy/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1999-10-16
    Description: Analysis of rhesus macaque leukocytes disclosed the presence of an 18-residue macrocyclic, tridisulfide antibiotic peptide in granules of neutrophils and monocytes. The peptide, termed rhesus theta defensin-1 (RTD-1), is microbicidal for bacteria and fungi at low micromolar concentrations. Antibacterial activity of the cyclic peptide was threefold greater than that of an open-chain analog, and the cyclic conformation was required for antimicrobial activity in the presence of 150 millimolar sodium chloride. Biosynthesis of RTD-1 involves the head-to-tail ligation of two alpha-defensin-related nonapeptides, requiring the formation of two new peptide bonds. Thus, host defense cells possess mechanisms for synthesis and granular packaging of macrocyclic antibiotic peptides that are components of the phagocyte antimicrobial armamentarium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Y Q -- Yuan, J -- Osapay, G -- Osapay, K -- Tran, D -- Miller, C J -- Ouellette, A J -- Selsted, M E -- AI22931/AI/NIAID NIH HHS/ -- DK33506/DK/NIDDK NIH HHS/ -- DK44632/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):498-502.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, College of Medicine, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521339" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents ; Anti-Infective Agents/chemistry/*metabolism/pharmacology ; Bacteria/drug effects ; Cloning, Molecular ; Defensins ; Disulfides/chemistry ; Fungi/drug effects ; Humans ; Leukopoiesis ; Macaca mulatta ; Molecular Sequence Data ; Monocytes/*metabolism ; Neutrophils/*metabolism ; Oligopeptides/chemistry/genetics/metabolism ; Osmolar Concentration ; Peptides, Cyclic/*biosynthesis/chemistry/genetics/pharmacology ; *Protein Biosynthesis ; Protein Conformation ; Protein Precursors/chemistry/genetics/metabolism ; Protein Processing, Post-Translational ; Proteins/chemistry/genetics/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1999-12-30
    Description: The Smad proteins mediate transforming growth factor-beta (TGFbeta) signaling from the transmembrane serine-threonine receptor kinases to the nucleus. The Smad anchor for receptor activation (SARA) recruits Smad2 to the TGFbeta receptors for phosphorylation. The crystal structure of a Smad2 MH2 domain in complex with the Smad-binding domain (SBD) of SARA has been determined at 2.2 angstrom resolution. SARA SBD, in an extended conformation comprising a rigid coil, an alpha helix, and a beta strand, interacts with the beta sheet and the three-helix bundle of Smad2. Recognition between the SARA rigid coil and the Smad2 beta sheet is essential for specificity, whereas interactions between the SARA beta strand and the Smad2 three-helix bundle contribute significantly to binding affinity. Comparison of the structures between Smad2 and a comediator Smad suggests a model for how receptor-regulated Smads are recognized by the type I receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, G -- Chen, Y G -- Ozdamar, B -- Gyuricza, C A -- Chong, P A -- Wrana, J L -- Massague, J -- Shi, Y -- CA85171/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):92-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615055" target="_blank"〉PubMed〈/a〉
    Keywords: *Activin Receptors, Type I ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Smad2 Protein ; Trans-Activators/*chemistry/genetics/*metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1998-08-14
    Description: Transcription factors of the nuclear factor-kappaB/rel (NF-kappaB) family may be important in cell survival by regulating unidentified, anti-apoptotic genes. One such gene that protects cells from apoptosis induced by Fas or tumor necrosis factor type alpha (TNF), IEX-1L, is described here. Its transcription induced by TNF was decreased in cells with defective NF-kappaB activation, rendering them sensitive to TNF-induced apoptosis, which was abolished by transfection with IEX-1L. In support, overexpression of antisense IEX-1L partially blocked TNF-induced expression of IEX-1L and sensitized normal cells to killing. This study demonstrates a key role of IEX-1L in cellular resistance to TNF-induced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, M X -- Ao, Z -- Prasad, K V -- Wu, R -- Schlossman, S F -- AI12069/AI/NIAID NIH HHS/ -- P30AI28691/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):998-1001.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Immunology, Dana-Farber Cancer Institute, and the Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/physiology ; Apoptosis/genetics/*physiology ; Apoptosis Regulatory Proteins ; Cell Line ; Cell Survival ; Cloning, Molecular ; DNA, Antisense/genetics ; Gene Expression Regulation ; Genetic Vectors ; Humans ; Immediate-Early Proteins/genetics/*physiology ; Jurkat Cells ; Membrane Glycoproteins/genetics/*physiology ; Membrane Proteins ; Mice ; NF-kappa B/*physiology ; *Neoplasm Proteins ; Transfection ; Tumor Necrosis Factor-alpha/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1998-06-20
    Description: Crystal structures of bovine heart cytochrome c oxidase in the fully oxidized, fully reduced, azide-bound, and carbon monoxide-bound states were determined at 2.30, 2.35, 2.9, and 2.8 angstrom resolution, respectively. An aspartate residue apart from the O2 reduction site exchanges its effective accessibility to the matrix aqueous phase for one to the cytosolic phase concomitantly with a significant decrease in the pK of its carboxyl group, on reduction of the metal sites. The movement indicates the aspartate as the proton pumping site. A tyrosine acidified by a covalently linked imidazole nitrogen is a possible proton donor for the O2 reduction by the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshikawa, S -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yamashita, E -- Inoue, N -- Yao, M -- Fei, M J -- Libeu, C P -- Mizushima, T -- Yamaguchi, H -- Tomizaki, T -- Tsukihara, T -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1723-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Himeji Institute of Technology and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/chemistry/metabolism ; Azides/metabolism ; Binding Sites ; Carbon Monoxide/metabolism ; Cattle ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/chemistry/metabolism ; Hydrogen-Ion Concentration ; Ligands ; Metals/metabolism ; Models, Chemical ; Models, Molecular ; Myocardium/*enzymology ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Conformation ; *Proton Pumps ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-13
    Description: Many cell surface proteins are marked for endocytosis by a cytoplasmic sequence motif, tyrosine-X-X-(hydrophobic residue), that is recognized by the mu2 subunit of AP2 adaptors. Crystal structures of the internalization signal binding domain of mu2 complexed with the internalization signal peptides of epidermal growth factor receptor and the trans-Golgi network protein TGN38 have been determined at 2.7 angstrom resolution. The signal peptides adopted an extended conformation rather than the expected tight turn. Specificity was conferred by hydrophobic pockets that bind the tyrosine and leucine in the peptide. In the crystal, the protein forms dimers that could increase the strength and specificity of binding to dimeric receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen, D J -- Evans, P R -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1327-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812899" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Protein Complex 1 ; Adaptor Protein Complex 2 ; *Adaptor Protein Complex 3 ; Adaptor Protein Complex alpha Subunits ; *Adaptor Protein Complex mu Subunits ; Adaptor Proteins, Vesicular Transport ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; *Endocytosis ; *Glycoproteins ; Humans ; Hydrogen Bonding ; Membrane Glycoproteins/*chemistry/metabolism ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Sorting Signals/*chemistry/metabolism ; Protein Structure, Secondary ; Receptor, Epidermal Growth Factor/*chemistry/metabolism ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1998-06-11
    Description: The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms and is related to transcription factors that act as heterodimers. Potential partners of CLOCK were isolated in a two-hybrid screen, and one, BMAL1, was coexpressed with CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1 heterodimers activated transcription from E-box elements, a type of transcription factor-binding site, found adjacent to the mouse per1 gene and from an identical E-box known to be important for per gene expression in Drosophila. Mutant CLOCK from the dominant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed to activate transcription. Thus, CLOCK-BMAL1 heterodimers appear to drive the positive component of per transcriptional oscillations, which are thought to underlie circadian rhythmicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gekakis, N -- Staknis, D -- Nguyen, H B -- Davis, F C -- Wilsbacher, L D -- King, D P -- Takahashi, J S -- Weitz, C J -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1564-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston MA 02115, USA. 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616112" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks ; CLOCK Proteins ; Cell Cycle Proteins ; Circadian Rhythm/genetics/*physiology ; Cloning, Molecular ; Cricetinae ; DNA/metabolism ; Dimerization ; Feedback ; Gene Expression ; Helix-Loop-Helix Motifs ; Male ; Mesocricetus ; Mice ; Mutation ; Nuclear Proteins/*genetics/metabolism ; Period Circadian Proteins ; Promoter Regions, Genetic ; Retina/metabolism ; Suprachiasmatic Nucleus/metabolism ; Trans-Activators/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1998-03-21
    Description: The sphingolipid metabolite sphingosine-1-phosphate (SPP) has been implicated as a second messenger in cell proliferation and survival. However, many of its biological effects are due to binding to unidentified receptors on the cell surface. SPP activated the heterotrimeric guanine nucleotide binding protein (G protein)-coupled orphan receptor EDG-1, originally cloned as Endothelial Differentiation Gene-1. EDG-1 bound SPP with high affinity (dissociation constant = 8.1 nM) and high specificity. Overexpression of EDG-1 induced exaggerated cell-cell aggregation, enhanced expression of cadherins, and formation of well-developed adherens junctions in a manner dependent on SPP and the small guanine nucleotide binding protein Rho.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M J -- Van Brocklyn, J R -- Thangada, S -- Liu, C H -- Hand, A R -- Menzeleev, R -- Spiegel, S -- Hla, T -- DK45659/DK/NIDDK NIH HHS/ -- GM43880/GM/NIGMS NIH HHS/ -- HL49094/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1552-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488656" target="_blank"〉PubMed〈/a〉
