ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (143)
  • Binding Sites  (101)
  • American Association for the Advancement of Science (AAAS)  (218)
  • American Association for the Advancement of Science
  • Institute of Physics
  • 1995-1999  (195)
  • 1980-1984  (23)
  • 1975-1979
  • 1998  (195)
  • 1983  (23)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (218)
  • American Association for the Advancement of Science
  • Institute of Physics
Years
  • 1995-1999  (195)
  • 1980-1984  (23)
  • 1975-1979
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The metabotropic glutamate receptors (mGluRs) are widely distributed in the brain and play important roles in synaptic plasticity. Here it is shown that some types of mGluRs are activated not only by glutamate but also by extracellular Ca2+ (Ca2+o). A single amino acid residue was found to determine the sensitivity of mGluRs to Ca2+o. One of the receptors, mGluR1alpha, but not its point mutant with reduced sensitivity to Ca2+o, caused morphological changes when transfected into mammalian cells. Thus, the sensing of Ca2+o by mGluRs may be important in cells under physiological condition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubo, Y -- Miyashita, T -- Murata, Y -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1722-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Tokyo Metropolitan Institute for Neuroscience, Musashidai 2-6, Fuchu, Tokyo 183-8526, Japan. ykubo@tmin.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497291" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/ultrastructure ; Amino Acid Sequence ; Animals ; Binding Sites ; Brain/metabolism ; CHO Cells ; Calcium/*metabolism/pharmacology ; Cell Size ; Cricetinae ; Cyclic AMP/metabolism ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Glutamic Acid/metabolism/pharmacology ; Molecular Sequence Data ; Oocytes ; Point Mutation ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Rats ; Receptors, Metabotropic Glutamate/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; Transfection ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-07-17
    Description: During RNA synthesis in the ternary elongation complex, RNA polymerase enzyme holds nucleic acids in three contiguous sites: the double-stranded DNA-binding site (DBS) ahead of the transcription bubble, the RNA-DNA heteroduplex-binding site (HBS), and the RNA-binding site (RBS) upstream of HBS. Photochemical cross-linking allowed mapping of the DNA and RNA contacts to specific positions on the amino acid sequence. Unexpectedly, the same protein regions were found to participate in both DBS and RBS. Thus, DNA entry and RNA exit occur close together in the RNA polymerase molecule, suggesting that the three sites constitute a single unit. The results explain how RNA in the integrated unit RBS-HBS-DBS may stabilize the ternary complex, whereas a hairpin in RNA result in its dissociation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nudler, E -- Gusarov, I -- Avetissova, E -- Kozlov, M -- Goldfarb, A -- GM49242/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 17;281(5375):424-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA. evgeny.nudler@med.nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9665887" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA, Bacterial/chemistry/*metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/*genetics/metabolism ; Idoxuridine/metabolism ; Models, Genetic ; Nucleic Acid Conformation ; Nucleic Acid Heteroduplexes/*metabolism ; Protein Binding ; RNA, Bacterial/chemistry/*metabolism ; Templates, Genetic ; *Transcription, Genetic ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-12-16
    Description: A peripheral membrane protein that is interactive with lymphocytic choriomeningitis virus (LCMV) was purified from cells permissive to infection. Tryptic peptides from this protein were determined to be alpha-dystroglycan (alpha-DG). Several strains of LCMV and other arenaviruses, including Lassa fever virus (LFV), Oliveros, and Mobala, bound to purified alpha-DG protein. Soluble alpha-DG blocked both LCMV and LFV infection. Cells bearing a null mutation of the gene encoding DG were resistant to LCMV infection, and reconstitution of DG expression in null mutant cells restored susceptibility to LCMV infection. Thus, alpha-DG is a cellular receptor for both LCMV and LFV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, W -- Henry, M D -- Borrow, P -- Yamada, H -- Elder, J H -- Ravkov, E V -- Nichol, S T -- Compans, R W -- Campbell, K P -- Oldstone, M B -- AG 00080/AG/NIA NIH HHS/ -- AI 09484/AI/NIAID NIH HHS/ -- DK09712/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2079-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851928" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arenavirus/metabolism ; Cell Line ; Cytoskeletal Proteins/chemistry/genetics/*metabolism ; Dystroglycans ; Lassa virus/*metabolism/physiology ; Lymphocytic choriomeningitis virus/*metabolism/physiology ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, Virus/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-29
    Description: After the vertebrate lens is induced from head ectoderm, lens-specific genes are expressed. Transcriptional regulation of the lens-specific alphaA-crystallin gene is controlled by an enhancer element, alphaCE2. A gene encoding an alphaCE2-binding protein, L-maf(lens-specific maf), was isolated. L-maf expression is initiated in the lens placode and is restricted to lens cells. The gene product L-Maf regulates the expression of multiple genes expressed in the lens, and ectopic expression of this transcription factor converts chick embryonic ectodermal cells and cultured cells into lens fibers. Thus, vertebrate lens induction and differentiation can be triggered by the activation of L-Maf.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogino, H -- Yasuda, K -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525857" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic-Leucine Zipper Transcription Factors ; Cell Differentiation ; Cells, Cultured ; Chick Embryo ; Crystallins/genetics ; DNA, Complementary ; DNA-Binding Proteins/chemistry/genetics ; Ectoderm ; Enhancer Elements, Genetic ; Eye Proteins/genetics ; G-Box Binding Factors ; *Gene Expression Regulation, Developmental ; Genes, Reporter ; Intermediate Filament Proteins/genetics ; Lens, Crystalline/*cytology/*embryology/metabolism ; Maf Transcription Factors ; Molecular Sequence Data ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-08-07
    Description: Clathrin-mediated endocytosis involves cycles of assembly and disassembly of clathrin coat components and their accessory proteins. Dephosphorylation of rat brain extract was shown to promote the assembly of dynamin 1, synaptojanin 1, and amphiphysin into complexes that also included clathrin and AP-2. Phosphorylation of dynamin 1 and synaptojanin 1 inhibited their binding to amphiphysin, whereas phosphorylation of amphiphysin inhibited its binding to AP-2 and clathrin. Thus, phosphorylation regulates the association and dissociation cycle of the clathrin-based endocytic machinery, and calcium-dependent dephosphorylation of endocytic proteins could prepare nerve terminals for a burst of endocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Slepnev, V I -- Ochoa, G C -- Butler, M H -- Grabs, D -- De Camilli, P -- CA46128/CA/NCI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694653" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex alpha Subunits ; Adaptor Protein Complex beta Subunits ; Adaptor Proteins, Vesicular Transport ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Carbazoles/pharmacology ; Chromatography, Affinity ; Clathrin/*metabolism ; Cyclosporine/pharmacology ; Dimerization ; Dynamin I ; Dynamins ; *Endocytosis ; Enzyme Inhibitors/pharmacology ; GTP Phosphohydrolases/*metabolism ; Indole Alkaloids ; Membrane Proteins/*metabolism ; Nerve Tissue Proteins/*metabolism ; Phosphoric Monoester Hydrolases/*metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-28
    Description: Small organic sensor molecules were prepared that bind and signal the presence of unlabeled tripeptides in a sequence-selective manner. Sequence-selective peptide binding is a difficult problem because small peptides are highly flexible and there are no clear rules for designing peptide-binding molecules as there are for the nucleic acids. The signaling system involved the application of fluorescence energy transfer and provided large, real-time fluorescence increases (300 to 500 percent) upon peptide binding. With it, these sensors were sensitive enough to detect unlabeled cognate peptides both in organic solution and in the solid state at low micromolar concentrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, C T -- Wagner, H -- Still, W C -- New York, N.Y. -- Science. 1998 Feb 6;279(5352):851-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9452382" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Energy Transfer ; Fluorescence ; Microspheres ; Oligopeptides/*analysis/metabolism ; Peptide Library ; Peptides, Cyclic/*chemical synthesis/chemistry/metabolism ; Polystyrenes ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: Mice homozygous for a disrupted allele of the mismatch repair gene Pms2 have a mutator phenotype. When this allele is crossed into quasi-monoclonal (QM) mice, which have a very limited B cell repertoire, homozygotes have fewer somatic mutations at the immunoglobulin heavy chain and lambda chain loci than do heterozygotes or wild-type QM mice. That is, mismatch repair seems to contribute to somatic hypermutation rather than stifling it. It is suggested that at immunoglobulin loci in hypermutable B cells, mismatched base pairs are "corrected" according to the newly synthesized DNA strand, thereby fixing incipient mutations instead of eliminating them.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cascalho, M -- Wong, J -- Steinberg, C -- Wabl, M -- 1R01 GM37699/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0670, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469811" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenosine Triphosphatases ; Alleles ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology ; Base Composition ; Base Sequence ; Cloning, Molecular ; Crosses, Genetic ; *DNA Repair ; *DNA Repair Enzymes ; *DNA-Binding Proteins ; Female ; Gene Rearrangement ; *Genes, Immunoglobulin ; Heterozygote ; Immunoglobulin Heavy Chains/chemistry/genetics ; Immunoglobulin Variable Region/chemistry/*genetics ; Immunoglobulin lambda-Chains/chemistry/genetics ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Mutation ; Proteins/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-12-05
    Description: Group I introns possess a single active site that catalyzes the two sequential reactions of self-splicing. An RNA comprising the two domains of the Tetrahymena thermophila group I intron catalytic core retains activity, and the 5.0 angstrom crystal structure of this 247-nucleotide ribozyme is now described. Close packing of the two domains forms a shallow cleft capable of binding the short helix that contains the 5' splice site. The helix that provides the binding site for the guanosine substrate deviates significantly from A-form geometry, providing a tight binding pocket. The binding pockets for both the 5' splice site helix and guanosine are formed and oriented in the absence of these substrates. Thus, this large ribozyme is largely preorganized for catalysis, much like a globular protein enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golden, B L -- Gooding, A R -- Podell, E R -- Cech, T R -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):259-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA. bgolden@petunia.colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Guanosine/metabolism ; Introns ; Magnesium/metabolism ; Manganese/metabolism ; *Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phosphates/metabolism ; RNA Splicing ; RNA, Catalytic/*chemistry/metabolism ; Tetrahymena thermophila/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: The 2.5 angstrom resolution x-ray crystal structure of the Escherichia coli RNA polymerase (RNAP) alpha subunit amino-terminal domain (alphaNTD), which is necessary and sufficient to dimerize and assemble the other RNAP subunits into a transcriptionally active enzyme and contains all of the sequence elements conserved among eukaryotic alpha homologs, has been determined. The alphaNTD monomer comprises two distinct, flexibly linked domains, only one of which participates in the dimer interface. In the alphaNTD dimer, a pair of helices from one monomer interact with the cognate helices of the other to form an extensive hydrophobic core. All of the determinants for interactions with the other RNAP subunits lie on one face of the alphaNTD dimer. Sequence alignments, combined with secondary-structure predictions, support proposals that a heterodimer of the eukaryotic RNAP subunits related to Saccharomyces cerevisiae Rpb3 and Rpb11 plays the role of the alphaNTD dimer in prokaryotic RNAP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, G -- Darst, S A -- GM19441-01/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/*chemistry ; Dimerization ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Polymerase II/chemistry ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-02-21
    Description: CREB binding protein (CBP) functions as an essential coactivator of transcription factors that are inhibited by the adenovirus early gene product E1A. Transcriptional activation by the signal transducer and activator of transcription-1 (STAT1) protein requires the C/H3 domain in CBP, which is the primary target of E1A inhibition. Here it was found that the C/H3 domain is not required for retinoic acid receptor (RAR) function, nor is it involved in E1A inhibition. Instead, E1A inhibits RAR function by preventing the assembly of CBP-nuclear receptor coactivator complexes, revealing differences in required CBP domains for transcriptional activation by RAR and STAT1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurokawa, R -- Kalafus, D -- Ogliastro, M H -- Kioussi, C -- Xu, L -- Torchia, J -- Rosenfeld, M G -- Glass, C K -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):700-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445474" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/*metabolism/pharmacology ; Animals ; Binding Sites ; CREB-Binding Protein ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/metabolism ; Histone Acetyltransferases ; Humans ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 3 ; Protein Binding ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/metabolism ; STAT1 Transcription Factor ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Tretinoin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-31
    Description: Protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus involves specific uptake into coat protein complex II (COPII)-coated vesicles of secretory and of vesicle targeting (v-SNARE) proteins. Here, two ER to Golgi v-SNAREs, Bet1p and Bos1p, were shown to interact specifically with Sar1p, Sec23p, and Sec24p, components of the COPII coat, in a guanine nucleotide-dependent fashion. Other v-SNAREs, Sec22p and Ykt6p, might interact more weakly with the COPII coat or interact indirectly by binding to Bet1p or Bos1p. The data suggest that transmembrane proteins can be taken up into COPII vesicles by direct interactions with the coat proteins and may play a structural role in the assembly of the COPII coat complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Springer, S -- Schekman, R -- New York, N.Y. -- Science. 1998 Jul 31;281(5377):698-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9685263" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; COP-Coated Vesicles ; Carrier Proteins/*metabolism ; Endoplasmic Reticulum/*metabolism ; Fungal Proteins/*metabolism ; GTP Phosphohydrolases/metabolism ; GTP-Binding Proteins/*metabolism ; GTPase-Activating Proteins ; Golgi Apparatus/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Guanylyl Imidodiphosphate/metabolism/pharmacology ; Membrane Proteins/*metabolism ; *Membrane Transport Proteins ; *Monomeric GTP-Binding Proteins ; Qb-SNARE Proteins ; Qc-SNARE Proteins ; R-SNARE Proteins ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, B J -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1000-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84132, USA. graves@bioscience.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490475" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrins/chemistry ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; GA-Binding Protein Transcription Factor ; Hydrogen Bonding ; Leucine Zippers ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Transcription Factors/*chemistry/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1998-02-21
