ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (414)
  • Time Factors
  • American Association for the Advancement of Science (AAAS)  (494)
  • 2005-2009  (387)
  • 1980-1984  (107)
  • 2008  (183)
  • 2005  (204)
  • 1981  (107)
Collection
Publisher
Years
  • 2005-2009  (387)
  • 1980-1984  (107)
Year
  • 1
    Publication Date: 2005-12-03
    Description: Macrophages and dendritic cells (DCs) are crucial for immune and inflammatory responses and belong to a network of cells that has been termed the mononuclear phagocyte system (MPS). However, the origin and lineage of these cells remain poorly understood. Here, we describe the isolation and clonal analysis of a mouse bone marrow progenitor that is specific for monocytes, several macrophage subsets, and resident spleen DCs in vivo. It was also possible to recapitulate this differentiation in vitro by using treatment with the cytokines macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Thus, macrophages and DCs appear to renew from a common progenitor, providing a cellular and molecular basis for the concept of the MPS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fogg, Darin K -- Sibon, Claire -- Miled, Chaouki -- Jung, Steffen -- Aucouturier, Pierre -- Littman, Dan R -- Cumano, Ana -- Geissmann, Frederic -- A133856/PHS HHS/ -- G0900867/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Jan 6;311(5757):83-7. Epub 2005 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM, Laboratory of Mononuclear Phagocyte Biology, Avenir Team, Necker Enfants Malades Institute, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16322423" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cell Separation ; Clone Cells ; Colony-Stimulating Factors/pharmacology ; Dendritic Cells/*cytology ; Flow Cytometry ; Granulocyte Colony-Stimulating Factor/pharmacology ; Hematopoietic Stem Cell Transplantation ; Macrophage Colony-Stimulating Factor/pharmacology ; Macrophages/*cytology ; Mice ; Mice, Inbred C57BL ; Myeloid Progenitor Cells/*cytology/immunology ; Proto-Oncogene Proteins c-kit/analysis ; Receptors, Cytokine/analysis ; Receptors, HIV/analysis ; Recombinant Proteins ; Spleen/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-09-20
    Description: During mouse embryogenesis, reversion of imprinted X chromosome inactivation in the pluripotent inner cell mass of the female blastocyst is initiated by the repression of Xist from the paternal X chromosome. Here we report that key factors supporting pluripotency-Nanog, Oct3/4, and Sox2-bind within Xist intron 1 in undifferentiated embryonic stem (ES) cells. Whereas Nanog null ES cells display a reversible and moderate up-regulation of Xist in the absence of any apparent modification of Oct3/4 and Sox2 binding, the drastic release of all three factors from Xist intron 1 triggers rapid ectopic accumulation of Xist RNA. We conclude that the three main genetic factors underlying pluripotency cooperate to repress Xist and thus couple X inactivation reprogramming to the control of pluripotency during embryogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navarro, Pablo -- Chambers, Ian -- Karwacki-Neisius, Violetta -- Chureau, Corinne -- Morey, Celine -- Rougeulle, Claire -- Avner, Philip -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 19;321(5896):1693-5. doi: 10.1126/science.1160952.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Unite de Genetique Moleculaire Murine, CNRS, URA2578, F-75015, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18802003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst Inner Cell Mass/metabolism ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/*metabolism ; Embryonic Stem Cells/cytology/*metabolism ; Female ; HMGB Proteins/*metabolism ; Homeodomain Proteins/genetics/*metabolism ; Introns ; Male ; Mice ; Octamer Transcription Factor-3/genetics/*metabolism ; Pluripotent Stem Cells/cytology/*metabolism ; RNA, Long Noncoding ; RNA, Untranslated/*genetics/metabolism ; SOXB1 Transcription Factors ; Transcription Factors/*metabolism ; Up-Regulation ; X Chromosome/physiology ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-12-06
    Description: A high-fat diet causes activation of the regulatory protein c-Jun NH2-terminal kinase 1 (JNK1) and triggers development of insulin resistance. JNK1 is therefore a potential target for therapeutic treatment of metabolic syndrome. We explored the mechanism of JNK1 signaling by engineering mice in which the Jnk1 gene was ablated selectively in adipose tissue. JNK1 deficiency in adipose tissue suppressed high-fat diet-induced insulin resistance in the liver. JNK1-dependent secretion of the inflammatory cytokine interleukin-6 by adipose tissue caused increased expression of liver SOCS3, a protein that induces hepatic insulin resistance. Thus, JNK1 activation in adipose tissue can cause insulin resistance in the liver.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabio, Guadalupe -- Das, Madhumita -- Mora, Alfonso -- Zhang, Zhiyou -- Jun, John Y -- Ko, Hwi Jin -- Barrett, Tamera -- Kim, Jason K -- Davis, Roger J -- DK52530/DK/NIDDK NIH HHS/ -- R01 CA065861/CA/NCI NIH HHS/ -- R01 CA065861-14/CA/NCI NIH HHS/ -- R01 DK080756/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1539-43. doi: 10.1126/science.1160794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056984" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/metabolism ; Animals ; Dietary Fats/administration & dosage ; Enzyme Activation ; Glucose/metabolism ; Insulin/metabolism ; Insulin Receptor Substrate Proteins/metabolism ; *Insulin Resistance ; Interleukin-6/administration & dosage/metabolism ; Liver/*metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; *Signal Transduction ; *Stress, Physiological ; Suppressor of Cytokine Signaling Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, Jennifer -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):884-5. doi: 10.1126/science.319.5865.884.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276854" target="_blank"〉PubMed〈/a〉
    Keywords: Blood Glucose/*analysis ; Cardiovascular Diseases/epidemiology/prevention & control ; Controlled Clinical Trials as Topic ; Diabetes Mellitus, Type 2/blood/complications/*drug therapy/mortality ; Hemoglobin A, Glycosylated/analysis ; Humans ; Hypoglycemic Agents/*therapeutic use ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-01-26
    Description: The hippocampus is an area of the brain involved in learning and memory. It contains parallel excitatory pathways referred to as the trisynaptic pathway (which carries information as follows: entorhinal cortex --〉 dentate gyrus --〉 CA3 --〉 CA1 --〉 entorhinal cortex) and the monosynaptic pathway (entorhinal cortex --〉 CA1 --〉 entorhinal cortex). We developed a generally applicable tetanus toxin-based method for transgenic mice that permits inducible and reversible inhibition of synaptic transmission and applied it to the trisynaptic pathway while preserving transmission in the monosynaptic pathway. We found that synaptic output from CA3 in the trisynaptic pathway is dispensable and the short monosynaptic pathway is sufficient for incremental spatial learning. In contrast, the full trisynaptic pathway containing CA3 is required for rapid one-trial contextual learning, for pattern completion-based memory recall, and for spatial tuning of CA1 cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakashiba, Toshiaki -- Young, Jennie Z -- McHugh, Thomas J -- Buhl, Derek L -- Tonegawa, Susumu -- P50-MH58880/MH/NIMH NIH HHS/ -- R01-MH078821/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1260-4. doi: 10.1126/science.1151120. Epub 2008 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218862" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Crosses, Genetic ; Dentate Gyrus/physiology ; Electrophysiology ; Entorhinal Cortex/physiology ; Excitatory Postsynaptic Potentials ; Female ; Hippocampus/*physiology ; Interneurons/physiology ; Male ; *Maze Learning ; Mental Recall ; Metalloendopeptidases/genetics ; Mice ; Mice, Transgenic ; Neural Pathways ; Pyramidal Cells/*physiology ; *Synaptic Transmission ; Tetanus Toxin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, Jennifer -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):31-3. doi: 10.1126/science.321.5885.31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599753" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticonvulsants/therapeutic use ; Apnea/physiopathology ; Brain/physiopathology ; Death, Sudden/epidemiology/*etiology ; Electroencephalography ; Epilepsy/drug therapy/genetics/*physiopathology ; Epilepsy, Tonic-Clonic/drug therapy/genetics/*physiopathology ; Heart Arrest/physiopathology ; Heart Rate ; Humans ; Mice ; Mutation ; NAV1.1 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins/genetics ; Serotonin/physiology ; Sodium Channels/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-05-20
    Description: Cannabinoid receptor 1 (CB1R) regulates neuronal differentiation. To understand the logic underlying decision-making in the signaling network controlling CB1R-induced neurite outgrowth, we profiled the activation of several hundred transcription factors after cell stimulation. We assembled an in silico signaling network by connecting CB1R to 23 activated transcription factors. Statistical analyses of this network predicted a role for the breast cancer 1 protein BRCA1 in neuronal differentiation and a new pathway from CB1R through phosphoinositol 3-kinase to the transcription factor paired box 6 (PAX6). Both predictions were experimentally confirmed. Results of transcription factor activation experiments that used pharmacological inhibitors of kinases revealed a network organization of partial OR gates regulating kinases stacked above AND gates that control transcription factors, which together allow for distributed decision-making in CB1R-induced neurite outgrowth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bromberg, Kenneth D -- Ma'ayan, Avi -- Neves, Susana R -- Iyengar, Ravi -- 1 S10 RR0 9145-01/RR/NCRR NIH HHS/ -- 5R24 CA095823-04/CA/NCI NIH HHS/ -- GM072853/GM/NIGMS NIH HHS/ -- GM54508/GM/NIGMS NIH HHS/ -- P50 GM071558/GM/NIGMS NIH HHS/ -- P50 GM071558-01A2/GM/NIGMS NIH HHS/ -- P50 GM071558-01A20007/GM/NIGMS NIH HHS/ -- P50 GM071558-02/GM/NIGMS NIH HHS/ -- P50 GM071558-020007/GM/NIGMS NIH HHS/ -- P50 GM071558-030007/GM/NIGMS NIH HHS/ -- P50-071558/PHS HHS/ -- R01 GM054508/GM/NIGMS NIH HHS/ -- R01 GM054508-21/GM/NIGMS NIH HHS/ -- R01 GM072853/GM/NIGMS NIH HHS/ -- R01 GM072853-04/GM/NIGMS NIH HHS/ -- T32 CA88796/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 May 16;320(5878):903-9. doi: 10.1126/science.1152662.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18487186" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; Cell Differentiation ; Cell Line, Tumor ; Cells, Cultured ; Computational Biology ; Computer Simulation ; Eye Proteins/metabolism ; Hippocampus/cytology ; Homeodomain Proteins/metabolism ; Metabolic Networks and Pathways ; Mice ; Neurites/*physiology ; Neurons/*cytology/metabolism ; Paired Box Transcription Factors/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Interaction Mapping ; Rats ; Receptor, Cannabinoid, CB1/*metabolism ; Repressor Proteins/metabolism ; *Signal Transduction ; Transcription Factors/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grove, Elizabeth A -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):288-9. doi: 10.1126/science.1153743.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA. egrove@bsd.uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202278" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Brain Tissue Transplantation ; Cell Adhesion ; Cerebral Cortex/cytology/*embryology/transplantation ; Dentate Gyrus/embryology ; Hippocampus/cytology/*embryology ; Homeodomain Proteins/genetics/*metabolism ; LIM-Homeodomain Proteins ; Memory ; Mice ; Organizers, Embryonic/embryology/*physiology ; Prosencephalon/cytology/embryology ; Pyramidal Cells/embryology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schreiber, Hans -- Rowley, Donald A -- New York, N.Y. -- Science. 2008 Jan 11;319(5860):164-5. doi: 10.1126/science.1153713.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Chicago, Chicago, IL 60637, USA. hszz@midway.uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18187644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigens, Neoplasm/genetics/*immunology ; Autoantigens/*immunology ; Autoimmunity ; CD8-Positive T-Lymphocytes/*immunology ; Histones/*immunology ; Humans ; Immunotherapy, Adoptive ; Lymphocytes, Tumor-Infiltrating/*immunology ; Male ; Mice ; Mutation ; Peptide Fragments/immunology ; Prostatic Neoplasms/genetics/*immunology/therapy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-12-17
    Description: Retinoic acid (RA) is an essential extrinsic inducer of meiotic initiation in mammalian germ cells. However, RA acts too widely in mammalian development to account, by itself, for the cell-type and temporal specificity of meiotic initiation. We considered parallels to yeast, in which extrinsic and intrinsic factors combine to restrict meiotic initiation. We demonstrate that, in mouse embryos, extrinsic and intrinsic factors together regulate meiotic initiation. The mouse RNA-binding protein DAZL, which is expressed by postmigratory germ cells, is a key intrinsic factor, enabling those cells to initiate meiosis in response to RA. Within a brief developmental window, Dazl-expressing germ cells in both XX and XY embryos actively acquire the ability to interpret RA as a meiosis-inducing signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Yanfeng -- Gill, Mark E -- Koubova, Jana -- Page, David C -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Dec 12;322(5908):1685-7. doi: 10.1126/science.1166340.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074348" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Cell Cycle Proteins/metabolism ; Cell Nucleus/ultrastructure ; DNA Breaks ; DNA Repair ; Embryo, Mammalian/*cytology/physiology ; Endodeoxyribonucleases ; Esterases/metabolism ; Female ; Germ Cells/*cytology ; Male ; *Meiosis ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/genetics/metabolism ; Ovary/embryology/physiology ; Phosphoproteins/genetics/metabolism ; Proteins/metabolism ; RNA-Binding Proteins/genetics/*physiology ; Testis/embryology/physiology ; Tretinoin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2008-06-07
    Description: In mammals, dosage compensation is achieved by X-chromosome inactivation (XCI) in the female. The noncoding Xist gene initiates silencing of the X chromosome, whereas its antisense partner Tsix blocks silencing. The complementarity of Xist and Tsix RNAs has long suggested a role for RNA interference (RNAi). Here, we report that murine Xist and Tsix form duplexes in vivo. During XCI, the duplexes are processed to small RNAs (sRNAs), most likely on the active X (Xa) in a Dicer-dependent manner. Deleting Dicer compromises sRNA production and derepresses Xist. Furthermore, without Dicer, Xist RNA cannot accumulate and histone 3 lysine 27 trimethylation is blocked on the inactive X (Xi). The defects are partially rescued by truncating Tsix. Thus, XCI and RNAi intersect, down-regulating Xist on Xa and spreading silencing on Xi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584363/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584363/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogawa, Yuya -- Sun, Bryan K -- Lee, Jeannie T -- R01 GM058839/GM/NIGMS NIH HHS/ -- R01 GM058839-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jun 6;320(5881):1336-41. doi: 10.1126/science.1157676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital and Howard Hughes Medical Institute, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18535243" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cells, Cultured ; DEAD-box RNA Helicases/genetics/metabolism ; Embryonic Stem Cells ; Endoribonucleases/genetics/metabolism ; Female ; Histones/metabolism ; Male ; Methylation ; Mice ; *RNA Interference ; RNA, Double-Stranded/metabolism ; RNA, Long Noncoding ; RNA, Small Nuclear/metabolism ; RNA, Untranslated/genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonuclease III ; X Chromosome/*genetics/metabolism ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2008-07-26
    Description: Membrane and secretory proteins cotranslationally enter and are folded in the endoplasmic reticulum (ER). Misfolded or unassembled proteins are discarded by a process known as ER-associated degradation (ERAD), which involves their retrotranslocation into the cytosol. ERAD substrates frequently contain disulfide bonds that must be cleaved before their retrotranslocation. Here, we found that an ER-resident protein ERdj5 had a reductase activity, cleaved the disulfide bonds of misfolded proteins, and accelerated ERAD through its physical and functional associations with EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and an ER-resident chaperone BiP. Thus, ERdj5 is a member of a supramolecular ERAD complex that recognizes and unfolds misfolded proteins for their efficient retrotranslocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ushioda, Ryo -- Hoseki, Jun -- Araki, Kazutaka -- Jansen, Gregor -- Thomas, David Y -- Nagata, Kazuhiro -- New York, N.Y. -- Science. 2008 Jul 25;321(5888):569-72. doi: 10.1126/science.1159293.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653895" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cell Line ; Endoplasmic Reticulum/*metabolism ; Glutathione/metabolism ; HSP40 Heat-Shock Proteins/chemistry/genetics/*metabolism ; Heat-Shock Proteins/metabolism ; Humans ; Immunoglobulin J-Chains/chemistry/metabolism ; Membrane Proteins/metabolism ; Mice ; Molecular Chaperones/chemistry/genetics/*metabolism ; Mutation ; Oxidation-Reduction ; Protein Disulfide Reductase (Glutathione)/metabolism ; Protein Disulfide-Isomerases/metabolism ; Protein Folding ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Transfection ; Two-Hybrid System Techniques ; alpha 1-Antitrypsin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2008-03-01