    Keywords: Cadherins/*biosynthesis ; *Cell Aggregation ; Cell Differentiation ; Cell Line ; Cloning, Molecular ; GTP-Binding Proteins/metabolism ; Gene Expression ; Genes, Immediate-Early ; Humans ; Immediate-Early Proteins/genetics/*metabolism ; Intercellular Junctions/*ultrastructure ; Ligands ; *Lysophospholipids ; Mitogen-Activated Protein Kinase 1/metabolism ; Morphogenesis ; Receptors, Cell Surface/genetics/*metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Lysophospholipid ; Signal Transduction ; Sphingosine/*analogs & derivatives/metabolism ; Transfection ; rho GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1998-05-23
    Description: The crystal structure of Bacillus subtilis ribonuclease P protein is reported at 2.6 angstroms resolution. This protein binds to ribonuclease P RNA to form a ribonucleoprotein holoenzyme with optimal catalytic activity. Mutagenesis and biochemical data indicate that an unusual left-handed betaalphabeta crossover connection and a large central cleft in the protein form conserved RNA binding sites; a metal binding loop may comprise a third RNA binding site. The unusual topology is partly shared with ribosomal protein S5 and the ribosomal translocase elongation factor G, which suggests evolution from a common RNA binding ancestor in the primordial translational apparatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stams, T -- Niranjanakumari, S -- Fierke, C A -- Christianson, D W -- GM55387/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 May 1;280(5364):752-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9563955" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/enzymology ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Endoribonucleases/*chemistry/metabolism ; *Evolution, Molecular ; Magnesium/metabolism ; Models, Molecular ; Peptide Elongation Factor G ; Peptide Elongation Factors/chemistry ; *Protein Biosynthesis ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Bacterial/*chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonuclease P ; Ribosomal Proteins/chemistry ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: The splicing of transfer RNA precursors is similar in Eucarya and Archaea. In both kingdoms an endonuclease recognizes the splice sites and releases the intron, but the mechanism of splice site recognition is different in each kingdom. The crystal structure of the endonuclease from the archaeon Methanococcus jannaschii was determined to a resolution of 2.3 angstroms. The structure indicates that the cleavage reaction is similar to that of ribonuclease A and the arrangement of the active sites is conserved between the archaeal and eucaryal enzymes. These results suggest an evolutionary pathway for splice site recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Trotta, C R -- Abelson, J -- F32 GM188930-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):279-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, Mail Code 147-75, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535656" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallography, X-Ray ; Dimerization ; Endoribonucleases/*chemistry/genetics/metabolism ; *Evolution, Molecular ; HIV Long Terminal Repeat ; Hydrogen Bonding ; Methanococcus/*enzymology/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Precursors/chemistry/metabolism ; *RNA Splicing ; RNA, Archaeal/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1998-03-21
    Description: The anaphase-promoting complex is composed of eight protein subunits, including BimE (APC1), CDC27 (APC3), CDC16 (APC6), and CDC23 (APC8). The remaining four human APC subunits, APC2, APC4, APC5, and APC7, as well as human CDC23, were cloned. APC7 contains multiple copies of the tetratrico peptide repeat, similar to CDC16, CDC23, and CDC27. Whereas APC4 and APC5 share no similarity to proteins of known function, APC2 contains a region that is similar to a sequence in cullins, a family of proteins implicated in the ubiquitination of G1 phase cyclins and cyclin-dependent kinase inhibitors. The APC2 gene is essential in Saccharomyces cerevisiae, and apc2 mutants arrest at metaphase and are defective in the degradation of Pds1p. APC2 and cullins may be distantly related members of a ubiquitin ligase family that targets cell cycle regulators for degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, H -- Peters, J M -- King, R W -- Page, A M -- Hieter, P -- Kirschner, M W -- CA16519/CA/NCI NIH HHS/ -- GM26875-17/GM/NIGMS NIH HHS/ -- GM39023-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469815" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc5 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc7 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome ; Cell Cycle/*physiology ; Cell Cycle Proteins/chemistry ; Cloning, Molecular ; *Cullin Proteins ; Helminth Proteins/chemistry ; Humans ; Ligases/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Phylogeny ; Proteins/chemistry ; Saccharomyces cerevisiae/chemistry/cytology/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, M -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9565530" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; Chromosomes, Human, Pair 6/genetics ; Cloning, Molecular ; Humans ; *Ligases ; Mutation ; Parkinson Disease/*genetics/metabolism ; Proteins/chemistry/*genetics/physiology ; Substantia Nigra/metabolism ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Excessive sodium (Na+) in salinized soils inhibits plant growth and development. A mutation in the SOS3 gene renders Arabidopsis thaliana plants hypersensitive to Na+-induced growth inhibition. SOS3 encodes a protein that shares significant sequence similarity with the calcineurin B subunit from yeast and neuronal calcium sensors from animals. The results suggest that intracellular calcium signaling through a calcineurin-like pathway mediates the beneficial effect of calcium on plant salt tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Zhu, J K -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1943-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632394" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcineurin/chemistry ; Calcium/*metabolism/pharmacology ; Calcium-Binding Proteins/chemistry ; Chromosome Mapping ; Cloning, Molecular ; Genes, Plant ; Ion Transport ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Plant Proteins/*chemistry/*genetics ; Saccharomyces cerevisiae/chemistry ; Signal Transduction ; Sodium/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1998-02-21
    Description: Cellulose, an abundant, crystalline polysaccharide, is central to plant morphogenesis and to many industries. Chemical and ultrastructural analyses together with map-based cloning indicate that the RSW1 locus of Arabidopsis encodes the catalytic subunit of cellulose synthase. The cloned gene complements the rsw1 mutant whose temperature-sensitive allele is changed in one amino acid. The mutant allele causes a specific reduction in cellulose synthesis, accumulation of noncrystalline beta-1,4-glucan, disassembly of cellulose synthase, and widespread morphological abnormalities. Microfibril crystallization may require proper assembly of the RSW1 gene product into synthase complexes whereas glucan biosynthesis per se does not.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arioli, T -- Peng, L -- Betzner, A S -- Burn, J -- Wittke, W -- Herth, W -- Camilleri, C -- Hofte, H -- Plazinski, J -- Birch, R -- Cork, A -- Glover, J -- Redmond, J -- Williamson, R E -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):717-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cooperative Research Centre for Plant Science, Australian National University, Post Office Box 475, Canberra, ACT 2601, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445479" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/*genetics/*metabolism ; *Arabidopsis Proteins ; Cell Membrane/chemistry/ultrastructure ; Cellulose/*biosynthesis/chemistry/genetics ; Chromosome Mapping ; Cloning, Molecular ; Crystallization ; Freeze Fracturing ; *Genes, Plant ; Genetic Complementation Test ; Glucans/metabolism ; Glucosyltransferases/chemistry/*genetics ; Molecular Sequence Data ; Mutation ; Plant Roots/chemistry/ultrastructure ; Plant Shoots/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-20
    Description: Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbury, P B -- Plecs, J J -- Tidor, B -- Alber, T -- Kim, P S -- GM44162/GM/NIGMS NIH HHS/ -- GM48598/GM/NIGMS NIH HHS/ -- GM55758/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1462-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822371" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; Computer Simulation ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Peptides/chemical synthesis/*chemistry ; *Protein Conformation ; Protein Denaturation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary ; Proteins/chemical synthesis/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1998-12-04
    Description: A three-dimensional structure for the monomeric iron-containing hydrogenase (CpI) from Clostridium pasteurianum was determined to 1.8 angstrom resolution by x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing. CpI, an enzyme that catalyzes the two-electron reduction of two protons to yield dihydrogen, was found to contain 20 gram atoms of iron per mole of protein, arranged into five distinct [Fe-S] clusters. The probable active-site cluster, previously termed the H-cluster, was found to be an unexpected arrangement of six iron atoms existing as a [4Fe-4S] cubane subcluster covalently bridged by a cysteinate thiol to a [2Fe] subcluster. The iron atoms of the [2Fe] subcluster both exist with an octahedral coordination geometry and are bridged to each other by three non-protein atoms, assigned as two sulfide atoms and one carbonyl or cyanide molecule. This structure provides insights into the mechanism of biological hydrogen activation and has broader implications for [Fe-S] cluster structure and function in biological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, J W -- Lanzilotta, W N -- Lemon, B J -- Seefeldt, L C -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1853-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA. petersj@cc.usu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carbon Monoxide/chemistry ; Catalytic Domain ; Clostridium/*enzymology ; Crystallography, X-Ray ; Cyanides/chemistry ; Cysteine/chemistry ; Histidine/chemistry ; Hydrogen/metabolism ; Hydrogenase/*chemistry/metabolism ; Iron/*chemistry ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protons ; Sulfur/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1999-10-26