    Description: Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, L -- Anderson, K -- Stokoe, D -- Erdjument-Bromage, H -- Painter, G F -- Holmes, A B -- Gaffney, P R -- Reese, C B -- McCormick, F -- Tempst, P -- Coadwell, J -- Hawkins, P T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):710-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inositide Laboratory, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445477" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cloning, Molecular ; DNA, Complementary ; Drosophila ; Drosophila Proteins ; Enzyme Activation ; Humans ; Liposomes/metabolism ; Molecular Sequence Data ; Open Reading Frames ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/isolation & ; purification/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Recombinant Proteins/metabolism ; Sheep ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1998-03-21
    Description: Viral infection is sometimes associated with the initiation or exacerbation of autoimmune disease, although the underlying mechanisms remain unclear. One proposed mechanism is that viral determinants that mimic host antigens trigger self-reactive T cell clones to destroy host tissue. An epitope expressed by a coat protein of herpes simplex virus-type 1 (HSV-1) KOS strain has now been shown to be recognized by autoreactive T cells that target corneal antigens in a murine model of autoimmune herpes stromal keratitis. Mutant HSV-1 viruses that lacked this epitope did not induce autoimmune disease. Thus, expression of molecular mimics can influence the development of autoimmune disease after viral infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Z S -- Granucci, F -- Yeh, L -- Schaffer, P A -- Cantor, H -- AI 37562/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 27;279(5355):1344-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, and Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9478893" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Amino Acid Sequence ; Animals ; Autoantigens/immunology ; Autoimmune Diseases/*immunology ; CD4-Positive T-Lymphocytes/immunology ; Capsid/chemistry/genetics/*immunology ; *Capsid Proteins ; Cornea/*immunology ; Epitopes ; Eye Proteins/immunology ; Herpesvirus 1, Human/*immunology ; Keratitis, Herpetic/*immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Mice, SCID ; *Molecular Mimicry ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligopeptides/immunology ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-23
    Description: During telomere replication in yeast, chromosome ends acquire an S-phase-specific overhang of the guanosine-rich strand. Here it is shown that in cells lacking Ku, a heterodimeric protein involved in nonhomologous DNA end joining, these overhangs are present throughout the cell cycle. In vivo cross-linking experiments demonstrated that Ku is bound to telomeric DNA. These results show that Ku plays a direct role in establishing a normal DNA end structure on yeast chromosomes, conceivably by functioning as a terminus-binding factor. Because Ku-mediated DNA end joining involving telomeres would result in chromosome instability, our data also suggest that Ku has a distinct function when bound to telomeres.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gravel, S -- Larrivee, M -- Labrecque, P -- Wellinger, R J -- New York, N.Y. -- Science. 1998 May 1;280(5364):741-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de Microbiologie et Infectiologie, Faculte de Medecine, Universite de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Quebec QC J1H 5N4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9563951" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, Nuclear ; Binding Sites ; Chromosomes, Fungal/chemistry/*metabolism ; *DNA Helicases ; DNA, Fungal/chemistry/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Fungal Proteins/*metabolism ; G2 Phase ; Genes, Fungal ; Mitosis ; Mutation ; Nuclear Proteins/genetics/*metabolism ; S Phase ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Telomerase/genetics/metabolism ; Telomere/*metabolism ; Temperature ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The OxyR transcription factor is sensitive to oxidation and activates the expression of antioxidant genes in response to hydrogen peroxide in Escherichia coli. Genetic and biochemical studies revealed that OxyR is activated through the formation of a disulfide bond and is deactivated by enzymatic reduction with glutaredoxin 1 (Grx1). The gene encoding Grx1 is regulated by OxyR, thus providing a mechanism for autoregulation. The redox potential of OxyR was determined to be -185 millivolts, ensuring that OxyR is reduced in the absence of stress. These results represent an example of redox signaling through disulfide bond formation and reduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, M -- Aslund, F -- Storz, G -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins/genetics/metabolism ; Base Sequence ; Cysteine/metabolism ; *DNA-Binding Proteins ; Disulfides/*metabolism ; Escherichia coli/genetics/*metabolism ; Escherichia coli Proteins ; Gene Expression Regulation, Bacterial ; Glutaredoxins ; Glutathione/metabolism ; Glutathione Disulfide/metabolism ; Glutathione Reductase/metabolism ; Hydrogen Peroxide/*metabolism/pharmacology ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidative Stress ; *Oxidoreductases ; Proteins/genetics/metabolism ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; Thioredoxins/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1998-10-23
    Description: Analysis of the 1,042,519-base pair Chlamydia trachomatis genome revealed unexpected features related to the complex biology of chlamydiae. Although chlamydiae lack many biosynthetic capabilities, they retain functions for performing key steps and interconversions of metabolites obtained from their mammalian host cells. Numerous potential virulence-associated proteins also were characterized. Several eukaryotic chromatin-associated domain proteins were identified, suggesting a eukaryotic-like mechanism for chlamydial nucleoid condensation and decondensation. The phylogenetic mosaic of chlamydial genes, including a large number of genes with phylogenetic origins from eukaryotes, implies a complex evolution for adaptation to obligate intracellular parasitism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, R S -- Kalman, S -- Lammel, C -- Fan, J -- Marathe, R -- Aravind, L -- Mitchell, W -- Olinger, L -- Tatusov, R L -- Zhao, Q -- Koonin, E V -- Davis, R W -- AI 39258/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):754-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Infectious Diseases, University of California, Berkeley, CA 94720, USA. ctgenome@socrates.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784136" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acids/biosynthesis ; Bacterial Outer Membrane Proteins/genetics ; Bacterial Proteins/chemistry/genetics ; Biological Evolution ; Chlamydia trachomatis/classification/*genetics/metabolism/physiology ; DNA Repair ; Energy Metabolism ; Enzymes/chemistry/genetics ; *Genome, Bacterial ; Humans ; Lipids/biosynthesis ; Molecular Sequence Data ; Peptidoglycan/biosynthesis/genetics ; Phylogeny ; Protein Biosynthesis ; Recombination, Genetic ; *Sequence Analysis, DNA ; Transcription, Genetic ; Transformation, Bacterial ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1998-05-02
    Description: In the ribosome, the aminoacyl-transfer RNA (tRNA) analog 4-thio-dT-p-C-p-puromycin crosslinks photochemically with G2553 of 23S ribosomal RNA (rRNA). This covalently linked substrate reacts with a peptidyl-tRNA analog to form a peptide bond in a peptidyl transferase-catalyzed reaction. This result places the conserved 2555 loop of 23S rRNA at the peptidyl transferase A site and suggests that peptide bond formation can occur uncoupled from movement of the A-site tRNA. Crosslink formation depends on occupancy of the P site by a tRNA carrying an intact CCA acceptor end, indicating that peptidyl-tRNA, directly or indirectly, helps to create the peptidyl transferase A site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, R -- Switzer, C -- Noller, H F -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):286-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535658" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Binding Sites ; Catalysis ; Enzyme Inhibitors/pharmacology ; Escherichia coli ; Nucleic Acid Conformation ; Peptidyl Transferases/antagonists & inhibitors/*metabolism ; Puromycin/analogs & derivatives/chemical synthesis/chemistry/*metabolism ; RNA, Bacterial/chemistry/metabolism ; RNA, Ribosomal, 23S/chemistry/*metabolism ; RNA, Transfer, Amino Acyl/chemistry/*metabolism ; RNA, Transfer, Phe/chemistry/genetics/*metabolism ; Ribosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-16
    Description: More than 3 percent of the protein sequences inferred from the Caenorhabditis elegans genome contain sequence motifs characteristic of zinc-binding structural domains, and of these more than half are believed to be sequence-specific DNA-binding proteins. The distribution of these zinc-binding domains among the genomes of various organisms offers insights into the role of zinc-binding proteins in evolution. In addition, the complete genome sequence of C. elegans provides an opportunity to analyze, and perhaps predict, pathways of transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clarke, N D -- Berg, J M -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2018-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans/*chemistry/genetics/metabolism ; *Caenorhabditis elegans Proteins ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Evolution, Molecular ; GATA Transcription Factors ; Gene Expression Regulation ; Helminth Proteins/*chemistry/genetics/metabolism ; Membrane Proteins/chemistry/genetics/metabolism ; Receptors, Cell Surface/chemistry/genetics ; Trans-Activators/chemistry/genetics/metabolism ; Transcription Factors/chemistry/genetics/metabolism ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: Recombinant proteins containing four cysteines at the i, i + 1, i + 4, and i + 5 positions of an alpha helix were fluorescently labeled in living cells by extracellular administration of 4',5'-bis(1,3, 2-dithioarsolan-2-yl)fluorescein. This designed small ligand is membrane-permeant and nonfluorescent until it binds with high affinity and specificity to the tetracysteine domain. Such in situ labeling adds much less mass than does green fluorescent protein and offers greater versatility in attachment sites as well as potential spectroscopic and chemical properties. This system provides a recipe for slightly modifying a target protein so that it can be singled out from the many other proteins inside live cells and fluorescently stained by small nonfluorescent dye molecules added from outside the cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffin, B A -- Adams, S R -- Tsien, R Y -- NS27177/NS/NINDS NIH HHS/ -- T32 CA09523/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):269-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0647, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657724" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calmodulin/chemistry/genetics/metabolism ; Cell Membrane Permeability ; Cell Survival ; Cysteine/*chemistry ; Energy Transfer ; Ethylene Glycol ; Fluoresceins/chemical synthesis/chemistry/*metabolism ; Fluorescence ; *Fluorescent Dyes ; Green Fluorescent Proteins ; HeLa Cells ; Humans ; Jurkat Cells ; Ligands ; Luminescent Proteins/chemistry/genetics/metabolism ; Molecular Sequence Data ; Organometallic Compounds/chemical synthesis/chemistry/*metabolism ; Peptides/chemistry/*metabolism ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/*metabolism ; Spectrometry, Fluorescence ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: The three-dimensional structure of a 70-kilodalton amino terminally truncated form of human topoisomerase I in complex with a 22-base pair duplex oligonucleotide, determined to a resolution of 2.8 angstroms, reveals all of the structural elements of the enzyme that contact DNA. The linker region that connects the central core of the enzyme to the carboxyl-terminal domain assumes a coiled-coil configuration and protrudes away from the remainder of the enzyme. The positively charged DNA-proximal surface of the linker makes only a few contacts with the DNA downstream of the cleavage site. In combination with the crystal structures of the reconstituted human topoisomerase I before and after DNA cleavage, this information suggests which amino acid residues are involved in catalyzing phosphodiester bond breakage and religation. The structures also lead to the proposal that the topoisomerization step occurs by a mechanism termed "controlled rotation."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, L -- Redinbo, M R -- Qiu, X -- Hol, W G -- Champoux, J J -- CA65656/CA/NCI NIH HHS/ -- GM16713/GM/NIGMS NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1534-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195-7742, USA. emerald_biostructures@rocketmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1998-11-13
    Description: The ectodomains of numerous proteins are released from cells by proteolysis to yield soluble intercellular regulators. The responsible protease, tumor necrosis factor-alpha converting enzyme (TACE), has been identified only in the case when tumor necrosis factor-alpha (TNFalpha) is released. Analyses of cells lacking this metalloproteinase-disintegrin revealed an expanded role for TACE in the processing of other cell surface proteins, including a TNF receptor, the L-selectin adhesion molecule, and transforming growth factor-alpha (TGFalpha). The phenotype of mice lacking TACE suggests an essential role for soluble TGFalpha in normal development and emphasizes the importance of protein ectodomain shedding in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peschon, J J -- Slack, J L -- Reddy, P -- Stocking, K L -- Sunnarborg, S W -- Lee, D C -- Russell, W E -- Castner, B J -- Johnson, R S -- Fitzner, J N -- Boyce, R W -- Nelson, N -- Kozlosky, C J -- Wolfson, M F -- Rauch, C T -- Cerretti, D P -- Paxton, R J -- March, C J -- Black, R A -- CA43793/CA/NCI NIH HHS/ -- DK53804/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunex Corporation, Seattle, WA 98101, USA. peschon@immunex.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812885" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Cell Membrane/*metabolism ; Cells, Cultured ; Crosses, Genetic ; *Embryonic and Fetal Development ; L-Selectin/metabolism ; Ligands ; Membrane Proteins/*metabolism ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Phenotype ; Protein Processing, Post-Translational ; Receptors, Tumor Necrosis Factor/metabolism ; Transforming Growth Factor alpha/metabolism ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashcroft, F M -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1059-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University Laboratory of Physiology, Oxford OX1 3PT, UK. frances.ashcroft@physiol.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841452" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/*metabolism/pharmacology ; Animals ; Binding Sites ; Cell Membrane/metabolism ; Islets of Langerhans/metabolism ; Models, Biological ; Myocardium/cytology/metabolism ; Phosphatidylinositol 4,5-Diphosphate/chemistry/*metabolism/pharmacology ; Potassium Channels/chemistry/genetics/*metabolism ; *Potassium Channels, Inwardly Rectifying ; Receptors, Drug/chemistry/metabolism ; Sulfonylurea Receptors ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1998-03-21
    Description: Long-term potentiation (LTP) is an activity-dependent strengthening of synaptic efficacy that is considered to be a model of learning and memory. Protein tyrosine phosphorylation is necessary to induce LTP. Here, induction of LTP in CA1 pyramidal cells of rats was prevented by blocking the tyrosine kinase Src, and Src activity was increased by stimulation producing LTP. Directly activating Src in the postsynaptic neuron enhanced excitatory synaptic responses, occluding LTP. Src-induced enhancement of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor-mediated synaptic responses required raised intracellular Ca2+ and N-methyl-D-aspartate (NMDA) receptors. Thus, Src activation is necessary and sufficient for inducing LTP and may function by up-regulating NMDA receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Y M -- Roder, J C -- Davidow, J -- Salter, M W -- New York, N.Y. -- Science. 1998 Feb 27;279(5355):1363-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9478899" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/metabolism ; Electric Stimulation ; Enzyme Activation ; Excitatory Postsynaptic Potentials/drug effects ; Hippocampus/cytology/enzymology/*physiology ; In Vitro Techniques ; *Long-Term Potentiation ; Molecular Sequence Data ; Oligopeptides/pharmacology ; Patch-Clamp Techniques ; Peptide Fragments/pharmacology ; Proto-Oncogene Proteins pp60(c-src)/pharmacology ; Pyramidal Cells/enzymology/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/physiology ; Receptors, N-Methyl-D-Aspartate/physiology ; Recombinant Proteins/pharmacology ; Up-Regulation ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):978-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490484" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Databases, Factual ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry/classification/genetics ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9446222" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Binding Sites ; Cell Division ; Crystallization ; Crystallography/*methods ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; GTP-Binding Proteins/chemistry ; Guanosine Triphosphate/metabolism ; Microtubules/chemistry ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary ; Tubulin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-31
