ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-03-11
    Description: CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-11-13
    Description: The ectodomains of numerous proteins are released from cells by proteolysis to yield soluble intercellular regulators. The responsible protease, tumor necrosis factor-alpha converting enzyme (TACE), has been identified only in the case when tumor necrosis factor-alpha (TNFalpha) is released. Analyses of cells lacking this metalloproteinase-disintegrin revealed an expanded role for TACE in the processing of other cell surface proteins, including a TNF receptor, the L-selectin adhesion molecule, and transforming growth factor-alpha (TGFalpha). The phenotype of mice lacking TACE suggests an essential role for soluble TGFalpha in normal development and emphasizes the importance of protein ectodomain shedding in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peschon, J J -- Slack, J L -- Reddy, P -- Stocking, K L -- Sunnarborg, S W -- Lee, D C -- Russell, W E -- Castner, B J -- Johnson, R S -- Fitzner, J N -- Boyce, R W -- Nelson, N -- Kozlosky, C J -- Wolfson, M F -- Rauch, C T -- Cerretti, D P -- Paxton, R J -- March, C J -- Black, R A -- CA43793/CA/NCI NIH HHS/ -- DK53804/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunex Corporation, Seattle, WA 98101, USA. peschon@immunex.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812885" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Cell Membrane/*metabolism ; Cells, Cultured ; Crosses, Genetic ; *Embryonic and Fetal Development ; L-Selectin/metabolism ; Ligands ; Membrane Proteins/*metabolism ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Phenotype ; Protein Processing, Post-Translational ; Receptors, Tumor Necrosis Factor/metabolism ; Transforming Growth Factor alpha/metabolism ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-09-15
    Description: Gene targeting via homologous recombination-mediated disruption in murine embryonic stem (ES) cells has been described for a number of different genes expressed in these cells; it has not been reported for any nonexpressed genes. Pluripotent stem cell lines were isolated with homologously recombined insertions at three different loci: c-fos, which is expressed at a low level in ES cells, and two genes, adipsin and adipocyte P2 (aP2), which are transcribed specifically in adipose cells and are not expressed at detectable levels in ES cells. The frequencies at which homologous recombination events occurred did not correlate with levels of expression of the targeted genes, but did occur at rates comparable to those previously reported for genes that are actively expressed in ES cells. Injection of successfully targeted cells into mouse blastocysts resulted in the formation of chimeric mice. These studies demonstrate the feasibility of altering genes in ES cells that are expressed in a tissue-specific manner in the mouse, in order to study their function at later developmental stages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, R S -- Sheng, M -- Greenberg, M E -- Kolodner, R D -- Papaioannou, V E -- Spiegelman, B M -- DK 31405/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 15;245(4923):1234-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2506639" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/cytology ; Animals ; Blotting, Northern ; Blotting, Southern ; Carrier Proteins/biosynthesis/*genetics ; Cell Line ; Chimera ; Complement Factor D ; DNA, Recombinant ; DNA-Binding Proteins/biosynthesis/genetics ; Fatty Acid-Binding Proteins ; Fatty Acids/metabolism ; *Gene Expression Regulation ; Genetic Vectors ; Mice ; *Neoplasm Proteins ; *Nerve Tissue Proteins ; Proto-Oncogene Proteins/biosynthesis/*genetics ; Proto-Oncogene Proteins c-fos ; RNA, Messenger/biosynthesis/genetics ; *Recombination, Genetic ; Serine Endopeptidases/*genetics ; Stem Cells/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-11
    Description: Angiogenesis and the development of a vascular network are required for tumour progression, and they involve the release of angiogenic factors, including vascular endothelial growth factor (VEGF-A), from both malignant and stromal cell types. Infiltration by cells of the myeloid lineage is a hallmark of many tumours, and in many cases the macrophages in these infiltrates express VEGF-A. Here we show that the deletion of inflammatory-cell-derived VEGF-A attenuates the formation of a typical high-density vessel network, thus blocking the angiogenic switch in solid tumours in mice. Vasculature in tumours lacking myeloid-cell-derived VEGF-A was less tortuous, with increased pericyte coverage and decreased vessel length, indicating vascular normalization. In addition, loss of myeloid-derived VEGF-A