    Description: Intraluminal vesicles of multivesicular endosomes are either sorted for cargo degradation into lysosomes or secreted as exosomes into the extracellular milieu. The mechanisms underlying the sorting of membrane into the different populations of intraluminal vesicles are unknown. Here, we find that cargo is segregated into distinct subdomains on the endosomal membrane and that the transfer of exosome-associated domains into the lumen of the endosome did not depend on the function of the ESCRT (endosomal sorting complex required for transport) machinery, but required the sphingolipid ceramide. Purified exosomes were enriched in ceramide, and the release of exosomes was reduced after the inhibition of neutral sphingomyelinases. These results establish a pathway in intraendosomal membrane transport and exosome formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trajkovic, Katarina -- Hsu, Chieh -- Chiantia, Salvatore -- Rajendran, Lawrence -- Wenzel, Dirk -- Wieland, Felix -- Schwille, Petra -- Brugger, Britta -- Simons, Mikael -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1244-7. doi: 10.1126/science.1153124.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Biochemistry and Molecular Cell Biology, University of Gottingen, 37073 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18309083" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Line, Tumor ; Ceramides/analysis/*metabolism ; Cytoplasmic Vesicles/chemistry/*metabolism/ultrastructure ; Endosomes/*metabolism/ultrastructure ; Humans ; Intracellular Membranes/*metabolism/ultrastructure ; Membrane Microdomains/*metabolism/ultrastructure ; Mice ; Myelin Proteolipid Protein/*metabolism ; Oligodendroglia/metabolism/ultrastructure ; Protein Transport ; Receptor, Epidermal Growth Factor/metabolism ; Recombinant Fusion Proteins/metabolism ; Sphingomyelin Phosphodiesterase/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2008-04-19
    Description: Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA), a molecular signature of most viruses, and triggers inflammatory responses that prevent viral spread. TLR3 ectodomains (ECDs) dimerize on oligonucleotides of at least 40 to 50 base pairs in length, the minimal length required for signal transduction. To establish the molecular basis for ligand binding and signaling, we determined the crystal structure of a complex between two mouse TLR3-ECDs and dsRNA at 3.4 angstrom resolution. Each TLR3-ECD binds dsRNA at two sites located at opposite ends of the TLR3 horseshoe, and an intermolecular contact between the two TLR3-ECD C-terminal domains coordinates and stabilizes the dimer. This juxtaposition could mediate downstream signaling by dimerizing the cytoplasmic Toll interleukin-1 receptor (TIR) domains. The overall shape of the TLR3-ECD does not change upon binding to dsRNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761030/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761030/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Lin -- Botos, Istvan -- Wang, Yan -- Leonard, Joshua N -- Shiloach, Joseph -- Segal, David M -- Davies, David R -- Z01 BC009254-33/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 18;320(5874):379-81. doi: 10.1126/science.1155406.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18420935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; Humans ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism ; NF-kappa B/metabolism ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Double-Stranded/*chemistry/*metabolism ; *Signal Transduction ; Toll-Like Receptor 3/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-11-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guntheroth, Warren G -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):856-7; author reply 856-7. doi: 10.1126/science.322.5903.856.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autonomic Nervous System/metabolism ; Bradycardia ; Disease Models, Animal ; Humans ; Hypothermia ; Infant ; Mice ; Receptors, Serotonin/metabolism ; Serotonin/*metabolism ; Sudden Infant Death/*etiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyon, Bruce E -- Chaine, Alexis S -- Winkler, David W -- New York, N.Y. -- Science. 2008 Aug 22;321(5892):1051-2. doi: 10.1126/science.1159822.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA. lyon@biology.ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719273" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; *Climate ; Cues ; Environment ; Female ; Male ; *Oviposition ; Passeriformes/genetics/*physiology ; Phenotype ; Photoperiod ; Seasons ; Selection, Genetic ; Temperature ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: Cadherin-mediated cell adhesion and signaling is essential for metazoan development and yet is absent from all other multicellular organisms. We found cadherin genes at numbers similar to those observed in complex metazoans in one of the closest single-celled relatives of metazoans, the choanoflagellate Monosiga brevicollis. Because the evolution of metazoans from a single-celled ancestor required novel cell adhesion and signaling mechanisms, the discovery of diverse cadherins in choanoflagellates suggests that cadherins may have contributed to metazoan origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abedin, Monika -- King, Nicole -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):946-8. doi: 10.1126/science.1151084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276888" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Cadherins/*chemistry/*genetics/physiology ; Cell Adhesion ; Ciona intestinalis/chemistry ; Cnidaria/chemistry ; Drosophila melanogaster/chemistry ; Eukaryota/*chemistry ; Eukaryotic Cells/*chemistry/physiology ; Mice ; Molecular Sequence Data ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Signal Transduction ; Tyrosine/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2008-05-20
    Description: The mammalian circadian clockwork is modeled as transcriptional and posttranslational feedback loops, whereby circadian genes are periodically suppressed by their protein products. We show that adenosine 3',5'-monophosphate (cAMP) signaling constitutes an additional, bona fide component of the oscillatory network. cAMP signaling is rhythmic and sustains the transcriptional loop of the suprachiasmatic nucleus, determining canonical pacemaker properties of amplitude, phase, and period. This role is general and is evident in peripheral mammalian tissues and cell lines, which reveals an unanticipated point of circadian regulation in mammals qualitatively different from the existing transcriptional feedback model. We propose that daily activation of cAMP signaling, driven by the transcriptional oscillator, in turn sustains progression of transcriptional rhythms. In this way, clock output constitutes an input to subsequent cycles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735813/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735813/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neill, John S -- Maywood, Elizabeth S -- Chesham, Johanna E -- Takahashi, Joseph S -- Hastings, Michael H -- MC_U105170643/Medical Research Council/United Kingdom -- U.1051.02.004(78799)/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 May 16;320(5878):949-53. doi: 10.1126/science.1152506.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18487196" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/pharmacology ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/metabolism ; Animals ; Biological Clocks/genetics/*physiology ; Cell Cycle Proteins/genetics/metabolism ; Circadian Rhythm/drug effects/genetics/*physiology ; Cyclic AMP/*metabolism ; Enzyme Inhibitors/pharmacology ; Feedback, Physiological ; Gene Expression Regulation/drug effects ; Guanine Nucleotide Exchange Factors/metabolism ; Mice ; Mice, Transgenic ; NIH 3T3 Cells ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Response Elements ; *Signal Transduction ; Suprachiasmatic Nucleus/drug effects/*metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brecht, Michael -- Schmitz, Dietmar -- New York, N.Y. -- Science. 2008 Jan 4;319(5859):39-40. doi: 10.1126/science.1153231.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bernstein Center for Computational Neuroscience, Humboldt-University Berlin, 10115 Berlin, Germany. michael.brecht@bccn-berlin.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18174422" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Association Learning ; Calcium/metabolism ; Long-Term Potentiation ; Memory ; Mice ; *Neuronal Plasticity ; Neurons/physiology ; Receptors, Metabotropic Glutamate/metabolism ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Signal Transduction ; Somatosensory Cortex/cytology/*physiology ; Synapses/*physiology ; Synaptic Membranes/metabolism ; Vibrissae/innervation/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2008-03-08
    Description: Chronic hyperglycemia contributes to the development of diabetes-associated complications. Increases in the concentration of circulating glucose activate the hexosamine biosynthetic pathway (HBP) and promote the O-glycosylation of proteins by O-glycosyl transferase (OGT). We show that OGT triggered hepatic gluconeogenesis through the O-glycosylation of the transducer of regulated cyclic adenosine monophosphate response element-binding protein (CREB) 2 (TORC2 or CRTC2). CRTC2 was O-glycosylated at sites that normally sequester CRTC2 in the cytoplasm through a phosphorylation-dependent mechanism. Decreasing amounts of O-glycosylated CRTC2 by expression of the deglycosylating enzyme O-GlcNAcase blocked effects of glucose on gluconeogenesis, demonstrating the importance of the HBP in the development of glucose intolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dentin, Renaud -- Hedrick, Susan -- Xie, Jianxin -- Yates, John 3rd -- Montminy, Marc -- R01 GM037828/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1402-5. doi: 10.1126/science.1151363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323454" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Blood Glucose/metabolism ; Cell Nucleus/metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Diabetes Mellitus/metabolism ; *Gluconeogenesis ; Glucose/*metabolism ; Glycosylation ; Glycosyltransferases/metabolism ; Hepatocytes/metabolism ; Humans ; Insulin/metabolism ; Liver/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; RNA Interference ; Signal Transduction ; Trans-Activators/genetics/*metabolism ; Transcription Factors ; beta-N-Acetylhexosaminidases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2008-04-12
    Description: The toxicity of ionizing radiation is associated with massive apoptosis in radiosensitive organs. Here, we investigate whether a drug that activates a signaling mechanism used by tumor cells to suppress apoptosis can protect healthy cells from the harmful effects of radiation. We studied CBLB502, a polypeptide drug derived from Salmonella flagellin that binds to Toll-like receptor 5 (TLR5) and activates nuclear factor-kappaB signaling. A single injection of CBLB502 before lethal total-body irradiation protected mice from both gastrointestinal and hematopoietic acute radiation syndromes and resulted in improved survival. CBLB502 injected after irradiation also enhanced survival, but at lower radiation doses. It is noteworthy that the drug did not decrease tumor radiosensitivity in mouse models. CBLB502 also showed radioprotective activity in lethally irradiated rhesus monkeys. Thus, TLR5 agonists could potentially improve the therapeutic index of cancer radiotherapy and serve as biological protectants in radiation emergencies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322935/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322935/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burdelya, Lyudmila G -- Krivokrysenko, Vadim I -- Tallant, Thomas C -- Strom, Evguenia -- Gleiberman, Anatoly S -- Gupta, Damodar -- Kurnasov, Oleg V -- Fort, Farrel L -- Osterman, Andrei L -- Didonato, Joseph A -- Feinstein, Elena -- Gudkov, Andrei V -- AI066497/AI/NIAID NIH HHS/ -- CA75179/CA/NCI NIH HHS/ -- CA84406/CA/NCI NIH HHS/ -- R01 CA084406/CA/NCI NIH HHS/ -- R01 CA084406-01A1/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):226-30. doi: 10.1126/science.1154986.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403709" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis/drug effects/radiation effects ; Chemotherapy, Adjuvant ; Flagellin/chemistry/pharmacology ; Gamma Rays ; Hematopoietic System/drug effects/radiation effects ; Intestine, Small/cytology/drug effects/radiation effects ; Macaca mulatta ; Mice ; Mice, Inbred ICR ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Neoplasms, Experimental/drug therapy/radiotherapy ; Peptides/administration & dosage/chemistry/*pharmacology/toxicity ; Radiation Dosage ; Radiation Injuries, Experimental/*prevention & control ; Radiation Tolerance/*drug effects ; Radiation-Protective Agents/administration & ; dosage/chemistry/*pharmacology/toxicity ; Salmonella enterica ; Signal Transduction ; Toll-Like Receptor 5/*agonists/metabolism ; Whole-Body Irradiation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2008-03-08
    Description: We report that developmental competition between sympathetic neurons for survival is critically dependent on a sensitization process initiated by target innervation and mediated by a series of feedback loops. Target-derived nerve growth factor (NGF) promoted expression of its own receptor TrkA in mouse and rat neurons and prolonged TrkA-mediated signals. NGF also controlled expression of brain-derived neurotrophic factor and neurotrophin-4, which, through the receptor p75, can kill neighboring neurons with low retrograde NGF-TrkA signaling whereas neurons with high NGF-TrkA signaling are protected. Perturbation of any of these feedback loops disrupts the dynamics of competition. We suggest that three target-initiated events are essential for rapid and robust competition between neurons: sensitization, paracrine apoptotic signaling, and protection from such effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deppmann, Christopher D -- Mihalas, Stefan -- Sharma, Nikhil -- Lonze, Bonnie E -- Niebur, Ernst -- Ginty, David D -- EY016281/EY/NEI NIH HHS/ -- F32 NS053187/NS/NINDS NIH HHS/ -- NS053187/NS/NINDS NIH HHS/ -- NS34814/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Apr 18;320(5874):369-73. doi: 10.1126/science.1152677. Epub 2008 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Apoptosis ; Brain-Derived Neurotrophic Factor/metabolism ; Cell Survival ; Cells, Cultured ; Computer Simulation ; Feedback, Physiological ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Mathematics ; Mice ; *Models, Neurological ; Nerve Growth Factor/*metabolism ; Nerve Growth Factors/metabolism ; Neurons/cytology/*physiology ; Oligonucleotide Array Sequence Analysis ; Rats ; Receptor, trkA/genetics/*metabolism ; Receptors, Nerve Growth Factor/genetics/metabolism ; Signal Transduction ; Superior Cervical Ganglion/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2008-05-24
    Description: Taguchi et al. (Reports, 20 July 2007, p. 369) reported that mice heterozygous for a null mutation in insulin receptor substrate-2 (Irs2) display a 17% increase in median life span. However, using the same mouse model, we find no evidence for life-span extension and suggest that the findings of Taguchi et al. were due to atypical life-span profiles in their study animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selman, Colin -- Lingard, Steven -- Gems, David -- Partridge, Linda -- Withers, Dominic J -- New York, N.Y. -- Science. 2008 May 23;320(5879):1012; author reply 1012. doi: 10.1126/science.1152366.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Diabetes and Endocrinology, Department of Medicine, University College London, Rayne Institute, 5 University Street, London WC1E 6JJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497277" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Crosses, Genetic ; Diet ; Female ; Homeostasis ; Insulin Receptor Substrate Proteins ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Kaplan-Meier Estimate ; *Longevity ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; Phosphoproteins/genetics/*metabolism ; Research Design ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2008-11-08
    Description: The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Kevin Kyungsuk -- Liu, Kai -- Hu, Yang -- Smith, Patrice D -- Wang, Chen -- Cai, Bin -- Xu, Bengang -- Connolly, Lauren -- Kramvis, Ioannis -- Sahin, Mustafa -- He, Zhigang -- R01 NS051788/NS/NINDS NIH HHS/ -- R01 NS051788-04/NS/NINDS NIH HHS/ -- R01 NS058956/NS/NINDS NIH HHS/ -- R01 NS058956-02/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):963-6. doi: 10.1126/science.1161566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988856" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Axotomy ; Carrier Proteins/*metabolism ; Cell Survival ; Mice ; Mice, Knockout ; Nerve Crush ; *Nerve Regeneration ; Optic Nerve ; PTEN Phosphohydrolase/genetics/*metabolism ; Phosphotransferases (Alcohol Group Acceptor)/*metabolism ; Protein Biosynthesis ; Retinal Ganglion Cells/metabolism/physiology ; Ribosomal Protein S6/metabolism ; *Signal Transduction ; TOR Serine-Threonine Kinases ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2008-04-12
    Description: The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dostert, Catherine -- Petrilli, Virginie -- Van Bruggen, Robin -- Steele, Chad -- Mossman, Brooke T -- Tschopp, Jurg -- P01 CA114047/CA/NCI NIH HHS/ -- P01 CA114047-01A10002/CA/NCI NIH HHS/ -- P01HL67004/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2008 May 2;320(5876):674-7. doi: 10.1126/science.1156995. Epub 2008 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403674" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asbestos/*immunology ; Carrier Proteins/*physiology ; Humans ; Immunity ; Inflammation/*immunology ; Inflammation Mediators/*physiology ; Interleukin-1beta/secretion ; Macrophages/immunology/secretion ; Mice ; Silicon Dioxide/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-11-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Woo-Yang -- Snider, William D -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):869-72. doi: 10.1126/science.1166152.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neuroscience Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Carrier Proteins/metabolism ; Cell Survival ; Central Nervous System/*cytology ; Cerebellum/cytology ; Genes, p53 ; Humans ; Membrane Glycoproteins/genetics/metabolism ; Mice ; Myelin Proteins/*metabolism ; Nerve Crush ; *Nerve Regeneration ; Neurons/*physiology ; PTEN Phosphohydrolase/genetics ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Receptors, Immunologic/genetics/metabolism ; Retinal Ganglion Cells/cytology ; *Signal Transduction ; Spinal Cord Injuries/therapy ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2008-07-05