    Description: Gamete interactions during fertilization exhibit species specificity. In abalone, the sperm protein lysin species-specifically creates a hole in the egg envelope. Lysin evolves rapidly by positive Darwinian selection. Evolution of the egg receptor for lysin provides the selective pressure for lysin's divergence. The egg receptor for lysin is a tandemly repeated sequence that evolves by concerted evolution. Concerted evolution in the egg receptor could explain the rapid, adaptive evolution in sperm lysin and may provide an underlying molecular mechanism that gives rise to species-specific fertilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swanson, W J -- Vacquier, V D -- HD12986/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 31;281(5377):710-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA. jwswanson@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9685267" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Egg Proteins/chemistry/*genetics/metabolism ; *Evolution, Molecular ; Female ; Introns ; Male ; Molecular Sequence Data ; Mollusca/chemistry/*genetics/physiology ; Mucoproteins/chemistry/genetics/*metabolism ; Ovum/chemistry/physiology ; Receptors, Cell Surface/chemistry/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic ; Sequence Alignment ; Species Specificity ; Sperm-Ovum Interactions ; Spermatozoa/chemistry/physiology ; Vitelline Membrane/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-29
    Description: Human CtBP attenuates transcriptional activation and tumorigenesis mediated by the adenovirus E1A protein. The E1A sequence motif that interacts with CtBP, Pro-X-Asp-Leu-Ser-X-Lys (P-DLS-K), is present in the repression domains of two unrelated short-range repressors in Drosophila, Knirps and Snail, and is essential for the interaction of these proteins with Drosophila CtBP (dCtBP). A P-element-induced mutation in dCtBP exhibits gene-dosage interactions with a null mutation in knirps, which is consistent with the occurrence of Knirps-dCtBP interactions in vivo. These observations suggest that CtBP and dCtBP are engaged in an evolutionarily conserved mechanism of transcriptional repression, which is used in both Drosophila and mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nibu, Y -- Zhang, H -- Levine, M -- GM46638/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):101-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Division of Genetics, 401 Barker Hall, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525852" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Oxidoreductases ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila/*embryology/genetics/metabolism ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Female ; Gene Dosage ; *Gene Expression Regulation ; Genes, Insect ; Genes, Reporter ; Humans ; Insect Proteins/genetics/metabolism ; Male ; Molecular Sequence Data ; Mutation ; Phosphoproteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism ; *Transcription Factors ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1998-09-11
    Description: Leptin is a hormone that regulates food intake, and its receptor (OB-Rb) is expressed primarily in the hypothalamus. Here, it is shown that OB-Rb is also expressed in human vasculature and in primary cultures of human endothelial cells. In vitro and in vivo assays revealed that leptin has angiogenic activity. In vivo, leptin induced neovascularization in corneas from normal rats but not in corneas from fa/fa Zucker rats, which lack functional leptin receptors. These observations indicate that the vascular endothelium is a target for leptin and suggest a physiological mechanism whereby leptin-induced angiogenesis may facilitate increased energy expenditure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sierra-Honigmann, M R -- Nath, A K -- Murakami, C -- Garcia-Cardena, G -- Papapetropoulos, A -- Sessa, W C -- Madge, L A -- Schechner, J S -- Schwabb, M B -- Polverini, P J -- Flores-Riveros, J R -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1683-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA. rocio_sierra-honigmann@qm.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733517" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism ; Amino Acid Sequence ; Animals ; Carrier Proteins/analysis/*physiology ; Cells, Cultured ; Corneal Neovascularization ; DNA-Binding Proteins/metabolism ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/chemistry/cytology/*physiology ; Energy Metabolism ; Humans ; Leptin ; Lipid Metabolism ; Lymphokines/pharmacology ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/pharmacology/*physiology ; Rats ; Rats, Zucker ; *Receptors, Cell Surface ; Receptors, Leptin ; STAT3 Transcription Factor ; Trans-Activators/metabolism ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-06
    Description: Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels couple cell metabolism to electrical activity. Phosphatidylinositol phosphates (PIPs) profoundly antagonized ATP inhibition of KATP channels when applied to inside-out membrane patches. It is proposed that membrane-incorporated PIPs can bind to positive charges in the cytoplasmic region of the channel's Kir6.2 subunit, stabilizing the open state of the channel and antagonizing the inhibitory effect of ATP. The tremendous effect of PIPs on ATP sensitivity suggests that in vivo alterations of membrane PIP levels will have substantial effects on KATP channel activity and hence on the gain of metabolism-excitation coupling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shyng, S L -- Nichols, C G -- HL45742/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804554" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/metabolism/*pharmacology ; Animals ; Binding Sites ; COS Cells ; Cell Line ; Islets of Langerhans/metabolism ; Mutation ; Myocardium/cytology/metabolism ; Patch-Clamp Techniques ; Phosphatidylinositol 4,5-Diphosphate/*metabolism/pharmacology ; Phosphatidylinositol Phosphates/*metabolism/pharmacology ; Potassium Channels/chemistry/genetics/*metabolism ; *Potassium Channels, Inwardly Rectifying ; Receptors, Drug/metabolism ; Recombinant Fusion Proteins/metabolism ; Sulfonylurea Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: A 20-residue protein (named Betanova) forming a monomeric, three-stranded, antiparallel beta sheet was designed using a structural backbone template and an iterative hierarchical approach. Structural and physicochemical characterization show that the beta-sheet conformation is stabilized by specific tertiary interactions and that the protein exhibits a cooperative two-state folding-unfolding transition, which is a hallmark of natural proteins. The Betanova molecule constitutes a tractable model system to aid in the understanding of beta-sheet formation, including beta-sheet aggregation and amyloid fibril formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kortemme, T -- Ramirez-Alvarado, M -- Serrano, L -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):253-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657719" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; Computer Simulation ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Folding ; *Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemical synthesis/*chemistry ; Solubility ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1998-11-06
    Description: Chromosome 2 of Plasmodium falciparum was sequenced; this sequence contains 947,103 base pairs and encodes 210 predicted genes. In comparison with the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene density, introns are more frequent, and proteins are markedly enriched in nonglobular domains. A family of surface proteins, rifins, that may play a role in antigenic variation was identified. The complete sequencing of chromosome 2 has shown that sequencing of the A+T-rich P. falciparum genome is technically feasible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, M J -- Tettelin, H -- Carucci, D J -- Cummings, L M -- Aravind, L -- Koonin, E V -- Shallom, S -- Mason, T -- Yu, K -- Fujii, C -- Pederson, J -- Shen, K -- Jing, J -- Aston, C -- Lai, Z -- Schwartz, D C -- Pertea, M -- Salzberg, S -- Zhou, L -- Sutton, G G -- Clayton, R -- White, O -- Smith, H O -- Fraser, C M -- Adams, M D -- Venter, J C -- Hoffman, S L -- R01 AI40125-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1126-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804551" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Protozoan/chemistry/genetics ; Base Composition ; Chromosomes/*genetics ; Evolution, Molecular ; *Genes, Protozoan ; Genome, Protozoan ; Introns ; Membrane Proteins/chemistry/genetics ; Molecular Sequence Data ; Multigene Family ; Physical Chromosome Mapping ; Plasmodium falciparum/*genetics ; Protozoan Proteins/chemistry/*genetics ; RNA, Protozoan/genetics ; RNA, Transfer, Glu/genetics ; Repetitive Sequences, Nucleic Acid ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Alignment ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-30
    Description: Many filamentous cyanobacteria grow as multicellular organisms that show a developmental pattern of single nitrogen-fixing heterocysts separated by approximately 10 vegetative cells. Overexpression of a 54-base-pair gene, patS, blocked heterocyst differentiation in Anabaena sp. strain PCC 7120. A patS null mutant showed an increased frequency of heterocysts and an abnormal pattern. Expression of a patS-gfp reporter was localized in developing proheterocysts. The addition of a synthetic peptide corresponding to the last five amino acids of PatS inhibited heterocyst development. PatS appears to control heterocyst pattern formation through intercellular signaling mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, H S -- Golden, J W -- GM36890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):935-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9794762" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anabaena/cytology/genetics/*growth & development/metabolism ; Bacterial Proteins/chemistry/genetics/*physiology ; Base Sequence ; Cosmids ; Culture Media ; Diffusion ; Genes, Bacterial ; Genes, Reporter ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation, Missense ; Nitrates/metabolism ; Nitrogen Fixation ; Oligopeptides/pharmacology ; Peptide Fragments/pharmacology ; Phenotype ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1998-06-20
    Description: Crystal structures of bovine heart cytochrome c oxidase in the fully oxidized, fully reduced, azide-bound, and carbon monoxide-bound states were determined at 2.30, 2.35, 2.9, and 2.8 angstrom resolution, respectively. An aspartate residue apart from the O2 reduction site exchanges its effective accessibility to the matrix aqueous phase for one to the cytosolic phase concomitantly with a significant decrease in the pK of its carboxyl group, on reduction of the metal sites. The movement indicates the aspartate as the proton pumping site. A tyrosine acidified by a covalently linked imidazole nitrogen is a possible proton donor for the O2 reduction by the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshikawa, S -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yamashita, E -- Inoue, N -- Yao, M -- Fei, M J -- Libeu, C P -- Mizushima, T -- Yamaguchi, H -- Tomizaki, T -- Tsukihara, T -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1723-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Himeji Institute of Technology and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/chemistry/metabolism ; Azides/metabolism ; Binding Sites ; Carbon Monoxide/metabolism ; Cattle ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/chemistry/metabolism ; Hydrogen-Ion Concentration ; Ligands ; Metals/metabolism ; Models, Chemical ; Models, Molecular ; Myocardium/*enzymology ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Conformation ; *Proton Pumps ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1998-09-22
    Description: The Fas death receptor can activate the Jun NH2-terminal kinase (JNK) pathway through the receptor-associated protein Daxx. Daxx was found to activate the JNK kinase kinase ASK1, and overexpression of a kinase-deficient ASK1 mutant inhibited Fas- and Daxx-induced apoptosis and JNK activation. Fas activation induced Daxx to interact with ASK1, which consequently relieved an inhibitory intramolecular interaction between the amino- and carboxyl-termini of ASK1, activating its kinase activity. The Daxx-ASK1 connection completes a signaling pathway from a cell surface death receptor to kinase cascades that modulate nuclear transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H Y -- Nishitoh, H -- Yang, X -- Ichijo, H -- Baltimore, D -- CA51462/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1860-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743501" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Animals ; Antigens, CD95/metabolism ; *Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/*metabolism ; Cell Line ; Enzyme Activation ; Humans ; *Intracellular Signaling Peptides and Proteins ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; *Nuclear Proteins ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-13
    Description: Many cell surface proteins are marked for endocytosis by a cytoplasmic sequence motif, tyrosine-X-X-(hydrophobic residue), that is recognized by the mu2 subunit of AP2 adaptors. Crystal structures of the internalization signal binding domain of mu2 complexed with the internalization signal peptides of epidermal growth factor receptor and the trans-Golgi network protein TGN38 have been determined at 2.7 angstrom resolution. The signal peptides adopted an extended conformation rather than the expected tight turn. Specificity was conferred by hydrophobic pockets that bind the tyrosine and leucine in the peptide. In the crystal, the protein forms dimers that could increase the strength and specificity of binding to dimeric receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen, D J -- Evans, P R -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1327-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812899" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Protein Complex 1 ; Adaptor Protein Complex 2 ; *Adaptor Protein Complex 3 ; Adaptor Protein Complex alpha Subunits ; *Adaptor Protein Complex mu Subunits ; Adaptor Proteins, Vesicular Transport ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; *Endocytosis ; *Glycoproteins ; Humans ; Hydrogen Bonding ; Membrane Glycoproteins/*chemistry/metabolism ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Sorting Signals/*chemistry/metabolism ; Protein Structure, Secondary ; Receptor, Epidermal Growth Factor/*chemistry/metabolism ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-20
    Description: Tankyrase, a protein with homology to ankyrins and to the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP), was identified and localized to human telomeres. Tankyrase binds to the telomeric protein TRF1 (telomeric repeat binding factor-1), a negative regulator of telomere length maintenance. Like ankyrins, tankyrase contains 24 ankyrin repeats in a domain responsible for its interaction with TRF1. Recombinant tankyrase was found to have PARP activity in vitro, with both TRF1 and tankyrase functioning as acceptors for adenosine diphosphate (ADP)-ribosylation. ADP-ribosylation of TRF1 diminished its ability to bind to telomeric DNA in vitro, suggesting that telomere function in human cells is regulated by poly(ADP-ribosyl)ation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, S -- Giriat, I -- Schmitt, A -- de Lange, T -- CA76027/CA/NCI NIH HHS/ -- GM49046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1484-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822378" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/metabolism ; Amino Acid Sequence ; Animals ; Ankyrins/chemistry ; Benzamides/pharmacology ; Catalytic Domain ; DNA/metabolism ; DNA-Binding Proteins/analysis/*metabolism ; Enzyme Inhibitors/pharmacology ; Fluorescent Antibody Technique, Indirect ; Humans ; Molecular Sequence Data ; NAD/metabolism ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases/*chemistry/genetics/*metabolism ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Repetitive Sequences, Amino Acid ; Sequence Alignment ; Sequence Homology, Amino Acid ; *Tankyrases ; Telomere/chemistry/*enzymology ; Telomeric Repeat Binding Protein 1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1998-06-06