    Description: The transferrin receptor (TfR) undergoes multiple rounds of clathrin-mediated endocytosis and reemergence at the cell surface, importing iron-loaded transferrin (Tf) and recycling apotransferrin after discharge of iron in the endosome. The crystal structure of the dimeric ectodomain of the human TfR, determined here to 3.2 angstroms resolution, reveals a three-domain subunit. One domain closely resembles carboxy- and aminopeptidases, and features of membrane glutamate carboxypeptidase can be deduced from the TfR structure. A model is proposed for Tf binding to the receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawrence, C M -- Ray, S -- Babyonyshev, M -- Galluser, R -- Borhani, D W -- Harrison, S C -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):779-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Children's Hospital Laboratory of Molecular Medicine, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531064" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Carboxypeptidases/chemistry ; Cell Membrane/chemistry ; Conserved Sequence ; Cricetinae ; Crystallography, X-Ray ; Dimerization ; Ferric Compounds/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Transferrin/*chemistry/metabolism ; Transferrin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1999-06-18
    Description: Cell walls are crucial for development, signal transduction, and disease resistance in plants. Cell walls are made of cellulose, hemicelluloses, and pectins. Xyloglucan (XG), the principal load-bearing hemicellulose of dicotyledonous plants, has a terminal fucosyl residue. A 60-kilodalton fucosyltransferase (FTase) that adds this residue was purified from pea epicotyls. Peptide sequence information from the pea FTase allowed the cloning of a homologous gene, AtFT1, from Arabidopsis. Antibodies raised against recombinant AtFTase immunoprecipitate FTase enzyme activity from solubilized Arabidopsis membrane proteins, and AtFT1 expressed in mammalian COS cells results in the presence of XG FTase activity in these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perrin, R M -- DeRocher, A E -- Bar-Peled, M -- Zeng, W -- Norambuena, L -- Orellana, A -- Raikhel, N V -- Keegstra, K -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1976-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Michigan State University-Department of Energy (MSU-DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373113" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*enzymology/genetics ; COS Cells ; Carbohydrate Conformation ; Cell Wall/*metabolism ; Cloning, Molecular ; DNA, Complementary ; Expressed Sequence Tags ; Fucosyltransferases/chemistry/genetics/isolation & purification/*metabolism ; Genes, Plant ; *Glucans ; Molecular Sequence Data ; Peas/*enzymology ; Polysaccharides/*biosynthesis/chemistry ; *Xylans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1999-11-13
    Description: The E6AP ubiquitin-protein ligase (E3) mediates the human papillomavirus-induced degradation of the p53 tumor suppressor in cervical cancer and is mutated in Angelman syndrome, a neurological disorder. The crystal structure of the catalytic hect domain of E6AP reveals a bilobal structure with a broad catalytic cleft at the junction of the two lobes. The cleft consists of conserved residues whose mutation interferes with ubiquitin-thioester bond formation and is the site of Angelman syndrome mutations. The crystal structure of the E6AP hect domain bound to the UbcH7 ubiquitin-conjugating enzyme (E2) reveals the determinants of E2-E3 specificity and provides insights into the transfer of ubiquitin from the E2 to the E3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, L -- Kinnucan, E -- Wang, G -- Beaudenon, S -- Howley, P M -- Huibregtse, J M -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1321-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558980" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angelman Syndrome/genetics ; Binding Sites ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/chemistry ; Humans ; Ligases/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Substrate Specificity ; Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1999-11-24
    Description: Binding of virus particles to specific host cell surface receptors is known to be an obligatory step in infection even though the molecular basis for these interactions is not well characterized. The crystal structure of the adenovirus fiber knob domain in complex with domain I of its human cellular receptor, coxsackie and adenovirus receptor (CAR), is presented here. Surface-exposed loops on knob contact one face of CAR, forming a high-affinity complex. Topology mismatches between interacting surfaces create interfacial solvent-filled cavities and channels that may be targets for antiviral drug therapy. The structure identifies key determinants of binding specificity, which may suggest ways to modify the tropism of adenovirus-based gene therapy vectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bewley, M C -- Springer, K -- Zhang, Y B -- Freimuth, P -- Flanagan, J M -- 1P41 RR12408-01A1/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1579-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567268" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/chemistry/*metabolism ; Amino Acid Substitution ; Binding Sites ; Capsid/*chemistry/*metabolism ; *Capsid Proteins ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Crystallization ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Mutagenesis ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Virus/*chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, J S -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2076-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208-3520, USA. j-takahashi@nwu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523205" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; Circadian Rhythm ; Cloning, Molecular ; Dogs ; Homeostasis ; Hypothalamus/metabolism ; Ligands ; Mice ; Mice, Knockout ; Narcolepsy/*genetics/physiopathology ; Neurons/metabolism ; Neuropeptides/metabolism ; Orexin Receptors ; Receptors, G-Protein-Coupled ; Receptors, Neuropeptide/chemistry/*genetics/physiology ; *Sleep/physiology ; Sleep, REM
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1999-09-08
    Description: A mevalonate-independent pathway of isoprenoid biosynthesis present in Plasmodium falciparum was shown to represent an effective target for chemotherapy of malaria. This pathway includes 1-deoxy-D-xylulose 5-phosphate (DOXP) as a key metabolite. The presence of two genes encoding the enzymes DOXP synthase and DOXP reductoisomerase suggests that isoprenoid biosynthesis in P. falciparum depends on the DOXP pathway. This pathway is probably located in the apicoplast. The recombinant P. falciparum DOXP reductoisomerase was inhibited by fosmidomycin and its derivative, FR-900098. Both drugs suppressed the in vitro growth of multidrug-resistant P. falciparum strains. After therapy with these drugs, mice infected with the rodent malaria parasite P. vinckei were cured.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jomaa, H -- Wiesner, J -- Sanderbrand, S -- Altincicek, B -- Weidemeyer, C -- Hintz, M -- Turbachova, I -- Eberl, M -- Zeidler, J -- Lichtenthaler, H K -- Soldati, D -- Beck, E -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1573-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Academic Hospital Centre, Justus-Liebig-University, Friedrichstrasse 24, D-35392 Giessen, Germany. hassan.jomaa@biochemie.med.uni-giessen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477522" target="_blank"〉PubMed〈/a〉
    Keywords: Aldose-Ketose Isomerases/*antagonists & inhibitors/chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; Antimalarials/*pharmacology ; Cloning, Molecular ; Enzyme Inhibitors/pharmacology ; Fosfomycin/*analogs & derivatives/pharmacology ; Genes, Protozoan ; *Hemiterpenes ; Malaria/*drug therapy/parasitology ; Malaria, Falciparum/drug therapy/parasitology ; Mevalonic Acid/metabolism ; Mice ; Molecular Sequence Data ; Multienzyme Complexes/*antagonists & inhibitors/chemistry/genetics/metabolism ; Organelles/drug effects/metabolism ; Organophosphorus Compounds/metabolism ; Oxidoreductases/*antagonists & inhibitors/chemistry/genetics/metabolism ; Pentosephosphates/*metabolism ; Plasmodium falciparum/*drug effects/genetics/metabolism ; Recombinant Proteins/antagonists & inhibitors/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Terpenes/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1999-10-09
    Description: Crystal structures of the Asp96 to Asn mutant of the light-driven proton pump bacteriorhodopsin and its M photointermediate produced by illumination at ambient temperature have been determined to 1.8 and 2.0 angstroms resolution, respectively. The trapped photoproduct corresponds to the late M state in the transport cycle-that is, after proton transfer to Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. Its density map describes displacements of side chains near the retinal induced by its photoisomerization to 13-cis,15-anti and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pKa values (where Ka is the acid constant) of the Schiff base and Asp85. The structural changes detected suggest the means for conserving energy at the active site and for ensuring the directionality of proton translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luecke, H -- Schobert, B -- Richter, H T -- Cartailler, J P -- Lanyi, J K -- R01-GM29498/GM/NIGMS NIH HHS/ -- R01-GM56445/GM/NIGMS NIH HHS/ -- R01-GM59970/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):255-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. hudel@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514362" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriorhodopsins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ion Transport ; Isomerism ; Light ; Models, Molecular ; Photolysis ; Photons ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Proton Pumps/*chemistry/*metabolism ; Protons ; Retinaldehyde/chemistry/metabolism ; Schiff Bases ; Thermodynamics ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1999-07-20