    Description: It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used. Moreover, analyses that employ sampling standardization and more robust counting methods show a modest rise in diversity with no clear trend after the mid-Cretaceous. Globally, locally, and at both high and low latitudes, diversity was less than twice as high in the Neogene as in the mid-Paleozoic. The ratio of global to local richness has changed little, and a latitudinal diversity gradient was present in the early Paleozoic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alroy, John -- Aberhan, Martin -- Bottjer, David J -- Foote, Michael -- Fursich, Franz T -- Harries, Peter J -- Hendy, Austin J W -- Holland, Steven M -- Ivany, Linda C -- Kiessling, Wolfgang -- Kosnik, Matthew A -- Marshall, Charles R -- McGowan, Alistair J -- Miller, Arnold I -- Olszewski, Thomas D -- Patzkowsky, Mark E -- Peters, Shanan E -- Villier, Loic -- Wagner, Peter J -- Bonuso, Nicole -- Borkow, Philip S -- Brenneis, Benjamin -- Clapham, Matthew E -- Fall, Leigh M -- Ferguson, Chad A -- Hanson, Victoria L -- Krug, Andrew Z -- Layou, Karen M -- Leckey, Erin H -- Nurnberg, Sabine -- Powers, Catherine M -- Sessa, Jocelyn A -- Simpson, Carl -- Tomasovych, Adam -- Visaggi, Christy C -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):97-100. doi: 10.1126/science.1156963.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Ecological Analysis and Synthesis, University of California-Santa Barbara, 735 State Street, Santa Barbara, CA 93101, USA. alroy@nceas.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599780" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Biological Evolution ; Databases, Factual ; Environment ; *Fossils ; Geography ; Geologic Sediments ; *Invertebrates/classification ; *Paleontology/methods ; Population Dynamics ; Sampling Studies ; Seawater ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2008-08-02
    Description: MyD88 is a key downstream adapter for most Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 deficiency in mice leads to susceptibility to a broad range of pathogens in experimental settings of infection. We describe a distinct situation in a natural setting of human infection. Nine children with autosomal recessive MyD88 deficiency suffered from life-threatening, often recurrent pyogenic bacterial infections, including invasive pneumococcal disease. However, these patients were otherwise healthy, with normal resistance to other microbes. Their clinical status improved with age, but not due to any cellular leakiness in MyD88 deficiency. The MyD88-dependent TLRs and IL-1Rs are therefore essential for protective immunity to a small number of pyogenic bacteria, but redundant for host defense to most natural infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Bernuth, Horst -- Picard, Capucine -- Jin, Zhongbo -- Pankla, Rungnapa -- Xiao, Hui -- Ku, Cheng-Lung -- Chrabieh, Maya -- Mustapha, Imen Ben -- Ghandil, Pegah -- Camcioglu, Yildiz -- Vasconcelos, Julia -- Sirvent, Nicolas -- Guedes, Margarida -- Vitor, Artur Bonito -- Herrero-Mata, Maria Jose -- Arostegui, Juan Ignacio -- Rodrigo, Carlos -- Alsina, Laia -- Ruiz-Ortiz, Estibaliz -- Juan, Manel -- Fortuny, Claudia -- Yague, Jordi -- Anton, Jordi -- Pascal, Mariona -- Chang, Huey-Hsuan -- Janniere, Lucile -- Rose, Yoann -- Garty, Ben-Zion -- Chapel, Helen -- Issekutz, Andrew -- Marodi, Laszlo -- Rodriguez-Gallego, Carlos -- Banchereau, Jacques -- Abel, Laurent -- Li, Xiaoxia -- Chaussabel, Damien -- Puel, Anne -- Casanova, Jean-Laurent -- U19 AI057234/AI/NIAID NIH HHS/ -- U19 AI057234-02/AI/NIAID NIH HHS/ -- U19 AIO57234-02/PHS HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):691-6. doi: 10.1126/science.1158298.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics of Infectious Diseases, INSERM U550, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669862" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Bacterial Infections/*genetics/*immunology ; Cell Line, Transformed ; Child ; Child, Preschool ; Cytokines/metabolism ; Disease Susceptibility ; Female ; Gene Deletion ; Humans ; Immunity, Innate ; Male ; Mice ; Mutation, Missense ; Myeloid Differentiation Factor 88/*deficiency/genetics/metabolism ; Pneumococcal Infections/genetics/immunology ; Pseudomonas Infections/genetics/immunology ; Receptors, Interleukin-1/immunology/metabolism ; Signal Transduction ; Staphylococcal Infections/genetics/immunology ; Toll-Like Receptors/immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2008-02-09
    Description: Mouse CD4+CD8+ double-positive (DP) thymocytes differentiate into CD4+ helper-lineage cells upon expression of the transcription factor Th-POK but commit to the CD8+ cytotoxic lineage in its absence. We report the redirected differentiation of class I-restricted thymocytes into CD4+CD8- helper-like T cells upon loss of Runx transcription factor complexes. A Runx-binding sequence within the Th-POK locus acts as a transcriptional silencer that is essential for Th-POK repression and for development of CD8+ T cells. Thus, Th-POK expression and genetic programming for T helper cell development are actively inhibited by Runx-dependent silencer activity, allowing for cytotoxic T cell differentiation. Identification of the transcription factors network in CD4 and CD8 lineage choice provides insight into how distinct T cell subsets are developed for regulating the adaptive immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Setoguchi, Ruka -- Tachibana, Masashi -- Naoe, Yoshinori -- Muroi, Sawako -- Akiyama, Kaori -- Tezuka, Chieko -- Okuda, Tsukasa -- Taniuchi, Ichiro -- New York, N.Y. -- Science. 2008 Feb 8;319(5864):822-5. doi: 10.1126/science.1151844.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18258917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Chromatin Immunoprecipitation ; Core Binding Factor Alpha 2 Subunit/genetics/*physiology ; Core Binding Factor Alpha 3 Subunit/genetics/*physiology ; Core Binding Factor beta Subunit/metabolism ; Histocompatibility Antigens Class I/immunology ; Histocompatibility Antigens Class II/immunology ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Silencer Elements, Transcriptional ; T-Lymphocyte Subsets/cytology/*immunology/metabolism ; T-Lymphocytes, Cytotoxic/cytology/*immunology/metabolism ; T-Lymphocytes, Helper-Inducer/cytology/immunology/metabolism ; Transcription Factors/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2008-12-17
    Description: Dynein motors move various cargos along microtubules within the cytoplasm and power the beating of cilia and flagella. An unusual feature of dynein is that its microtubule-binding domain (MTBD) is separated from its ring-shaped AAA+ adenosine triphosphatase (ATPase) domain by a 15-nanometer coiled-coil stalk. We report the crystal structure of the mouse cytoplasmic dynein MTBD and a portion of the coiled coil, which supports a mechanism by which the ATPase domain and MTBD may communicate through a shift in the heptad registry of the coiled coil. Surprisingly, functional data suggest that the MTBD, and not the ATPase domain, is the main determinant of the direction of dynein motility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663340/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663340/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, Andrew P -- Garbarino, Joan E -- Wilson-Kubalek, Elizabeth M -- Shipley, Wesley E -- Cho, Carol -- Milligan, Ronald A -- Vale, Ronald D -- Gibbons, I R -- GM30401-29/GM/NIGMS NIH HHS/ -- GM52468/GM/NIGMS NIH HHS/ -- P01 AR042895/AR/NIAMS NIH HHS/ -- P01 AR042895-15/AR/NIAMS NIH HHS/ -- P01-AR42895/AR/NIAMS NIH HHS/ -- P41 RR-17573/RR/NCRR NIH HHS/ -- R01 GM097312/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Dec 12;322(5908):1691-5. doi: 10.1126/science.1164424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074350" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Dyneins/*chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Image Processing, Computer-Assisted ; Mice ; Microscopy, Electron ; Microtubules/*metabolism/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Movement ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2008-01-19
    Description: The earliest step in creating the cerebral cortex is the specification of neuroepithelium to a cortical fate. Using mouse genetic mosaics and timed inactivations, we demonstrated that Lhx2 acts as a classic selector gene and essential intrinsic determinant of cortical identity. Lhx2 selector activity is restricted to an early critical period when stem cells comprise the cortical neuroepithelium, where it acts cell-autonomously to specify cortical identity and suppress alternative fates in a spatially dependent manner. Laterally, Lhx2 null cells adopt antihem identity, whereas medially they become cortical hem cells, which can induce and organize ectopic hippocampal fields. In addition to providing functional evidence for Lhx2 selector activity, these findings show that the cortical hem is a hippocampal organizer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494603/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494603/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mangale, Vishakha S -- Hirokawa, Karla E -- Satyaki, Prasad R V -- Gokulchandran, Nandini -- Chikbire, Satyadeep -- Subramanian, Lakshmi -- Shetty, Ashwin S -- Martynoga, Ben -- Paul, Jolly -- Mai, Mark V -- Li, Yuqing -- Flanagan, Lisa A -- Tole, Shubha -- Monuki, Edwin S -- 056684/Z/99/Z/Wellcome Trust/United Kingdom -- AG23583/AG/NIA NIH HHS/ -- MH02029/MH/NIMH NIH HHS/ -- NS053511/NS/NINDS NIH HHS/ -- NS07444/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):304-9. doi: 10.1126/science.1151695.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aggregation ; Cerebral Cortex/cytology/*embryology/metabolism ; Chimera ; Dentate Gyrus/cytology/embryology/metabolism ; Embryonic Induction ; Embryonic Stem Cells/metabolism ; Epithelium/embryology/metabolism ; Gene Expression Regulation, Developmental ; Hippocampus/cytology/*embryology ; Homeodomain Proteins/*genetics/*metabolism ; LIM-Homeodomain Proteins ; Mice ; Mice, Knockout ; Mutation ; Neuroepithelial Cells/cytology/metabolism ; Organizers, Embryonic/embryology/*physiology ; Prosencephalon/embryology/metabolism ; Pyramidal Cells/cytology/embryology ; Recombination, Genetic ; Telencephalon/cytology/embryology ; Transcription Factors/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2008-09-06
    Description: The canonical Wnt-beta-catenin signaling pathway is initiated by inducing phosphorylation of one of the Wnt receptors, low-density lipoprotein receptor-related protein 6 (LRP6), at threonine residue 1479 (Thr1479) and serine residue 1490 (Ser1490). By screening a human kinase small interfering RNA library, we identified phosphatidylinositol 4-kinase type II alpha and phosphatidylinositol-4-phosphate 5-kinase type I (PIP5KI) as required for Wnt3a-induced LRP6 phosphorylation at Ser1490 in mammalian cells and confirmed that these kinases are important for Wnt signaling in Xenopus embryos. Wnt3a stimulates the formation of phosphatidylinositol 4,5-bisphosphates [PtdIns (4,5)P2] through frizzled and dishevelled, the latter of which directly interacted with and activated PIP5KI. In turn, PtdIns (4,5)P2 regulated phosphorylation of LRP6 at Thr1479 and Ser1490. Therefore, our study reveals a signaling mechanism for Wnt to regulate LRP6 phosphorylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Weijun -- Choi, Sun-Cheol -- Wang, He -- Qin, Yuanbo -- Volpicelli-Daley, Laura -- Swan, Laura -- Lucast, Louise -- Khoo, Cynthia -- Zhang, Xiaowu -- Li, Lin -- Abrams, Charles S -- Sokol, Sergei Y -- Wu, Dianqing -- AR051476/AR/NIAMS NIH HHS/ -- CA132317/CA/NCI NIH HHS/ -- DA018343/DA/NIDA NIH HHS/ -- HL080706/HL/NHLBI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- P30 DA018343/DA/NIDA NIH HHS/ -- R01 AR051476/AR/NIAMS NIH HHS/ -- R01 AR051476-01A1/AR/NIAMS NIH HHS/ -- R01 AR051476-02/AR/NIAMS NIH HHS/ -- R01 AR051476-03/AR/NIAMS NIH HHS/ -- R01 CA132317/CA/NCI NIH HHS/ -- R01 CA132317-01A2/CA/NCI NIH HHS/ -- R01 CA139395/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1350-3. doi: 10.1126/science.1160741.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772438" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Axin Protein ; Cell Line ; Frizzled Receptors/metabolism ; Humans ; LDL-Receptor Related Proteins/*metabolism ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mice ; Models, Biological ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; Repressor Proteins/metabolism ; Serine/metabolism ; Signal Transduction ; Threonine/metabolism ; Wnt Proteins/*metabolism ; Wnt3 Protein ; Wnt3A Protein ; Xenopus/embryology ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2008-01-19
    Description: Dynein and kinesin motor proteins transport cellular cargoes toward opposite ends of microtubule tracks. In neurons, microtubules are abundantly decorated with microtubule-associated proteins (MAPs) such as tau. Motor proteins thus encounter MAPs frequently along their path. To determine the effects of tau on dynein and kinesin motility, we conducted single-molecule studies of motor proteins moving along tau-decorated microtubules. Dynein tended to reverse direction, whereas kinesin tended to detach at patches of bound tau. Kinesin was inhibited at about a tenth of the tau concentration that inhibited dynein, and the microtubule-binding domain of tau was sufficient to inhibit motor activity. The differential modulation of dynein and kinesin motility suggests that MAPs can spatially regulate the balance of microtubule-dependent axonal transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dixit, Ram -- Ross, Jennifer L -- Goldman, Yale E -- Holzbaur, Erika L F -- GM-48661/GM/NIGMS NIH HHS/ -- P01 AR051174/AR/NIAMS NIH HHS/ -- P01 AR051174-050002/AR/NIAMS NIH HHS/ -- P01-AR-051174/AR/NIAMS NIH HHS/ -- R01 GM048661/GM/NIGMS NIH HHS/ -- R01 GM048661-16/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 22;319(5866):1086-9. doi: 10.1126/science.1152993. Epub 2008 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202255" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Animals ; Axonal Transport ; Dyneins/chemistry/*metabolism ; Kinesin/chemistry/*metabolism ; Mice ; Mice, Transgenic ; Microscopy, Fluorescence ; Microtubules/*metabolism ; Models, Neurological ; Neurons/metabolism/physiology ; Protein Binding ; Protein Isoforms/metabolism ; Recombinant Fusion Proteins/metabolism ; tau Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2008-04-26
    Description: The mammalian vomeronasal organ detects complex chemical signals that convey information about gender, strain, and the social and reproductive status of an individual. How these signals are encoded is poorly understood. We developed transgenic mice expressing the calcium indicator G-CaMP2 and analyzed population responses of vomeronasal neurons to urine from individual animals. A substantial portion of cells was activated by either male or female urine, but only a small population of cells responded exclusively to gender-specific cues shared across strains and individuals. Female cues activated more cells and were subject to more complex hormonal regulations than male cues. In contrast to gender, strain and individual information was encoded by the combinatorial activation of neurons such that urine from different individuals activated distinctive cell populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602951/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602951/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Jie -- Ma, Limei -- Kim, Sangseong -- Nakai, Junichi -- Yu, C Ron -- NIDCD 008003/PHS HHS/ -- R01 DC008003/DC/NIDCD NIH HHS/ -- R01 DC008003-03/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):535-8. doi: 10.1126/science.1154476.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18436787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal ; Calcium/metabolism ; Cluster Analysis ; Cues ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Neurons, Afferent/*physiology ; *Pheromones ; Principal Component Analysis ; Receptors, Pheromone/physiology ; Sex Characteristics ; *Urine/chemistry ; Vomeronasal Organ/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2008-05-03
    Description: Hepcidin, a liver-derived protein that restricts enteric iron absorption, is the key regulator of body iron content. Several proteins induce expression of the hepcidin-encoding gene Hamp in response to infection or high levels of iron. However, mechanism(s) of Hamp suppression during iron depletion are poorly understood. We describe mask: a recessive, chemically induced mutant mouse phenotype, characterized by progressive loss of body (but not facial) hair and microcytic anemia. The mask phenotype results from reduced absorption of dietary iron caused by high levels of hepcidin and is due to a splicing defect in the transmembrane serine protease 6 gene Tmprss6. Overexpression of normal TMPRSS6 protein suppresses activation of the Hamp promoter, and the TMPRSS6 cytoplasmic domain mediates Hamp suppression via proximal promoter element(s). TMPRSS6 is an essential component of a pathway that detects iron deficiency and blocks Hamp transcription, permitting enhanced dietary iron absorption.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430097/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430097/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Xin -- She, Ellen -- Gelbart, Terri -- Truksa, Jaroslav -- Lee, Pauline -- Xia, Yu -- Khovananth, Kevin -- Mudd, Suzanne -- Mann, Navjiwan -- Moresco, Eva Marie Y -- Beutler, Ernest -- Beutler, Bruce -- AI054523/AI/NIAID NIH HHS/ -- DK53505-09/DK/NIDDK NIH HHS/ -- R01 DK053505-09/DK/NIDDK NIH HHS/ -- U54 AI054523/AI/NIAID NIH HHS/ -- U54 AI054523-019005/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 May 23;320(5879):1088-92. doi: 10.1126/science.1157121. Epub 2008 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18451267" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Macrocytic/genetics/metabolism ; Animals ; Antimicrobial Cationic Peptides/*genetics/metabolism ; Cell Line, Tumor ; Gene Expression Regulation ; Hepcidins ; Humans ; Iron/blood/*deficiency/metabolism ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Mutant Strains ; Mice, Transgenic ; Models, Biological ; Mutation ; Phenotype ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Serine Endopeptidases/chemistry/genetics/*metabolism ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2008-08-09