decreases the phosphorylation of VEGF receptor 2 (VEGFR2) in tumours, even though overall VEGF-A levels in the tumours are unaffected. However, deletion of myeloid-cell VEGF-A resulted in an accelerated tumour progression in multiple subcutaneous isograft models and an autochthonous transgenic model of mammary tumorigenesis, with less overall tumour cell death and decreased tumour hypoxia. Furthermore, loss of myeloid-cell VEGF-A increased the susceptibility of tumours to chemotherapeutic cytotoxicity. This shows that myeloid-derived VEGF-A is essential for the tumorigenic alteration of vasculature and signalling to VEGFR2, and that these changes act to retard, not promote, tumour progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103772/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103772/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stockmann, Christian -- Doedens, Andrew -- Weidemann, Alexander -- Zhang, Na -- Takeda, Norihiko -- Greenberg, Joshua I -- Cheresh, David A -- Johnson, Randall S -- AI060840/AI/NIAID NIH HHS/ -- CA118165/CA/NCI NIH HHS/ -- CA82515/CA/NCI NIH HHS/ -- R01 CA082515/CA/NCI NIH HHS/ -- R01 CA082515-12/CA/NCI NIH HHS/ -- R01 CA118165/CA/NCI NIH HHS/ -- England -- Nature. 2008 Dec 11;456(7223):814-8. doi: 10.1038/nature07445. Epub 2008 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Section, Division of Biological Sciences, Moores Cancer Center, University of California, San Diego, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18997773" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoxia/genetics ; Antineoplastic Agents, Alkylating/pharmacology ; Carcinoma/blood supply/genetics/*metabolism ; Cytotoxins/pharmacology ; Female ; *Gene Deletion ; Gene Expression Regulation, Neoplastic/drug effects ; Male ; Mammary Neoplasms, Experimental/blood supply/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myeloid Cells/*metabolism ; Neovascularization, Pathologic/metabolism ; Vascular Endothelial Growth Factor A/*genetics/*metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-11-11
    Description: Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605188/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605188/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greenberg, Joshua I -- Shields, David J -- Barillas, Samuel G -- Acevedo, Lisette M -- Murphy, Eric -- Huang, Jianhua -- Scheppke, Lea -- Stockmann, Christian -- Johnson, Randall S -- Angle, Niren -- Cheresh, David A -- GM 68524/GM/NIGMS NIH HHS/ -- P01 CA078045/CA/NCI NIH HHS/ -- P01 CA078045-050004/CA/NCI NIH HHS/ -- P01 CA078045-100004/CA/NCI NIH HHS/ -- P01 CA078045-109001/CA/NCI NIH HHS/ -- R01 CA095262/CA/NCI NIH HHS/ -- R01 CA095262-06/CA/NCI NIH HHS/ -- R01 CA118165/CA/NCI NIH HHS/ -- R01 HL078912/HL/NHLBI NIH HHS/ -- R01 HL078912-04/HL/NHLBI NIH HHS/ -- R21 CA129660/CA/NCI NIH HHS/ -- R21 CA129660-02/CA/NCI NIH HHS/ -- R37 CA050286/CA/NCI NIH HHS/ -- R37 CA050286-19/CA/NCI NIH HHS/ -- R37 CA050286-20/CA/NCI NIH HHS/ -- R37-CA082515/CA/NCI NIH HHS/ -- R37-CA50286/CA/NCI NIH HHS/ -- England -- Nature. 2008 Dec 11;456(7223):809-13. doi: 10.1038/nature07424. Epub 2008 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, School of Medicine, Moore's UCSD Cancer Center, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18997771" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/pharmacology ; Animals ; Blood Vessels/*metabolism ; Cell Line ; Cells, Cultured ; Fibrosarcoma/blood supply ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Neovascularization, Physiologic/drug effects/*physiology ; Pericytes/drug effects/*metabolism ; Platelet-Derived Growth Factor/*metabolism/pharmacology ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Receptors, Vascular Endothelial Growth Factor/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-04-25
    Description: The hypoxic response is an ancient stress response triggered by low ambient oxygen (O2) (ref. 1) and controlled by hypoxia-inducible transcription factor-1 (HIF-1), whose alpha subunit is rapidly degraded under normoxia but stabilized when O2-dependent prolyl hydroxylases (PHDs) that target its O2-dependent degradation domain are inhibited. Thus, the amount of HIF-1alpha, which controls genes involved in energy metabolism and angiogenesis, is regulated post-translationally. Another ancient stress response is the innate immune response, regulated by several transcription factors, among which NF-kappaB plays a central role. NF-kappaB activation is controlled by IkappaB kinases (IKK), mainly IKK-beta, needed for phosphorylation-induced degradation of IkappaB inhibitors in response to infection and inflammation. IKK-beta is modestly activated in hypoxic cell cultures when PHDs that attenuate its activation are inhibited. However, defining