    Description: A phytochrome-like protein called Ppr was discovered in the purple photosynthetic bacterium Rhodospirillum centenum. Ppr has a photoactive yellow protein (PYP) amino-terminal domain, a central domain with similarity to phytochrome, and a carboxyl-terminal histidine kinase domain. Reconstitution experiments demonstrate that Ppr covalently attaches the blue light-absorbing chromophore p-hydroxycinnamic acid and that it has a photocycle that is spectrally similar to, but kinetically slower than, that of PYP. Ppr also regulates chalcone synthase gene expression in response to blue light with autophosphorylation inhibited in vitro by blue light. Phylogenetic analysis demonstrates that R. centenum Ppr may be ancestral to cyanobacterial and plant phytochromes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Z -- Swem, L R -- Rushing, B G -- Devanathan, S -- Tollin, G -- Bauer, C E -- GM 40941/GM/NIGMS NIH HHS/ -- R01 GM040941/GM/NIGMS NIH HHS/ -- R01 GM053940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):406-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Jordan Hall, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411503" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics ; Amino Acid Sequence ; Apoproteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/genetics/physiology ; Chemotaxis ; Cloning, Molecular ; Coumaric Acids/metabolism ; Gene Expression Regulation, Bacterial ; Light ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Photoreceptors, Microbial ; Phylogeny ; Phytochrome/*chemistry ; Protein Kinases/metabolism ; Rhodospirillum/*chemistry/genetics/physiology ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: Annotation of large-scale gene sequence data will benefit from comprehensive and consistent application of well-documented, standard analysis methods and from progressive and vigilant efforts to ensure quality and utility and to keep the annotation up to date. However, it is imperative to learn how to apply information derived from functional genomics and proteomics technologies to conceptualize and explain the behaviors of biological systems. Quantitative and dynamical models of systems behaviors will supersede the limited and static forms of single-gene annotation that are now the norm. Molecular biological epistemology will increasingly encompass both teleological and causal explanations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boguski, M S -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):453-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521334" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cloning, Molecular ; *Computational Biology ; Databases, Factual ; *Genetic Techniques ; *Genome ; Genome, Human ; Human Genome Project ; Humans ; Molecular Biology ; *Proteome ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fillingame, R H -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1687-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706, USA. rhfillin@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610565" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/enzymology ; Helix-Loop-Helix Motifs ; Hydrolysis ; Mitochondria/enzymology ; Models, Biological ; *Molecular Motor Proteins/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Proton-Motive Force ; Proton-Translocating ATPases/*chemistry/*metabolism ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkel, E -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):33-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10428697" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/therapeutic use ; Clinical Trials as Topic ; Cloning, Molecular ; *Glucuronidase ; Glycoside Hydrolases/*antagonists & inhibitors/*genetics/isolation & ; purification/metabolism ; Humans ; Mice ; Neoplasm Metastasis/*prevention & control ; Rats ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1999-07-31
    Description: Adenylyl cyclase (AC) converts adenosine triphosphate (ATP) to cyclic adenosine monophosphate, a ubiquitous second messenger that regulates many cellular functions. Recent structural studies have revealed much about the structure and function of mammalian AC but have not fully defined its active site or catalytic mechanism. Four crystal structures were determined of the catalytic domains of AC in complex with two different ATP analogs and various divalent metal ions. These structures provide a model for the enzyme-substrate complex and conclusively demonstrate that two metal ions bind in the active site. The similarity of the active site of AC to those of DNA polymerases suggests that the enzymes catalyze phosphoryl transfer by the same two-metal-ion mechanism and likely have evolved from a common ancestor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, J J -- Sunahara, R K -- Johnson, R A -- Gosselin, G -- Gilman, A G -- Sprang, S R -- DK38828/DK/NIDDK NIH HHS/ -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):756-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427002" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/chemistry/genetics/*metabolism ; Animals ; Aspartic Acid/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/metabolism/pharmacology ; Dideoxynucleotides ; Dimerization ; Enzyme Inhibitors/metabolism ; Hydrogen Bonding ; Ligands ; Magnesium/*metabolism ; Manganese/*metabolism ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Folding ; Rats ; Thionucleotides/metabolism/pharmacology ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2048-51.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523195" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry ; Cryoelectron Microscopy ; Crystallization ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Ribosomal/chemistry ; RNA, Transfer/chemistry/metabolism ; Ribosomal Proteins/chemistry ; Ribosomes/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1752-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10391787" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*legislation & jurisprudence ; California ; Cloning, Molecular ; Genetic Vectors ; *Human Growth Hormone/genetics ; Humans ; *Patents as Topic ; Publishing ; Universities/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1999 Aug 27;285(5432):1343.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10490407" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Haloarcula marismortui/ultrastructure ; Models, Molecular ; Neutrons ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Ribosomal/*chemistry ; Ribosomal Proteins/*chemistry ; Ribosomes/*chemistry/*ultrastructure ; Scattering, Radiation ; Thermus thermophilus/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1999-06-05
    Description: We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tortorella, M D -- Burn, T C -- Pratta, M A -- Abbaszade, I -- Hollis, J M -- Liu, R -- Rosenfeld, S A -- Copeland, R A -- Decicco, C P -- Wynn, R -- Rockwell, A -- Yang, F -- Duke, J L -- Solomon, K -- George, H -- Bruckner, R -- Nagase, H -- Itoh, Y -- Ellis, D M -- Ross, H -- Wiswall, B H -- Murphy, K -- Hillman, M C Jr -- Hollis, G F -- Newton, R C -- Magolda, R L -- Trzaskos, J M -- Arner, E C -- New York, N.Y. -- Science. 1999 Jun 4;284(5420):1664-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Inflammatory Diseases Research, DuPont Pharmaceuticals Company, Wilmington, DE 19880-0400, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10356395" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Aggrecans ; Amino Acid Sequence ; Arthritis/drug therapy ; Cartilage/metabolism ; Catalytic Domain ; Cloning, Molecular ; Disintegrins/chemistry/metabolism ; *Extracellular Matrix Proteins ; Humans ; Hydroxamic Acids/pharmacology ; Interleukin-1/pharmacology ; Lectins, C-Type ; Metalloendopeptidases/*chemistry/*genetics/isolation & purification/metabolism ; Molecular Sequence Data ; Procollagen N-Endopeptidase ; Protease Inhibitors/pharmacology ; Protein Sorting Signals ; Proteoglycans/metabolism ; Recombinant Proteins/chemistry/metabolism ; Sequence Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1999-04-02
    Description: Leaves of higher plants develop in a sequential manner from the shoot apical meristem. Previously it was determined that perturbed leaf development in maize rough sheath2 (rs2) mutant plants results from ectopic expression of knotted1-like (knox) homeobox genes. Here, the rs2 gene sequence was found to be similar to the Antirrhinum PHANTASTICA (PHAN) gene sequence, which encodes a Myb-like transcription factor. RS2 and PHAN are both required to prevent the accumulation of knox gene products in maize and Antirrhinum leaves, respectively. However, rs2 and phan mutant phenotypes differ, highlighting fundamental differences in monocot and dicot leaf development programs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsiantis, M -- Schneeberger, R -- Golz, J F -- Freeling, M -- Langdale, J A -- GM14578/GM/NIGMS NIH HHS/ -- GM42610/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):154-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3BR, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102817" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; DNA-Binding Proteins/chemistry/*genetics ; Down-Regulation ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genes, Plant ; Homeodomain Proteins/*genetics/metabolism ; In Situ Hybridization ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Development ; Plant Leaves/cytology/genetics/*growth & development/metabolism ; Plant Proteins/chemistry/*genetics ; Plants/*genetics/metabolism ; *Proto-Oncogene Proteins c-myb ; Repressor Proteins/chemistry/*genetics/physiology ; Sequence Alignment ; Zea mays/*genetics/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1999-07-03
    Description: The electrostatic influence of the central cavity and pore alpha helices in the potassium ion channel from Streptomyces lividans (KcsA K+ channel) was analyzed by solving the finite difference Poisson equation. The cavity and helices overcome the destabilizing influence of the membrane and stabilize a cation at the membrane center. The electrostatic effect of the pore helices is large compared to that described for water-soluble proteins because of the low dielectric membrane environment. The combined contributions of the ion self-energy and the helix electrostatic field give rise to selectivity for monovalent cations in the water-filled cavity. Thus, the K+ channel uses simple electrostatic principles to solve the fundamental problem of ion destabilization by the cell membrane lipid bilayer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roux, B -- MacKinnon, R -- GM47400/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):100-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉GRTM, Dipartements de Physique et Chimie, Universite de Montreal, Case Postal 6128, succursale Centre-Ville, Montreal, Canada H3C 3J7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390357" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Proteins ; Cations, Monovalent/*metabolism ; Cell Membrane/*chemistry/metabolism ; Crystallography, X-Ray ; Ion Transport ; Lipid Bilayers ; Models, Molecular ; Potassium/*metabolism ; Potassium Channels/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Static Electricity ; Streptomyces/*chemistry ; Thermodynamics ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-22