    Description: The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility. The wild-type allele, COI1, was mapped to a 90-kilobase genomic fragment and located by complementation of coi1-1 mutants. The predicted amino acid sequence of the COI1 protein contains 16 leucine-rich repeats and an F-box motif. It has similarity to the F-box proteins Arabidopsis TIR1, human Skp2, and yeast Grr1, which appear to function by targeting repressor proteins for removal by ubiquitination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, D X -- Feys, B F -- James, S -- Nieto-Rostro, M -- Turner, J G -- New York, N.Y. -- Science. 1998 May 15;280(5366):1091-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9582125" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/pharmacology ; Amino Acid Sequence ; Arabidopsis/*genetics/growth & development/physiology ; *Arabidopsis Proteins ; Chromosome Mapping ; Cyclopentanes/*metabolism/pharmacology ; *Genes, Plant ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Oxylipins ; Plant Growth Regulators/*metabolism ; Plant Proteins/chemistry/*genetics/*physiology ; Plants, Genetically Modified ; Polymorphism, Genetic ; Repressor Proteins/metabolism ; Signal Transduction ; Transformation, Genetic ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: Many molecular mechanisms for neural adaptation to stress remain unknown. Expression of alternative splice variants of Slo, a gene encoding calcium- and voltage-activated potassium channels, was measured in rat adrenal chromaffin tissue from normal and hypophysectomized animals. Hypophysectomy triggered an abrupt decrease in the proportion of Slo transcripts containing a "STREX" exon. The decrease was prevented by adrenocorticotropic hormone injections. In Xenopus oocytes, STREX variants produced channels with functional properties associated with enhanced repetitive firing. Thus, the hormonal stress axis is likely to control the excitable properties of epinephrine-secreting cells by regulating alternative splicing of Slo messenger RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, J -- McCobb, D P -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):443-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9545224" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Medulla/*metabolism ; Adrenocorticotropic Hormone/metabolism/*pharmacology ; *Alternative Splicing ; Amino Acid Sequence ; Animals ; Chromaffin Cells/*metabolism ; Corticosterone/blood/*metabolism ; Dexamethasone/pharmacology ; Epinephrine/secretion ; Exons ; Female ; Hypophysectomy ; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits ; Large-Conductance Calcium-Activated Potassium Channels ; Male ; Molecular Sequence Data ; Oocytes ; Phenylethanolamine N-Methyltransferase/genetics ; Polymerase Chain Reaction ; Potassium Channels/*genetics ; *Potassium Channels, Calcium-Activated ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1998-12-04
    Description: Transcription of naked DNA in vitro requires the general transcription factors and RNA polymerase II. However, this minimal set of factors is not sufficient for transcription when the DNA template is packaged into chromatin. Here, a factor that facilitates activator-dependent transcription initiation on chromatin templates was purified. This factor, remodeling and spacing factor (RSF), has adenosine triphosphate-dependent nucleosome-remodeling and spacing activities. Polymerases that initiate transcription with RSF can only extend their transcripts in the presence of FACT (facilitates chromatin transcription). Thus, the minimal factor requirements for activator-dependent transcription on chromatin templates in vitro have been defined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉LeRoy, G -- Orphanides, G -- Lane, W S -- Reinberg, D -- GM-37120/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1900-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Division of Nucleic Acid Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836642" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Chromatin/*genetics/metabolism ; Dimerization ; HeLa Cells ; Humans ; Molecular Weight ; Nucleosomes/*metabolism ; RNA Polymerase II/metabolism ; Templates, Genetic ; Transcription Factors/chemistry/isolation & purification/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1998-05-23
    Description: The crystal structure of Bacillus subtilis ribonuclease P protein is reported at 2.6 angstroms resolution. This protein binds to ribonuclease P RNA to form a ribonucleoprotein holoenzyme with optimal catalytic activity. Mutagenesis and biochemical data indicate that an unusual left-handed betaalphabeta crossover connection and a large central cleft in the protein form conserved RNA binding sites; a metal binding loop may comprise a third RNA binding site. The unusual topology is partly shared with ribosomal protein S5 and the ribosomal translocase elongation factor G, which suggests evolution from a common RNA binding ancestor in the primordial translational apparatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stams, T -- Niranjanakumari, S -- Fierke, C A -- Christianson, D W -- GM55387/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 May 1;280(5364):752-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9563955" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/enzymology ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Endoribonucleases/*chemistry/metabolism ; *Evolution, Molecular ; Magnesium/metabolism ; Models, Molecular ; Peptide Elongation Factor G ; Peptide Elongation Factors/chemistry ; *Protein Biosynthesis ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Bacterial/*chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonuclease P ; Ribosomal Proteins/chemistry ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: The splicing of transfer RNA precursors is similar in Eucarya and Archaea. In both kingdoms an endonuclease recognizes the splice sites and releases the intron, but the mechanism of splice site recognition is different in each kingdom. The crystal structure of the endonuclease from the archaeon Methanococcus jannaschii was determined to a resolution of 2.3 angstroms. The structure indicates that the cleavage reaction is similar to that of ribonuclease A and the arrangement of the active sites is conserved between the archaeal and eucaryal enzymes. These results suggest an evolutionary pathway for splice site recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Trotta, C R -- Abelson, J -- F32 GM188930-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):279-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, Mail Code 147-75, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535656" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallography, X-Ray ; Dimerization ; Endoribonucleases/*chemistry/genetics/metabolism ; *Evolution, Molecular ; HIV Long Terminal Repeat ; Hydrogen Bonding ; Methanococcus/*enzymology/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Precursors/chemistry/metabolism ; *RNA Splicing ; RNA, Archaeal/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1998-03-21
    Description: The anaphase-promoting complex is composed of eight protein subunits, including BimE (APC1), CDC27 (APC3), CDC16 (APC6), and CDC23 (APC8). The remaining four human APC subunits, APC2, APC4, APC5, and APC7, as well as human CDC23, were cloned. APC7 contains multiple copies of the tetratrico peptide repeat, similar to CDC16, CDC23, and CDC27. Whereas APC4 and APC5 share no similarity to proteins of known function, APC2 contains a region that is similar to a sequence in cullins, a family of proteins implicated in the ubiquitination of G1 phase cyclins and cyclin-dependent kinase inhibitors. The APC2 gene is essential in Saccharomyces cerevisiae, and apc2 mutants arrest at metaphase and are defective in the degradation of Pds1p. APC2 and cullins may be distantly related members of a ubiquitin ligase family that targets cell cycle regulators for degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, H -- Peters, J M -- King, R W -- Page, A M -- Hieter, P -- Kirschner, M W -- CA16519/CA/NCI NIH HHS/ -- GM26875-17/GM/NIGMS NIH HHS/ -- GM39023-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469815" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc5 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc7 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome ; Cell Cycle/*physiology ; Cell Cycle Proteins/chemistry ; Cloning, Molecular ; *Cullin Proteins ; Helminth Proteins/chemistry ; Humans ; Ligases/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Phylogeny ; Proteins/chemistry ; Saccharomyces cerevisiae/chemistry/cytology/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1998-04-16
    Description: A method involving electron paramagnetic resonance spectroscopy of a site-selectively spin-labeled peripheral membrane protein in the presence and absence of membranes and of a water-soluble spin relaxant (chromium oxalate) has been developed to determine how bee venom phospholipase A2 sits on the membrane. Theory based on the Poisson-Boltzmann equation shows that the rate of spin relaxation of a protein-bound nitroxide by a membrane-impermeant spin relaxant depends on the distance (up to tens of angstroms) from the spin probe to the membrane. The measurements define the interfacial binding surface of this secreted phospholipase A2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443684/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443684/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Y -- Nielsen, R -- Murray, D -- Hubbell, W L -- Mailer, C -- Robinson, B H -- Gelb, M H -- GM32681/GM/NIGMS NIH HHS/ -- HL36235/HL/NHLBI NIH HHS/ -- P30 ES07033/ES/NIEHS NIH HHS/ -- R01 CA052874/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1925-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Biochemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506941" target="_blank"〉PubMed〈/a〉
    Keywords: Bee Venoms/chemistry ; Binding Sites ; Chromates ; Electron Spin Resonance Spectroscopy ; *Glycerophospholipids ; Liposomes ; Membrane Proteins/analysis/*chemistry/genetics/metabolism ; *Membranes, Artificial ; Models, Molecular ; Mutation ; Oxalates ; Phosphatidic Acids ; Phospholipases A/analysis/*chemistry/genetics/metabolism ; Phospholipases A2 ; Spin Labels ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Excessive sodium (Na+) in salinized soils inhibits plant growth and development. A mutation in the SOS3 gene renders Arabidopsis thaliana plants hypersensitive to Na+-induced growth inhibition. SOS3 encodes a protein that shares significant sequence similarity with the calcineurin B subunit from yeast and neuronal calcium sensors from animals. The results suggest that intracellular calcium signaling through a calcineurin-like pathway mediates the beneficial effect of calcium on plant salt tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Zhu, J K -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1943-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632394" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcineurin/chemistry ; Calcium/*metabolism/pharmacology ; Calcium-Binding Proteins/chemistry ; Chromosome Mapping ; Cloning, Molecular ; Genes, Plant ; Ion Transport ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Plant Proteins/*chemistry/*genetics ; Saccharomyces cerevisiae/chemistry ; Signal Transduction ; Sodium/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1998-02-07
    Description: The possibility that membrane fusion events in the postsynaptic cell may be required for the change in synaptic strength resulting from long-term potentiation (LTP) was examined. Introducing substances into the postsynaptic cell that block membrane fusion at a number of different steps reduced LTP. Introducing SNAP, a protein that promotes membrane fusion, into cells enhanced synaptic transmission, and this enhancement was significantly less when generated in synapses that expressed LTP. Thus, postsynaptic fusion events, which could be involved either in retrograde signaling or in regulating postsynaptic receptor function or both, contribute to LTP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lledo, P M -- Zhang, X -- Sudhof, T C -- Malenka, R C -- Nicoll, R A -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):399-403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430593" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Botulinum Toxins/pharmacology ; Carrier Proteins/metabolism/pharmacology ; Ethylmaleimide/pharmacology ; Excitatory Postsynaptic Potentials ; Exocytosis ; Guinea Pigs ; Hippocampus/drug effects/*physiology ; In Vitro Techniques ; *Long-Term Potentiation/drug effects ; *Membrane Fusion ; Membrane Proteins/metabolism/pharmacology ; Molecular Sequence Data ; N-Ethylmaleimide-Sensitive Proteins ; Patch-Clamp Techniques ; Peptides/pharmacology ; Pyramidal Cells/physiology ; Receptors, N-Methyl-D-Aspartate/physiology ; Recombinant Proteins/pharmacology ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins ; Synaptic Membranes/*physiology ; Synaptic Transmission ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, R -- Sikorski, R -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1439.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Cyclic GMP/chemistry/*metabolism ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/chemistry/*metabolism ; Dimerization ; Ion Channel Gating ; Ion Channels/chemistry/*metabolism ; Ligands ; Polyethylene Glycols ; Rats ; Retinal Rod Photoreceptor Cells/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1998-02-21
    Description: Cellulose, an abundant, crystalline polysaccharide, is central to plant morphogenesis and to many industries. Chemical and ultrastructural analyses together with map-based cloning indicate that the RSW1 locus of Arabidopsis encodes the catalytic subunit of cellulose synthase. The cloned gene complements the rsw1 mutant whose temperature-sensitive allele is changed in one amino acid. The mutant allele causes a specific reduction in cellulose synthesis, accumulation of noncrystalline beta-1,4-glucan, disassembly of cellulose synthase, and widespread morphological abnormalities. Microfibril crystallization may require proper assembly of the RSW1 gene product into synthase complexes whereas glucan biosynthesis per se does not.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arioli, T -- Peng, L -- Betzner, A S -- Burn, J -- Wittke, W -- Herth, W -- Camilleri, C -- Hofte, H -- Plazinski, J -- Birch, R -- Cork, A -- Glover, J -- Redmond, J -- Williamson, R E -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):717-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cooperative Research Centre for Plant Science, Australian National University, Post Office Box 475, Canberra, ACT 2601, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445479" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/*genetics/*metabolism ; *Arabidopsis Proteins ; Cell Membrane/chemistry/ultrastructure ; Cellulose/*biosynthesis/chemistry/genetics ; Chromosome Mapping ; Cloning, Molecular ; Crystallization ; Freeze Fracturing ; *Genes, Plant ; Genetic Complementation Test ; Glucans/metabolism ; Glucosyltransferases/chemistry/*genetics ; Molecular Sequence Data ; Mutation ; Plant Roots/chemistry/ultrastructure ; Plant Shoots/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-20
    Description: Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbury, P B -- Plecs, J J -- Tidor, B -- Alber, T -- Kim, P S -- GM44162/GM/NIGMS NIH HHS/ -- GM48598/GM/NIGMS NIH HHS/ -- GM55758/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1462-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822371" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; Computer Simulation ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Peptides/chemical synthesis/*chemistry ; *Protein Conformation ; Protein Denaturation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary ; Proteins/chemical synthesis/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1998-12-04