    Description: At synapses between cortical pyramidal neurons and principal striatal medium spiny neurons (MSNs), postsynaptic D1 and D2 dopamine (DA) receptors are postulated to be necessary for the induction of long-term potentiation and depression, respectively-forms of plasticity thought to underlie associative learning. Because these receptors are restricted to two distinct MSN populations, this postulate demands that synaptic plasticity be unidirectional in each cell type. Using brain slices from DA receptor transgenic mice, we show that this is not the case. Rather, DA plays complementary roles in these two types of MSN to ensure that synaptic plasticity is bidirectional and Hebbian. In models of Parkinson's disease, this system is thrown out of balance, leading to unidirectional changes in plasticity that could underlie network pathology and symptoms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833421/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833421/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Weixing -- Flajolet, Marc -- Greengard, Paul -- Surmeier, D James -- DA10044/DA/NIDA NIH HHS/ -- MH074866/MH/NIMH NIH HHS/ -- NS 34696/NS/NINDS NIH HHS/ -- P50 MH074866/MH/NIMH NIH HHS/ -- P50 MH074866-05/MH/NIMH NIH HHS/ -- R01 NS034696/NS/NINDS NIH HHS/ -- R01 NS034696-06/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Aug 8;321(5890):848-51. doi: 10.1126/science.1160575.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18687967" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cannabinoid Receptor Modulators/metabolism ; Corpus Striatum/cytology/*physiology ; Dopamine/*physiology ; Glutamic Acid/metabolism ; *Long-Term Potentiation ; *Long-Term Synaptic Depression ; Mice ; Mice, Transgenic ; Neurons/*physiology ; Parkinsonian Disorders/*physiopathology ; Receptors, Dopamine D1/metabolism ; Receptors, Dopamine D2/metabolism ; Signal Transduction ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sherwood, Steven C -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):900. doi: 10.1126/science.319.5865.900b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276868" target="_blank"〉PubMed〈/a〉
    Keywords: *Climate ; *Policy Making ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2008-08-30
    Description: The acquisition of metastatic ability by tumor cells is considered a late event in the evolution of malignant tumors. We report that untransformed mouse mammary cells that have been engineered to express the inducible oncogenic transgenes MYC and Kras(D12), or polyoma middle T, and introduced into the systemic circulation of a mouse can bypass transformation at the primary site and develop into metastatic pulmonary lesions upon immediate or delayed oncogene induction. Therefore, previously untransformed mammary cells may establish residence in the lung once they have entered the bloodstream and may assume malignant growth upon oncogene activation. Mammary cells lacking oncogenic transgenes displayed a similar capacity for long-term residence in the lungs but did not form ectopic tumors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Podsypanina, Katrina -- Du, Yi-Chieh Nancy -- Jechlinger, Martin -- Beverly, Levi J -- Hambardzumyan, Dolores -- Varmus, Harold -- K01 CA118731/CA/NCI NIH HHS/ -- K01 CA118731-03/CA/NCI NIH HHS/ -- P01 CA94060/CA/NCI NIH HHS/ -- P30-CA 08748/CA/NCI NIH HHS/ -- R24 CA83084/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Sep 26;321(5897):1841-4. doi: 10.1126/science.1161621. Epub 2008 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. podsypak@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18755941" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/pathology/secondary ; Animals ; Antigens, Polyomavirus Transforming/genetics ; Cell Proliferation ; Cell Survival ; Cell Transformation, Neoplastic ; Epithelial Cells/*cytology ; Gene Expression Regulation, Neoplastic ; Genes, myc ; Genes, ras ; Lung Neoplasms/pathology/*secondary ; Mammary Glands, Animal/*cytology ; Mammary Neoplasms, Experimental/pathology ; Mice ; Mice, Transgenic ; *Neoplasm Metastasis ; *Neoplasm Seeding ; Neoplastic Cells, Circulating ; *Oncogenes ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2008-09-27
    Description: Pluripotent stem cells have been generated from mouse and human somatic cells by viral expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc. A major limitation of this technology is the use of potentially harmful genome-integrating viruses. We generated mouse induced pluripotent stem (iPS) cells from fibroblasts and liver cells by using nonintegrating adenoviruses transiently expressing Oct4, Sox2, Klf4, and c-Myc. These adenoviral iPS (adeno-iPS) cells show DNA demethylation characteristic of reprogrammed cells, express endogenous pluripotency genes, form teratomas, and contribute to multiple tissues, including the germ line, in chimeric mice. Our results provide strong evidence that insertional mutagenesis is not required for in vitro reprogramming. Adenoviral reprogramming may provide an improved method for generating and studying patient-specific stem cells and for comparing embryonic stem cells and iPS cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987909/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987909/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stadtfeld, Matthias -- Nagaya, Masaki -- Utikal, Jochen -- Weir, Gordon -- Hochedlinger, Konrad -- DP2 OD003266/OD/NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):945-9. doi: 10.1126/science.1162494. Epub 2008 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, 185 Cambridge Street, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818365" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/*genetics/physiology ; Animals ; Cell Differentiation ; Cell Line ; *Cellular Reprogramming ; Chimera ; Cloning, Molecular ; Female ; Fibroblasts/*cytology/metabolism/virology ; Genes, myc ; *Genetic Vectors ; Hepatocytes/*cytology/metabolism/virology ; Kruppel-Like Transcription Factors/genetics/metabolism ; Liver/cytology/embryology ; Male ; Mice ; Mice, SCID ; Octamer Transcription Factor-3/genetics/metabolism ; *Pluripotent Stem Cells/cytology/metabolism/transplantation ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; SOXB1 Transcription Factors/genetics/metabolism ; Teratoma/etiology ; Transgenes ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2008-02-16
    Description: Induced pluripotent stem (iPS) cells have been generated from mouse and human fibroblasts by the retroviral transduction of four transcription factors. However, the cell origins and molecular mechanisms of iPS cell induction remain elusive. This report describes the generation of iPS cells from adult mouse hepatocytes and gastric epithelial cells. These iPS cell clones appear to be equivalent to embryonic stem cells in gene expression and are competent to generate germline chimeras. Genetic lineage tracings show that liver-derived iPS cells are derived from albumin-expressing cells. No common retroviral integration sites are found among multiple clones. These data suggest that iPS cells are generated by direct reprogramming of lineage-committed somatic cells and that retroviral integration into specific sites is not required.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aoi, Takashi -- Yae, Kojiro -- Nakagawa, Masato -- Ichisaka, Tomoko -- Okita, Keisuke -- Takahashi, Kazutoshi -- Chiba, Tsutomu -- Yamanaka, Shinya -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):699-702. doi: 10.1126/science.1154884. Epub 2008 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276851" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/cytology ; Cell Differentiation ; Cell Proliferation ; *Cellular Reprogramming ; Chimera ; Clone Cells ; Culture Media ; Embryonic Stem Cells/cytology/metabolism ; Epithelial Cells/*cytology ; Gastric Mucosa/*cytology ; Genetic Vectors ; Hepatocytes/*cytology ; Mice ; Mice, Nude ; Neoplasms/etiology ; Pluripotent Stem Cells/*cytology/metabolism ; Retroviridae/genetics ; Stem Cell Transplantation ; Transcription Factors/genetics ; Transfection ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoubridge, Eric A -- Wai, Timothy -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):914-5. doi: 10.1126/science.1154515.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec H3A 2B4, Canada. eric@ericpc.mni.mcgill.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy ; Cell Line ; DNA, Mitochondrial/*genetics ; DNA-Directed DNA Polymerase/genetics ; Electron Transport Complex IV/*genetics ; Embryonic Stem Cells ; Female ; Frameshift Mutation ; *Germ-Line Mutation ; Male ; Mice ; Mitochondria/physiology ; NADH Dehydrogenase/*genetics ; Oocytes/*physiology ; Oogenesis ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2008-10-11
    Description: Naturally occurring Foxp3+CD4+ regulatory T cells (Tregs) are essential for maintaining immunological self-tolerance and immune homeostasis. Here, we show that a specific deficiency of cytotoxic T lymphocyte antigen 4 (CTLA-4) in Tregs results in spontaneous development of systemic lymphoproliferation, fatal T cell-mediated autoimmune disease, and hyperproduction of immunoglobulin E in mice, and it also produces potent tumor immunity. Treg-specific CTLA-4 deficiency impairs in vivo and in vitro suppressive function of Tregs-in particular, Treg-mediated down-regulation of CD80 and CD86 expression on dendritic cells. Thus, natural Tregs may critically require CTLA-4 to suppress immune responses by affecting the potency of antigen-presenting cells to activate other T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wing, Kajsa -- Onishi, Yasushi -- Prieto-Martin, Paz -- Yamaguchi, Tomoyuki -- Miyara, Makoto -- Fehervari, Zoltan -- Nomura, Takashi -- Sakaguchi, Shimon -- New York, N.Y. -- Science. 2008 Oct 10;322(5899):271-5. doi: 10.1126/science.1160062.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18845758" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD/genetics/immunology/*metabolism ; Antigens, CD80/metabolism ; Antigens, CD86/metabolism ; Autoimmune Diseases/immunology ; *Autoimmunity ; CD8-Positive T-Lymphocytes/immunology ; CTLA-4 Antigen ; Dendritic Cells/immunology ; Down-Regulation ; Female ; Forkhead Transcription Factors/genetics/metabolism ; *Immune Tolerance ; Immunoglobulin E/blood ; Immunoglobulin G/blood ; Leukemia/immunology ; Lymphocyte Activation ; Lymphocytes/immunology ; Male ; Mice ; Mice, Inbred BALB C ; T-Lymphocytes, Regulatory/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Michael -- Lingner, Joachim -- New York, N.Y. -- Science. 2008 Apr 4;320(5872):60-1. doi: 10.1126/science.1155132.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecole Polytechnique Federale de Lausanne, Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland. michael.chang@epfl.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388281" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; DNA-Activated Protein Kinase/metabolism ; Humans ; Mice ; Nuclear Proteins/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; *Signal Transduction ; TOR Serine-Threonine Kinases ; Telomere-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2008 Feb 1;319(5863):558-9. doi: 10.1126/science.319.5863.558b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239099" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Female ; Forkhead Transcription Factors/genetics/physiology ; Humans ; Mice ; Oocytes/*physiology ; Ovarian Follicle/*physiology ; Ovulation ; PTEN Phosphohydrolase/antagonists & inhibitors/genetics/*physiology ; Primary Ovarian Insufficiency/*physiopathology/therapy ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2008-08-16
    Description: The extent to which synaptic activity can signal a sensory stimulus limits the information available to a neuron. We determined the contribution of individual synapses to sensory representation by recording excitatory postsynaptic currents (EPSCs) in cerebellar granule cells during a time-varying, quantifiable vestibular stimulus. Vestibular-sensitive synapses faithfully reported direction and velocity, rather than position or acceleration of whole-body motion, via bidirectional modulation of EPSC frequency. The lack of short-term synaptic dynamics ensured a highly linear relationship between velocity and charge transfer, and as few as 100 synapses provided resolution approaching psychophysical limits. This indicates that highly accurate stimulus representation can be achieved by small networks and even within single neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771362/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771362/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arenz, Alexander -- Silver, R Angus -- Schaefer, Andreas T -- Margrie, Troy W -- 064413/Wellcome Trust/United Kingdom -- 072292/Wellcome Trust/United Kingdom -- BB/F005490/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- MC_U117597156/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):977-80. doi: 10.1126/science.1158391.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Physiology, and Pharmacology, University College London, University Street, London WC1E 6JJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18703744" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebellum/cytology/*physiology ; Excitatory Postsynaptic Potentials ; Mice ; Nerve Fibers/physiology ; Neurons/*physiology ; Patch-Clamp Techniques ; Rotation ; Synapses/*physiology ; Vestibule, Labyrinth/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2008-05-24
    Description: beta-Arrestins have important roles in the regulation of seven-transmembrane receptors (7TMRs). Smoothened (Smo) is a 7TMR that mediates effects of Hedgehog on developmental processes and whose dysregulation may cause tumorigenesis. beta-Arrestins are required for endocytosis of Smo and signaling to Gli transcription factors. In mammalian cells, Smo-dependent signaling requires translocation to primary cilia. We demonstrated that beta-arrestins mediate the activity-dependent interaction of Smo and the kinesin motor protein Kif3A. This multimeric complex localized to primary cilia and was disrupted in cells transfected with beta-arrestin small interfering RNA. beta-Arrestin 1 or beta-arrestin 2 depletion prevented the localization of Smo to primary cilia and the Smo-dependent activation of Gli. These results suggest roles for beta-arrestins in mediating the intracellular transport of a 7TMR to its obligate subcellular location for signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kovacs, Jeffrey J -- Whalen, Erin J -- Liu, Renshui -- Xiao, Kunhong -- Kim, Jihee -- Chen, Minyong -- Wang, Jiangbo -- Chen, Wei -- Lefkowitz, Robert J -- 5R01 CA113656-02/CA/NCI NIH HHS/ -- 5T32 AI007217-25/AI/NIAID NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- HL70631/HL/NHLBI NIH HHS/ -- R01 CA113656/CA/NCI NIH HHS/ -- R01 CA113656-02/CA/NCI NIH HHS/ -- R01 CA113656-03/CA/NCI NIH HHS/ -- R01 HL016037/HL/NHLBI NIH HHS/ -- R01 HL016037-35/HL/NHLBI NIH HHS/ -- R01 HL070631/HL/NHLBI NIH HHS/ -- R01 HL070631-04/HL/NHLBI NIH HHS/ -- T32 AI007217/AI/NIAID NIH HHS/ -- T32 AI007217-25/AI/NIAID NIH HHS/ -- T32 AI007217-26/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jun 27;320(5884):1777-81. doi: 10.1126/science.1157983. Epub 2008 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497258" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/genetics/*metabolism ; Cilia/*metabolism ; Hedgehog Proteins/metabolism ; Kinesin/*metabolism ; Mice ; Microscopy, Confocal ; Molecular Motor Proteins/*metabolism ; NIH 3T3 Cells ; Protein Transport ; RNA Interference ; Receptors, G-Protein-Coupled/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription Factors/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holmes, Nick -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):646-7. doi: 10.1126/science.1162294.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Department of Pathology, Cambridge University, Cambridge CB2 1QP, UK. nh106@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669848" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Antigens, CD45/chemistry/*genetics/metabolism ; CD4-Positive T-Lymphocytes/*immunology/*metabolism ; Heterogeneous-Nuclear Ribonucleoproteins/*metabolism ; Humans ; *Lymphocyte Activation ; Mice ; Mutation ; Platelet Membrane Glycoprotein IIb/genetics/metabolism ; Polymorphism, Single Nucleotide ; Protein Isoforms/chemistry/genetics/metabolism ; RNA Precursors/genetics ; STAT5 Transcription Factor/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eliopoulos, Aristides G -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):648-9. doi: 10.1126/science.1162212.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Crete Medical School and Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece. eliopag@med.uoc.gr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669850" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD40/*metabolism ; B-Lymphocytes/immunology/*metabolism ; Cytoplasm/metabolism ; I-kappa B Kinase/metabolism ; Inhibitor of Apoptosis Proteins/metabolism ; JNK Mitogen-Activated Protein Kinases/metabolism ; MAP Kinase Kinase Kinase 1/metabolism ; *MAP Kinase Signaling System ; Mice ; Phosphorylation ; Proteasome Endopeptidase Complex/metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 2/metabolism ; TNF Receptor-Associated Factor 3/metabolism ; TNF Receptor-Associated Factor 6/metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitination ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):24-5. doi: 10.1126/science.321.5885.24b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599747" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; *Climate ; *Ecosystem ; Flowers/*growth & development ; Greenhouse Effect ; Massachusetts ; *Plant Development ; Seasons ; Species Specificity ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2008-06-21