    Description: The structure of a T7 RNA polymerase (T7 RNAP) initiation complex captured transcribing a trinucleotide of RNA from a 17-base pair promoter DNA containing a 5-nucleotide single-strand template extension was determined at a resolution of 2.4 angstroms. Binding of the upstream duplex portion of the promoter occurs in the same manner as that in the open promoter complex, but the single-stranded template is repositioned to place the +4 base at the catalytic active site. Thus, synthesis of RNA in the initiation phase leads to accumulation or "scrunching" of the template in the enclosed active site pocket of T7 RNAP. Only three base pairs of heteroduplex are formed before the RNA peels off the template.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheetham, G M -- Steitz, T A -- GM-22778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2305-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600732" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacteriophage T7/enzymology ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; DNA, Single-Stranded/*chemistry/genetics/metabolism ; DNA-Directed DNA Polymerase/chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; N-Acetylmuramoyl-L-alanine Amidase/metabolism ; Nucleic Acid Conformation ; Nucleic Acid Heteroduplexes/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/biosynthesis/*chemistry/genetics ; Substrate Specificity ; Templates, Genetic ; *Transcription, Genetic ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1999-08-14
    Description: Many Gram-negative pathogens assemble architecturally and functionally diverse adhesive pili on their surfaces by the chaperone-usher pathway. Immunoglobulin-like periplasmic chaperones escort pilus subunits to the usher, a large protein complex that facilitates the translocation and assembly of subunits across the outer membrane. The crystal structure of the PapD-PapK chaperone-subunit complex, determined at 2.4 angstrom resolution, reveals that the chaperone functions by donating its G(1) beta strand to complete the immunoglobulin-like fold of the subunit via a mechanism termed donor strand complementation. The structure of the PapD-PapK complex also suggests that during pilus biogenesis, every subunit completes the immunoglobulin-like fold of its neighboring subunit via a mechanism termed donor strand exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sauer, F G -- Futterer, K -- Pinkner, J S -- Dodson, K W -- Hultgren, S J -- Waksman, G -- R01AI29549/AI/NIAID NIH HHS/ -- R01DK51406/DK/NIDDK NIH HHS/ -- R01GM54033/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1058-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli ; *Escherichia coli Proteins ; Fimbriae Proteins ; Fimbriae, Bacterial/chemistry/*metabolism/ultrastructure ; Models, Molecular ; Molecular Chaperones/*chemistry/*metabolism ; Molecular Sequence Data ; *Periplasmic Proteins ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-05
    Description: Phototropism of Arabidopsis thaliana seedlings in response to a blue light source is initiated by nonphototropic hypocotyl 1 (NPH1), a light-activated serine-threonine protein kinase. Mutations in three loci [NPH2, root phototropism 2 (RPT2), and NPH3] disrupt early signaling occurring downstream of the NPH1 photoreceptor. The NPH3 gene, now cloned, encodes a NPH1-interacting protein. NPH3 is a member of a large protein family, apparently specific to higher plants, and may function as an adapter or scaffold protein to bring together the enzymatic components of a NPH1-activated phosphorelay.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Motchoulski, A -- Liscum, E -- New York, N.Y. -- Science. 1999 Oct 29;286(5441):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10542152" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; *Arabidopsis Proteins ; Cell Membrane/metabolism ; Cloning, Molecular ; Escherichia coli ; Molecular Sequence Data ; Phosphoproteins/genetics/*metabolism ; Photoreceptor Cells, Invertebrate/*metabolism ; Phototropism ; Plant Proteins/genetics/*metabolism ; Protein Binding ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1999-06-12
    Description: The editing enzyme double-stranded RNA adenosine deaminase includes a DNA binding domain, Zalpha, which is specific for left-handed Z-DNA. The 2.1 angstrom crystal structure of Zalpha complexed to DNA reveals that the substrate is in the left-handed Z conformation. The contacts between Zalpha and Z-DNA are made primarily with the "zigzag" sugar-phosphate backbone, which provides a basis for the specificity for the Z conformation. A single base contact is observed to guanine in the syn conformation, characteristic of Z-DNA. Intriguingly, the helix-turn-helix motif, frequently used to recognize B-DNA, is used by Zalpha to contact Z-DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartz, T -- Rould, M A -- Lowenhaupt, K -- Herbert, A -- Rich, A -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1841-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364558" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; Helix-Turn-Helix Motifs ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; RNA-Binding Proteins ; Substrate Specificity ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seeburg, P H -- New York, N.Y. -- Science. 1999 May 28;284(5419):1465-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10383323" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*legislation & jurisprudence ; California ; Cloning, Molecular ; Genetic Vectors ; *Human Growth Hormone ; Humans ; Patents as Topic/*legislation & jurisprudence ; Periodicals as Topic ; Plasmids ; Publishing ; Universities/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1999-12-22
    Description: Ribosome recycling factor (RRF), together with elongation factor G (EF-G), catalyzes recycling of ribosomes after one round of protein synthesis. The crystal structure of RRF was determined at 2.55 angstrom resolution. The protein has an unusual fold where domain I is a long three-helix bundle and domain II is a three-layer beta/alpha/beta sandwich. The molecule superimposes almost perfectly with a transfer RNA (tRNA) except that the amino acid-binding 3' end is missing. The mimicry suggests that RRF interacts with the posttermination ribosomal complex in a similar manner to a tRNA, leading to disassembly of the complex. The structural arrangement of this mimicry is entirely different from that of other cases of less pronounced mimicry of tRNA so far described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selmer, M -- Al-Karadaghi, S -- Hirokawa, G -- Kaji, A -- Liljas, A -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biophysics, Center for Chemistry and Chemical Engineering, Lund University, Post Office Box 124, SE-22100 Lund, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600747" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Elongation Factor G/chemistry ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; RNA, Bacterial/chemistry/metabolism ; RNA, Fungal/chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; RNA, Transfer, Phe/chemistry/metabolism ; Ribosomal Proteins ; Ribosomes/*metabolism ; Sequence Alignment ; Thermotoga maritima/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1999-06-26
    Description: Ethylene regulates plant growth, development, and responsiveness to a variety of stresses. Cloning of the Arabidopsis EIN2 gene identifies a central component of the ethylene signaling pathway. The amino-terminal integral membrane domain of EIN2 shows similarity to the disease-related Nramp family of metal-ion transporters. Expression of the EIN2 CEND is sufficient to constitutively activate ethylene responses and restores responsiveness to jasmonic acid and paraquat-induced oxygen radicals to mutant plants. EIN2 is thus recognized as a molecular link between previously distinct hormone response pathways. Plants may use a combinatorial mechanism for assessing various stresses by enlisting a common set of signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, J M -- Hirayama, T -- Roman, G -- Nourizadeh, S -- Ecker, J R -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2148-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381874" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/chemistry/genetics/growth & development/*physiology ; *Arabidopsis Proteins ; Carrier Proteins/chemistry ; *Cation Transport Proteins ; Cloning, Molecular ; Cyclopentanes/metabolism/pharmacology ; *Defensins ; Ethylenes/*metabolism/pharmacology ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Complementation Test ; Herbicides/pharmacology ; *Iron-Binding Proteins ; Membrane Proteins/chemistry/genetics/*physiology ; Microsomes/metabolism ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/physiology ; Oxylipins ; Paraquat/pharmacology ; Plant Growth Regulators/*metabolism/pharmacology ; Plant Proteins/chemistry/genetics/*physiology ; Plants, Genetically Modified ; Protein Biosynthesis ; Protein Structure, Secondary ; Receptors, Cell Surface/chemistry/genetics/*physiology ; *Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Photoisomerization of the retinal of bacteriorhodopsin initiates a cyclic reaction in which a proton is translocated across the membrane. Studies of this protein promise a better understanding of how ion pumps function. Together with a large amount of spectroscopic and mutational data, the atomic structure of bacteriorhodopsin, determined in the last decade at increasing resolutions, has suggested plausible but often contradictory mechanisms. X-ray diffraction of bacteriorhodopsin crystals grown in cubic lipid phase revealed unexpected two-fold symmetries that indicate merohedral twinning along the crystallographic c axis. The structure, refined to 2.3 angstroms taking this twinning into account, is different from earlier models, including that most recently reported. One of the carboxyl oxygen atoms of the proton acceptor Asp85 is connected to the proton donor, the retinal Schiff base, through a hydrogen-bonded water and forms a second hydrogen bond with another water. The other carboxyl oxygen atom of Asp85 accepts a hydrogen bond from Thr89. This structure forms the active site. The nearby Arg82 is the center of a network of numerous hydrogen-bonded residues and an ordered water molecule. This network defines the pathway of the proton from the buried Schiff base to the extracellular surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luecke, H -- Richter, H T -- Lanyi, J K -- R01-GM29498/GM/NIGMS NIH HHS/ -- R01-GM56445/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1934-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. HUDEL@UCI.EDU〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632391" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/chemistry ; Bacteriorhodopsins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ligands ; Light ; Models, Molecular ; Photochemistry ; Protein Conformation ; Protein Structure, Secondary ; *Protons ; Retinaldehyde/chemistry ; Schiff Bases/chemistry ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1999-07-27