    Description: A three-dimensional structure for the monomeric iron-containing hydrogenase (CpI) from Clostridium pasteurianum was determined to 1.8 angstrom resolution by x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing. CpI, an enzyme that catalyzes the two-electron reduction of two protons to yield dihydrogen, was found to contain 20 gram atoms of iron per mole of protein, arranged into five distinct [Fe-S] clusters. The probable active-site cluster, previously termed the H-cluster, was found to be an unexpected arrangement of six iron atoms existing as a [4Fe-4S] cubane subcluster covalently bridged by a cysteinate thiol to a [2Fe] subcluster. The iron atoms of the [2Fe] subcluster both exist with an octahedral coordination geometry and are bridged to each other by three non-protein atoms, assigned as two sulfide atoms and one carbonyl or cyanide molecule. This structure provides insights into the mechanism of biological hydrogen activation and has broader implications for [Fe-S] cluster structure and function in biological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, J W -- Lanzilotta, W N -- Lemon, B J -- Seefeldt, L C -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1853-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA. petersj@cc.usu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carbon Monoxide/chemistry ; Catalytic Domain ; Clostridium/*enzymology ; Crystallography, X-Ray ; Cyanides/chemistry ; Cysteine/chemistry ; Histidine/chemistry ; Hydrogen/metabolism ; Hydrogenase/*chemistry/metabolism ; Iron/*chemistry ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protons ; Sulfur/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amitai, M -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1436-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Compugen Ltd., Tel Aviv, Israel. mor@compugen.co.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867651" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Databases, Factual ; *Markov Chains ; Molecular Sequence Data ; Platelet-Derived Growth Factor/chemistry/genetics ; Probability ; Proteins/*chemistry/genetics ; *Sequence Alignment ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Photoisomerization of the retinal of bacteriorhodopsin initiates a cyclic reaction in which a proton is translocated across the membrane. Studies of this protein promise a better understanding of how ion pumps function. Together with a large amount of spectroscopic and mutational data, the atomic structure of bacteriorhodopsin, determined in the last decade at increasing resolutions, has suggested plausible but often contradictory mechanisms. X-ray diffraction of bacteriorhodopsin crystals grown in cubic lipid phase revealed unexpected two-fold symmetries that indicate merohedral twinning along the crystallographic c axis. The structure, refined to 2.3 angstroms taking this twinning into account, is different from earlier models, including that most recently reported. One of the carboxyl oxygen atoms of the proton acceptor Asp85 is connected to the proton donor, the retinal Schiff base, through a hydrogen-bonded water and forms a second hydrogen bond with another water. The other carboxyl oxygen atom of Asp85 accepts a hydrogen bond from Thr89. This structure forms the active site. The nearby Arg82 is the center of a network of numerous hydrogen-bonded residues and an ordered water molecule. This network defines the pathway of the proton from the buried Schiff base to the extracellular surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luecke, H -- Richter, H T -- Lanyi, J K -- R01-GM29498/GM/NIGMS NIH HHS/ -- R01-GM56445/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1934-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. HUDEL@UCI.EDU〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632391" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/chemistry ; Bacteriorhodopsins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ligands ; Light ; Models, Molecular ; Photochemistry ; Protein Conformation ; Protein Structure, Secondary ; *Protons ; Retinaldehyde/chemistry ; Schiff Bases/chemistry ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1998-02-07
    Description: An avian H5N1 influenza A virus (A/Hong Kong/156/97) was isolated from a tracheal aspirate obtained from a 3-year-old child in Hong Kong with a fatal illness consistent with influenza. Serologic analysis indicated the presence of an H5 hemagglutinin. All eight RNA segments were derived from an avian influenza A virus. The hemagglutinin contained multiple basic amino acids adjacent to the cleavage site, a feature characteristic of highly pathogenic avian influenza A viruses. The virus caused 87.5 to 100 percent mortality in experimentally inoculated White Plymouth Rock and White Leghorn chickens. These results may have implications for global influenza surveillance and planning for pandemic influenza.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Subbarao, K -- Klimov, A -- Katz, J -- Regnery, H -- Lim, W -- Hall, H -- Perdue, M -- Swayne, D -- Bender, C -- Huang, J -- Hemphill, M -- Rowe, T -- Shaw, M -- Xu, X -- Fukuda, K -- Cox, N -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):393-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Influenza Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430591" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Chickens ; Child, Preschool ; Disease Outbreaks ; Fatal Outcome ; Female ; Genes, Viral ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*genetics ; Hong Kong/epidemiology ; Humans ; *Influenza A Virus, H5N1 Subtype ; Influenza A virus/*genetics/isolation & purification/*pathogenicity ; Influenza in Birds/virology ; Influenza, Human/epidemiology/*virology ; Male ; Molecular Sequence Data ; Neuraminidase/genetics ; Phylogeny ; Virulence ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1998-07-10
    Description: The Rad53 protein kinase of Saccharomyces cerevisiae is required for checkpoints that prevent cell division in cells with damaged or incompletely replicated DNA. The Rad9 protein was phosphorylated in response to DNA damage, and phosphorylated Rad9 interacted with the COOH-terminal forkhead homology-associated (FHA) domain of Rad53. Inactivation of this domain abolished DNA damage-dependent Rad53 phosphorylation, G2/M cell cycle phase arrest, and increase of RNR3 transcription but did not affect replication inhibition-dependent Rad53 phosphorylation. Thus, Rad53 integrates DNA damage signals by coupling with phosphorylated Rad9. The hitherto uncharacterized FHA domain appears to be a modular protein-binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Z -- Hsiao, J -- Fay, D S -- Stern, D F -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):272-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Yale University, New Haven, CT 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657725" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Cycle Proteins ; Checkpoint Kinase 2 ; *DNA Damage ; DNA Replication/drug effects ; Fungal Proteins/*metabolism ; G2 Phase ; Hydroxyurea/pharmacology ; Methyl Methanesulfonate/pharmacology ; Mitosis ; Mutation ; Oligopeptides ; Peptides ; Phosphorylation ; Protein Kinases/chemistry/genetics/*metabolism ; *Protein-Serine-Threonine Kinases ; Saccharomyces cerevisiae/cytology/*metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1998-04-29
    Description: Toxins from scorpion venom interact with potassium channels. Resin-attached, mutant K+ channels from Streptomyces lividans were used to screen venom from Leiurus quinquestriatus hebraeus, and the toxins that interacted with the channel were rapidly identified by mass spectrometry. One of the toxins, agitoxin2, was further studied by mutagenesis and radioligand binding. The results show that a prokaryotic K+ channel has the same pore structure as eukaryotic K+ channels. This structural conservation, through application of techniques presented here, offers a new approach for K+ channel pharmacology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacKinnon, R -- Cohen, S L -- Kuo, A -- Lee, A -- Chait, B T -- GM43949/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics and the Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA. mackinn@rockvax.rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525854" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Proteins ; Binding Sites ; Charybdotoxin/metabolism ; Models, Molecular ; Molecular Sequence Data ; Point Mutation ; Potassium Channel Blockers ; Potassium Channels/*chemistry/genetics/*metabolism ; *Protein Conformation ; Radioligand Assay ; Recombinant Proteins/chemistry/metabolism ; Scorpion Venoms/*metabolism ; Sequence Alignment ; Shaker Superfamily of Potassium Channels ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Streptomyces/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1998-01-24
    Description: The function and regulation of the receptorlike transmembrane protein tyrosine phosphatases (RPTPs) are not well understood. Ligand-induced dimerization inhibited the function of the epidermal growth factor receptor (EGFR)-RPTP CD45 chimera (EGFR-CD45) in T cell signal transduction. Properties of mutated EGFR-CD45 chimeras supported a general model for the regulation of RPTPs, derived from the crystal structure of the RPTPalpha membrane-proximal phosphatase domain. The phosphatase domain apparently forms a symmetrical dimer in which the catalytic site of one molecule is blocked by specific contacts with a wedge from the other.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Majeti, R -- Bilwes, A M -- Noel, J P -- Hunter, T -- Weiss, A -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):88-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417031" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD45/chemistry/*metabolism ; Binding Sites ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Dimerization ; Epidermal Growth Factor/metabolism/pharmacology ; Humans ; Ligands ; Lymphocyte Activation ; Mutation ; Phosphorylation ; Protein Tyrosine Phosphatases/*antagonists & inhibitors/chemistry/metabolism ; Protein-Tyrosine Kinases/metabolism ; Receptor, Epidermal Growth Factor/chemistry/metabolism ; Receptors, Antigen, T-Cell/metabolism ; Recombinant Fusion Proteins/antagonists & inhibitors/chemistry/metabolism ; Signal Transduction ; T-Lymphocytes/immunology/*metabolism ; Tumor Cells, Cultured ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1998-12-16
    Description: Src homology 3 (SH3) and WW protein interaction domains bind specific proline-rich sequences. However, instead of recognizing critical prolines on the basis of side chain shape or rigidity, these domains broadly accepted amide N-substituted residues. Proline is apparently specifically selected in vivo, despite low complementarity, because it is the only endogenous N-substituted amino acid. This discriminatory mechanism explains how these domains achieve specific but low-affinity recognition, a property that is necessary for transient signaling interactions. The mechanism can be exploited: screening a series of ligands in which key prolines were replaced by nonnatural N-substituted residues yielded a ligand that selectively bound the Grb2 SH3 domain with 100 times greater affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, J T -- Turck, C W -- Cohen, F E -- Zuckermann, R N -- Lim, W A -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2088-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851931" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; *Caenorhabditis elegans Proteins ; Carrier Proteins/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; GRB2 Adaptor Protein ; Helminth Proteins/chemistry/metabolism ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides/chemistry/*metabolism ; Phosphoproteins/chemistry/metabolism ; Proline/chemistry/*metabolism ; Protein Engineering ; Proteins/chemistry/metabolism ; Proto-Oncogene Proteins/chemistry/metabolism ; Proto-Oncogene Proteins c-crk ; Sequence Homology, Amino Acid ; *src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1998-06-26
    Description: Members of the regulators of G protein signaling (RGS) family stimulate the intrinsic guanosine triphosphatase (GTPase) activity of the alpha subunits of certain heterotrimeric guanine nucleotide-binding proteins (G proteins). The guanine nucleotide exchange factor (GEF) for Rho, p115 RhoGEF, has an amino-terminal region with similarity to RGS proteins. Recombinant p115 RhoGEF and a fusion protein containing the amino terminus of p115 had specific activity as GTPase activating proteins toward the alpha subunits of the G proteins G12 and G13, but not toward members of the Gs, Gi, or Gq subfamilies of Galpha proteins. This GEF may act as an intermediary in the regulation of Rho proteins by G13 and G12.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kozasa, T -- Jiang, X -- Hart, M J -- Sternweis, P M -- Singer, W D -- Gilman, A G -- Bollag, G -- Sternweis, P C -- GM31954/GM/NIGMS NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 26;280(5372):2109-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9641915" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Compounds/metabolism ; Amino Acid Sequence ; Animals ; Fluorides/metabolism ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Protein alpha Subunits, G12-G13 ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Hydrolysis ; Molecular Sequence Data ; Proteins/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carpita, N -- Vergara, C -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):672-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, Purdue University, West Lafayette, IN 47907-1155, USA. carpita@btny.purdue.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9471727" target="_blank"〉PubMed〈/a〉
    Keywords: Acetobacter/enzymology/genetics ; Arabidopsis/enzymology/*genetics/metabolism ; *Arabidopsis Proteins ; Binding Sites ; Carbohydrate Conformation ; Catalysis ; Cell Wall/metabolism ; Cellobiose/metabolism ; Cellulose/*biosynthesis/genetics ; Gene Library ; Genes, Bacterial ; *Genes, Plant ; Glucosyltransferases/*genetics/metabolism ; Gossypium/genetics ; Uridine Diphosphate Glucose/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1822-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9776687" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Binding Sites ; Caspase 3 ; *Caspases ; Cloning, Molecular ; Cysteine Endopeptidases/chemistry/*metabolism ; DNA, Complementary ; Gelsolin/*genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gennis, R B -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1712-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemical Sciences, University of Illinois, Urbana, IL 61801, USA. Gennis@aries.scs.uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9660711" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Azides/chemistry/metabolism ; Binding Sites ; Cattle ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Electron Transport Complex IV/*chemistry/*metabolism ; Hydrogen Bonding ; Ion Channels ; Ligands ; Models, Chemical ; Myocardium/*enzymology ; Oxidation-Reduction ; Oxygen/metabolism ; Paracoccus denitrificans/enzymology ; Peroxides/chemistry ; Protein Conformation ; *Proton Pumps ; Proton-Motive Force ; Thermodynamics ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1998-05-09
    Description: High-fidelity transfers of genetic information in the central dogma can be achieved by a reaction called editing. The crystal structure of an enzyme with editing activity in translation is presented here at 2.5 angstroms resolution. The enzyme, isoleucyl-transfer RNA synthetase, activates not only the cognate substrate L-isoleucine but also the minimally distinct L-valine in the first, aminoacylation step. Then, in a second, "editing" step, the synthetase itself rapidly hydrolyzes only the valylated products. For this two-step substrate selection, a "double-sieve" mechanism has already been proposed. The present crystal structures of the synthetase in complexes with L-isoleucine and L-valine demonstrate that the first sieve is on the aminoacylation domain containing the Rossmann fold, whereas the second, editing sieve exists on a globular beta-barrel domain that protrudes from the aminoacylation domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nureki, O -- Vassylyev, D G -- Tateno, M -- Shimada, A -- Nakama, T -- Fukai, S -- Konno, M -- Hendrickson, T L -- Schimmel, P -- Yokoyama, S -- GM15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):578-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9554847" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/enzymology ; Hydrogen Bonding ; Hydrolysis ; Isoleucine/*metabolism ; Isoleucine-tRNA Ligase/*chemistry/metabolism ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Transfer, Ile/metabolism ; Substrate Specificity ; Thermus thermophilus/enzymology ; Transfer RNA Aminoacylation ; Valine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1998-10-02
    Description: Many organisms adapted to live at subzero temperatures express antifreeze proteins that improve their tolerance to freezing. Although structurally diverse, all antifreeze proteins interact with ice surfaces, depress the freezing temperature of aqueous solutions, and inhibit ice crystal growth. A protein purified from carrot shares these functional features with antifreeze proteins of fish. Expression of the carrot complementary DNA in tobacco resulted in the accumulation of antifreeze activity in the apoplast of plants grown at greenhouse temperatures. The sequence of carrot antifreeze protein is similar to that of polygalacturonase inhibitor proteins and contains leucine-rich repeats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worrall, D -- Elias, L -- Ashford, D -- Smallwood, M -- Sidebottom, C -- Lillford, P -- Telford, J -- Holt, C -- Bowles, D -- New York, N.Y. -- Science. 1998 Oct 2;282(5386):115-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Plant Laboratory, Biology Department, University of York, Post Office Box 373, York, YO1 5YW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9756474" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antifreeze Proteins ; Cloning, Molecular ; Crystallization ; DNA, Complementary ; Daucus carota/*chemistry/physiology ; Glycoproteins/*chemistry/genetics/isolation & purification/*physiology ; Glycosylation ; *Ice ; Isoelectric Point ; Leucine/chemistry ; Membrane Proteins/*chemistry/isolation & purification/*physiology/secretion ; Molecular Sequence Data ; Molecular Weight ; Plant Proteins/*chemistry/genetics/isolation & purification/*physiology ; Plant Roots/chemistry ; Plants, Genetically Modified ; Plants, Toxic ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, J L -- New York, N.Y. -- Science. 1998 Jul 3;281(5373):58-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. smithj@bragg.bio.purdue.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9679019" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Crystallization ; Crystallography, X-Ray ; Cytochromes c1/chemistry/metabolism ; Diffusion ; Dimerization ; Electron Transport ; Electron Transport Complex III/*chemistry/metabolism ; Hydrogen Bonding ; Iron-Sulfur Proteins/chemistry/metabolism ; Mitochondria, Heart/*enzymology ; Oxidation-Reduction ; *Protein Conformation ; Protein Structure, Secondary ; Protons ; Ubiquinone/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1998-04-16