    Description: The control of innate immune responses through activation of the nuclear transcription factor NF-kappaB is essential for the elimination of invading microbial pathogens. We showed that the bacterial N-(3-oxo-dodecanoyl) homoserine lactone (C12) selectively impairs the regulation of NF-kappaB functions in activated mammalian cells. The consequence is specific repression of stimulus-mediated induction of NF-kappaB-responsive genes encoding inflammatory cytokines and other immune regulators. These findings uncover a strategy by which C12-producing opportunistic pathogens, such as Pseudomonas aeruginosa, attenuate the innate immune system to establish and maintain local persistent infection in humans, for example, in cystic fibrosis patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kravchenko, Vladimir V -- Kaufmann, Gunnar F -- Mathison, John C -- Scott, David A -- Katz, Alexander Z -- Grauer, David C -- Lehmann, Mandy -- Meijler, Michael M -- Janda, Kim D -- Ulevitch, Richard J -- New York, N.Y. -- Science. 2008 Jul 11;321(5886):259-63. doi: 10.1126/science.1156499. Epub 2008 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Sciences, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18566250" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Butyrolactone/*analogs & derivatives/physiology ; Adult ; Animals ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cystic Fibrosis/microbiology ; Female ; *Gene Expression Regulation ; Homoserine/*analogs & derivatives/physiology ; Humans ; I-kappa B Kinase/metabolism ; I-kappa B Proteins/metabolism ; Immunity, Innate ; Interferon-gamma/immunology ; Lipopolysaccharides/immunology ; Macrophage Activation ; Macrophages/*immunology/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Middle Aged ; NF-kappa B/*metabolism ; Phosphorylation ; Pseudomonas Infections/immunology/microbiology ; Pseudomonas aeruginosa/immunology/*pathogenicity/physiology ; *Signal Transduction ; Toll-Like Receptors/metabolism ; Transcription Factor RelA/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krieg, Arthur M -- Lipford, Grayson B -- New York, N.Y. -- Science. 2008 Feb 1;319(5863):576-7. doi: 10.1126/science.1154207.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Coley Pharmaceutical Group, 93 Worcester Street, Wellesley, MA 02481, USA. akrieg@coleypharma.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239112" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmune Diseases/*immunology/metabolism ; Cathepsin K ; Cathepsins/antagonists & inhibitors/deficiency/*metabolism ; Cytokines/secretion ; DNA, Bacterial/metabolism ; DNA, Viral/metabolism ; Dendritic Cells/immunology ; Dinucleoside Phosphates/immunology/metabolism ; Endoplasmic Reticulum/metabolism ; Endosomes/metabolism ; Humans ; *Immunity, Innate ; Inflammation/*immunology/metabolism ; Lysosomes/metabolism ; Mice ; Protease Inhibitors/pharmacology ; Rats ; Signal Transduction ; Toll-Like Receptor 9/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2008-02-16
    Description: The majority of mitochondrial DNA (mtDNA) mutations that cause human disease are mild to moderately deleterious, yet many random mtDNA mutations would be expected to be severe. To determine the fate of the more severe mtDNA mutations, we introduced mtDNAs containing two mutations that affect oxidative phosphorylation into the female mouse germ line. The severe ND6 mutation was selectively eliminated during oogenesis within four generations, whereas the milder COI mutation was retained throughout multiple generations even though the offspring consistently developed mitochondrial myopathy and cardiomyopathy. Thus, severe mtDNA mutations appear to be selectively eliminated from the female germ line, thereby minimizing their impact on population fitness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, Weiwei -- Waymire, Katrina G -- Narula, Navneet -- Li, Peng -- Rocher, Christophe -- Coskun, Pinar E -- Vannan, Mani A -- Narula, Jagat -- Macgregor, Grant R -- Wallace, Douglas C -- AG13154/AG/NIA NIH HHS/ -- AG16573/AG/NIA NIH HHS/ -- AG24373/AG/NIA NIH HHS/ -- DK73691/DK/NIDDK NIH HHS/ -- HD45913/HD/NICHD NIH HHS/ -- NS21328/NS/NINDS NIH HHS/ -- U01 HD045913-01/HD/NICHD NIH HHS/ -- U01 HD045913-02/HD/NICHD NIH HHS/ -- U01 HD045913-03/HD/NICHD NIH HHS/ -- U01 HD045913-04/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):958-62. doi: 10.1126/science.1147786.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiomyopathies/genetics/pathology ; Cell Line ; Crosses, Genetic ; DNA, Mitochondrial/*genetics ; Electron Transport Complex I/metabolism ; Electron Transport Complex IV/*genetics/metabolism ; Embryonic Stem Cells ; Female ; Frameshift Mutation ; *Germ-Line Mutation ; Litter Size ; Male ; Mice ; Mitochondria/physiology ; Mitochondrial Myopathies/*genetics/pathology ; Mutation, Missense ; Myocardium/pathology ; NADH Dehydrogenase/*genetics ; Oocytes/*physiology ; Oogenesis ; Oxidative Phosphorylation ; Oxygen Consumption ; Point Mutation ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2008-09-06
    Description: Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81-base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Visel, Axel -- Akiyama, Jennifer A -- Shoukry, Malak -- Lewis, Keith D -- Holt, Amy -- Plajzer-Frick, Ingrid -- Morrison, Harris -- Fitzpatrick, David R -- Afzal, Veena -- Pennacchio, Len A -- Rubin, Edward M -- Noonan, James P -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367-02/GM/NIGMS NIH HHS/ -- HG003988/HG/NHGRI NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- MC_U127561093/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1346-50. doi: 10.1126/science.1159974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Body Patterning/*genetics ; Conserved Sequence ; Embryonic Development ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Extremities/*embryology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Limb Buds/embryology/metabolism ; Macaca mulatta/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; PAX9 Transcription Factor/metabolism ; Pan troglodytes/genetics ; Selection, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-06-17
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horton, Jay D -- P01 HL020948/HL/NHLBI NIH HHS/ -- P01 HL020948-280017/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2008 Jun 13;320(5882):1433-4. doi: 10.1126/science.1159651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA. jay.horton@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18556540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cholesterol/*biosynthesis/blood ; DNA-Binding Proteins/genetics/*metabolism ; Endoplasmic Reticulum/metabolism ; Fatty Acids/*biosynthesis ; Gene Deletion ; Gene Expression Regulation ; Lipids/biosynthesis ; *Lipogenesis ; Liver/*metabolism ; Mice ; Nuclear Proteins/genetics/*metabolism ; Protein Folding ; Sterol Regulatory Element Binding Proteins/genetics/metabolism ; Transcription Factors/genetics/*physiology ; Transcription, Genetic ; Triglycerides/blood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2008-02-09
    Description: Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fargione, Joseph -- Hill, Jason -- Tilman, David -- Polasky, Stephen -- Hawthorne, Peter -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1235-8. doi: 10.1126/science.1152747. Epub 2008 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Nature Conservancy, 1101 West River Parkway, Suite 200, Minneapolis, MN 55415, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18258862" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomass ; Brazil ; Carbon ; *Carbon Dioxide/metabolism ; Crops, Agricultural ; *Ecosystem ; *Energy-Generating Resources ; Greenhouse Effect ; Indonesia ; Malaysia ; Plant Development ; *Plants/metabolism ; *Soil ; Time Factors ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2008-11-15
    Description: Leukocyte recruitment to sites of infection or inflammation requires multiple adhesive events. Although numerous players promoting leukocyte-endothelial interactions have been characterized, functionally important endogenous inhibitors of leukocyte adhesion have not been identified. Here we describe the endothelially derived secreted molecule Del-1 (developmental endothelial locus-1) as an anti-adhesive factor that interferes with the integrin LFA-1-dependent leukocyte-endothelial adhesion. Endothelial Del-1 deficiency increased LFA-1-dependent leukocyte adhesion in vitro and in vivo. Del-1-/- mice displayed significantly higher neutrophil accumulation in lipopolysaccharide-induced lung inflammation in vivo, which was reversed in Del-1/LFA-1 double-deficient mice. Thus, Del-1 is an endogenous inhibitor of inflammatory cell recruitment and could provide a basis for targeting leukocyte-endothelial interactions in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Eun Young -- Chavakis, Emmanouil -- Czabanka, Marcus A -- Langer, Harald F -- Fraemohs, Line -- Economopoulou, Matina -- Kundu, Ramendra K -- Orlandi, Alessia -- Zheng, Ying Yi -- Prieto, Darue A -- Ballantyne, Christie M -- Constant, Stephanie L -- Aird, William C -- Papayannopoulou, Thalia -- Gahmberg, Carl G -- Udey, Mark C -- Vajkoczy, Peter -- Quertermous, Thomas -- Dimmeler, Stefanie -- Weber, Christian -- Chavakis, Triantafyllos -- AI067254/AI/NIAID NIH HHS/ -- R01 HL082927/HL/NHLBI NIH HHS/ -- Z01 BC010790-01/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 14;322(5904):1101-4. doi: 10.1126/science.1165218.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19008446" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchoalveolar Lavage Fluid/cytology/immunology ; Carrier Proteins/*physiology ; *Cell Adhesion ; Endothelial Cells/*physiology ; Intercellular Adhesion Molecule-1/metabolism ; Leukocyte Rolling ; Ligands ; Lipopolysaccharides/immunology ; Lung/blood supply/immunology ; Lymphocyte Function-Associated Antigen-1/metabolism ; Mice ; Monocytes/*physiology ; *Neutrophil Infiltration ; Neutrophils/*physiology ; Peritonitis/immunology ; Pneumonia/*immunology ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2008-11-29
    Description: Hepatic glucose production is critical for basal brain function and survival when dietary glucose is unavailable. Glucose-6-phosphatase (G6Pase) is an essential, rate-limiting enzyme that serves as a terminal gatekeeper for hepatic glucose release into the plasma. Mutations in G6Pase result in Von Gierke's disease (glycogen storage disease-1a), a potentially fatal genetic disorder. We have identified the transcriptional coactivator SRC-2 as a regulator of fasting hepatic glucose release, a function that SRC-2 performs by controlling the expression of hepatic G6Pase. SRC-2 modulates G6Pase expression directly by acting as a coactivator with the orphan nuclear receptor RORalpha. In addition, SRC-2 ablation, in both a whole-body and liver-specific manner, resulted in a Von Gierke's disease phenotype in mice. Our results position SRC-2 as a critical regulator of mammalian glucose production.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668604/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668604/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chopra, Atul R -- Louet, Jean-Francois -- Saha, Pradip -- An, Jie -- Demayo, Franco -- Xu, Jianming -- York, Brian -- Karpen, Saul -- Finegold, Milton -- Moore, David -- Chan, Lawrence -- Newgard, Christopher B -- O'Malley, Bert W -- DK58242/DK/NIDDK NIH HHS/ -- HL51586/HL/NHLBI NIH HHS/ -- P01 DK059820/DK/NIDDK NIH HHS/ -- P01 DK059820-08/DK/NIDDK NIH HHS/ -- P01 DK58398/DK/NIDDK NIH HHS/ -- P01 DK59820/DK/NIDDK NIH HHS/ -- R01 DK056239/DK/NIDDK NIH HHS/ -- R01 DK056239-08/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-07/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 28;322(5906):1395-9. doi: 10.1126/science.1164847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19039140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Fasting ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Enzymologic ; Glucose/*metabolism ; Glucose-6-Phosphatase/*genetics/metabolism ; Glycogen Storage Disease Type I/*genetics/metabolism ; Hepatocytes/metabolism ; Kidney/metabolism ; Liver/*metabolism ; Liver Glycogen/metabolism ; Male ; Mice ; Mice, Knockout ; Nuclear Receptor Coactivator 2/genetics/*metabolism ; RNA Interference ; Receptors, Retinoic Acid/metabolism ; Response Elements ; Transcription, Genetic ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Christoph A -- New York, N.Y. -- Science. 2008 Sep 26;321(5897):1785-7. doi: 10.1126/science.1164853.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Oncogenomics, Department of Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany. christoph.klein@klinik.uni-regensburg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818347" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement ; Cell Proliferation ; Cell Survival ; Cell Transformation, Neoplastic ; Epithelial Cells/cytology/physiology ; Gene Expression Regulation, Neoplastic ; Humans ; Lung Neoplasms/pathology/*secondary ; Mammary Glands, Animal/cytology ; Mice ; *Neoplasm Metastasis/genetics/pathology ; Neoplasms/genetics/*pathology ; Neoplastic Cells, Circulating/pathology ; Oncogenes ; Twist Transcription Factor/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2008-07-05
    Description: Sudden infant death syndrome is the leading cause of death in the postneonatal period in developed countries. Postmortem studies show alterations in serotonin neurons in the brainstem of such infants. However, the mechanism by which altered serotonin homeostasis might cause sudden death is unknown. We investigated the consequences of altering the autoinhibitory capacity of serotonin neurons with the reversible overexpression of serotonin 1A autoreceptors in transgenic mice. Overexpressing mice exhibited sporadic bradycardia and hypothermia that occurred during a limited developmental period and frequently progressed to death. Moreover, overexpressing mice failed to activate autonomic target organs in response to environmental challenges. These findings show that excessive serotonin autoinhibition is a risk factor for catastrophic autonomic dysregulation and provide a mechanism for a role of altered serotonin homeostasis in sudden infant death syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Audero, Enrica -- Coppi, Elisabetta -- Mlinar, Boris -- Rossetti, Tiziana -- Caprioli, Antonio -- Banchaabouchi, Mumna Al -- Corradetti, Renato -- Gross, Cornelius -- MH64948/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):130-3. doi: 10.1126/science.1157871.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599790" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autonomic Nervous System/*physiology ; Autoreceptors/metabolism ; Body Temperature ; Doxycycline/pharmacology ; Electrocardiography ; Feedback, Physiological ; Heart Rate ; Homeostasis ; Humans ; Infant ; Mice ; Mice, Transgenic ; Motor Activity ; *Neural Inhibition ; Neurons/metabolism/*physiology ; Piperazines/administration & dosage/pharmacology ; Pyridines/administration & dosage/pharmacology ; Raphe Nuclei/cytology/metabolism ; Receptor, Serotonin, 5-HT1A/genetics/metabolism ; Serotonin/*metabolism ; Serotonin Antagonists/administration & dosage/pharmacology ; Sudden Infant Death/*etiology ; Sympathetic Nervous System/physiology ; Synaptic Transmission ; Tryptophan/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2008-03-08
    Description: Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the approximately 3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288698/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288698/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNamara, Case -- Zinkernagel, Annelies S -- Macheboeuf, Pauline -- Cunningham, Madeleine W -- Nizet, Victor -- Ghosh, Partho -- R01 AI048694/AI/NIAID NIH HHS/ -- R01 AI052453/AI/NIAID NIH HHS/ -- R01 AI052453-08/AI/NIAID NIH HHS/ -- R21 AI071167/AI/NIAID NIH HHS/ -- R21 AI071167-01A1/AI/NIAID NIH HHS/ -- T32 GM008326/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1405-8. doi: 10.1126/science.1154470.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323455" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Bacterial/immunology ; Antigens, Bacterial/*chemistry/genetics/immunology/metabolism ; Bacterial Outer Membrane Proteins/*chemistry/genetics/immunology/metabolism ; Carrier Proteins/*chemistry/genetics/immunology/metabolism ; Circular Dichroism ; Cross Reactions ; Crystallography, X-Ray ; Dimerization ; Fibrinogen/metabolism ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Repetitive Sequences, Amino Acid ; Streptococcal Infections/immunology/microbiology ; Streptococcus pyogenes/*chemistry/immunology/*pathogenicity ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2008-01-05