    Description: Candida glabrata is an important fungal pathogen of humans that is responsible for about 15 percent of mucosal and systemic candidiasis. Candida glabrata adhered avidly to human epithelial cells in culture. By means of a genetic approach and a strategy allowing parallel screening of mutants, it was possible to clone a lectin from a Candida species. Deletion of this adhesin reduced adherence of C. glabrata to human epithelial cells by 95 percent. The adhesin, encoded by the EPA1 gene, is likely a glucan-cross-linked cell-wall protein and binds to host-cell carbohydrate, specifically recognizing asialo-lactosyl-containing carbohydrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cormack, B P -- Ghori, N -- Falkow, S -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):578-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild D039, 299 Campus Drive, Stanford, CA 94305-5124, USA. bcormack@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417386" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/metabolism ; Candida/*genetics/*pathogenicity/physiology ; Candidiasis, Vulvovaginal/microbiology ; Carbohydrates/pharmacology ; Cell Adhesion ; Cloning, Molecular ; Epithelial Cells/*microbiology ; Female ; *Fungal Proteins ; Genes, Fungal ; Humans ; Lectins/chemistry/*genetics/metabolism ; Ligands ; Mice ; Mice, Inbred DBA ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Plasmids ; Polymerase Chain Reaction ; Transformation, Genetic ; Tumor Cells, Cultured ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1999-03-05
    Description: Ribonucleotide reductases catalyze the reduction of ribonucleotides to deoxyribonucleotides. Three classes have been identified, all using free-radical chemistry but based on different cofactors. Classes I and II have been shown to be evolutionarily related, whereas the origin of anaerobic class III has remained elusive. The structure of a class III enzyme suggests a common origin for the three classes but shows differences in the active site that can be understood on the basis of the radical-initiation system and source of reductive electrons, as well as a unique protein glycyl radical site. A possible evolutionary relationship between early deoxyribonucleotide metabolism and primary anaerobic metabolism is suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Logan, D T -- Andersson, J -- Sjoberg, B M -- Nordlund, P -- New York, N.Y. -- Science. 1999 Mar 5;283(5407):1499-504.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Department of Molecular Biology, Stockholm University, S-106 91 Stockholm, Sweden. derek@biokemi.su.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10066165" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/chemistry/metabolism ; Amino Acid Sequence ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; Evolution, Molecular ; Glycine/*chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Ribonucleotide Reductases/*chemistry/genetics/metabolism ; Viral Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1999-04-30
    Description: The PDZ protein interaction domain of neuronal nitric oxide synthase (nNOS) can heterodimerize with the PDZ domains of postsynaptic density protein 95 and syntrophin through interactions that are not mediated by recognition of a typical carboxyl-terminal motif. The nNOS-syntrophin PDZ complex structure revealed that the domains interact in an unusual linear head-to-tail arrangement. The nNOS PDZ domain has two opposite interaction surfaces-one face has the canonical peptide binding groove, whereas the other has a beta-hairpin "finger." This nNOS beta finger docks in the syntrophin peptide binding groove, mimicking a peptide ligand, except that a sharp beta turn replaces the normally required carboxyl terminus. This structure explains how PDZ domains can participate in diverse interaction modes to assemble protein networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hillier, B J -- Christopherson, K S -- Prehoda, K E -- Bredt, D S -- Lim, W A -- New York, N.Y. -- Science. 1999 Apr 30;284(5415):812-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10221915" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; *Dystrophin-Associated Proteins ; Ligands ; Membrane Proteins/*chemistry/metabolism ; Molecular Sequence Data ; Muscle Proteins/*chemistry/metabolism ; Nitric Oxide Synthase/*chemistry/metabolism ; Nitric Oxide Synthase Type I ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: Segmentation of the hindbrain and branchial region is a conserved feature of head development, involving the nested expression of Hox genes. Although it is presumed that vertebrate Hox genes function as segment identifiers, responsible for mediating registration between elements of diverse embryonic origin, this assumption has remained untested. To assess this, retroviral misexpression was combined with orthotopic grafting in chick embryos to generate a mismatch in Hox coding between a specific rhombomere and its corresponding branchial arch. Rhombomere-restricted misexpression of a single gene, Hoxb1, resulted in the homeotic transformation of the rhombomere, revealed by reorganization of motor axon projections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, E -- Wingate, R J -- Lumsden, A -- N01-HD-7-3263/HD/NICHD NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2168-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, King's College London, Guy's Hospital, London SE1 9RT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Branchial Region/*embryology/innervation/metabolism ; Cell Differentiation ; Cell Movement ; Chick Embryo ; Cloning, Molecular ; DNA-Binding Proteins/genetics ; GATA2 Transcription Factor ; *Gene Expression Regulation, Developmental ; *Genes, Homeobox ; Genetic Vectors ; Homeodomain Proteins/*genetics/physiology ; Membrane Glycoproteins/genetics ; Motor Neurons/cytology/physiology ; Rhombencephalon/*embryology/metabolism/transplantation ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-16
    Description: The five members of the phytochrome photoreceptor family of Arabidopsis thaliana control morphogenesis differentially in response to light. Genetic analysis has identified a signaling pathway that is specifically activated by phytochrome A. A component in this pathway, SPA1 (for "suppressor of phyA-105"), functions in repression of photomorphogenesis and is required for normal photosensory specificity of phytochrome A. Molecular cloning of the SPA1 gene indicates that SPA1 is a WD (tryptophan-aspartic acid)-repeat protein that also shares sequence similarity with protein kinases. SPA1 can localize to the nucleus, suggesting a possible function in phytochrome A-specific regulation of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoecker, U -- Tepperman, J M -- Quail, P H -- GM-47475/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):496-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205059" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/growth & development/*metabolism ; *Arabidopsis Proteins ; Cell Cycle Proteins/*chemistry/*physiology ; Cell Nucleus/metabolism ; Cloning, Molecular ; Darkness ; Gene Expression Regulation, Plant ; *Light ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Nuclear Localization Signals ; Phytochrome/*metabolism ; Phytochrome A ; Plant Proteins/*chemistry/genetics/physiology ; Protein Kinases/chemistry ; RNA, Messenger/genetics/metabolism ; Repetitive Sequences, Amino Acid ; Repressor Proteins/chemistry ; Sequence Alignment ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1999-12-11
    Description: Tubby-like proteins (TULPs) are found in a broad range of multicellular organisms. In mammals, genetic mutation of tubby or other TULPs can result in one or more of three disease phenotypes: obesity (from which the name "tubby" is derived), retinal degeneration, and hearing loss. These disease phenotypes indicate a vital role for tubby proteins; however, no biochemical function has yet been ascribed to any member of this protein family. A structure-directed approach was employed to investigate the biological function of these proteins. The crystal structure of the core domain from mouse tubby was determined at a resolution of 1.9 angstroms. From primarily structural clues, experiments were devised, the results of which suggest that TULPs are a unique family of bipartite transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boggon, T J -- Shan, W S -- Santagata, S -- Myers, S C -- Shapiro, L -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2119-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Department of Physiology and Biophysics, Ruttenberg Cancer Center, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591637" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Nucleus/chemistry ; Crystallography, X-Ray ; DNA/metabolism ; Eye Proteins/*chemistry/genetics/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/genetics/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Sequence Alignment ; Transcription Factors/*chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-05