    Description: The genomic regulatory network that controls gene expression ultimately determines form and function in each species. The operational nature of the regulatory programming specified in cis-regulatory DNA sequence was determined from a detailed functional analysis of a sea urchin control element that directs the expression of a gene in the endoderm during development. Spatial expression and repression, and the changing rate of transcription of this gene, are mediated by a complex and extended cis-regulatory system. The system may be typical of developmental cis-regulatory apparatus. All of its activities are integrated in the proximal element, which contains seven target sites for DNA binding proteins. A quantitative computational model of this regulatory element was constructed that explicitly reveals the logical interrelations hard-wired into the DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuh, C H -- Bolouri, H -- Davidson, E H -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1896-902.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Adhesion Molecules/*genetics/physiology ; Computer Simulation ; DNA-Binding Proteins/metabolism ; Embryo, Nonmammalian/metabolism ; Endoderm/metabolism ; Gastrula/metabolism ; *Gene Expression Regulation, Developmental ; Lithium Chloride/pharmacology ; Models, Genetic ; Molecular Sequence Data ; Mutagenesis ; Promoter Regions, Genetic/genetics/*physiology ; Proteins/*genetics/physiology ; Sea Urchins/embryology/*genetics/metabolism ; *Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1998-03-21
    Description: Entry into anaphase and exit from mitosis depend on a ubiquitin-protein ligase complex called the anaphase-promoting complex (APC) or cyclosome. At least 12 different subunits were detected in the purified particle from budding yeast, including the previously identified proteins Apc1p, Cdc16p, Cdc23p, Cdc26p, and Cdc27p. Five additional subunits purified in low nanogram amounts were identified by tandem mass spectrometric sequencing. Apc2p, Apc5p, and the RING-finger protein Apc11p are conserved from yeast to humans. Apc2p is similar to the cullin Cdc53p, which is a subunit of the ubiquitin-protein ligase complex SCFCdc4 required for the initiation of DNA replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zachariae, W -- Shevchenko, A -- Andrews, P D -- Ciosk, R -- Galova, M -- Stark, M J -- Mann, M -- Nasmyth, K -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1216-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469814" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; *Cullin Proteins ; Cyclins/metabolism ; DNA Replication ; Fungal Proteins/*chemistry/genetics/isolation & purification ; Genes, Fungal ; Humans ; Ligases/*chemistry/genetics/isolation & purification ; Mass Spectrometry ; Molecular Sequence Data ; Saccharomyces cerevisiae/*chemistry/*cytology/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Spindle Apparatus/metabolism ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1998-09-25
    Description: Phosphorylation sites in members of the protein kinase A (PKA), PKG, and PKC kinase subfamily are conserved. Thus, the PKB kinase PDK1 may be responsible for the phosphorylation of PKC isotypes. PDK1 phosphorylated the activation loop sites of PKCzeta and PKCdelta in vitro and in a phosphoinositide 3-kinase (PI 3-kinase)-dependent manner in vivo in human embryonic kidney (293) cells. All members of the PKC family tested formed complexes with PDK1. PDK1-dependent phosphorylation of PKCdelta in vitro was stimulated by combined PKC and PDK1 activators. The activation loop phosphorylation of PKCdelta in response to serum stimulation of cells was PI 3-kinase-dependent and was enhanced by PDK1 coexpression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Le Good, J A -- Ziegler, W H -- Parekh, D B -- Alessi, D R -- Cohen, P -- Parker, P J -- New York, N.Y. -- Science. 1998 Sep 25;281(5385):2042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9748166" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Binding Sites ; Cell Line ; Chromones/pharmacology ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Humans ; Isoenzymes/*metabolism ; Morpholines/pharmacology ; Phosphatidylcholines/pharmacology ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol Phosphates ; Phosphatidylserines/pharmacology ; Phosphorylation ; Protein Kinase C/*metabolism ; Protein Kinase C beta ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Proteins/metabolism ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1998-05-23
    Description: Acetylenic bonds are present in more than 600 naturally occurring compounds. Plant enzymes that catalyze the formation of the Delta12 acetylenic bond in 9-octadecen-12-ynoic acid and the Delta12 epoxy group in 12,13-epoxy-9-octadecenoic acid were characterized, and two genes, similar in sequence, were cloned. When these complementary DNAs were expressed in Arabidopsis thaliana, the content of acetylenic or epoxidated fatty acids in the seeds increased from 0 to 25 or 15 percent, respectively. Both enzymes have characteristics similar to the membrane proteins containing non-heme iron that have histidine-rich motifs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M -- Lenman, M -- Banas, A -- Bafor, M -- Singh, S -- Schweizer, M -- Nilsson, R -- Liljenberg, C -- Dahlqvist, A -- Gummeson, P O -- Sjodahl, S -- Green, A -- Stymne, S -- New York, N.Y. -- Science. 1998 May 8;280(5365):915-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Svalov-Weibull AB, S-268 81 Svalov, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9572738" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylene/metabolism ; Alkynes ; Amino Acid Sequence ; Arabidopsis/genetics ; Asteraceae/enzymology/genetics/*metabolism ; Catalysis ; Cloning, Molecular ; DNA, Complementary ; Epoxy Compounds/chemical synthesis ; Fatty Acid Desaturases/*chemistry/genetics/metabolism ; Genes, Plant ; Iron/analysis ; Linoleic Acid/metabolism ; Microsomes/metabolism ; Molecular Sequence Data ; NAD/metabolism ; NADP/metabolism ; Oleic Acids/*biosynthesis/chemical synthesis ; *Oxidoreductases ; *Plant Proteins ; Plants, Genetically Modified ; Saccharomyces cerevisiae/genetics ; Seeds/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1998-07-04
    Description: Methanogenic and sulfate-reducing Archaea are considered to have an energy metabolism involving C1 transfer coenzymes and enzymes unique for this group of strictly anaerobic microorganisms. An aerobic methylotrophic bacterium, Methylobacterium extorquens AM1, was found to contain a cluster of genes that are predicted to encode some of these enzymes and was shown to contain two of the enzyme activities and one of the methanogenic coenzymes. Insertion mutants were all unable to grow on C1 compounds, suggesting that the archaeal enzymes function in aerobic C1 metabolism. Thus, methylotrophy and methanogenesis involve common genes that cross the bacterial/archaeal boundaries.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chistoserdova, L -- Vorholt, J A -- Thauer, R K -- Lidstrom, M E -- GM36296/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 3;281(5373):99-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9651254" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aminohydrolases/chemistry/genetics/isolation & purification/*metabolism ; Biological Evolution ; Escherichia coli/enzymology/genetics ; Euryarchaeota/*enzymology/genetics ; Genes, Archaeal ; Genes, Bacterial ; Gram-Negative Aerobic Rods and Cocci/*enzymology/genetics ; Hydroxymethyl and Formyl Transferases/chemistry/genetics/isolation & ; purification/*metabolism ; Methanol/metabolism ; Molecular Sequence Data ; Mutation ; NAD/metabolism ; NADP/metabolism ; Oxidation-Reduction ; Pterins/chemistry/isolation & purification/*metabolism ; Sequence Alignment ; Succinic Acid/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1998-07-24
    Description: Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, N S -- Wodicka, L -- Thunnissen, A M -- Norman, T C -- Kwon, S -- Espinoza, F H -- Morgan, D O -- Barnes, G -- LeClerc, S -- Meijer, L -- Kim, S H -- Lockhart, D J -- Schultz, P G -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):533-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677190" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/chemistry/metabolism/pharmacology ; Binding Sites ; *CDC2-CDC28 Kinases ; CDC28 Protein Kinase, S cerevisiae/antagonists & inhibitors ; Cell Division/drug effects ; Crystallography, X-Ray ; Cyclin A/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors ; Drug Evaluation, Preclinical ; Flavonoids/chemistry/metabolism/pharmacology ; Gene Expression Regulation, Fungal/drug effects ; Genes, Fungal ; Humans ; Hydrogen Bonding ; Oligonucleotide Probes ; Phosphates/metabolism ; Piperidines/chemistry/metabolism/pharmacology ; Protein-Serine-Threonine Kinases/antagonists & inhibitors ; Purines/chemical synthesis/chemistry/metabolism/*pharmacology ; RNA, Messenger/genetics/metabolism ; Saccharomyces cerevisiae/enzymology/genetics ; Structure-Activity Relationship ; Transcription, Genetic/drug effects ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1998-02-21
    Description: There are several forms of hereditary human hair loss, known collectively as alopecias, the molecular bases of which are entirely unknown. A kindred with a rare, recessively inherited type of alopecia universalis was used to search for a locus by homozygosity mapping, and linkage was established in a 6-centimorgan interval on chromosome 8p12 (the logarithm of the odds favoring linkage score was 6.19). The human homolog of a murine gene, hairless, was localized in this interval by radiation hybrid mapping, and a missense mutation was found in affected individuals. Human hairless encodes a putative single zinc finger transcription factor protein with restricted expression in the brain and skin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahmad, W -- Faiyaz ul Haque, M -- Brancolini, V -- Tsou, H C -- ul Haque, S -- Lam, H -- Aita, V M -- Owen, J -- deBlaquiere, M -- Frank, J -- Cserhalmi-Friedman, P B -- Leask, A -- McGrath, J A -- Peacocke, M -- Ahmad, M -- Ott, J -- Christiano, A M -- HG-00008/HG/NHGRI NIH HHS/ -- P30AR44535/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):720-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, Columbia University, 630 West 168 Street, VC-15-526, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445480" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*genetics ; Amino Acid Sequence ; Animals ; Brain/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 8 ; DNA-Binding Proteins/genetics ; Female ; Forkhead Transcription Factors ; Gene Expression ; Genes, Recessive ; Homozygote ; Humans ; Male ; Mice ; Mice, Hairless/genetics ; Microsatellite Repeats ; Molecular Sequence Data ; Mutation ; Pedigree ; Proteins/chemistry/*genetics ; Rats ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Skin/metabolism ; Transcription Factors/genetics ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1998-12-18
    Description: Mechanosensitive ion channels play a critical role in transducing physical stresses at the cell membrane into an electrochemical response. The MscL family of large-conductance mechanosensitive channels is widely distributed among prokaryotes and may participate in the regulation of osmotic pressure changes within the cell. In an effort to better understand the structural basis for the function of these channels, the structure of the MscL homolog from Mycobacterium tuberculosis was determined by x-ray crystallography to 3.5 angstroms resolution. This channel is organized as a homopentamer, with each subunit containing two transmembrane alpha helices and a third cytoplasmic alpha helix. From the extracellular side, a water-filled opening approximately 18 angstroms in diameter leads into a pore lined with hydrophilic residues which narrows at the cytoplasmic side to an occluded hydrophobic apex that may act as the channel gate. This structure may serve as a model for other mechanosensitive channels, as well as the broader class of pentameric ligand-gated ion channels exemplified by the nicotinic acetylcholine receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, G -- Spencer, R H -- Lee, A T -- Barclay, M T -- Rees, D C -- GM18486/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2220-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, 147-75CH, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856938" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cell Membrane/chemistry ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; *Escherichia coli Proteins ; *Ion Channel Gating ; Ion Channels/*chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mycobacterium tuberculosis/*chemistry ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1998-11-13
    Description: The fungal metabolite fumagillin suppresses the formation of new blood vessels, and a fumagillin analog is currently in clinical trials as an anticancer agent. The molecular target of fumagillin is methionine aminopeptidase-2 (MetAP-2). A 1.8 A resolution crystal structure of free and inhibited human MetAP-2 shows a covalent bond formed between a reactive epoxide of fumagillin and histidine-231 in the active site of MetAP-2. Extensive hydrophobic and water-mediated polar interactions with other parts of fumagillin provide additional affinity. Fumagillin-based drugs inhibit MetAP-2 but not MetAP-1, and the three-dimensional structure also indicates the likely determinants of this specificity. The structural basis for fumagillin's potency and specificity forms the starting point for structure-based drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, S -- Widom, J -- Kemp, C W -- Crews, C M -- Clardy, J -- CA24487/CA/NCI NIH HHS/ -- CA59021/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1324-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Clardy, Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812898" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aminopeptidases/antagonists & inhibitors/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclohexanes ; Fatty Acids, Unsaturated/chemistry/*metabolism/pharmacology ; Humans ; Hydrogen Bonding ; Metalloendopeptidases/antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Sesquiterpenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-31
    Description: The unc-129 gene, like the unc-6 netrin gene, is required to guide pioneer motoraxons along the dorsoventral axis of Caenorhabditis elegans. unc-129 encodes a member of the transforming growth factor-beta (TGF-beta) superfamily of secreted signaling molecules and is expressed in dorsal, but not ventral, rows of body wall muscles. Ectopic expression of UNC-129 from ventral body wall muscle disrupts growth cone and cell migrations that normally occur along the dorsoventral axis. Thus, UNC-129 mediates expression of dorsoventral polarity information required for axon guidance and guided cell migrations in C. elegans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colavita, A -- Krishna, S -- Zheng, H -- Padgett, R W -- Culotti, J G -- New York, N.Y. -- Science. 1998 Jul 31;281(5377):706-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9685266" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Body Patterning ; Caenorhabditis elegans/genetics/growth & development/*physiology ; *Caenorhabditis elegans Proteins ; Cell Movement ; Gene Expression ; Helminth Proteins/chemistry/*genetics/*physiology ; Membrane Proteins/genetics/physiology ; Molecular Sequence Data ; Motor Neurons/physiology ; Muscles/*metabolism ; *Nerve Tissue Proteins ; Promoter Regions, Genetic ; *Receptors, Cell Surface ; Receptors, Growth Factor/genetics/physiology ; Sequence Deletion ; Signal Transduction ; Transforming Growth Factor beta/chemistry/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-30
    Description: Toward a genetic dissection of the processes involved in aging, a screen for gene mutations that extend life-span in Drosophila melanogaster was performed. The mutant line methuselah (mth) displayed approximately 35 percent increase in average life-span and enhanced resistance to various forms of stress, including starvation, high temperature, and dietary paraquat, a free-radical generator. The mth gene predicted a protein with homology to several guanosine triphosphate-binding protein-coupled seven-transmembrane domain receptors. Thus, the organism may use signal transduction pathways to modulate stress response and life-span.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Y J -- Seroude, L -- Benzer, S -- AG12289/AG/NIA NIH HHS/ -- EY09278/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):943-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9794765" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Base Sequence ; Cloning, Molecular ; DNA Transposable Elements ; *Drosophila Proteins ; Drosophila melanogaster/*genetics/*physiology ; Female ; Food Deprivation ; GTP-Binding Proteins/chemistry/*genetics/metabolism/physiology ; *Genes, Insect ; Hot Temperature ; Insecticide Resistance ; Longevity/genetics ; Male ; Molecular Sequence Data ; Mutation ; Oxidative Stress ; Paraquat/pharmacology ; Receptors, Cell Surface/chemistry/*genetics/metabolism/physiology ; *Receptors, G-Protein-Coupled ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1998-05-09