    Description: In vivo experience can occlude subsequent induction of long-term potentiation and enhance long-term depression of synaptic responses. Although a reduced capacity for synaptic strengthening may function to prevent excessive excitation, such an effect paradoxically implies that continued experience or training should not improve and may even degrade neural representations. In mice, we examined the effect of ongoing whisker stimulation on synaptic strengthening at layer 4-2/3 synapses in the barrel cortex. Although N-methyl-d-aspartate receptors were required to initiate strengthening, they subsequently suppressed further potentiation at these synapses in vitro and in vivo. Despite this transition, synaptic strengthening continued with additional sensory activity but instead required the activation of metabotropic glutamate receptors, suggesting a mechanism by which continued experience can result in increasing synaptic strength over time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clem, Roger L -- Celikel, Tansu -- Barth, Alison L -- DA017188-01/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 4;319(5859):101-4. doi: 10.1126/science.1143808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18174444" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Association Learning ; Calcium/metabolism ; Electric Stimulation ; Excitatory Postsynaptic Potentials ; Long-Term Potentiation ; Long-Term Synaptic Depression ; Mice ; Mice, Transgenic ; Neocortex/*physiology ; *Neuronal Plasticity ; Neurons/physiology ; Receptors, Metabotropic Glutamate/antagonists & inhibitors/metabolism ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/chemistry ; Signal Transduction ; Somatosensory Cortex/*physiology ; Synapses/*physiology ; Vibrissae/*innervation/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kyewski, Bruno -- New York, N.Y. -- Science. 2008 Aug 8;321(5890):776-7. doi: 10.1126/science.1162966.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, D-69120 Germany. b.kyewski@dkfz.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18687943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Autoantigens/immunology ; Autoimmunity ; Biological Evolution ; Epithelial Cells/immunology/metabolism ; Gene Expression ; Lymphoid Tissue/*cytology/immunology/*metabolism ; Mice ; Mice, Transgenic ; *Self Tolerance ; Stromal Cells/immunology/metabolism ; T-Lymphocytes/cytology/*immunology ; Thymus Gland/cytology/*immunology/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-11-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lammert, Eckhard -- New York, N.Y. -- Science. 2008 Nov 21;322(5905):1195-6. doi: 10.1126/science.1167451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Animal Physiology, Heinrich-Heine-University, D-40225 Dusseldorf, Germany. lammert@uni-duesseldorf.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023070" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood-Brain Barrier/embryology ; Brain/*blood supply/*embryology ; Embryonic Induction ; Humans ; Mice ; Neovascularization, Physiologic ; Signal Transduction ; Wnt Proteins/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2008-04-05
    Description: Mutations in mitochondrial DNA (mtDNA) occur at high frequency in human tumors, but whether these mutations alter tumor cell behavior has been unclear. We used cytoplasmic hybrid (cybrid) technology to replace the endogenous mtDNA in a mouse tumor cell line that was poorly metastatic with mtDNA from a cell line that was highly metastatic, and vice versa. Using assays of metastasis in mice, we found that the recipient tumor cells acquired the metastatic potential of the transferred mtDNA. The mtDNA conferring high metastatic potential contained G13997A and 13885insC mutations in the gene encoding NADH (reduced form of nicotinamide adenine dinucleotide) dehydrogenase subunit 6 (ND6). These mutations produced a deficiency in respiratory complex I activity and were associated with overproduction of reactive oxygen species (ROS). Pretreatment of the highly metastatic tumor cells with ROS scavengers suppressed their metastatic potential in mice. These results indicate that mtDNA mutations can contribute to tumor progression by enhancing the metastatic potential of tumor cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishikawa, Kaori -- Takenaga, Keizo -- Akimoto, Miho -- Koshikawa, Nobuko -- Yamaguchi, Aya -- Imanishi, Hirotake -- Nakada, Kazuto -- Honma, Yoshio -- Hayashi, Jun-Ichi -- New York, N.Y. -- Science. 2008 May 2;320(5876):661-4. doi: 10.1126/science.1156906. Epub 2008 Apr 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388260" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/pharmacology ; Animals ; Antineoplastic Agents/pharmacology ; Cell Line, Tumor ; *DNA, Mitochondrial ; *DNA, Neoplasm ; Electron Transport Complex I/genetics/metabolism ; Free Radical Scavengers/pharmacology ; HeLa Cells ; Humans ; Hybrid Cells ; Mice ; Mutation ; NADH Dehydrogenase/*genetics/metabolism ; Neoplasm Metastasis/*genetics ; Reactive Oxygen Species/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):167. doi: 10.1126/science.320.5873.167a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403684" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/*pathology ; Brain Chemistry ; *Brain Tissue Transplantation ; *Fetal Tissue Transplantation ; Graft Survival ; Humans ; Neurons/chemistry/*pathology/transplantation ; Parkinson Disease/metabolism/*pathology/*surgery ; Time Factors ; Ubiquitin/analysis ; alpha-Synuclein/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-12
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951621/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951621/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rafii, Shahin -- Lyden, David -- P01 HL067839/HL/NHLBI NIH HHS/ -- P01 HL067839-010004/HL/NHLBI NIH HHS/ -- P01 HL067839-020004/HL/NHLBI NIH HHS/ -- P01 HL067839-030004/HL/NHLBI NIH HHS/ -- P01 HL067839-040004/HL/NHLBI NIH HHS/ -- P01 HL067839-050004/HL/NHLBI NIH HHS/ -- P50 HL084936/HL/NHLBI NIH HHS/ -- P50 HL084936-010003/HL/NHLBI NIH HHS/ -- P50 HL084936-020003/HL/NHLBI NIH HHS/ -- P50 HL084936-030003/HL/NHLBI NIH HHS/ -- P50 HL084936-040003/HL/NHLBI NIH HHS/ -- R01 HL058707/HL/NHLBI NIH HHS/ -- R01 HL058707-03/HL/NHLBI NIH HHS/ -- R01 HL058707-04/HL/NHLBI NIH HHS/ -- R01 HL061849/HL/NHLBI NIH HHS/ -- R01 HL061849-02/HL/NHLBI NIH HHS/ -- R01 HL061849-03/HL/NHLBI NIH HHS/ -- R01 HL061849-03S1/HL/NHLBI NIH HHS/ -- R01 HL061849-04/HL/NHLBI NIH HHS/ -- R01 HL061849-05/HL/NHLBI NIH HHS/ -- R01 HL075234/HL/NHLBI NIH HHS/ -- R01 HL075234-01/HL/NHLBI NIH HHS/ -- R01 HL075234-02/HL/NHLBI NIH HHS/ -- R01 HL075234-03/HL/NHLBI NIH HHS/ -- R01 HL075234-04/HL/NHLBI NIH HHS/ -- R21 HL083222/HL/NHLBI NIH HHS/ -- R21 HL083222-01/HL/NHLBI NIH HHS/ -- R21 HL083222-02/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jan 11;319(5860):163-4. doi: 10.1126/science.1153615.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA. srafii@med.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18187643" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inducing Agents/metabolism ; Angiogenic Proteins/metabolism ; Animals ; Bone Marrow Cells/cytology ; Carcinoma, Lewis Lung/*blood supply/pathology/*secondary ; Cell Differentiation ; Endothelial Cells/cytology/*physiology ; Lung Neoplasms/blood supply/pathology/*secondary ; Mammary Neoplasms, Animal/blood supply/pathology ; Mice ; Neoplasm Metastasis/*pathology ; *Neovascularization, Pathologic ; Stem Cells/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2008-11-22
    Description: Metabolic regulation in mammals requires communication between multiple organs and tissues. The rise in the incidence of obesity and associated metabolic disorders, including type 2 diabetes, has renewed interest in interorgan communication. We used mouse models to explore the mechanism whereby obesity enhances pancreatic beta cell mass, pathophysiological compensation for insulin resistance. We found that hepatic activation of extracellular regulated kinase (ERK) signaling induced pancreatic beta cell proliferation through a neuronal-mediated relay of metabolic signals. This metabolic relay from the liver to the pancreas is involved in obesity-induced islet expansion. In mouse models of insulin-deficient diabetes, liver-selective activation of ERK signaling increased beta cell mass and normalized serum glucose levels. Thus, interorgan metabolic relay systems may serve as valuable targets in regenerative treatments for diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imai, Junta -- Katagiri, Hideki -- Yamada, Tetsuya -- Ishigaki, Yasushi -- Suzuki, Toshinobu -- Kudo, Hirohito -- Uno, Kenji -- Hasegawa, Yutaka -- Gao, Junhong -- Kaneko, Keizo -- Ishihara, Hisamitsu -- Niijima, Akira -- Nakazato, Masamitsu -- Asano, Tomoichiro -- Minokoshi, Yasuhiko -- Oka, Yoshitomo -- New York, N.Y. -- Science. 2008 Nov 21;322(5905):1250-4. doi: 10.1126/science.1163971.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023081" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Central Nervous System/metabolism ; Diabetes Mellitus, Experimental/metabolism ; Hyperplasia ; Insulin/metabolism ; Insulin Resistance ; Insulin-Secreting Cells/*metabolism/pathology ; Liver/*metabolism ; MAP Kinase Kinase 1/*metabolism ; *MAP Kinase Signaling System ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/*metabolism ; Obesity/*metabolism ; Pancreas/innervation ; Recombinant Proteins/metabolism ; Vagus Nerve/cytology/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2008-07-19
    Description: When intracellular pathogens invade mammalian hosts, naive CD8+ T cells differentiate into cytotoxic killers, which lyse infected target cells and secrete cytokines that activate intracellular microbicides. We show that CD8+ T cells deficient in the transcription factors T-bet and eomesodermin (Eomes) fail to differentiate into functional killers required for defense against lymphocytic choriomeningitis virus. Instead, virus-specific CD8+ T cells lacking both T-bet and Eomes differentiate into an interleukin-17-secreting lineage, reminiscent of the helper T cell fate that has been implicated in autoimmunity and extracellular microbial defense. Upon viral infection, mice with T cells lacking both T-bet and Eomes develop a CD8+ T cell-dependent, progressive inflammatory and wasting syndrome characterized by multi-organ infiltration of neutrophils. T-bet and Eomes, thus, ensure that CD8+ T cells adopt an appropriate course of intracellular rather than extracellular destruction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Intlekofer, Andrew M -- Banerjee, Arnob -- Takemoto, Naofumi -- Gordon, Scott M -- Dejong, Caitlin S -- Shin, Haina -- Hunter, Christopher A -- Wherry, E John -- Lindsten, Tullia -- Reiner, Steven L -- AI007532/AI/NIAID NIH HHS/ -- AI042334/AI/NIAID NIH HHS/ -- AI042370/AI/NIAID NIH HHS/ -- AI061699/AI/NIAID NIH HHS/ -- AI071309/AI/NIAID NIH HHS/ -- AI076458/AI/NIAID NIH HHS/ -- R01 AI042370/AI/NIAID NIH HHS/ -- R01 AI042370-12/AI/NIAID NIH HHS/ -- R01 AI061699/AI/NIAID NIH HHS/ -- R01 AI061699-05/AI/NIAID NIH HHS/ -- R01 AI071309/AI/NIAID NIH HHS/ -- R01 AI071309-01/AI/NIAID NIH HHS/ -- R01 AI076458/AI/NIAID NIH HHS/ -- R01 AI076458-02/AI/NIAID NIH HHS/ -- T32 CA009140/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):408-11. doi: 10.1126/science.1159806.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635804" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Viral/immunology ; Arenaviridae Infections/*immunology/pathology/virology ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/*immunology/*metabolism ; Cell Differentiation ; Cytotoxicity, Immunologic ; Interferon-gamma/metabolism ; Interleukin-17/*metabolism ; Lymphocyte Depletion ; *Lymphocytic choriomeningitis virus/immunology/isolation & ; purification/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; T-Box Domain Proteins/deficiency/genetics/*physiology ; Virus Replication ; Wasting Syndrome/immunology/pathology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2008-04-26
    Description: beta-Secretase plays a critical role in beta-amyloid formation and thus provides a therapeutic target for Alzheimer's disease. Inhibitor design has usually focused on active-site binding, neglecting the subcellular localization of active enzyme. We have addressed this issue by synthesizing a membrane-anchored version of a beta-secretase transition-state inhibitor by linking it to a sterol moiety. Thus, we targeted the inhibitor to active beta-secretase found in endosomes and also reduced the dimensionality of the inhibitor, increasing its local membrane concentration. This inhibitor reduced enzyme activity much more efficiently than did the free inhibitor in cultured cells and in vivo. In addition to effectively targeting beta-secretase, this strategy could also be used in designing potent drugs against other membrane protein targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajendran, Lawrence -- Schneider, Anja -- Schlechtingen, Georg -- Weidlich, Sebastian -- Ries, Jonas -- Braxmeier, Tobias -- Schwille, Petra -- Schulz, Jorg B -- Schroeder, Cornelia -- Simons, Mikael -- Jennings, Gary -- Knolker, Hans-Joachim -- Simons, Kai -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):520-3. doi: 10.1126/science.1156609.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18436784" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/enzymology ; Amyloid Precursor Protein Secretases/*antagonists & inhibitors/metabolism ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/metabolism ; Animals ; Animals, Genetically Modified ; Drosophila/genetics ; Drug Delivery Systems ; *Drug Design ; Endocytosis ; Endosomes/*enzymology ; HeLa Cells ; Humans ; Intracellular Membranes/metabolism ; Membrane Microdomains/enzymology ; Mice ; Peptides/chemistry/metabolism/*pharmacology ; Protease Inhibitors/chemical synthesis/chemistry/metabolism/*pharmacology ; *Sterols
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2008-12-20
    Description: Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freudiger, Christian W -- Min, Wei -- Saar, Brian G -- Lu, Sijia -- Holtom, Gary R -- He, Chengwei -- Tsai, Jason C -- Kang, Jing X -- Xie, X Sunney -- CA113605/CA/NCI NIH HHS/ -- DP1 OD000277/OD/NIH HHS/ -- DP1 OD000277-05/OD/NIH HHS/ -- R01 CA113605/CA/NCI NIH HHS/ -- R01 CA113605-01A2/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1857-61. doi: 10.1126/science.1165758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Corpus Callosum/chemistry/cytology ; Dimethyl Sulfoxide/administration & dosage/pharmacokinetics ; Eicosapentaenoic Acid/metabolism ; Epidermis/chemistry/metabolism/ultrastructure ; Humans ; Imaging, Three-Dimensional/*methods ; Lipids/*analysis ; Mice ; Microscopy/*methods ; Neurons/ultrastructure ; Sensitivity and Specificity ; Skin/chemistry/ultrastructure ; *Spectrum Analysis, Raman ; Tretinoin/administration & dosage/pharmacokinetics ; Vitamin A/analysis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2008-11-01
    Description: Fuller et al. (Reports, 23 May 2008, p. 1074) reported that the dorsomedial hypothalamus contains a Bmal1-based oscillator that can drive food-entrained circadian rhythms. We report that mice bearing a null mutation of Bmal1 exhibit normal food-anticipatory circadian rhythms. Lack of food anticipation in Bmal1-/- mice reported by Fuller et al. may reflect morbidity due to weight loss, thus raising questions about their conclusions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mistlberger, Ralph E -- Yamazaki, Shin -- Pendergast, Julie S -- Landry, Glenn J -- Takumi, Toru -- Nakamura, Wataru -- NS051278/NS/NINDS NIH HHS/ -- R01 NS051278/NS/NINDS NIH HHS/ -- R01 NS051278-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 31;322(5902):675; author reply 675. doi: 10.1126/science.1161284.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada. mistlber@sfu.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18974333" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Behavior, Animal ; Biological Clocks/*physiology ; Circadian Rhythm/*physiology ; Cues ; Darkness ; Dorsomedial Hypothalamic Nucleus/*metabolism ; *Food ; *Light ; Mice ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2008-08-02
    Description: Manganas et al. (Reports, 9 November 2007, p. 980) reported the discovery of a biomarker specific for neural progenitor cells detectable using magnetic resonance spectroscopy. A new algorithm was developed to extract the biomarker from noisy in vivo data. We question how this algorithm was validated, because the biomarker overlaps with peaks from nonspecific lipid signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jansen, Jacobus F A -- Gearhart, John D -- Bulte, Jeff W M -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):640. doi: 10.1126/science.1153997.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA. jansenjfa@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669846" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Biomarkers/*analysis ; Brain/*cytology ; Embryonic Stem Cells/chemistry/cytology ; Humans ; Lipids/*analysis ; Magnetic Resonance Spectroscopy/*methods ; Mice ; Neurons/chemistry/*cytology ; Stem Cells/chemistry/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-05-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharjee, Yudhijit -- New York, N.Y. -- Science. 2008 May 16;320(5878):859. doi: 10.1126/science.320.5878.859.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18487163" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Disease Models, Animal ; Genetics/history ; History, 20th Century ; History, 21st Century ; Humans ; Mice ; National Academy of Sciences (U.S.)/*organization & administration ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2008-05-24
    Description: When food is plentiful, circadian rhythms of animals are powerfully entrained by the light-dark cycle. However, if animals have access to food only during their normal sleep cycle, they will shift most of their circadian rhythms to match the food availability. We studied the basis for entrainment of circadian rhythms by food and light in mice with targeted disruption of the clock gene Bmal1, which lack circadian rhythmicity. Injection of a viral vector containing the Bmal1 gene into the suprachiasmatic nuclei of the hypothalamus restored light-entrainable, but not food-entrainable, circadian rhythms. In contrast, restoration of the Bmal1 gene only in the dorsomedial hypothalamic nucleus restored the ability of animals to entrain to food but not to light. These results demonstrate that the dorsomedial hypothalamus contains a Bmal1-based oscillator that can drive food entrainment of circadian rhythms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489954/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489954/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuller, Patrick M -- Lu, Jun -- Saper, Clifford B -- HL07901-08/HL/NHLBI NIH HHS/ -- HL60292/HL/NHLBI NIH HHS/ -- NS051609/NS/NINDS NIH HHS/ -- NS057119/NS/NINDS NIH HHS/ -- NS33987/NS/NINDS NIH HHS/ -- P50 HL060292-08/HL/NHLBI NIH HHS/ -- R01 NS033987/NS/NINDS NIH HHS/ -- R01 NS033987-11/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 May 23;320(5879):1074-7. doi: 10.1126/science.1153277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497298" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/*physiology ; Biological Clocks/*physiology ; Body Temperature ; Cell Cycle Proteins/genetics ; Circadian Rhythm/*physiology ; Dorsomedial Hypothalamic Nucleus/*metabolism ; *Food ; Gene Expression ; Gene Transfer Techniques ; *Light ; Mice ; Motor Activity ; Nuclear Proteins/genetics ; Period Circadian Proteins ; Starvation ; Suprachiasmatic Nucleus/metabolism ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2008-11-01