    Description: The sterile alpha motif (SAM) domain is a protein interaction module that is present in diverse signal-transducing proteins. SAM domains are known to form homo- and hetero-oligomers. The crystal structure of the SAM domain from an Eph receptor tyrosine kinase, EphB2, reveals two large interfaces. In one interface, adjacent monomers exchange amino-terminal peptides that insert into a hydrophobic groove on each neighbor. A second interface is composed of the carboxyl-terminal helix and a nearby loop. A possible oligomer, constructed from a combination of these binding modes, may provide a platform for the formation of larger protein complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thanos, C D -- Goodwill, K E -- Bowie, J U -- New York, N.Y. -- Science. 1999 Feb 5;283(5403):833-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCLA-DOE Laboratory of Structural Biology and Molecular Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9933164" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Dimerization ; GRB10 Adaptor Protein ; Humans ; Hydrogen Bonding ; Kinesin/metabolism ; Models, Molecular ; Myosins/metabolism ; Phosphorylation ; *Protein Conformation ; Protein Structure, Secondary ; Protein Tyrosine Phosphatases/metabolism ; Proteins/metabolism ; Receptor Aggregation ; Receptor Protein-Tyrosine Kinases/*chemistry/metabolism ; Receptor, EphB2 ; Recombinant Proteins/chemistry/metabolism ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gennis, R B -- Ebrey, T G -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):252-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA. r-gennis@uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577192" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriorhodopsins/*chemistry/genetics/*metabolism ; Crystallization ; Crystallography, X-Ray ; Halobacterium salinarum/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ion Transport ; Light ; Photons ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Proton Pumps/*chemistry/genetics/*metabolism ; Proton-Motive Force ; Protons ; Retinaldehyde/chemistry/metabolism ; Schiff Bases ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1999-10-26
    Description: Cerebral deposition of amyloid beta peptide (Abeta) is an early and critical feature of Alzheimer's disease. Abeta generation depends on proteolytic cleavage of the amyloid precursor protein (APP) by two unknown proteases: beta-secretase and gamma-secretase. These proteases are prime therapeutic targets. A transmembrane aspartic protease with all the known characteristics of beta-secretase was cloned and characterized. Overexpression of this protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of beta-secretase cleavage products, and these were cleaved exactly and only at known beta-secretase positions. Antisense inhibition of endogenous BACE messenger RNA decreased the amount of beta-secretase cleavage products, and purified BACE protein cleaved APP-derived substrates with the same sequence specificity as beta-secretase. Finally, the expression pattern and subcellular localization of BACE were consistent with that expected for beta-secretase. Future development of BACE inhibitors may prove beneficial for the treatment of Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassar, R -- Bennett, B D -- Babu-Khan, S -- Kahn, S -- Mendiaz, E A -- Denis, P -- Teplow, D B -- Ross, S -- Amarante, P -- Loeloff, R -- Luo, Y -- Fisher, S -- Fuller, J -- Edenson, S -- Lile, J -- Jarosinski, M A -- Biere, A L -- Curran, E -- Burgess, T -- Louis, J C -- Collins, F -- Treanor, J -- Rogers, G -- Citron, M -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):735-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen, Inc., One Amgen Center Drive, M/S 29-2-B, Thousand Oaks, CA 91320-1799, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531052" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/*enzymology ; Amino Acid Motifs ; Amino Acid Sequence ; Amyloid Precursor Protein Secretases ; Amyloid beta-Peptides/*biosynthesis ; Amyloid beta-Protein Precursor/*metabolism ; Animals ; Aspartic Acid Endopeptidases/chemistry/genetics/*isolation & ; purification/*metabolism ; Binding Sites ; Brain/enzymology/metabolism ; Cell Line ; Cloning, Molecular ; Endopeptidases ; Endosomes/enzymology ; Gene Expression ; Gene Library ; Golgi Apparatus/enzymology ; Humans ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; Peptides/metabolism ; Protease Inhibitors/pharmacology ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1999-02-26
    Description: Although broken chromosomes can induce apoptosis, natural chromosome ends (telomeres) do not trigger this response. It is shown that this suppression of apoptosis involves the telomeric-repeat binding factor 2 (TRF2). Inhibition of TRF2 resulted in apoptosis in a subset of mammalian cell types. The response was mediated by p53 and the ATM (ataxia telangiectasia mutated) kinase, consistent with activation of a DNA damage checkpoint. Apoptosis was not due to rupture of dicentric chromosomes formed by end-to-end fusion, indicating that telomeres lacking TRF2 directly signal apoptosis, possibly because they resemble damaged DNA. Thus, in some cells, telomere shortening may signal cell death rather than senescence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlseder, J -- Broccoli, D -- Dai, Y -- Hardy, S -- de Lange, T -- GM49046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA. Cell Genesys, Foster City, CA 94405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037601" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Animals ; *Apoptosis ; Ataxia Telangiectasia/pathology ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/cytology ; Cell Cycle Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; DNA Damage ; DNA-Binding Proteins/chemistry/genetics/*physiology ; Genetic Vectors ; Humans ; In Situ Nick-End Labeling ; Mice ; Mitosis ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; T-Lymphocytes/cytology ; Telomere/*physiology ; Telomeric Repeat Binding Protein 2 ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1999-09-25
    Description: Structures of 70S ribosome complexes containing messenger RNA and transfer RNA (tRNA), or tRNA analogs, have been solved by x-ray crystallography at up to 7.8 angstrom resolution. Many details of the interactions between tRNA and the ribosome, and of the packing arrangements of ribosomal RNA (rRNA) helices in and between the ribosomal subunits, can be seen. Numerous contacts are made between the 30S subunit and the P-tRNA anticodon stem-loop; in contrast, the anticodon region of A-tRNA is much more exposed. A complex network of molecular interactions suggestive of a functional relay is centered around the long penultimate stem of 16S rRNA at the subunit interface, including interactions involving the "switch" helix and decoding site of 16S rRNA, and RNA bridges from the 50S subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cate, J H -- Yusupov, M M -- Yusupova, G Z -- Earnest, T N -- Noller, H F -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2095-104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA. cate@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497122" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/metabolism ; Bacterial Proteins/chemistry/metabolism ; Base Pairing ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Fourier Analysis ; Models, Molecular ; Nucleic Acid Conformation ; Peptide Elongation Factors/metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Ribosomal/*chemistry/metabolism ; RNA, Ribosomal, 16S/chemistry ; RNA, Ribosomal, 23S/chemistry ; RNA, Transfer/*chemistry/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/*chemistry/*physiology/ultrastructure ; Thermus thermophilus/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: Zn-alpha2-glycoprotein (ZAG) is a soluble protein that is present in serum and other body fluids. ZAG stimulates lipid degradation in adipocytes and causes the extensive fat losses associated with some advanced cancers. The 2.8 angstrom crystal structure of ZAG resembles a class I major histocompatibility complex (MHC) heavy chain, but ZAG does not bind the class I light chain beta2-microglobulin. The ZAG structure includes a large groove analogous to class I MHC peptide binding grooves. Instead of a peptide, the ZAG groove contains a nonpeptidic compound that may be implicated in lipid catabolism under normal or pathological conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, L M -- Chirino, A J -- Bjorkman, P j -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1914-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206894" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Glycoproteins/blood/*chemistry/isolation & purification/metabolism ; Glycosylation ; HLA-A2 Antigen/chemistry/metabolism ; Histocompatibility Antigens Class I/*chemistry ; Humans ; Hydrogen Bonding ; Ligands ; Lipid Metabolism ; Models, Molecular ; Peptides/metabolism ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Seminal Plasma Proteins ; beta 2-Microglobulin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cleaver, J E -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):212-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology and Pharmaceutical Chemistry, UCSF Cancer Center, University of California, San Francisco, CA 94143-0808, USA. jcleaver@cc.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10428720" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; DNA Damage ; DNA Repair ; *DNA Replication ; DNA-Binding Proteins ; DNA-Directed DNA Polymerase/*genetics/metabolism ; Humans ; Mutation ; Pyrimidine Dimers/metabolism ; Ultraviolet Rays ; Xeroderma Pigmentosum/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1998-12-16