    Description: The gametophytic maternal effect mutant medea (mea) shows aberrant growth regulation during embryogenesis in Arabidopsis thaliana. Embryos derived from mea eggs grow excessively and die during seed desiccation. Embryo lethality is independent of the paternal contribution and gene dosage. The mea phenotype is consistent with the parental conflict theory for the evolution of parent-of-origin-specific effects. MEA encodes a SET domain protein similar to Enhancer of zeste, a member of the Polycomb group. In animals, Polycomb group proteins ensure the stable inheritance of expression patterns through cell division and regulate the control of cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grossniklaus, U -- Vielle-Calzada, J P -- Hoeppner, M A -- Gagliano, W B -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):446-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Post Office Box 100, Cold Spring Harbor, NY 11724, USA. grossnik@cshl.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9545225" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/*embryology/*genetics ; *Arabidopsis Proteins ; Cell Division ; Cloning, Molecular ; Crosses, Genetic ; *Drosophila Proteins ; Gene Dosage ; *Gene Expression Regulation, Plant ; Genes, Plant ; Insect Proteins/genetics ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Nuclear Proteins/chemistry/genetics ; Plant Proteins/chemistry/*genetics/physiology ; Polycomb Repressive Complex 1 ; Polycomb Repressive Complex 2 ; *Repressor Proteins ; Seeds/genetics/growth & development ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1998-07-31
    Description: Treatment-resistant Lyme arthritis is associated with immune reactivity to outer surface protein A (OspA) of Borrelia burgdorferi, the agent of Lyme disease, and the major histocompatibility complex class II allele DRB1*0401. The immunodominant epitope of OspA for T helper cells was identified. A homology search revealed a peptide from human leukocyte function-associated antigen-1 (hLFA-1) as a candidate autoantigen. Individuals with treatment-resistant Lyme arthritis, but not other forms of arthritis, generated responses to OspA, hLFA-1, and their highly related peptide epitopes. Identification of the initiating bacterial antigen and a cross-reactive autoantigen may provide a model for development of autoimmune disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gross, D M -- Forsthuber, T -- Tary-Lehmann, M -- Etling, C -- Ito, K -- Nagy, Z A -- Field, J A -- Steere, A C -- Huber, B T -- R01 AR20358/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 31;281(5377):703-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Tufts University, Boston, MA 02111 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9685265" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Algorithms ; Amino Acid Sequence ; Animals ; Antigen Presentation ; Antigens, Surface/immunology/metabolism ; Arthritis, Reactive/drug therapy/*immunology ; Autoantigens/*immunology ; Autoimmune Diseases/*immunology ; Bacterial Outer Membrane Proteins/immunology/metabolism ; Bacterial Vaccines ; Borrelia burgdorferi Group/immunology ; Child ; Cross Reactions ; Female ; HLA-DR Antigens/genetics/immunology/metabolism ; HLA-DRB1 Chains ; Humans ; Immunodominant Epitopes ; *Lipoproteins ; Lyme Disease/drug therapy/*immunology ; Lymphocyte Function-Associated Antigen-1/chemistry/*immunology/metabolism ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Synovial Fluid/immunology ; T-Lymphocytes, Helper-Inducer/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1998-08-14
    Description: Hemolin, an insect immunoglobulin superfamily member, is a lipopolysaccharide-binding immune protein induced during bacterial infection. The 3.1 angstrom crystal structure reveals a bound phosphate and patches of positive charge, which may represent the lipopolysaccharide binding site, and a new and unexpected arrangement of four immunoglobulin-like domains forming a horseshoe. Sequence analysis and analytical ultracentrifugation suggest that the domain arrangement is a feature of the L1 family of neural cell adhesion molecules related to hemolin. These results are relevant to interpretation of human L1 mutations in neurological diseases and suggest a domain swapping model for how L1 family proteins mediate homophilic adhesion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, X D -- Gastinel, L N -- Vaughn, D E -- Faye, I -- Poon, P -- Bjorkman, P J -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):991-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29 and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703515" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Adhesion/*physiology ; Cell Adhesion Molecules, Neuronal/chemistry ; Crystallography, X-Ray ; Drosophila Proteins ; Drosophila melanogaster ; Humans ; Immunoglobulins ; Insect Proteins ; Leukocyte L1 Antigen Complex ; Membrane Glycoproteins/chemistry ; Models, Molecular ; Molecular Sequence Data ; Moths ; Neural Cell Adhesion Molecules/chemistry ; Protein Binding ; Protein Conformation ; Proteins/*chemistry/physiology ; Recombinant Proteins/chemistry ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-04
    Description: Enzymatic turnovers of single cholesterol oxidase molecules were observed in real time by monitoring the emission from the enzyme's fluorescent active site, flavin adenine dinucleotide (FAD). Statistical analyses of single-molecule trajectories revealed a significant and slow fluctuation in the rate of cholesterol oxidation by FAD. The static disorder and dynamic disorder of reaction rates, which are essentially indistinguishable in ensemble-averaged experiments, were determined separately by the real-time single-molecule approach. A molecular memory phenomenon, in which an enzymatic turnover was not independent of its previous turnovers because of a slow fluctuation of protein conformation, was evidenced by spontaneous spectral fluctuation of FAD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, H P -- Xun, L -- Xie, X S -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1877-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Northwest National Laboratory, William R. Wiley Environmental Molecular Sciences Laboratory, Richland, WA 99352, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836635" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Brevibacterium/enzymology ; Cholesterol/*metabolism ; Cholesterol Oxidase/*metabolism ; Flavin-Adenine Dinucleotide/*metabolism ; Kinetics ; Microscopy, Fluorescence ; Oxidation-Reduction ; Probability ; Spectrometry, Fluorescence ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armstrong, C -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):56-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. carmstro@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9556453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Proteins ; Crystallization ; Crystallography, X-Ray ; Permeability ; Potassium/*metabolism ; Potassium Channels/*chemistry/metabolism ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Scorpion Venoms/metabolism ; Sodium/metabolism ; Streptomyces/chemistry ; Tetraethylammonium/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1998-02-07
    Description: Mitogen stimulation of cytoskeletal changes and c-jun amino-terminal kinases is mediated by Rac small guanine nucleotide-binding proteins. Vav, a guanosine diphosphate (GDP)-guanosine triphosphate (GTP) exchange factor for Rac that stimulates the exchange of bound GDP for GTP, bound to and was directly controlled by substrates and products of phosphoinositide (PI) 3-kinase. The PI 3-kinase substrate phosphatidylinositol-4,5-bisphosphate inhibited activation of Vav by the tyrosine kinase Lck, whereas the product phosphatidylinositol-3,4,5-trisphosphate enhanced phosphorylation and activation of Vav by Lck. Control of Vav in response to mitogens by the products of PI 3-kinase suggests a mechanism for Ras-dependent activation of Rac.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, J -- Luby-Phelps, K -- Das, B -- Shu, X -- Xia, Y -- Mosteller, R D -- Krishna, U M -- Falck, J R -- White, M A -- Broek, D -- CA50261/CA/NCI NIH HHS/ -- CA71443/CA/NCI NIH HHS/ -- GM31278/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):558-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033-0800, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9438848" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Guanosine Diphosphate/*metabolism ; Guanosine Triphosphate/metabolism ; Inositol 1,4,5-Trisphosphate/metabolism/pharmacology ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism ; Mutagenesis, Site-Directed ; Oncogene Proteins/chemistry/*metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism/pharmacology ; Phosphatidylinositol Phosphates/metabolism/pharmacology ; Phosphatidylinositols/*metabolism/pharmacology ; Phosphorylation ; Proteins/metabolism ; Proto-Oncogene Proteins c-vav ; Rats ; rac GTP-Binding Proteins ; ras Guanine Nucleotide Exchange Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, G -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1883-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417635" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Cell Cycle Proteins ; *Cell Division ; Humans ; *Mitosis ; Models, Molecular ; Peptidylprolyl Isomerase/chemistry/*metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Proline/metabolism ; Protein Conformation ; Protein-Serine-Threonine Kinases/metabolism ; Yeasts/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1998-01-07
    Description: Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yaffe, M B -- Schutkowski, M -- Shen, M -- Zhou, X Z -- Stukenberg, P T -- Rahfeld, J U -- Xu, J -- Kuang, J -- Kirschner, M W -- Fischer, G -- Cantley, L C -- Lu, K P -- GM56203/GM/NIGMS NIH HHS/ -- GM56230/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1957-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395400" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Antibodies, Monoclonal ; Binding Sites ; Carrier Proteins/metabolism ; Cell Cycle Proteins/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Epitopes ; HeLa Cells ; Heat-Shock Proteins/metabolism ; Humans ; Isomerism ; *Mitosis ; Models, Molecular ; Oligopeptides/chemistry/*metabolism ; Peptide Library ; Peptidylprolyl Isomerase/chemistry/*metabolism ; Phosphoproteins/chemistry/immunology/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Proline/*metabolism ; Protein Conformation ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1998-06-20
    Description: The shaker-2 mouse mutation, the homolog of human DFNB3, causes deafness and circling behavior. A bacterial artificial chromosome (BAC) transgene from the shaker-2 critical region corrected the vestibular defects, deafness, and inner ear morphology of shaker-2 mice. An unconventional myosin gene, Myo15, was discovered by DNA sequencing of this BAC. Shaker-2 mice were found to have an amino acid substitution at a highly conserved position within the motor domain of this myosin. Auditory hair cells of shaker-2 mice have very short stereocilia and a long actin-containing protrusion extending from their basal end. This histopathology suggests that Myo15 is necessary for actin organization in the hair cells of the cochlea.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Probst, F J -- Fridell, R A -- Raphael, Y -- Saunders, T L -- Wang, A -- Liang, Y -- Morell, R J -- Touchman, J W -- Lyons, R H -- Noben-Trauth, K -- Friedman, T B -- Camper, S A -- Z01 DC 00035/DC/NIDCD NIH HHS/ -- Z01 DC 00038/DC/NIDCD NIH HHS/ -- Z01 DC 02407/DC/NIDCD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 May 29;280(5368):1444-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, 4701 MSRB III, University of Michigan, 1500 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9603735" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/metabolism ; Chromosomes, Bacterial ; Deafness/*genetics/pathology/therapy ; Ear, Inner/metabolism ; Female ; Genetic Complementation Test ; Hair Cells, Auditory/ultrastructure ; Humans ; Liver/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Mice, Transgenic ; Myosins/chemistry/*genetics/metabolism ; Phenotype ; Point Mutation ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1998-11-30
    Description: The Xenopus polo-like kinase 1 (Plx1) is essential during mitosis for the activation of Cdc25C, for spindle assembly, and for cyclin B degradation. Polo-like kinases from various organisms are activated by phosphorylation by an unidentified protein kinase. A protein kinase, polo-like kinase kinase 1 or xPlkk1, that phosphorylates and activates Plx1 in vitro was purified to near homogeneity and cloned. Phosphopeptide mapping of Plx1 phosphorylated in vitro by recombinant xPlkk1 or in progesterone-treated oocytes indicates that xPlkk1 may activate Plx1 in vivo. The xPlkk1 protein itself was also activated by phosphorylation on serine and threonine residues, and the kinetics of activation of xPlkk1 in vivo closely paralleled the activation of Plx1. Moreover, microinjection of xPlkk1 into Xenopus oocytes accelerated the timing of activation of Plx1 and the transition from G2 to M phase of the cell cycle. These results define a protein kinase cascade that regulates several events of mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qian, Y W -- Erikson, E -- Maller, J L -- CA46934/CA/NCI NIH HHS/ -- GM26743/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1701-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831560" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Cell Cycle Proteins ; Cloning, Molecular ; Enzyme Activation ; Mitosis ; Molecular Sequence Data ; Okadaic Acid/pharmacology ; Oocytes/enzymology ; Peptide Mapping ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Progesterone/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/*isolation & ; purification/*metabolism ; Recombinant Fusion Proteins/metabolism ; Xenopus ; *Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1998-11-30
    Description: A combinatorial disulfide cross-linking strategy was used to prepare a stalled complex of human immunodeficiency virus-type 1 (HIV-1) reverse transcriptase with a DNA template:primer and a deoxynucleoside triphosphate (dNTP), and the crystal structure of the complex was determined at a resolution of 3.2 angstroms. The presence of a dideoxynucleotide at the 3'-primer terminus allows capture of a state in which the substrates are poised for attack on the dNTP. Conformational changes that accompany formation of the catalytic complex produce distinct clusters of the residues that are altered in viruses resistant to nucleoside analog drugs. The positioning of these residues in the neighborhood of the dNTP helps to resolve some long-standing puzzles about the molecular basis of resistance. The resistance mutations are likely to influence binding or reactivity of the inhibitors, relative to normal dNTPs, and the clustering of the mutations correlates with the chemical structure of the drug.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, H -- Chopra, R -- Verdine, G L -- Harrison, S C -- GM-18621/GM/NIGMS NIH HHS/ -- GM-39589/GM/NIGMS NIH HHS/ -- GM-44853/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1669-75.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831551" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/metabolism/*pharmacology ; Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA Primers/chemistry/metabolism ; DNA, Viral/chemistry/metabolism ; Deoxyribonucleotides/chemistry/metabolism ; Dimerization ; Drug Resistance, Microbial ; HIV Reverse Transcriptase/*chemistry/genetics/metabolism ; HIV-1/*drug effects/enzymology ; Humans ; Hydrogen Bonding ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Protein Conformation ; Reverse Transcriptase Inhibitors/metabolism/*pharmacology ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1998-03-07
    Description: STATs (signal transducers and activators of transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. The crystal structure of an NH2-terminal conserved domain (N-domain) comprising the first 123 residues of STAT-4 was determined at 1.45 angstroms. The domain consists of eight helices that are assembled into a hook-like structure. The N-domain has been implicated in several protein-protein interactions affecting transcription, and it enables dimerized STAT molecules to polymerize and to bind DNA cooperatively. The structure shows that N-domains can interact through an extensive interface formed by polar interactions across one face of the hook. Mutagenesis of an invariant tryptophan residue at the heart of this interface abolished cooperative DNA binding by the full-length protein in vitro and reduced the transcriptional response after cytokine stimulation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinkemeier, U -- Moarefi, I -- Darnell, J E Jr -- Kuriyan, J -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1048-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology and Laboratories of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461439" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; DNA/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Interferon-gamma/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Oligodeoxyribonucleotides/metabolism ; *Protein Conformation ; Protein Structure, Tertiary ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; Signal Transduction ; Trans-Activators/*chemistry/genetics/metabolism ; Transcription, Genetic ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-07