    Description: The gene transient receptor potential-melastatin-like 7 (Trpm7) encodes a protein that functions as an ion channel and a kinase. TRPM7 has been proposed to be required for cellular Mg2+ homeostasis in vertebrates. Deletion of mouse Trpm7 revealed that it is essential for embryonic development. Tissue-specific deletion of Trpm7 in the T cell lineage disrupted thymopoiesis, which led to a developmental block of thymocytes at the double-negative stage and a progressive depletion of thymic medullary cells. However, deletion of Trpm7 in T cells did not affect acute uptake of Mg2+ or the maintenance of total cellular Mg2+. Trpm7-deficient thymocytes exhibited dysregulated synthesis of many growth factors that are necessary for the differentiation and maintenance of thymic epithelial cells. The thymic medullary cells lost signal transducer and activator of transcription 3 activity, which accounts for their depletion when Trpm7 is disrupted in thymocytes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605283/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605283/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, Jie -- Desai, Bimal N -- Navarro, Betsy -- Donovan, Adriana -- Andrews, Nancy C -- Clapham, David E -- T32HL007572-20/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Oct 31;322(5902):756-60. doi: 10.1126/science.1163493.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18974357" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD44/metabolism ; *Embryonic Development ; Gene Deletion ; Homeostasis ; Intercellular Signaling Peptides and Proteins/genetics/metabolism ; Interleukin-2 Receptor alpha Subunit/metabolism ; *Lymphopoiesis ; Magnesium/*metabolism ; Mice ; Mice, Knockout ; Patch-Clamp Techniques ; STAT3 Transcription Factor/metabolism ; T-Lymphocytes/*cytology/immunology/*metabolism ; TRPM Cation Channels/genetics/*physiology ; Thymus Gland/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharjee, Yudhijit -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):163. doi: 10.1126/science.320.5873.163.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects/radiation effects ; Chemotherapy, Adjuvant ; Macaca mulatta ; Mice ; NF-kappa B/metabolism ; Neoplasms/drug therapy/radiotherapy ; Peptides/*pharmacology ; Radiation Dosage ; Radiation Injuries, Experimental/*prevention & control ; Radiation Tolerance/*drug effects ; Radiation-Protective Agents/*pharmacology/toxicity ; Toll-Like Receptor 5/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉John, Beena -- Hunter, Christopher A -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):917-8. doi: 10.1126/science.1162914.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Veterinary Medicine, University of Pennsylvania, PA 19108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18703727" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Dendritic Cells/immunology/parasitology ; Host-Parasite Interactions ; Insect Bites and Stings ; Insect Vectors/parasitology ; Langerhans Cells/immunology ; Leishmania major/immunology/*physiology ; Leishmaniasis, Cutaneous/*immunology/*parasitology/transmission ; Macrophages/immunology/parasitology ; Mice ; Mice, Transgenic ; Neutrophil Infiltration ; Neutrophils/*immunology/*parasitology ; Phagocytosis ; Psychodidae/parasitology ; Skin/immunology/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2008-03-22
    Description: Staphylococcus aureus is one of the most successful human pathogens, colonizing 2 billion individuals worldwide and causing invasive infections even in immunocompetent hosts. S. aureus can evade multiple components of host innate immunity, including the antimicrobial radical nitric oxide (NO.) produced by activated phagocytes. We show that S. aureus is capable of metabolically adapting to nitrosative stress by expressing an NO.-inducible L-lactate dehydrogenase (ldh1, SACOL0222) divergently transcribed from the NO.-detoxifying flavohemoglobin (hmp). L-Lactate production allows S. aureus to maintain redox homeostasis during nitrosative stress and is essential for virulence. NO.-inducible lactate dehydrogenase activity and NO. resistance distinguish S. aureus from the closely related commensal species S. epidermidis and S. saprophyticus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richardson, Anthony R -- Libby, Stephen J -- Fang, Ferric C -- AI039557/AI/NIAID NIH HHS/ -- AI055396/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 21;319(5870):1672-6. doi: 10.1126/science.1155207.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18356528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Induction ; Glucose/metabolism ; Homeostasis ; *Immunity, Innate ; Isoenzymes/biosynthesis/genetics/metabolism ; L-Lactate Dehydrogenase/biosynthesis/genetics/*metabolism ; Lactates/metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Nitric Oxide/*metabolism ; Oxidation-Reduction ; Oxygen Consumption ; Staphylococcal Infections/immunology/*microbiology ; Staphylococcus aureus/*enzymology/metabolism/pathogenicity ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Deborah L -- Johnson, Sandra A S -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):461-2. doi: 10.1126/science.1158680.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA. johnsond@hsc.usc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18436765" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; *Cell Transformation, Neoplastic ; Mice ; Nuclear Proteins/metabolism ; *Protein Biosynthesis ; RNA/genetics/*metabolism ; RNA Polymerase III/*metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Ribosomal/metabolism ; RNA, Transfer/*metabolism ; RNA, Transfer, Met/metabolism ; RNA-Binding Proteins/metabolism ; Signal Transduction ; Transcription Factors, General/metabolism ; Transcription Factors, TFIII/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2008-11-01
    Description: To equalize X-chromosome dosages between the sexes, the female mammal inactivates one of her two X chromosomes. X-chromosome inactivation (XCI) is initiated by expression of Xist, a 17-kb noncoding RNA (ncRNA) that accumulates on the X in cis. Because interacting factors have not been isolated, the mechanism by which Xist induces silencing remains unknown. We discovered a 1.6-kilobase ncRNA (RepA) within Xist and identified the Polycomb complex, PRC2, as its direct target. PRC2 is initially recruited to the X by RepA RNA, with Ezh2 serving as the RNA binding subunit. The antisense Tsix RNA inhibits this interaction. RepA depletion abolishes full-length Xist induction and trimethylation on lysine 27 of histone H3 of the X. Likewise, PRC2 deficiency compromises Xist up-regulation. Therefore, RepA, together with PRC2, is required for the initiation and spread of XCI. We conclude that a ncRNA cofactor recruits Polycomb complexes to their target locus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748911/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748911/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Jing -- Sun, Bryan K -- Erwin, Jennifer A -- Song, Ji-Joon -- Lee, Jeannie T -- R01 GM058839/GM/NIGMS NIH HHS/ -- R01 GM058839-10/GM/NIGMS NIH HHS/ -- R01 GM110090/GM/NIGMS NIH HHS/ -- R01GM58839/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Oct 31;322(5902):750-6. doi: 10.1126/science.1163045.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18974356" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin Immunoprecipitation ; Electrophoretic Mobility Shift Assay ; Embryonic Stem Cells ; Female ; Fibroblasts ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Polycomb-Group Proteins ; Polymerase Chain Reaction ; RNA, Long Noncoding ; RNA, Untranslated/genetics/*metabolism ; Repetitive Sequences, Nucleic Acid ; Repressor Proteins/*metabolism ; Up-Regulation ; X Chromosome/*metabolism ; X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2008-05-20
    Description: Development of axonal tracts requires interactions between growth cones and the environment. Tracts such as the anterior commissure and internal capsule are defective in mice with null mutation of Celsr3. We generated a conditional Celsr3 allele, allowing regional inactivation. Inactivation in telencephalon, ventral forebrain, or cortex demonstrated essential roles for Celsr3 in neurons that project axons to the anterior commissure and subcerebral targets, as well as in cells that guide axons through the internal capsule. When Celsr3 was inactivated in cortex, subcerebral projections failed to grow, yet corticothalamic axons developed normally, indicating that besides guidepost cells, additional Celsr3-independent cues can assist their progression. These observations provide in vivo evidence that Celsr3-mediated interactions between axons and guidepost cells govern axonal tract formation in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Libing -- Bar, Isabelle -- Achouri, Younes -- Campbell, Kenneth -- De Backer, Olivier -- Hebert, Jean M -- Jones, Kevin -- Kessaris, Nicoletta -- de Rouvroit, Catherine Lambert -- O'Leary, Dennis -- Richardson, William D -- Goffinet, Andre M -- Tissir, Fadel -- G0501173/Medical Research Council/United Kingdom -- G0800575/Medical Research Council/United Kingdom -- G9708005/Medical Research Council/United Kingdom -- R01 MH086147/MH/NIMH NIH HHS/ -- R01 MH086147-05/MH/NIMH NIH HHS/ -- R37 NS031558/NS/NINDS NIH HHS/ -- R37 NS031558-15/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 May 16;320(5878):946-9. doi: 10.1126/science.1155244.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Neurobiology, Universite Catholique de Louvain, 1200 Bruxelles, Belgique.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18487195" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cadherins/*genetics/*physiology ; Cerebral Cortex/cytology/embryology ; Female ; Gene Silencing ; Internal Capsule/cytology/embryology/physiology ; Male ; Mice ; Neural Pathways/*embryology/physiology ; Neurons/*physiology ; Prosencephalon/cytology/*embryology/physiology ; Receptors, Cell Surface/*genetics/*physiology ; Septal Nuclei/embryology/physiology ; Thalamus/cytology/embryology ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2008-01-26
    Description: The residence time of fine-root carbon in soil is one of the least understood aspects of the global carbon cycle, and fine-root dynamics are one of the least understood aspects of plant function. Most recent studies of these belowground dynamics have used one of two methodological strategies. In one approach, based on analysis of carbon isotopes, the persistence of carbon is inferred; in the other, based on direct observations of roots with cameras, the longevity of individual roots is measured. We show that the contribution of fine roots to the global carbon cycle has been overstated because observations of root lifetimes systematically overestimate the turnover of fine-root biomass. On the other hand, isotopic techniques systematically underestimate the turnover of individual roots. These differences, by virtue of the separate processes or pools measured, are irreconcilable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strand, Allan E -- Pritchard, Seth G -- McCormack, M Luke -- Davis, Micheal A -- Oren, Ram -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):456-8. doi: 10.1126/science.1151382.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, College of Charleston, Charleston, SC 29424, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218895" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Botany/methods ; Carbon/*analysis ; Carbon Dioxide/analysis/metabolism ; Carbon Isotopes ; Chemistry Techniques, Analytical/methods ; Miniaturization ; Plant Roots/chemistry/*physiology ; Soil/*analysis ; Time Factors ; Video Recording
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2008-10-18
    Description: Conventional magnetic resonance methods that provide interior temperature profiles, which find use in clinical applications such as hyperthermic therapy, can develop inaccuracies caused by the inherently inhomogeneous magnetic field within tissues or by probe dynamics, and work poorly in important applications such as fatty tissues. We present a magnetic resonance method that is suitable for imaging temperature in a wide range of environments. It uses the inherently sharp resonances of intermolecular zero-quantum coherences, in this case flipping up a water spin while flipping down a nearby fat spin. We show that this method can rapidly and accurately assign temperatures in vivo on an absolute scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080759/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080759/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galiana, Gigi -- Branca, Rosa T -- Jenista, Elizabeth R -- Warren, Warren S -- EB2122/EB/NIBIB NIH HHS/ -- EB5979/EB/NIBIB NIH HHS/ -- R01 EB002122/EB/NIBIB NIH HHS/ -- R01 EB002122-22A2/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):421-4. doi: 10.1126/science.1163242.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18927389" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Temperature ; Lipids ; Magnetic Resonance Imaging/*methods ; Mice ; Mice, Obese ; *Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2008-04-12
    Description: Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A --〉 EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158657/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158657/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallarda, Benjamin W -- Bonanomi, Dario -- Muller, Daniel -- Brown, Arthur -- Alaynick, William A -- Andrews, Shane E -- Lemke, Greg -- Pfaff, Samuel L -- Marquardt, Till -- NS031249-14A1/NS/NINDS NIH HHS/ -- NS054172-01A2/NS/NINDS NIH HHS/ -- R01 NS054172/NS/NINDS NIH HHS/ -- R01 NS054172-01A2/NS/NINDS NIH HHS/ -- R01 NS054172-02/NS/NINDS NIH HHS/ -- R01 NS054172-03/NS/NINDS NIH HHS/ -- R01 NS054172-04/NS/NINDS NIH HHS/ -- R01 NS054172-05/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):233-6. doi: 10.1126/science.1153758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403711" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/physiology ; Animals ; Axons/*physiology ; Cells, Cultured ; Coculture Techniques ; Efferent Pathways/physiology ; Electrophysiology ; Ephrins/*metabolism ; Ganglia, Spinal/cytology/physiology ; Growth Cones/physiology ; Ligands ; Mice ; Mice, Transgenic ; Motor Activity ; Motor Neurons/*physiology ; Muscle, Skeletal/innervation ; Mutation ; Neurons, Afferent/*physiology ; Peripheral Nerves/cytology/physiology ; Receptor, EphA3/genetics/*metabolism ; Receptor, EphA4/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-05-31
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Sonia -- Zhou, Zhaolan -- Greenberg, Michael E -- K99 NS058391/NS/NINDS NIH HHS/ -- K99 NS058391-01/NS/NINDS NIH HHS/ -- K99 NS058391-02/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD018655-25/HD/NICHD NIH HHS/ -- P30 HD018655-26/HD/NICHD NIH HHS/ -- P30 HD018655-27/HD/NICHD NIH HHS/ -- R00 NS058391/NS/NINDS NIH HHS/ -- R00 NS058391-03/NS/NINDS NIH HHS/ -- R00 NS058391-04/NS/NINDS NIH HHS/ -- R00 NS058391-05/NS/NINDS NIH HHS/ -- R01 NS048276/NS/NINDS NIH HHS/ -- R01 NS048276-01/NS/NINDS NIH HHS/ -- R01 NS048276-02/NS/NINDS NIH HHS/ -- R01 NS048276-03/NS/NINDS NIH HHS/ -- R01 NS048276-04/NS/NINDS NIH HHS/ -- R01 NS048276-05/NS/NINDS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 May 30;320(5880):1172-3. doi: 10.1126/science.1159146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18511680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/*genetics ; Gene Expression Regulation ; Methyl-CpG-Binding Protein 2/genetics/*physiology ; Mice ; Promoter Regions, Genetic ; Repressor Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-10-25
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351775/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351775/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kahn, C Ronald -- P30 DK036836/DK/NIDDK NIH HHS/ -- R01 DK082659/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):542-3. doi: 10.1126/science.1165667.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA. c.ronald.kahn@joslin.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948531" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology/metabolism ; Adipocytes, Brown/cytology/metabolism ; Adipocytes, White/*cytology/metabolism ; Adipogenesis ; Adipose Tissue/*blood supply/cytology/metabolism ; Adiposity ; Animals ; Cell Lineage ; Gene Expression ; Humans ; Mesenchymal Stromal Cells/cytology ; Mice ; Multipotent Stem Cells/*cytology/metabolism ; Pericytes/*cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2008-06-17
    Description: Dietary carbohydrates regulate hepatic lipogenesis by controlling the expression of critical enzymes in glycolytic and lipogenic pathways. We found that the transcription factor XBP1, a key regulator of the unfolded protein response, is required for the unrelated function of normal fatty acid synthesis in the liver. XBP1 protein expression in mice was elevated after feeding carbohydrates and corresponded with the induction of critical genes involved in fatty acid synthesis. Inducible, selective deletion of XBP1 in the liver resulted in marked hypocholesterolemia and hypotriglyceridemia, secondary to a decreased production of lipids from the liver. This phenotype was not accompanied by hepatic steatosis or compromise in protein secretory function. The identification of XBP1 as a regulator of lipogenesis has important implications for human dyslipidemias.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ann-Hwee -- Scapa, Erez F -- Cohen, David E -- Glimcher, Laurie H -- AI32412/AI/NIAID NIH HHS/ -- DK48873/DK/NIDDK NIH HHS/ -- DK56626/DK/NIDDK NIH HHS/ -- P01 AI056296/AI/NIAID NIH HHS/ -- P01 AI56296/AI/NIAID NIH HHS/ -- R01 AI032412/AI/NIAID NIH HHS/ -- R01 DK048873/DK/NIDDK NIH HHS/ -- R01 DK056626/DK/NIDDK NIH HHS/ -- R37 DK048873/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2008 Jun 13;320(5882):1492-6. doi: 10.1126/science.1158042.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA. ahlee@hsph.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18556558" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cholesterol/blood ; DNA-Binding Proteins/genetics/*metabolism ; Dietary Carbohydrates/administration & dosage ; Down-Regulation ; Endoplasmic Reticulum/metabolism/ultrastructure ; Fatty Acids/*biosynthesis ; Fructose/administration & dosage ; Gene Deletion ; Gene Expression Regulation ; Glycolysis/genetics ; Hepatocytes/metabolism ; *Lipogenesis/genetics ; Liver/*metabolism ; Mice ; Nuclear Proteins/genetics/*metabolism ; Oligonucleotide Array Sequence Analysis ; Protein Folding ; RNA, Messenger/genetics/metabolism ; Transcription Factors ; Triglycerides/blood/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-10-18