    Description: Src homology 3 (SH3) and WW protein interaction domains bind specific proline-rich sequences. However, instead of recognizing critical prolines on the basis of side chain shape or rigidity, these domains broadly accepted amide N-substituted residues. Proline is apparently specifically selected in vivo, despite low complementarity, because it is the only endogenous N-substituted amino acid. This discriminatory mechanism explains how these domains achieve specific but low-affinity recognition, a property that is necessary for transient signaling interactions. The mechanism can be exploited: screening a series of ligands in which key prolines were replaced by nonnatural N-substituted residues yielded a ligand that selectively bound the Grb2 SH3 domain with 100 times greater affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, J T -- Turck, C W -- Cohen, F E -- Zuckermann, R N -- Lim, W A -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2088-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851931" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; *Caenorhabditis elegans Proteins ; Carrier Proteins/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; GRB2 Adaptor Protein ; Helminth Proteins/chemistry/metabolism ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides/chemistry/*metabolism ; Phosphoproteins/chemistry/metabolism ; Proline/chemistry/*metabolism ; Protein Engineering ; Proteins/chemistry/metabolism ; Proto-Oncogene Proteins/chemistry/metabolism ; Proto-Oncogene Proteins c-crk ; Sequence Homology, Amino Acid ; *src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1822-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9776687" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Binding Sites ; Caspase 3 ; *Caspases ; Cloning, Molecular ; Cysteine Endopeptidases/chemistry/*metabolism ; DNA, Complementary ; Gelsolin/*genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gennis, R B -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1712-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemical Sciences, University of Illinois, Urbana, IL 61801, USA. Gennis@aries.scs.uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9660711" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Azides/chemistry/metabolism ; Binding Sites ; Cattle ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Electron Transport Complex IV/*chemistry/*metabolism ; Hydrogen Bonding ; Ion Channels ; Ligands ; Models, Chemical ; Myocardium/*enzymology ; Oxidation-Reduction ; Oxygen/metabolism ; Paracoccus denitrificans/enzymology ; Peroxides/chemistry ; Protein Conformation ; *Proton Pumps ; Proton-Motive Force ; Thermodynamics ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1998-05-09
    Description: High-fidelity transfers of genetic information in the central dogma can be achieved by a reaction called editing. The crystal structure of an enzyme with editing activity in translation is presented here at 2.5 angstroms resolution. The enzyme, isoleucyl-transfer RNA synthetase, activates not only the cognate substrate L-isoleucine but also the minimally distinct L-valine in the first, aminoacylation step. Then, in a second, "editing" step, the synthetase itself rapidly hydrolyzes only the valylated products. For this two-step substrate selection, a "double-sieve" mechanism has already been proposed. The present crystal structures of the synthetase in complexes with L-isoleucine and L-valine demonstrate that the first sieve is on the aminoacylation domain containing the Rossmann fold, whereas the second, editing sieve exists on a globular beta-barrel domain that protrudes from the aminoacylation domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nureki, O -- Vassylyev, D G -- Tateno, M -- Shimada, A -- Nakama, T -- Fukai, S -- Konno, M -- Hendrickson, T L -- Schimmel, P -- Yokoyama, S -- GM15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):578-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9554847" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/enzymology ; Hydrogen Bonding ; Hydrolysis ; Isoleucine/*metabolism ; Isoleucine-tRNA Ligase/*chemistry/metabolism ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Transfer, Ile/metabolism ; Substrate Specificity ; Thermus thermophilus/enzymology ; Transfer RNA Aminoacylation ; Valine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1998-10-02
    Description: Many organisms adapted to live at subzero temperatures express antifreeze proteins that improve their tolerance to freezing. Although structurally diverse, all antifreeze proteins interact with ice surfaces, depress the freezing temperature of aqueous solutions, and inhibit ice crystal growth. A protein purified from carrot shares these functional features with antifreeze proteins of fish. Expression of the carrot complementary DNA in tobacco resulted in the accumulation of antifreeze activity in the apoplast of plants grown at greenhouse temperatures. The sequence of carrot antifreeze protein is similar to that of polygalacturonase inhibitor proteins and contains leucine-rich repeats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worrall, D -- Elias, L -- Ashford, D -- Smallwood, M -- Sidebottom, C -- Lillford, P -- Telford, J -- Holt, C -- Bowles, D -- New York, N.Y. -- Science. 1998 Oct 2;282(5386):115-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Plant Laboratory, Biology Department, University of York, Post Office Box 373, York, YO1 5YW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9756474" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antifreeze Proteins ; Cloning, Molecular ; Crystallization ; DNA, Complementary ; Daucus carota/*chemistry/physiology ; Glycoproteins/*chemistry/genetics/isolation & purification/*physiology ; Glycosylation ; *Ice ; Isoelectric Point ; Leucine/chemistry ; Membrane Proteins/*chemistry/isolation & purification/*physiology/secretion ; Molecular Sequence Data ; Molecular Weight ; Plant Proteins/*chemistry/genetics/isolation & purification/*physiology ; Plant Roots/chemistry ; Plants, Genetically Modified ; Plants, Toxic ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, J L -- New York, N.Y. -- Science. 1998 Jul 3;281(5373):58-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. smithj@bragg.bio.purdue.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9679019" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Crystallization ; Crystallography, X-Ray ; Cytochromes c1/chemistry/metabolism ; Diffusion ; Dimerization ; Electron Transport ; Electron Transport Complex III/*chemistry/metabolism ; Hydrogen Bonding ; Iron-Sulfur Proteins/chemistry/metabolism ; Mitochondria, Heart/*enzymology ; Oxidation-Reduction ; *Protein Conformation ; Protein Structure, Secondary ; Protons ; Ubiquinone/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1998-05-23
    Description: Acetylenic bonds are present in more than 600 naturally occurring compounds. Plant enzymes that catalyze the formation of the Delta12 acetylenic bond in 9-octadecen-12-ynoic acid and the Delta12 epoxy group in 12,13-epoxy-9-octadecenoic acid were characterized, and two genes, similar in sequence, were cloned. When these complementary DNAs were expressed in Arabidopsis thaliana, the content of acetylenic or epoxidated fatty acids in the seeds increased from 0 to 25 or 15 percent, respectively. Both enzymes have characteristics similar to the membrane proteins containing non-heme iron that have histidine-rich motifs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M -- Lenman, M -- Banas, A -- Bafor, M -- Singh, S -- Schweizer, M -- Nilsson, R -- Liljenberg, C -- Dahlqvist, A -- Gummeson, P O -- Sjodahl, S -- Green, A -- Stymne, S -- New York, N.Y. -- Science. 1998 May 8;280(5365):915-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Svalov-Weibull AB, S-268 81 Svalov, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9572738" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylene/metabolism ; Alkynes ; Amino Acid Sequence ; Arabidopsis/genetics ; Asteraceae/enzymology/genetics/*metabolism ; Catalysis ; Cloning, Molecular ; DNA, Complementary ; Epoxy Compounds/chemical synthesis ; Fatty Acid Desaturases/*chemistry/genetics/metabolism ; Genes, Plant ; Iron/analysis ; Linoleic Acid/metabolism ; Microsomes/metabolism ; Molecular Sequence Data ; NAD/metabolism ; NADP/metabolism ; Oleic Acids/*biosynthesis/chemical synthesis ; *Oxidoreductases ; *Plant Proteins ; Plants, Genetically Modified ; Saccharomyces cerevisiae/genetics ; Seeds/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1998-07-24
    Description: Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, N S -- Wodicka, L -- Thunnissen, A M -- Norman, T C -- Kwon, S -- Espinoza, F H -- Morgan, D O -- Barnes, G -- LeClerc, S -- Meijer, L -- Kim, S H -- Lockhart, D J -- Schultz, P G -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):533-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677190" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/chemistry/metabolism/pharmacology ; Binding Sites ; *CDC2-CDC28 Kinases ; CDC28 Protein Kinase, S cerevisiae/antagonists & inhibitors ; Cell Division/drug effects ; Crystallography, X-Ray ; Cyclin A/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors ; Drug Evaluation, Preclinical ; Flavonoids/chemistry/metabolism/pharmacology ; Gene Expression Regulation, Fungal/drug effects ; Genes, Fungal ; Humans ; Hydrogen Bonding ; Oligonucleotide Probes ; Phosphates/metabolism ; Piperidines/chemistry/metabolism/pharmacology ; Protein-Serine-Threonine Kinases/antagonists & inhibitors ; Purines/chemical synthesis/chemistry/metabolism/*pharmacology ; RNA, Messenger/genetics/metabolism ; Saccharomyces cerevisiae/enzymology/genetics ; Structure-Activity Relationship ; Transcription, Genetic/drug effects ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1998-12-18
    Description: Mechanosensitive ion channels play a critical role in transducing physical stresses at the cell membrane into an electrochemical response. The MscL family of large-conductance mechanosensitive channels is widely distributed among prokaryotes and may participate in the regulation of osmotic pressure changes within the cell. In an effort to better understand the structural basis for the function of these channels, the structure of the MscL homolog from Mycobacterium tuberculosis was determined by x-ray crystallography to 3.5 angstroms resolution. This channel is organized as a homopentamer, with each subunit containing two transmembrane alpha helices and a third cytoplasmic alpha helix. From the extracellular side, a water-filled opening approximately 18 angstroms in diameter leads into a pore lined with hydrophilic residues which narrows at the cytoplasmic side to an occluded hydrophobic apex that may act as the channel gate. This structure may serve as a model for other mechanosensitive channels, as well as the broader class of pentameric ligand-gated ion channels exemplified by the nicotinic acetylcholine receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, G -- Spencer, R H -- Lee, A T -- Barclay, M T -- Rees, D C -- GM18486/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2220-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, 147-75CH, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856938" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cell Membrane/chemistry ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; *Escherichia coli Proteins ; *Ion Channel Gating ; Ion Channels/*chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mycobacterium tuberculosis/*chemistry ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...