    Description: The two lineages of T cells, alphabeta and gammadelta, differ in their developmental requirements: only alphabeta T cells require major histocompatibility complex recognition, a process known as positive selection. The alphabeta T cell receptor (TCR), but not its gammadelta counterpart, contains a motif within the alpha-chain connecting peptide domain (alpha-CPM) that has been conserved over the last 500 million years. In transgenic mice expressing an alphabeta TCR lacking the alpha-CPM, thymocytes were blocked in positive selection but could undergo negative selection. Thus, the alpha-CPM seems to participate in the generation of signals required for positive selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Backstrom, B T -- Muller, U -- Hausmann, B -- Palmer, E -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):835-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basel Institute for Immunology, CH-4005 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694657" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD3/analysis ; CD4-Positive T-Lymphocytes/immunology ; Cell Lineage ; Cells, Cultured ; Histocompatibility Antigens Class II/immunology ; Ligands ; Lymphocyte Count ; Membrane Proteins/analysis ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Receptor-CD3 Complex, Antigen, T-Cell/immunology/metabolism ; Receptors, Antigen, T-Cell/analysis ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/genetics/*immunology ; Signal Transduction ; T-Lymphocyte Subsets/*immunology ; Thymus Gland/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-14
    Description: Vertebrate neural crest cells, derived from the neural folds, generate a variety of tissues, such as cartilage, ganglia, and cranial (intramembranous) bone. The chick homolog of the helix-loop-helix transcriptional regulator Id2 is expressed in cranial but not trunk neural folds and subsequently in some migrating cranial neural crest cells. Ectopic expression of Id2 with recombinant retroviruses converted ectodermal cells to a neural crest fate, demonstrating that proper regulation of Id2 is important for sustaining epidermal traits. In addition, overexpression of Id2 resulted in overgrowth and premature neurogenesis of the dorsal neural tube. These results suggest that Id2 may allocate ectodermal precursors into neural rather than epidermal lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinsen, B J -- Bronner-Fraser, M -- NS34671/NS/NINDS NIH HHS/ -- NS36585/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):988-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉B. J. Martinsen, Division of Biology, Beckman Institute 139-74, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703514" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Differentiation/physiology ; Cell Lineage/physiology ; Cell Movement/physiology ; Chick Embryo ; DNA-Binding Proteins/genetics/*physiology ; Ectoderm/cytology ; Epidermis/cytology ; Gene Transfer Techniques ; *Helix-Loop-Helix Motifs ; Humans ; Inhibitor of Differentiation Protein 2 ; Molecular Sequence Data ; Neural Crest/cytology/*embryology ; Recombinant Proteins ; Repressor Proteins/*physiology ; Retroviridae/genetics ; Sequence Homology, Amino Acid ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1998-02-07
    Description: Rab guanosine triphosphatases regulate vesicular transport and membrane traffic within eukaryotic cells. Here, a kinesin-like protein that interacts with guanosine triphosphate (GTP)-bound forms of Rab6 was identified. This protein, termed Rabkinesin-6, was localized to the Golgi apparatus and shown to play a role in the dynamics of this organelle. The carboxyl-terminal domain of Rabkinesin-6, which contains the Rab6-interacting domain, inhibited the effects of Rab6-GTP on intracellular transport. Thus, a molecular motor is a potential effector of a Rab protein, and coordinated action between members of these two families of proteins could control membrane dynamics and directional vesicular traffic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Echard, A -- Jollivet, F -- Martinez, O -- Lacapere, J J -- Rousselet, A -- Janoueix-Lerosey, I -- Goud, B -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):580-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite Mixte de Recherche CNRS 144 et 168, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9438855" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Alkaline Phosphatase/metabolism ; Amino Acid Sequence ; Biological Transport ; Carrier Proteins/*metabolism ; Endoplasmic Reticulum/metabolism ; Golgi Apparatus/chemistry/*metabolism/ultrastructure ; Guanosine Triphosphate/metabolism ; HeLa Cells ; Humans ; Kinesin/analysis/chemistry/genetics/*metabolism ; Microtubules/metabolism/ultrastructure ; Molecular Sequence Data ; Molecular Weight ; *rab GTP-Binding Proteins ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maley, L E -- Marshall, C R -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):505-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454349" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; DNA, Ribosomal/*genetics ; *Evolution, Molecular ; *Phylogeny ; Proteins/chemistry ; RNA, Ribosomal, 18S/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1998-04-16
    Description: Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, B R -- Arvai, A S -- Ghosh, D K -- Wu, C -- Getzoff, E D -- Stuehr, D J -- Tainer, J A -- HL58883/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 27;279(5359):2121-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9516116" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/chemistry/*metabolism ; Binding Sites ; Biopterin/*analogs & derivatives/chemistry/metabolism ; Citrulline/analogs & derivatives/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Isoenzymes/chemistry/metabolism ; Ligands ; Macrophages/enzymology ; Mice ; Models, Molecular ; Nitric Oxide/biosynthesis ; Nitric Oxide Synthase/*chemistry/metabolism ; Nitric Oxide Synthase Type II ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Thiourea/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1998-07-04
    Description: Mitochondrial cytochrome bc1 complex performs two functions: It is a respiratory multienzyme complex and it recognizes a mitochondrial targeting presequence. Refined crystal structures of the 11-subunit bc1 complex from bovine heart reveal full views of this bifunctional enzyme. The "Rieske" iron-sulfur protein subunit shows significant conformational changes in different crystal forms, suggesting a new electron transport mechanism of the enzyme. The mitochondrial targeting presequence of the "Rieske" protein (subunit 9) is lodged between the two "core" subunits at the matrix side of the complex. These "core" subunits are related to the matrix processing peptidase, and the structure unveils how mitochondrial targeting presequences are recognized.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iwata, S -- Lee, J W -- Okada, K -- Lee, J K -- Iwata, M -- Rasmussen, B -- Link, T A -- Ramaswamy, S -- Jap, B K -- New York, N.Y. -- Science. 1998 Jul 3;281(5373):64-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA. iwata@xray.bmc.uu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9651245" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cattle ; Crystallization ; Crystallography, X-Ray ; Cytochrome b Group/chemistry/metabolism ; Cytochromes c1/chemistry/metabolism ; Electron Transport ; Electron Transport Complex III/*chemistry/metabolism ; Enzyme Inhibitors/metabolism ; Hydrogen Bonding ; Hydroquinones/metabolism ; Intracellular Membranes/enzymology ; Iron-Sulfur Proteins/chemistry/metabolism ; Methacrylates ; Mitochondria, Heart/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; *Protein Conformation ; Protein Structure, Secondary ; Thiazoles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1998-06-25
    Description: The entry of primate immunodeficiency viruses into target cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors, CD4 and members of the chemokine receptor family. The gp120 third variable (V3) loop has been implicated in chemokine receptor binding, but the use of the CCR5 chemokine receptor by diverse primate immunodeficiency viruses suggests the involvement of an additional, conserved gp120 element. Through the use of gp120 mutants, a highly conserved gp120 structure was shown to be critical for CCR5 binding. This structure is located adjacent to the V3 loop and contains neutralization epitopes induced by CD4 binding. This conserved element may be a useful target for pharmacologic or prophylactic intervention in human immunodeficiency virus (HIV) infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizzuto, C D -- Wyatt, R -- Hernandez-Ramos, N -- Sun, Y -- Kwong, P D -- Hendrickson, W A -- Sodroski, J -- AI 40895/AI/NIAID NIH HHS/ -- AI 41851/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1949-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632396" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antigens, CD4/metabolism ; Binding Sites ; Crystallization ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/immunology/*metabolism ; HIV-1/*chemistry/immunology ; Humans ; Models, Molecular ; Peptide Fragments/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Receptors, CCR5/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-26
    Description: The kinesin motor protein family members move along microtubules with characteristic polarity. Chimeric motors containing the stalk and neck of the minus-end-directed motor, Ncd, fused to the motor domain of plus-end-directed kinesin were analyzed. The Ncd stalk and neck reversed kinesin motor polarity, but mutation of the Ncd neck reverted the chimeric motor to plus-end movement. Thus, residues or regions contributing to motor polarity must be present in both the Ncd neck and the kinesin motor core. The neck-motor junction was critical for Ncd minus-end movement; attachment of the neck to the stalk may also play a role.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Endow, S A -- Waligora, K W -- R01 GM046225/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 21;281(5380):1200-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA. endow@galactose.mc.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9712586" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Drosophila Proteins ; Drosophila melanogaster ; Kinesin/*chemistry/genetics/metabolism ; Microtubules/metabolism ; Molecular Sequence Data ; Mutation ; Protein Structure, Secondary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-11
    Description: The subunit stoichiometry of several ligand-gated ion channel receptors is still unknown. A counting method was developed to determine the number of subunits in one family of brain glutamate receptors. Successful application of this method in an HEK cell line provides evidence that ionotropic glutamate receptors share a tetrameric structure with the voltage-gated potassium channels. The average conductance of these channels depends on how many subunits are occupied by an agonist.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenmund, C -- Stern-Bach, Y -- Stevens, C F -- NS 12961/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1596-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Workgroup Cellular Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616121" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Electric Conductivity ; Excitatory Amino Acid Agonists/metabolism ; Excitatory Amino Acid Antagonists/metabolism ; Humans ; Ligands ; Macromolecular Substances ; Models, Biological ; Patch-Clamp Techniques ; Quinoxalines/metabolism ; Quisqualic Acid/metabolism ; Receptors, AMPA/agonists/antagonists & inhibitors/*chemistry/*metabolism ; Receptors, Glutamate/chemistry/metabolism ; Receptors, Kainic Acid/agonists/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1998-10-09
    Description: The PPP2R1B gene, which encodes the beta isoform of the A subunit of the serine/threonine protein phosphatase 2A (PP2A), was identified as a putative human tumor suppressor gene. Sequencing of the PPP2R1B gene, located on human chromosome 11q22-24, revealed somatic alterations in 15% (5 out of 33) of primary lung tumors, 6% (4 out of 70) of lung tumor-derived cell lines, and 15% (2 out of 13) of primary colon tumors. One deletion mutation generated a truncated PP2A-Abeta protein that was unable to bind to the catalytic subunit of the PP2A holoenzyme. The PP2R1B gene product may suppress tumor development through its role in cell cycle regulation and cellular growth control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, S S -- Esplin, E D -- Li, J L -- Huang, L -- Gazdar, A -- Minna, J -- Evans, G A -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):284-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9765152" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Cycle ; Cell Division ; Chromosome Mapping ; Chromosomes, Human, Pair 11/genetics ; Colonic Neoplasms/enzymology/*genetics ; Frameshift Mutation ; *Genes, Tumor Suppressor ; Humans ; Loss of Heterozygosity ; Lung Neoplasms/enzymology/*genetics ; Molecular Sequence Data ; Phosphoprotein Phosphatases/chemistry/*genetics/metabolism ; Point Mutation ; Protein Phosphatase 2 ; Sequence Deletion ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1998-07-17
    Description: Recombinant DNA methods were used to create artificial proteins that undergo reversible gelation in response to changes in pH or temperature. The proteins consist of terminal leucine zipper domains flanking a central, flexible, water-soluble polyelectrolyte segment. Formation of coiled-coil aggregates of the terminal domains in near-neutral aqueous solutions triggers formation of a three-dimensional polymer network, with the polyelectrolyte segment retaining solvent and preventing precipitation of the chain. Dissociation of the coiled-coil aggregates through elevation of pH or temperature causes dissolution of the gel and a return to the viscous behavior that is characteristic of polymer solutions. The mild conditions under which gel formation can be controlled (near-neutral pH and near-ambient temperature) suggest that these materials have potential in bioengineering applications requiring encapsulation or controlled release of molecular and cellular species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petka, W A -- Harden, J L -- McGrath, K P -- Wirtz, D -- Tirrell, D A -- New York, N.Y. -- Science. 1998 Jul 17;281(5375):389-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9665877" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carrier Proteins/*chemistry/isolation & purification ; Chemistry, Physical ; Circular Dichroism ; Dimerization ; Electrolytes ; *Gels ; Genes, Synthetic ; Hydrogel ; Hydrogen-Ion Concentration ; Leucine Zippers ; Molecular Sequence Data ; Physicochemical Phenomena ; Polyethylene Glycols/*chemistry/isolation & purification ; Polymers ; *Protein Engineering ; Protein Folding ; *Protein Structure, Secondary ; Recombinant Proteins/*chemistry/isolation & purification ; Temperature ; Viscosity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1998-01-24
    Description: The preferred antitubercular drug isoniazid specifically targets a long-chain enoyl-acyl carrier protein reductase (InhA), an enzyme essential for mycolic acid biosynthesis in Mycobacterium tuberculosis. Despite the widespread use of this drug for more than 40 years, its precise mode of action has remained obscure. Data from x-ray crystallography and mass spectrometry reveal that the mechanism of isoniazid action against InhA is covalent attachment of the activated form of the drug to the nicotinamide ring of nicotinamide adenine dinucleotide bound within the active site of InhA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rozwarski, D A -- Grant, G A -- Barton, D H -- Jacobs, W R Jr -- Sacchettini, J C -- AI-36849/AI/NIAID NIH HHS/ -- GM-45859/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):98-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417034" target="_blank"〉PubMed〈/a〉
    Keywords: Antitubercular Agents/metabolism/*pharmacology ; Bacterial Proteins ; Binding Sites ; Biotransformation ; Crystallography, X-Ray ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Fatty Acid Synthases/antagonists & inhibitors/chemistry/genetics/metabolism ; Isoniazid/metabolism/*pharmacology ; Mass Spectrometry ; Models, Molecular ; Mutation ; Mycobacterium tuberculosis/*drug effects/enzymology ; Mycolic Acids/metabolism ; NAD/chemistry/*metabolism ; Oxidoreductases/*antagonists & inhibitors/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...