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coller, Hilary A -- Kruglyak, Leonid -- R01 GM081686/GM/NIGMS NIH HHS/ -- R01 GM086465/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):380-1. doi: 10.1126/science.1165664.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. hcoller@princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18927376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Pair 21/*genetics/metabolism ; Disease Models, Animal ; Down Syndrome/genetics ; *Gene Expression Regulation ; Hepatocytes/*metabolism ; Histones/metabolism ; Humans ; Mice ; RNA, Messenger/genetics/metabolism ; *Regulatory Sequences, Nucleic Acid ; Species Specificity ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2008-01-12
    Description: Angiogenesis-mediated progression of micrometastasis to lethal macrometastasis is the major cause of death in cancer patients. Here, using mouse models of pulmonary metastasis, we identify bone marrow (BM)-derived endothelial progenitor cells (EPCs) as critical regulators of this angiogenic switch. We show that tumors induce expression of the transcription factor Id1 in the EPCs and that suppression of Id1 after metastatic colonization blocked EPC mobilization, caused angiogenesis inhibition, impaired pulmonary macrometastases, and increased survival of tumor-bearing animals. These findings establish the role of EPCs in metastatic progression in preclinical models and suggest that selective targeting of EPCs may merit investigation as a therapy for cancer patients with lung metastases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Dingcheng -- Nolan, Daniel J -- Mellick, Albert S -- Bambino, Kathryn -- McDonnell, Kevin -- Mittal, Vivek -- New York, N.Y. -- Science. 2008 Jan 11;319(5860):195-8. doi: 10.1126/science.1150224.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Research Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18187653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/cytology/physiology ; Carcinoma, Lewis Lung/*blood supply/pathology/*secondary ; Disease Progression ; Endothelial Cells/cytology/*physiology ; Female ; Gene Expression ; Inhibitor of Differentiation Protein 1/genetics/metabolism ; Lung Neoplasms/blood supply/pathology/*secondary ; Male ; Mammary Neoplasms, Animal/blood supply/pathology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neoplasm Metastasis/*pathology ; Neoplasm Transplantation ; *Neovascularization, Pathologic ; Stem Cells/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2008-06-28
    Description: As a result of the redundancy of the genetic code, adjacent pairs of amino acids can be encoded by as many as 36 different pairs of synonymous codons. A species-specific "codon pair bias" provides that some synonymous codon pairs are used more or less frequently than statistically predicted. We synthesized de novo large DNA molecules using hundreds of over-or underrepresented synonymous codon pairs to encode the poliovirus capsid protein. Underrepresented codon pairs caused decreased rates of protein translation, and polioviruses containing such amino acid-independent changes were attenuated in mice. Polioviruses thus customized were used to immunize mice and provided protective immunity after challenge. This "death by a thousand cuts" strategy could be generally applicable to attenuating many kinds of viruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754401/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754401/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coleman, J Robert -- Papamichail, Dimitris -- Skiena, Steven -- Futcher, Bruce -- Wimmer, Eckard -- Mueller, Steffen -- AI075219/AI/NIAID NIH HHS/ -- AI15122/AI/NIAID NIH HHS/ -- R01 AI075219/AI/NIAID NIH HHS/ -- R01 AI075219-01A1/AI/NIAID NIH HHS/ -- R37 AI015122/AI/NIAID NIH HHS/ -- R37 AI015122-34/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Jun 27;320(5884):1784-7. doi: 10.1126/science.1155761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18583614" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Antibodies, Viral/biosynthesis ; Capsid Proteins/*genetics ; Cloning, Molecular ; *Codon ; Cytopathogenic Effect, Viral ; *Genome, Viral ; HeLa Cells ; Hot Temperature ; Humans ; Mice ; Mice, Transgenic ; Mutation ; Poliomyelitis/immunology/virology ; Poliovirus/*genetics/growth & development/immunology/*pathogenicity ; *Poliovirus Vaccines/genetics/immunology ; Protein Biosynthesis ; Vaccination ; Vaccines, Attenuated/genetics/immunology ; Viral Plaque Assay ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2008-04-05
    Description: Recent experiments with rats suggest that they show episodic-like or what-where-when memory for a preferred food found on a radial maze. Although memory for when a salient event occurred suggests that rats can mentally travel in time to a moment in the past, an alternative possibility is that they remember how long ago the food was found. Three groups of rats were tested for memory of previously encountered food. The different groups could use only the cues of when, how long ago, or when + how long ago. Only the cue of how long ago food was encountered was used successfully. These results suggest that episodic-like memory in rats is qualitatively different from human episodic memory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, William A -- Feeney, Miranda C -- Macpherson, Krista -- Petter, Mark -- McMillan, Neil -- Musolino, Evanya -- New York, N.Y. -- Science. 2008 Apr 4;320(5872):113-5. doi: 10.1126/science.1152709.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada. roberts@uwo.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cues ; Male ; Maze Learning ; *Memory ; Random Allocation ; Rats ; Rats, Long-Evans ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birchler, James A -- Kavi, Harsh H -- New York, N.Y. -- Science. 2008 May 23;320(5879):1023-4. doi: 10.1126/science.1159018. Epub 2008 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA. birchlerj@missouri.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18467555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; DNA Transposable Elements ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*genetics/metabolism ; Eukaryotic Initiation Factor-2/metabolism ; Eukaryotic Initiation Factors ; Germ Cells/metabolism ; Mice ; MicroRNAs/genetics/metabolism ; Mutation ; RNA Helicases/genetics/metabolism ; RNA Interference ; RNA, Small Interfering/*genetics/*metabolism ; RNA-Induced Silencing Complex/genetics/metabolism ; Ribonuclease III/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birnbaum, Morris J -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1348-9. doi: 10.1126/science.1155915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA. birnbaum@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323441" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/*metabolism ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Diabetes Mellitus/metabolism ; Enzyme Activation ; Gene Expression Regulation ; Glucose/*metabolism ; Glucose-6-Phosphatase/genetics/metabolism ; Glycosylation ; Humans ; Insulin/metabolism ; Insulin Resistance ; Liver/*metabolism ; Mice ; Phosphorylation ; *Signal Transduction ; Trans-Activators/*metabolism ; Transcription Factors ; Transcription, Genetic ; Uridine Diphosphate N-Acetylglucosamine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2008-12-20
    Description: The host tissue microenvironment influences malignant cell proliferation and metastasis, but little is known about how tumor-induced changes in the microenvironment affect benign cellular ecosystems. Applying dynamic in vivo imaging to a mouse model, we show that leukemic cell growth disrupts normal hematopoietic progenitor cell (HPC) bone marrow niches and creates abnormal microenvironments that sequester transplanted human CD34+ (HPC-enriched) cells. CD34+ cells in leukemic mice declined in number over time and failed to mobilize into the peripheral circulation in response to cytokine stimulation. Neutralization of stem cell factor (SCF) secreted by leukemic cells inhibited CD34+ cell migration into malignant niches, normalized CD34+ cell numbers, and restored CD34+ cell mobilization in leukemic mice. These data suggest that the tumor microenvironment causes HPC dysfunction by usurping normal HPC niches and that therapeutic inhibition of HPC interaction with tumor niches may help maintain normal progenitor cell function in the setting of malignancy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colmone, Angela -- Amorim, Maria -- Pontier, Andrea L -- Wang, Sheng -- Jablonski, Elizabeth -- Sipkins, Dorothy A -- 1DP2OD002160-01/OD/NIH HHS/ -- 5K08CA112126-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1861-5. doi: 10.1126/science.1164390.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Section of Hematology/Oncology, University of Chicago, 5841 South Maryland Avenue MC 2115, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095944" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/analysis ; Bone Marrow/*pathology ; Cell Count ; Cell Line, Tumor ; Cell Movement ; Chemokine CXCL12/metabolism ; Granulocyte Colony-Stimulating Factor/pharmacology ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/metabolism/*physiology ; Heterocyclic Compounds/pharmacology ; Humans ; Leukemia, Myeloid, Acute/metabolism/*pathology ; Mice ; Mice, SCID ; Neoplasm Transplantation ; Precursor B-Cell Lymphoblastic ; Leukemia-Lymphoma/metabolism/*pathology/physiopathology ; Stem Cell Factor/genetics/metabolism ; Stem Cell Niche/*pathology/physiopathology ; Transplantation, Heterologous ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2008-10-11
    Description: We provide a century-scale view of small-mammal responses to global warming, without confounding effects of land-use change, by repeating Grinnell's early-20th century survey across a 3000-meter-elevation gradient that spans Yosemite National Park, California, USA. Using occupancy modeling to control for variation in detectability, we show substantial ( approximately 500 meters on average) upward changes in elevational limits for half of 28 species monitored, consistent with the observed approximately 3 degrees C increase in minimum temperatures. Formerly low-elevation species expanded their ranges and high-elevation species contracted theirs, leading to changed community composition at mid- and high elevations. Elevational replacement among congeners changed because species' responses were idiosyncratic. Though some high-elevation species are threatened, protection of elevation gradients allows other species to respond via migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moritz, Craig -- Patton, James L -- Conroy, Chris J -- Parra, Juan L -- White, Gary C -- Beissinger, Steven R -- New York, N.Y. -- Science. 2008 Oct 10;322(5899):261-4. doi: 10.1126/science.1163428.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA. craigm@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18845755" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization ; Altitude ; Animal Migration ; Animals ; *Biodiversity ; California ; *Climate ; *Ecosystem ; *Greenhouse Effect ; *Mammals ; Population Dynamics ; Temperature ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2008-08-09
    Description: The prevention of autoimmunity requires the elimination of self-reactive T cells during their development and maturation. The expression of diverse self-antigens by stromal cells in the thymus is essential to this process and depends, in part, on the activity of the autoimmune regulator (Aire) gene. Here we report the identification of extrathymic Aire-expressing cells (eTACs) resident within the secondary lymphoid organs. These stromally derived eTACs express a diverse array of distinct self-antigens and are capable of interacting with and deleting naive autoreactive T cells. Using two-photon microscopy, we observed stable antigen-specific interactions between eTACs and autoreactive T cells. We propose that such a secondary network of self-antigen-expressing stromal cells may help reinforce immune tolerance by preventing the maturation of autoreactive T cells that escape thymic negative selection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532844/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532844/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, James M -- Devoss, Jason J -- Friedman, Rachel S -- Wong, David J -- Tan, Ying X -- Zhou, Xuyu -- Johannes, Kellsey P -- Su, Maureen A -- Chang, Howard Y -- Krummel, Matthew F -- Anderson, Mark S -- K08 AI076429/AI/NIAID NIH HHS/ -- K08 AI076429-05/AI/NIAID NIH HHS/ -- P01 AI035297/AI/NIAID NIH HHS/ -- P01 AI035297-150009/AI/NIAID NIH HHS/ -- P01 AI035297-159001/AI/NIAID NIH HHS/ -- P01 AI035297-160009/AI/NIAID NIH HHS/ -- P01 AI035297-169001/AI/NIAID NIH HHS/ -- P01 AI035297-170009/AI/NIAID NIH HHS/ -- P01 AI035297-179001/AI/NIAID NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- P30 DK063720-05/DK/NIDDK NIH HHS/ -- T32 GM007618/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Aug 8;321(5890):843-7. doi: 10.1126/science.1159407.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Diabetes Center, University of California San Francisco (UCSF), San Francisco, CA 94122, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18687966" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Antigen Presentation ; Autoantigens/genetics/*immunology ; Autoimmunity ; Cell Proliferation ; Epithelial Cells/immunology ; Gene Expression Regulation ; Glucose-6-Phosphatase/immunology ; Lymph Nodes/cytology/*immunology/metabolism ; Lymphoid Tissue/*cytology/immunology/*metabolism ; Mice ; Mice, Transgenic ; Proteins/immunology ; *Self Tolerance ; Spleen/cytology/immunology/metabolism ; Stromal Cells/immunology/metabolism ; T-Lymphocytes/*immunology ; Thymus Gland/cytology/immunology ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohatgi, Rajat -- Scott, Matthew P -- 1K99CA129174/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jun 27;320(5884):1726-7. doi: 10.1126/science.1160448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18583599" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/genetics/*metabolism ; Cells, Cultured ; Cilia/*metabolism ; Hedgehog Proteins/metabolism ; Kinesin/*metabolism ; Kruppel-Like Transcription Factors/metabolism ; Mice ; Molecular Motor Proteins/metabolism ; Nerve Tissue Proteins/metabolism ; Protein Transport ; RNA Interference ; Receptors, G-Protein-Coupled/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-07-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabin, Clifford J -- McMahon, Andrew P -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):350-2. doi: 10.1126/science.1162474.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. tabin@receptor.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635784" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Proliferation ; Chick Embryo ; Extremities/*embryology ; Fibroblast Growth Factors/metabolism ; Fingers/embryology ; Hedgehog Proteins/*metabolism ; Humans ; Limb Buds/cytology/*embryology ; Mesoderm/cytology/embryology ; Mice ; Morphogenesis ; Signal Transduction ; Toes/embryology ; Wings, Animal/cytology/*embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2008-02-16
    Description: Alcohol dependence is a major public health challenge in need of new treatments. As alcoholism evolves, stress systems in the brain play an increasing role in motivating continued alcohol use and relapse. We investigated the role of the neurokinin 1 receptor (NK1R), a mediator of behavioral stress responses, in alcohol dependence and treatment. In preclinical studies, mice genetically deficient in NK1R showed a marked decrease in voluntary alcohol consumption and had an increased sensitivity to the sedative effects of alcohol. In a randomized controlled experimental study, we treated recently detoxified alcoholic inpatients with an NK1R antagonist (LY686017; n = 25) or placebo (n = 25). LY686017 suppressed spontaneous alcohol cravings, improved overall well-being, blunted cravings induced by a challenge procedure, and attenuated concomitant cortisol responses. Brain functional magnetic resonance imaging responses to affective stimuli likewise suggested beneficial LY686017 effects. Thus, as assessed by these surrogate markers of efficacy, NK1R antagonism warrants further investigation as a treatment in alcoholism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉George, David T -- Gilman, Jodi -- Hersh, Jacqueline -- Thorsell, Annika -- Herion, David -- Geyer, Christopher -- Peng, Xiaomei -- Kielbasa, William -- Rawlings, Robert -- Brandt, John E -- Gehlert, Donald R -- Tauscher, Johannes T -- Hunt, Stephen P -- Hommer, Daniel -- Heilig, Markus -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 14;319(5869):1536-9. doi: 10.1126/science.1153813. Epub 2008 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276852" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; *Alcohol Drinking/drug therapy ; Alcoholism/*drug therapy ; Animals ; Behavior, Addictive/drug therapy ; Brain/drug effects/physiology ; Emotions/drug effects ; Ethanol/administration & dosage/pharmacology ; Female ; Humans ; Hydrocortisone/blood ; Magnetic Resonance Imaging ; Male ; Mice ; Mice, Inbred C57BL ; Middle Aged ; *Neurokinin-1 Receptor Antagonists ; Pyridines/administration & dosage/pharmacology/*therapeutic use ; Receptors, Neurokinin-1/deficiency/genetics/*physiology ; Triazoles/administration & dosage/pharmacology/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murai, Keith K -- Pasquale, Elena B -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):185-6. doi: 10.1126/science.1157605.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403698" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Communication ; Growth Cones/physiology ; Mice ; Motor Neurons/*physiology ; Muscle, Skeletal/innervation ; Neural Pathways ; Neurons, Afferent/*physiology ; Receptor, EphA3/genetics/*metabolism ; Receptor, EphA4/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...