the relationship between NF-kappaB and HIF-1alpha has proven elusive. Using in vitro systems, it was reported that HIF-1alpha activates NF-kappaB, that NF-kappaB controls HIF-1alpha transcription and that HIF-1alpha activation may be concurrent with inhibition of NF-kappaB. Here we show, with the use of mice lacking IKK-beta in different cell types, that NF-kappaB is a critical transcriptional activator of HIF-1alpha and that basal NF-kappaB activity is required for HIF-1alpha protein accumulation under hypoxia in cultured cells and in the liver and brain of hypoxic animals. IKK-beta deficiency results in defective induction of HIF-1alpha target genes including vascular endothelial growth factor. IKK-beta is also essential for HIF-1alpha accumulation in macrophages experiencing a bacterial infection. Hence, IKK-beta is an important physiological contributor to the hypoxic response, linking it to innate immunity and inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669289/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669289/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rius, Jordi -- Guma, Monica -- Schachtrup, Christian -- Akassoglou, Katerina -- Zinkernagel, Annelies S -- Nizet, Victor -- Johnson, Randall S -- Haddad, Gabriel G -- Karin, Michael -- P41 RR004050/RR/NCRR NIH HHS/ -- P41 RR004050-208577/RR/NCRR NIH HHS/ -- R01 AI043477/AI/NIAID NIH HHS/ -- R01 AI043477-12/AI/NIAID NIH HHS/ -- R01 CA118165/CA/NCI NIH HHS/ -- England -- Nature. 2008 Jun 5;453(7196):807-11. doi: 10.1038/nature06905. Epub 2008 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0723, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoxia/*genetics/immunology/*metabolism ; Brain/metabolism ; Cell Hypoxia/genetics/physiology ; *Gene Expression Regulation ; Hypoxia-Inducible Factor 1, alpha Subunit/*genetics/metabolism ; I-kappa B Kinase/genetics/metabolism ; Immunity, Innate/genetics/*physiology ; Inflammation ; Liver/metabolism ; Macrophages/metabolism/microbiology ; Mice ; NF-kappa B/*metabolism ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-09-20
    Description: The maturation of T cells in the thymus is dependent on the expression of major histocompatibility complex (MHC) molecules. By disruption of the MHC class II Ab beta gene in embryonic stem cells, mice were generated that lack cell surface expression of class II molecules. These MHC class II-deficient mice were depleted of mature CD4+ T cells and were deficient in cell-mediated immune responses. These results provide genetic evidence that class II molecules are required for the maturation and function of mature CD4+ T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grusby, M J -- Johnson, R S -- Papaioannou, V E -- Glimcher, L H -- AI21569/AI/NIAID NIH HHS/ -- HD27295/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1991 Sep 20;253(5026):1417-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Harvard School of Public Health, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1910207" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/*immunology ; Crosses, Genetic ; Embryo, Mammalian ; Enzyme-Linked Immunosorbent Assay ; Female ; *Genes, MHC Class II ; Immunity, Cellular/genetics ; Immunoglobulin G/analysis/classification ; Immunoglobulin M/analysis ; Immunologic Deficiency Syndromes/*genetics ; *Lymphocyte Depletion ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Stem Cells/immunology ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-11-22
    Description: Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-alpha (TNF-alpha), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-alpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hotamisligil, G S -- Johnson, R S -- Distel, R J -- Ellis, R -- Papaioannou, V E -- Spiegelman, B M -- DK31405/DK/NIDDK NIH HHS/ -- HD27295/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1377-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA. CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910278" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*metabolism ; Animals ; Blood Glucose/metabolism ; Carrier Proteins/genetics/metabolism/*physiology ; Dietary Fats/administration & dosage ; Fatty Acid-Binding Proteins ; Fatty Acids/*metabolism ; Female ; Gene Expression Regulation ; Gene Targeting ; Glucose Tolerance Test ; Homeostasis ; Insulin/blood ; *Insulin Resistance ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; Myelin P2 Protein/genetics/metabolism/*physiology ; *Neoplasm Proteins ; *Nerve Tissue Proteins ; Obesity/*metabolism ; Triglycerides/blood ; Tumor Necrosis Factor-alpha/*biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Journal of Physical Oceanography, Ahead of Print. 〈br/〉
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...